xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71 
72 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
73 
74 struct ib_umem_odp;
75 
76 extern struct workqueue_struct *ib_wq;
77 extern struct workqueue_struct *ib_comp_wq;
78 extern struct workqueue_struct *ib_comp_unbound_wq;
79 
80 __printf(3, 4) __cold
81 void ibdev_printk(const char *level, const struct ib_device *ibdev,
82 		  const char *format, ...);
83 __printf(2, 3) __cold
84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
85 __printf(2, 3) __cold
86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
87 __printf(2, 3) __cold
88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
89 __printf(2, 3) __cold
90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
91 __printf(2, 3) __cold
92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
93 __printf(2, 3) __cold
94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
95 __printf(2, 3) __cold
96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
97 
98 #if defined(CONFIG_DYNAMIC_DEBUG)
99 #define ibdev_dbg(__dev, format, args...)                       \
100 	dynamic_ibdev_dbg(__dev, format, ##args)
101 #else
102 __printf(2, 3) __cold
103 static inline
104 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105 #endif
106 
107 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
108 do {                                                                    \
109 	static DEFINE_RATELIMIT_STATE(_rs,                              \
110 				      DEFAULT_RATELIMIT_INTERVAL,       \
111 				      DEFAULT_RATELIMIT_BURST);         \
112 	if (__ratelimit(&_rs))                                          \
113 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
114 } while (0)
115 
116 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
117 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
118 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
119 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
120 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
121 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
122 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
123 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
124 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
125 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
126 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
127 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
128 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
129 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
130 
131 #if defined(CONFIG_DYNAMIC_DEBUG)
132 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
133 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
134 do {                                                                    \
135 	static DEFINE_RATELIMIT_STATE(_rs,                              \
136 				      DEFAULT_RATELIMIT_INTERVAL,       \
137 				      DEFAULT_RATELIMIT_BURST);         \
138 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
139 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
140 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
141 				    ##__VA_ARGS__);                     \
142 } while (0)
143 #else
144 __printf(2, 3) __cold
145 static inline
146 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
147 #endif
148 
149 union ib_gid {
150 	u8	raw[16];
151 	struct {
152 		__be64	subnet_prefix;
153 		__be64	interface_id;
154 	} global;
155 };
156 
157 extern union ib_gid zgid;
158 
159 enum ib_gid_type {
160 	/* If link layer is Ethernet, this is RoCE V1 */
161 	IB_GID_TYPE_IB        = 0,
162 	IB_GID_TYPE_ROCE      = 0,
163 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
164 	IB_GID_TYPE_SIZE
165 };
166 
167 #define ROCE_V2_UDP_DPORT      4791
168 struct ib_gid_attr {
169 	struct net_device __rcu	*ndev;
170 	struct ib_device	*device;
171 	union ib_gid		gid;
172 	enum ib_gid_type	gid_type;
173 	u16			index;
174 	u8			port_num;
175 };
176 
177 enum {
178 	/* set the local administered indication */
179 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
180 };
181 
182 enum rdma_transport_type {
183 	RDMA_TRANSPORT_IB,
184 	RDMA_TRANSPORT_IWARP,
185 	RDMA_TRANSPORT_USNIC,
186 	RDMA_TRANSPORT_USNIC_UDP,
187 	RDMA_TRANSPORT_UNSPECIFIED,
188 };
189 
190 enum rdma_protocol_type {
191 	RDMA_PROTOCOL_IB,
192 	RDMA_PROTOCOL_IBOE,
193 	RDMA_PROTOCOL_IWARP,
194 	RDMA_PROTOCOL_USNIC_UDP
195 };
196 
197 __attribute_const__ enum rdma_transport_type
198 rdma_node_get_transport(unsigned int node_type);
199 
200 enum rdma_network_type {
201 	RDMA_NETWORK_IB,
202 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
203 	RDMA_NETWORK_IPV4,
204 	RDMA_NETWORK_IPV6
205 };
206 
207 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
208 {
209 	if (network_type == RDMA_NETWORK_IPV4 ||
210 	    network_type == RDMA_NETWORK_IPV6)
211 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
212 
213 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
214 	return IB_GID_TYPE_IB;
215 }
216 
217 static inline enum rdma_network_type
218 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
219 {
220 	if (attr->gid_type == IB_GID_TYPE_IB)
221 		return RDMA_NETWORK_IB;
222 
223 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
224 		return RDMA_NETWORK_IPV4;
225 	else
226 		return RDMA_NETWORK_IPV6;
227 }
228 
229 enum rdma_link_layer {
230 	IB_LINK_LAYER_UNSPECIFIED,
231 	IB_LINK_LAYER_INFINIBAND,
232 	IB_LINK_LAYER_ETHERNET,
233 };
234 
235 enum ib_device_cap_flags {
236 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
237 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
238 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
239 	IB_DEVICE_RAW_MULTI			= (1 << 3),
240 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
241 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
242 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
243 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
244 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
245 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
246 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
247 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
248 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
249 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
250 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
251 
252 	/*
253 	 * This device supports a per-device lkey or stag that can be
254 	 * used without performing a memory registration for the local
255 	 * memory.  Note that ULPs should never check this flag, but
256 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
257 	 * which will always contain a usable lkey.
258 	 */
259 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
260 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
261 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
262 	/*
263 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
264 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
265 	 * messages and can verify the validity of checksum for
266 	 * incoming messages.  Setting this flag implies that the
267 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
268 	 */
269 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
270 	IB_DEVICE_UD_TSO			= (1 << 19),
271 	IB_DEVICE_XRC				= (1 << 20),
272 
273 	/*
274 	 * This device supports the IB "base memory management extension",
275 	 * which includes support for fast registrations (IB_WR_REG_MR,
276 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
277 	 * also be set by any iWarp device which must support FRs to comply
278 	 * to the iWarp verbs spec.  iWarp devices also support the
279 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
280 	 * stag.
281 	 */
282 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
283 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
284 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
285 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
286 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
287 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
288 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
289 	/*
290 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
291 	 * support execution of WQEs that involve synchronization
292 	 * of I/O operations with single completion queue managed
293 	 * by hardware.
294 	 */
295 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
296 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
297 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
298 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
299 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
300 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
301 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
302 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
303 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
304 	/* The device supports padding incoming writes to cacheline. */
305 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
306 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
307 };
308 
309 enum ib_atomic_cap {
310 	IB_ATOMIC_NONE,
311 	IB_ATOMIC_HCA,
312 	IB_ATOMIC_GLOB
313 };
314 
315 enum ib_odp_general_cap_bits {
316 	IB_ODP_SUPPORT		= 1 << 0,
317 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
318 };
319 
320 enum ib_odp_transport_cap_bits {
321 	IB_ODP_SUPPORT_SEND	= 1 << 0,
322 	IB_ODP_SUPPORT_RECV	= 1 << 1,
323 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
324 	IB_ODP_SUPPORT_READ	= 1 << 3,
325 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
326 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
327 };
328 
329 struct ib_odp_caps {
330 	uint64_t general_caps;
331 	struct {
332 		uint32_t  rc_odp_caps;
333 		uint32_t  uc_odp_caps;
334 		uint32_t  ud_odp_caps;
335 		uint32_t  xrc_odp_caps;
336 	} per_transport_caps;
337 };
338 
339 struct ib_rss_caps {
340 	/* Corresponding bit will be set if qp type from
341 	 * 'enum ib_qp_type' is supported, e.g.
342 	 * supported_qpts |= 1 << IB_QPT_UD
343 	 */
344 	u32 supported_qpts;
345 	u32 max_rwq_indirection_tables;
346 	u32 max_rwq_indirection_table_size;
347 };
348 
349 enum ib_tm_cap_flags {
350 	/*  Support tag matching with rendezvous offload for RC transport */
351 	IB_TM_CAP_RNDV_RC = 1 << 0,
352 };
353 
354 struct ib_tm_caps {
355 	/* Max size of RNDV header */
356 	u32 max_rndv_hdr_size;
357 	/* Max number of entries in tag matching list */
358 	u32 max_num_tags;
359 	/* From enum ib_tm_cap_flags */
360 	u32 flags;
361 	/* Max number of outstanding list operations */
362 	u32 max_ops;
363 	/* Max number of SGE in tag matching entry */
364 	u32 max_sge;
365 };
366 
367 struct ib_cq_init_attr {
368 	unsigned int	cqe;
369 	u32		comp_vector;
370 	u32		flags;
371 };
372 
373 enum ib_cq_attr_mask {
374 	IB_CQ_MODERATE = 1 << 0,
375 };
376 
377 struct ib_cq_caps {
378 	u16     max_cq_moderation_count;
379 	u16     max_cq_moderation_period;
380 };
381 
382 struct ib_dm_mr_attr {
383 	u64		length;
384 	u64		offset;
385 	u32		access_flags;
386 };
387 
388 struct ib_dm_alloc_attr {
389 	u64	length;
390 	u32	alignment;
391 	u32	flags;
392 };
393 
394 struct ib_device_attr {
395 	u64			fw_ver;
396 	__be64			sys_image_guid;
397 	u64			max_mr_size;
398 	u64			page_size_cap;
399 	u32			vendor_id;
400 	u32			vendor_part_id;
401 	u32			hw_ver;
402 	int			max_qp;
403 	int			max_qp_wr;
404 	u64			device_cap_flags;
405 	int			max_send_sge;
406 	int			max_recv_sge;
407 	int			max_sge_rd;
408 	int			max_cq;
409 	int			max_cqe;
410 	int			max_mr;
411 	int			max_pd;
412 	int			max_qp_rd_atom;
413 	int			max_ee_rd_atom;
414 	int			max_res_rd_atom;
415 	int			max_qp_init_rd_atom;
416 	int			max_ee_init_rd_atom;
417 	enum ib_atomic_cap	atomic_cap;
418 	enum ib_atomic_cap	masked_atomic_cap;
419 	int			max_ee;
420 	int			max_rdd;
421 	int			max_mw;
422 	int			max_raw_ipv6_qp;
423 	int			max_raw_ethy_qp;
424 	int			max_mcast_grp;
425 	int			max_mcast_qp_attach;
426 	int			max_total_mcast_qp_attach;
427 	int			max_ah;
428 	int			max_fmr;
429 	int			max_map_per_fmr;
430 	int			max_srq;
431 	int			max_srq_wr;
432 	int			max_srq_sge;
433 	unsigned int		max_fast_reg_page_list_len;
434 	unsigned int		max_pi_fast_reg_page_list_len;
435 	u16			max_pkeys;
436 	u8			local_ca_ack_delay;
437 	int			sig_prot_cap;
438 	int			sig_guard_cap;
439 	struct ib_odp_caps	odp_caps;
440 	uint64_t		timestamp_mask;
441 	uint64_t		hca_core_clock; /* in KHZ */
442 	struct ib_rss_caps	rss_caps;
443 	u32			max_wq_type_rq;
444 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
445 	struct ib_tm_caps	tm_caps;
446 	struct ib_cq_caps       cq_caps;
447 	u64			max_dm_size;
448 	/* Max entries for sgl for optimized performance per READ */
449 	u32			max_sgl_rd;
450 };
451 
452 enum ib_mtu {
453 	IB_MTU_256  = 1,
454 	IB_MTU_512  = 2,
455 	IB_MTU_1024 = 3,
456 	IB_MTU_2048 = 4,
457 	IB_MTU_4096 = 5
458 };
459 
460 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
461 {
462 	switch (mtu) {
463 	case IB_MTU_256:  return  256;
464 	case IB_MTU_512:  return  512;
465 	case IB_MTU_1024: return 1024;
466 	case IB_MTU_2048: return 2048;
467 	case IB_MTU_4096: return 4096;
468 	default: 	  return -1;
469 	}
470 }
471 
472 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
473 {
474 	if (mtu >= 4096)
475 		return IB_MTU_4096;
476 	else if (mtu >= 2048)
477 		return IB_MTU_2048;
478 	else if (mtu >= 1024)
479 		return IB_MTU_1024;
480 	else if (mtu >= 512)
481 		return IB_MTU_512;
482 	else
483 		return IB_MTU_256;
484 }
485 
486 enum ib_port_state {
487 	IB_PORT_NOP		= 0,
488 	IB_PORT_DOWN		= 1,
489 	IB_PORT_INIT		= 2,
490 	IB_PORT_ARMED		= 3,
491 	IB_PORT_ACTIVE		= 4,
492 	IB_PORT_ACTIVE_DEFER	= 5
493 };
494 
495 enum ib_port_phys_state {
496 	IB_PORT_PHYS_STATE_SLEEP = 1,
497 	IB_PORT_PHYS_STATE_POLLING = 2,
498 	IB_PORT_PHYS_STATE_DISABLED = 3,
499 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
500 	IB_PORT_PHYS_STATE_LINK_UP = 5,
501 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
502 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
503 };
504 
505 enum ib_port_width {
506 	IB_WIDTH_1X	= 1,
507 	IB_WIDTH_2X	= 16,
508 	IB_WIDTH_4X	= 2,
509 	IB_WIDTH_8X	= 4,
510 	IB_WIDTH_12X	= 8
511 };
512 
513 static inline int ib_width_enum_to_int(enum ib_port_width width)
514 {
515 	switch (width) {
516 	case IB_WIDTH_1X:  return  1;
517 	case IB_WIDTH_2X:  return  2;
518 	case IB_WIDTH_4X:  return  4;
519 	case IB_WIDTH_8X:  return  8;
520 	case IB_WIDTH_12X: return 12;
521 	default: 	  return -1;
522 	}
523 }
524 
525 enum ib_port_speed {
526 	IB_SPEED_SDR	= 1,
527 	IB_SPEED_DDR	= 2,
528 	IB_SPEED_QDR	= 4,
529 	IB_SPEED_FDR10	= 8,
530 	IB_SPEED_FDR	= 16,
531 	IB_SPEED_EDR	= 32,
532 	IB_SPEED_HDR	= 64
533 };
534 
535 /**
536  * struct rdma_hw_stats
537  * @lock - Mutex to protect parallel write access to lifespan and values
538  *    of counters, which are 64bits and not guaranteeed to be written
539  *    atomicaly on 32bits systems.
540  * @timestamp - Used by the core code to track when the last update was
541  * @lifespan - Used by the core code to determine how old the counters
542  *   should be before being updated again.  Stored in jiffies, defaults
543  *   to 10 milliseconds, drivers can override the default be specifying
544  *   their own value during their allocation routine.
545  * @name - Array of pointers to static names used for the counters in
546  *   directory.
547  * @num_counters - How many hardware counters there are.  If name is
548  *   shorter than this number, a kernel oops will result.  Driver authors
549  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
550  *   in their code to prevent this.
551  * @value - Array of u64 counters that are accessed by the sysfs code and
552  *   filled in by the drivers get_stats routine
553  */
554 struct rdma_hw_stats {
555 	struct mutex	lock; /* Protect lifespan and values[] */
556 	unsigned long	timestamp;
557 	unsigned long	lifespan;
558 	const char * const *names;
559 	int		num_counters;
560 	u64		value[];
561 };
562 
563 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
564 /**
565  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
566  *   for drivers.
567  * @names - Array of static const char *
568  * @num_counters - How many elements in array
569  * @lifespan - How many milliseconds between updates
570  */
571 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
572 		const char * const *names, int num_counters,
573 		unsigned long lifespan)
574 {
575 	struct rdma_hw_stats *stats;
576 
577 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
578 			GFP_KERNEL);
579 	if (!stats)
580 		return NULL;
581 	stats->names = names;
582 	stats->num_counters = num_counters;
583 	stats->lifespan = msecs_to_jiffies(lifespan);
584 
585 	return stats;
586 }
587 
588 
589 /* Define bits for the various functionality this port needs to be supported by
590  * the core.
591  */
592 /* Management                           0x00000FFF */
593 #define RDMA_CORE_CAP_IB_MAD            0x00000001
594 #define RDMA_CORE_CAP_IB_SMI            0x00000002
595 #define RDMA_CORE_CAP_IB_CM             0x00000004
596 #define RDMA_CORE_CAP_IW_CM             0x00000008
597 #define RDMA_CORE_CAP_IB_SA             0x00000010
598 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
599 
600 /* Address format                       0x000FF000 */
601 #define RDMA_CORE_CAP_AF_IB             0x00001000
602 #define RDMA_CORE_CAP_ETH_AH            0x00002000
603 #define RDMA_CORE_CAP_OPA_AH            0x00004000
604 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
605 
606 /* Protocol                             0xFFF00000 */
607 #define RDMA_CORE_CAP_PROT_IB           0x00100000
608 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
609 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
610 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
611 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
612 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
613 
614 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
615 					| RDMA_CORE_CAP_PROT_ROCE     \
616 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
617 
618 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
619 					| RDMA_CORE_CAP_IB_MAD \
620 					| RDMA_CORE_CAP_IB_SMI \
621 					| RDMA_CORE_CAP_IB_CM  \
622 					| RDMA_CORE_CAP_IB_SA  \
623 					| RDMA_CORE_CAP_AF_IB)
624 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
625 					| RDMA_CORE_CAP_IB_MAD  \
626 					| RDMA_CORE_CAP_IB_CM   \
627 					| RDMA_CORE_CAP_AF_IB   \
628 					| RDMA_CORE_CAP_ETH_AH)
629 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
630 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
631 					| RDMA_CORE_CAP_IB_MAD  \
632 					| RDMA_CORE_CAP_IB_CM   \
633 					| RDMA_CORE_CAP_AF_IB   \
634 					| RDMA_CORE_CAP_ETH_AH)
635 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
636 					| RDMA_CORE_CAP_IW_CM)
637 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
638 					| RDMA_CORE_CAP_OPA_MAD)
639 
640 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
641 
642 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
643 
644 struct ib_port_attr {
645 	u64			subnet_prefix;
646 	enum ib_port_state	state;
647 	enum ib_mtu		max_mtu;
648 	enum ib_mtu		active_mtu;
649 	int			gid_tbl_len;
650 	unsigned int		ip_gids:1;
651 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
652 	u32			port_cap_flags;
653 	u32			max_msg_sz;
654 	u32			bad_pkey_cntr;
655 	u32			qkey_viol_cntr;
656 	u16			pkey_tbl_len;
657 	u32			sm_lid;
658 	u32			lid;
659 	u8			lmc;
660 	u8			max_vl_num;
661 	u8			sm_sl;
662 	u8			subnet_timeout;
663 	u8			init_type_reply;
664 	u8			active_width;
665 	u8			active_speed;
666 	u8                      phys_state;
667 	u16			port_cap_flags2;
668 };
669 
670 enum ib_device_modify_flags {
671 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
672 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
673 };
674 
675 #define IB_DEVICE_NODE_DESC_MAX 64
676 
677 struct ib_device_modify {
678 	u64	sys_image_guid;
679 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
680 };
681 
682 enum ib_port_modify_flags {
683 	IB_PORT_SHUTDOWN		= 1,
684 	IB_PORT_INIT_TYPE		= (1<<2),
685 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
686 	IB_PORT_OPA_MASK_CHG		= (1<<4)
687 };
688 
689 struct ib_port_modify {
690 	u32	set_port_cap_mask;
691 	u32	clr_port_cap_mask;
692 	u8	init_type;
693 };
694 
695 enum ib_event_type {
696 	IB_EVENT_CQ_ERR,
697 	IB_EVENT_QP_FATAL,
698 	IB_EVENT_QP_REQ_ERR,
699 	IB_EVENT_QP_ACCESS_ERR,
700 	IB_EVENT_COMM_EST,
701 	IB_EVENT_SQ_DRAINED,
702 	IB_EVENT_PATH_MIG,
703 	IB_EVENT_PATH_MIG_ERR,
704 	IB_EVENT_DEVICE_FATAL,
705 	IB_EVENT_PORT_ACTIVE,
706 	IB_EVENT_PORT_ERR,
707 	IB_EVENT_LID_CHANGE,
708 	IB_EVENT_PKEY_CHANGE,
709 	IB_EVENT_SM_CHANGE,
710 	IB_EVENT_SRQ_ERR,
711 	IB_EVENT_SRQ_LIMIT_REACHED,
712 	IB_EVENT_QP_LAST_WQE_REACHED,
713 	IB_EVENT_CLIENT_REREGISTER,
714 	IB_EVENT_GID_CHANGE,
715 	IB_EVENT_WQ_FATAL,
716 };
717 
718 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
719 
720 struct ib_event {
721 	struct ib_device	*device;
722 	union {
723 		struct ib_cq	*cq;
724 		struct ib_qp	*qp;
725 		struct ib_srq	*srq;
726 		struct ib_wq	*wq;
727 		u8		port_num;
728 	} element;
729 	enum ib_event_type	event;
730 };
731 
732 struct ib_event_handler {
733 	struct ib_device *device;
734 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
735 	struct list_head  list;
736 };
737 
738 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
739 	do {							\
740 		(_ptr)->device  = _device;			\
741 		(_ptr)->handler = _handler;			\
742 		INIT_LIST_HEAD(&(_ptr)->list);			\
743 	} while (0)
744 
745 struct ib_global_route {
746 	const struct ib_gid_attr *sgid_attr;
747 	union ib_gid	dgid;
748 	u32		flow_label;
749 	u8		sgid_index;
750 	u8		hop_limit;
751 	u8		traffic_class;
752 };
753 
754 struct ib_grh {
755 	__be32		version_tclass_flow;
756 	__be16		paylen;
757 	u8		next_hdr;
758 	u8		hop_limit;
759 	union ib_gid	sgid;
760 	union ib_gid	dgid;
761 };
762 
763 union rdma_network_hdr {
764 	struct ib_grh ibgrh;
765 	struct {
766 		/* The IB spec states that if it's IPv4, the header
767 		 * is located in the last 20 bytes of the header.
768 		 */
769 		u8		reserved[20];
770 		struct iphdr	roce4grh;
771 	};
772 };
773 
774 #define IB_QPN_MASK		0xFFFFFF
775 
776 enum {
777 	IB_MULTICAST_QPN = 0xffffff
778 };
779 
780 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
781 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
782 
783 enum ib_ah_flags {
784 	IB_AH_GRH	= 1
785 };
786 
787 enum ib_rate {
788 	IB_RATE_PORT_CURRENT = 0,
789 	IB_RATE_2_5_GBPS = 2,
790 	IB_RATE_5_GBPS   = 5,
791 	IB_RATE_10_GBPS  = 3,
792 	IB_RATE_20_GBPS  = 6,
793 	IB_RATE_30_GBPS  = 4,
794 	IB_RATE_40_GBPS  = 7,
795 	IB_RATE_60_GBPS  = 8,
796 	IB_RATE_80_GBPS  = 9,
797 	IB_RATE_120_GBPS = 10,
798 	IB_RATE_14_GBPS  = 11,
799 	IB_RATE_56_GBPS  = 12,
800 	IB_RATE_112_GBPS = 13,
801 	IB_RATE_168_GBPS = 14,
802 	IB_RATE_25_GBPS  = 15,
803 	IB_RATE_100_GBPS = 16,
804 	IB_RATE_200_GBPS = 17,
805 	IB_RATE_300_GBPS = 18,
806 	IB_RATE_28_GBPS  = 19,
807 	IB_RATE_50_GBPS  = 20,
808 	IB_RATE_400_GBPS = 21,
809 	IB_RATE_600_GBPS = 22,
810 };
811 
812 /**
813  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
814  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
815  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
816  * @rate: rate to convert.
817  */
818 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
819 
820 /**
821  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
822  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
823  * @rate: rate to convert.
824  */
825 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
826 
827 
828 /**
829  * enum ib_mr_type - memory region type
830  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
831  *                            normal registration
832  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
833  *                            register any arbitrary sg lists (without
834  *                            the normal mr constraints - see
835  *                            ib_map_mr_sg)
836  * @IB_MR_TYPE_DM:            memory region that is used for device
837  *                            memory registration
838  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
839  *                            application
840  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
841  *                            without address translations (VA=PA)
842  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
843  *                            data integrity operations
844  */
845 enum ib_mr_type {
846 	IB_MR_TYPE_MEM_REG,
847 	IB_MR_TYPE_SG_GAPS,
848 	IB_MR_TYPE_DM,
849 	IB_MR_TYPE_USER,
850 	IB_MR_TYPE_DMA,
851 	IB_MR_TYPE_INTEGRITY,
852 };
853 
854 enum ib_mr_status_check {
855 	IB_MR_CHECK_SIG_STATUS = 1,
856 };
857 
858 /**
859  * struct ib_mr_status - Memory region status container
860  *
861  * @fail_status: Bitmask of MR checks status. For each
862  *     failed check a corresponding status bit is set.
863  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
864  *     failure.
865  */
866 struct ib_mr_status {
867 	u32		    fail_status;
868 	struct ib_sig_err   sig_err;
869 };
870 
871 /**
872  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
873  * enum.
874  * @mult: multiple to convert.
875  */
876 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
877 
878 enum rdma_ah_attr_type {
879 	RDMA_AH_ATTR_TYPE_UNDEFINED,
880 	RDMA_AH_ATTR_TYPE_IB,
881 	RDMA_AH_ATTR_TYPE_ROCE,
882 	RDMA_AH_ATTR_TYPE_OPA,
883 };
884 
885 struct ib_ah_attr {
886 	u16			dlid;
887 	u8			src_path_bits;
888 };
889 
890 struct roce_ah_attr {
891 	u8			dmac[ETH_ALEN];
892 };
893 
894 struct opa_ah_attr {
895 	u32			dlid;
896 	u8			src_path_bits;
897 	bool			make_grd;
898 };
899 
900 struct rdma_ah_attr {
901 	struct ib_global_route	grh;
902 	u8			sl;
903 	u8			static_rate;
904 	u8			port_num;
905 	u8			ah_flags;
906 	enum rdma_ah_attr_type type;
907 	union {
908 		struct ib_ah_attr ib;
909 		struct roce_ah_attr roce;
910 		struct opa_ah_attr opa;
911 	};
912 };
913 
914 enum ib_wc_status {
915 	IB_WC_SUCCESS,
916 	IB_WC_LOC_LEN_ERR,
917 	IB_WC_LOC_QP_OP_ERR,
918 	IB_WC_LOC_EEC_OP_ERR,
919 	IB_WC_LOC_PROT_ERR,
920 	IB_WC_WR_FLUSH_ERR,
921 	IB_WC_MW_BIND_ERR,
922 	IB_WC_BAD_RESP_ERR,
923 	IB_WC_LOC_ACCESS_ERR,
924 	IB_WC_REM_INV_REQ_ERR,
925 	IB_WC_REM_ACCESS_ERR,
926 	IB_WC_REM_OP_ERR,
927 	IB_WC_RETRY_EXC_ERR,
928 	IB_WC_RNR_RETRY_EXC_ERR,
929 	IB_WC_LOC_RDD_VIOL_ERR,
930 	IB_WC_REM_INV_RD_REQ_ERR,
931 	IB_WC_REM_ABORT_ERR,
932 	IB_WC_INV_EECN_ERR,
933 	IB_WC_INV_EEC_STATE_ERR,
934 	IB_WC_FATAL_ERR,
935 	IB_WC_RESP_TIMEOUT_ERR,
936 	IB_WC_GENERAL_ERR
937 };
938 
939 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
940 
941 enum ib_wc_opcode {
942 	IB_WC_SEND,
943 	IB_WC_RDMA_WRITE,
944 	IB_WC_RDMA_READ,
945 	IB_WC_COMP_SWAP,
946 	IB_WC_FETCH_ADD,
947 	IB_WC_LSO,
948 	IB_WC_LOCAL_INV,
949 	IB_WC_REG_MR,
950 	IB_WC_MASKED_COMP_SWAP,
951 	IB_WC_MASKED_FETCH_ADD,
952 /*
953  * Set value of IB_WC_RECV so consumers can test if a completion is a
954  * receive by testing (opcode & IB_WC_RECV).
955  */
956 	IB_WC_RECV			= 1 << 7,
957 	IB_WC_RECV_RDMA_WITH_IMM
958 };
959 
960 enum ib_wc_flags {
961 	IB_WC_GRH		= 1,
962 	IB_WC_WITH_IMM		= (1<<1),
963 	IB_WC_WITH_INVALIDATE	= (1<<2),
964 	IB_WC_IP_CSUM_OK	= (1<<3),
965 	IB_WC_WITH_SMAC		= (1<<4),
966 	IB_WC_WITH_VLAN		= (1<<5),
967 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
968 };
969 
970 struct ib_wc {
971 	union {
972 		u64		wr_id;
973 		struct ib_cqe	*wr_cqe;
974 	};
975 	enum ib_wc_status	status;
976 	enum ib_wc_opcode	opcode;
977 	u32			vendor_err;
978 	u32			byte_len;
979 	struct ib_qp	       *qp;
980 	union {
981 		__be32		imm_data;
982 		u32		invalidate_rkey;
983 	} ex;
984 	u32			src_qp;
985 	u32			slid;
986 	int			wc_flags;
987 	u16			pkey_index;
988 	u8			sl;
989 	u8			dlid_path_bits;
990 	u8			port_num;	/* valid only for DR SMPs on switches */
991 	u8			smac[ETH_ALEN];
992 	u16			vlan_id;
993 	u8			network_hdr_type;
994 };
995 
996 enum ib_cq_notify_flags {
997 	IB_CQ_SOLICITED			= 1 << 0,
998 	IB_CQ_NEXT_COMP			= 1 << 1,
999 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1000 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1001 };
1002 
1003 enum ib_srq_type {
1004 	IB_SRQT_BASIC,
1005 	IB_SRQT_XRC,
1006 	IB_SRQT_TM,
1007 };
1008 
1009 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1010 {
1011 	return srq_type == IB_SRQT_XRC ||
1012 	       srq_type == IB_SRQT_TM;
1013 }
1014 
1015 enum ib_srq_attr_mask {
1016 	IB_SRQ_MAX_WR	= 1 << 0,
1017 	IB_SRQ_LIMIT	= 1 << 1,
1018 };
1019 
1020 struct ib_srq_attr {
1021 	u32	max_wr;
1022 	u32	max_sge;
1023 	u32	srq_limit;
1024 };
1025 
1026 struct ib_srq_init_attr {
1027 	void		      (*event_handler)(struct ib_event *, void *);
1028 	void		       *srq_context;
1029 	struct ib_srq_attr	attr;
1030 	enum ib_srq_type	srq_type;
1031 
1032 	struct {
1033 		struct ib_cq   *cq;
1034 		union {
1035 			struct {
1036 				struct ib_xrcd *xrcd;
1037 			} xrc;
1038 
1039 			struct {
1040 				u32		max_num_tags;
1041 			} tag_matching;
1042 		};
1043 	} ext;
1044 };
1045 
1046 struct ib_qp_cap {
1047 	u32	max_send_wr;
1048 	u32	max_recv_wr;
1049 	u32	max_send_sge;
1050 	u32	max_recv_sge;
1051 	u32	max_inline_data;
1052 
1053 	/*
1054 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1055 	 * ib_create_qp() will calculate the right amount of neededed WRs
1056 	 * and MRs based on this.
1057 	 */
1058 	u32	max_rdma_ctxs;
1059 };
1060 
1061 enum ib_sig_type {
1062 	IB_SIGNAL_ALL_WR,
1063 	IB_SIGNAL_REQ_WR
1064 };
1065 
1066 enum ib_qp_type {
1067 	/*
1068 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1069 	 * here (and in that order) since the MAD layer uses them as
1070 	 * indices into a 2-entry table.
1071 	 */
1072 	IB_QPT_SMI,
1073 	IB_QPT_GSI,
1074 
1075 	IB_QPT_RC,
1076 	IB_QPT_UC,
1077 	IB_QPT_UD,
1078 	IB_QPT_RAW_IPV6,
1079 	IB_QPT_RAW_ETHERTYPE,
1080 	IB_QPT_RAW_PACKET = 8,
1081 	IB_QPT_XRC_INI = 9,
1082 	IB_QPT_XRC_TGT,
1083 	IB_QPT_MAX,
1084 	IB_QPT_DRIVER = 0xFF,
1085 	/* Reserve a range for qp types internal to the low level driver.
1086 	 * These qp types will not be visible at the IB core layer, so the
1087 	 * IB_QPT_MAX usages should not be affected in the core layer
1088 	 */
1089 	IB_QPT_RESERVED1 = 0x1000,
1090 	IB_QPT_RESERVED2,
1091 	IB_QPT_RESERVED3,
1092 	IB_QPT_RESERVED4,
1093 	IB_QPT_RESERVED5,
1094 	IB_QPT_RESERVED6,
1095 	IB_QPT_RESERVED7,
1096 	IB_QPT_RESERVED8,
1097 	IB_QPT_RESERVED9,
1098 	IB_QPT_RESERVED10,
1099 };
1100 
1101 enum ib_qp_create_flags {
1102 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1103 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1104 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1105 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1106 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1107 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1108 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1109 	/* FREE					= 1 << 7, */
1110 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1111 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1112 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1113 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1114 	/* reserve bits 26-31 for low level drivers' internal use */
1115 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1116 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1117 };
1118 
1119 /*
1120  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1121  * callback to destroy the passed in QP.
1122  */
1123 
1124 struct ib_qp_init_attr {
1125 	/* Consumer's event_handler callback must not block */
1126 	void                  (*event_handler)(struct ib_event *, void *);
1127 
1128 	void		       *qp_context;
1129 	struct ib_cq	       *send_cq;
1130 	struct ib_cq	       *recv_cq;
1131 	struct ib_srq	       *srq;
1132 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1133 	struct ib_qp_cap	cap;
1134 	enum ib_sig_type	sq_sig_type;
1135 	enum ib_qp_type		qp_type;
1136 	u32			create_flags;
1137 
1138 	/*
1139 	 * Only needed for special QP types, or when using the RW API.
1140 	 */
1141 	u8			port_num;
1142 	struct ib_rwq_ind_table *rwq_ind_tbl;
1143 	u32			source_qpn;
1144 };
1145 
1146 struct ib_qp_open_attr {
1147 	void                  (*event_handler)(struct ib_event *, void *);
1148 	void		       *qp_context;
1149 	u32			qp_num;
1150 	enum ib_qp_type		qp_type;
1151 };
1152 
1153 enum ib_rnr_timeout {
1154 	IB_RNR_TIMER_655_36 =  0,
1155 	IB_RNR_TIMER_000_01 =  1,
1156 	IB_RNR_TIMER_000_02 =  2,
1157 	IB_RNR_TIMER_000_03 =  3,
1158 	IB_RNR_TIMER_000_04 =  4,
1159 	IB_RNR_TIMER_000_06 =  5,
1160 	IB_RNR_TIMER_000_08 =  6,
1161 	IB_RNR_TIMER_000_12 =  7,
1162 	IB_RNR_TIMER_000_16 =  8,
1163 	IB_RNR_TIMER_000_24 =  9,
1164 	IB_RNR_TIMER_000_32 = 10,
1165 	IB_RNR_TIMER_000_48 = 11,
1166 	IB_RNR_TIMER_000_64 = 12,
1167 	IB_RNR_TIMER_000_96 = 13,
1168 	IB_RNR_TIMER_001_28 = 14,
1169 	IB_RNR_TIMER_001_92 = 15,
1170 	IB_RNR_TIMER_002_56 = 16,
1171 	IB_RNR_TIMER_003_84 = 17,
1172 	IB_RNR_TIMER_005_12 = 18,
1173 	IB_RNR_TIMER_007_68 = 19,
1174 	IB_RNR_TIMER_010_24 = 20,
1175 	IB_RNR_TIMER_015_36 = 21,
1176 	IB_RNR_TIMER_020_48 = 22,
1177 	IB_RNR_TIMER_030_72 = 23,
1178 	IB_RNR_TIMER_040_96 = 24,
1179 	IB_RNR_TIMER_061_44 = 25,
1180 	IB_RNR_TIMER_081_92 = 26,
1181 	IB_RNR_TIMER_122_88 = 27,
1182 	IB_RNR_TIMER_163_84 = 28,
1183 	IB_RNR_TIMER_245_76 = 29,
1184 	IB_RNR_TIMER_327_68 = 30,
1185 	IB_RNR_TIMER_491_52 = 31
1186 };
1187 
1188 enum ib_qp_attr_mask {
1189 	IB_QP_STATE			= 1,
1190 	IB_QP_CUR_STATE			= (1<<1),
1191 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1192 	IB_QP_ACCESS_FLAGS		= (1<<3),
1193 	IB_QP_PKEY_INDEX		= (1<<4),
1194 	IB_QP_PORT			= (1<<5),
1195 	IB_QP_QKEY			= (1<<6),
1196 	IB_QP_AV			= (1<<7),
1197 	IB_QP_PATH_MTU			= (1<<8),
1198 	IB_QP_TIMEOUT			= (1<<9),
1199 	IB_QP_RETRY_CNT			= (1<<10),
1200 	IB_QP_RNR_RETRY			= (1<<11),
1201 	IB_QP_RQ_PSN			= (1<<12),
1202 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1203 	IB_QP_ALT_PATH			= (1<<14),
1204 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1205 	IB_QP_SQ_PSN			= (1<<16),
1206 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1207 	IB_QP_PATH_MIG_STATE		= (1<<18),
1208 	IB_QP_CAP			= (1<<19),
1209 	IB_QP_DEST_QPN			= (1<<20),
1210 	IB_QP_RESERVED1			= (1<<21),
1211 	IB_QP_RESERVED2			= (1<<22),
1212 	IB_QP_RESERVED3			= (1<<23),
1213 	IB_QP_RESERVED4			= (1<<24),
1214 	IB_QP_RATE_LIMIT		= (1<<25),
1215 };
1216 
1217 enum ib_qp_state {
1218 	IB_QPS_RESET,
1219 	IB_QPS_INIT,
1220 	IB_QPS_RTR,
1221 	IB_QPS_RTS,
1222 	IB_QPS_SQD,
1223 	IB_QPS_SQE,
1224 	IB_QPS_ERR
1225 };
1226 
1227 enum ib_mig_state {
1228 	IB_MIG_MIGRATED,
1229 	IB_MIG_REARM,
1230 	IB_MIG_ARMED
1231 };
1232 
1233 enum ib_mw_type {
1234 	IB_MW_TYPE_1 = 1,
1235 	IB_MW_TYPE_2 = 2
1236 };
1237 
1238 struct ib_qp_attr {
1239 	enum ib_qp_state	qp_state;
1240 	enum ib_qp_state	cur_qp_state;
1241 	enum ib_mtu		path_mtu;
1242 	enum ib_mig_state	path_mig_state;
1243 	u32			qkey;
1244 	u32			rq_psn;
1245 	u32			sq_psn;
1246 	u32			dest_qp_num;
1247 	int			qp_access_flags;
1248 	struct ib_qp_cap	cap;
1249 	struct rdma_ah_attr	ah_attr;
1250 	struct rdma_ah_attr	alt_ah_attr;
1251 	u16			pkey_index;
1252 	u16			alt_pkey_index;
1253 	u8			en_sqd_async_notify;
1254 	u8			sq_draining;
1255 	u8			max_rd_atomic;
1256 	u8			max_dest_rd_atomic;
1257 	u8			min_rnr_timer;
1258 	u8			port_num;
1259 	u8			timeout;
1260 	u8			retry_cnt;
1261 	u8			rnr_retry;
1262 	u8			alt_port_num;
1263 	u8			alt_timeout;
1264 	u32			rate_limit;
1265 };
1266 
1267 enum ib_wr_opcode {
1268 	/* These are shared with userspace */
1269 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1270 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1271 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1272 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1273 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1274 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1275 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1276 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1277 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1278 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1279 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1280 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1281 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1282 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1283 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1284 
1285 	/* These are kernel only and can not be issued by userspace */
1286 	IB_WR_REG_MR = 0x20,
1287 	IB_WR_REG_MR_INTEGRITY,
1288 
1289 	/* reserve values for low level drivers' internal use.
1290 	 * These values will not be used at all in the ib core layer.
1291 	 */
1292 	IB_WR_RESERVED1 = 0xf0,
1293 	IB_WR_RESERVED2,
1294 	IB_WR_RESERVED3,
1295 	IB_WR_RESERVED4,
1296 	IB_WR_RESERVED5,
1297 	IB_WR_RESERVED6,
1298 	IB_WR_RESERVED7,
1299 	IB_WR_RESERVED8,
1300 	IB_WR_RESERVED9,
1301 	IB_WR_RESERVED10,
1302 };
1303 
1304 enum ib_send_flags {
1305 	IB_SEND_FENCE		= 1,
1306 	IB_SEND_SIGNALED	= (1<<1),
1307 	IB_SEND_SOLICITED	= (1<<2),
1308 	IB_SEND_INLINE		= (1<<3),
1309 	IB_SEND_IP_CSUM		= (1<<4),
1310 
1311 	/* reserve bits 26-31 for low level drivers' internal use */
1312 	IB_SEND_RESERVED_START	= (1 << 26),
1313 	IB_SEND_RESERVED_END	= (1 << 31),
1314 };
1315 
1316 struct ib_sge {
1317 	u64	addr;
1318 	u32	length;
1319 	u32	lkey;
1320 };
1321 
1322 struct ib_cqe {
1323 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1324 };
1325 
1326 struct ib_send_wr {
1327 	struct ib_send_wr      *next;
1328 	union {
1329 		u64		wr_id;
1330 		struct ib_cqe	*wr_cqe;
1331 	};
1332 	struct ib_sge	       *sg_list;
1333 	int			num_sge;
1334 	enum ib_wr_opcode	opcode;
1335 	int			send_flags;
1336 	union {
1337 		__be32		imm_data;
1338 		u32		invalidate_rkey;
1339 	} ex;
1340 };
1341 
1342 struct ib_rdma_wr {
1343 	struct ib_send_wr	wr;
1344 	u64			remote_addr;
1345 	u32			rkey;
1346 };
1347 
1348 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1349 {
1350 	return container_of(wr, struct ib_rdma_wr, wr);
1351 }
1352 
1353 struct ib_atomic_wr {
1354 	struct ib_send_wr	wr;
1355 	u64			remote_addr;
1356 	u64			compare_add;
1357 	u64			swap;
1358 	u64			compare_add_mask;
1359 	u64			swap_mask;
1360 	u32			rkey;
1361 };
1362 
1363 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1364 {
1365 	return container_of(wr, struct ib_atomic_wr, wr);
1366 }
1367 
1368 struct ib_ud_wr {
1369 	struct ib_send_wr	wr;
1370 	struct ib_ah		*ah;
1371 	void			*header;
1372 	int			hlen;
1373 	int			mss;
1374 	u32			remote_qpn;
1375 	u32			remote_qkey;
1376 	u16			pkey_index; /* valid for GSI only */
1377 	u8			port_num;   /* valid for DR SMPs on switch only */
1378 };
1379 
1380 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1381 {
1382 	return container_of(wr, struct ib_ud_wr, wr);
1383 }
1384 
1385 struct ib_reg_wr {
1386 	struct ib_send_wr	wr;
1387 	struct ib_mr		*mr;
1388 	u32			key;
1389 	int			access;
1390 };
1391 
1392 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1393 {
1394 	return container_of(wr, struct ib_reg_wr, wr);
1395 }
1396 
1397 struct ib_recv_wr {
1398 	struct ib_recv_wr      *next;
1399 	union {
1400 		u64		wr_id;
1401 		struct ib_cqe	*wr_cqe;
1402 	};
1403 	struct ib_sge	       *sg_list;
1404 	int			num_sge;
1405 };
1406 
1407 enum ib_access_flags {
1408 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1409 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1410 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1411 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1412 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1413 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1414 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1415 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1416 
1417 	IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1418 };
1419 
1420 /*
1421  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1422  * are hidden here instead of a uapi header!
1423  */
1424 enum ib_mr_rereg_flags {
1425 	IB_MR_REREG_TRANS	= 1,
1426 	IB_MR_REREG_PD		= (1<<1),
1427 	IB_MR_REREG_ACCESS	= (1<<2),
1428 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1429 };
1430 
1431 struct ib_fmr_attr {
1432 	int	max_pages;
1433 	int	max_maps;
1434 	u8	page_shift;
1435 };
1436 
1437 struct ib_umem;
1438 
1439 enum rdma_remove_reason {
1440 	/*
1441 	 * Userspace requested uobject deletion or initial try
1442 	 * to remove uobject via cleanup. Call could fail
1443 	 */
1444 	RDMA_REMOVE_DESTROY,
1445 	/* Context deletion. This call should delete the actual object itself */
1446 	RDMA_REMOVE_CLOSE,
1447 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1448 	RDMA_REMOVE_DRIVER_REMOVE,
1449 	/* uobj is being cleaned-up before being committed */
1450 	RDMA_REMOVE_ABORT,
1451 };
1452 
1453 struct ib_rdmacg_object {
1454 #ifdef CONFIG_CGROUP_RDMA
1455 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1456 #endif
1457 };
1458 
1459 struct ib_ucontext {
1460 	struct ib_device       *device;
1461 	struct ib_uverbs_file  *ufile;
1462 	/*
1463 	 * 'closing' can be read by the driver only during a destroy callback,
1464 	 * it is set when we are closing the file descriptor and indicates
1465 	 * that mm_sem may be locked.
1466 	 */
1467 	bool closing;
1468 
1469 	bool cleanup_retryable;
1470 
1471 	struct ib_rdmacg_object	cg_obj;
1472 	/*
1473 	 * Implementation details of the RDMA core, don't use in drivers:
1474 	 */
1475 	struct rdma_restrack_entry res;
1476 	struct xarray mmap_xa;
1477 };
1478 
1479 struct ib_uobject {
1480 	u64			user_handle;	/* handle given to us by userspace */
1481 	/* ufile & ucontext owning this object */
1482 	struct ib_uverbs_file  *ufile;
1483 	/* FIXME, save memory: ufile->context == context */
1484 	struct ib_ucontext     *context;	/* associated user context */
1485 	void		       *object;		/* containing object */
1486 	struct list_head	list;		/* link to context's list */
1487 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1488 	int			id;		/* index into kernel idr */
1489 	struct kref		ref;
1490 	atomic_t		usecnt;		/* protects exclusive access */
1491 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1492 
1493 	const struct uverbs_api_object *uapi_object;
1494 };
1495 
1496 struct ib_udata {
1497 	const void __user *inbuf;
1498 	void __user *outbuf;
1499 	size_t       inlen;
1500 	size_t       outlen;
1501 };
1502 
1503 struct ib_pd {
1504 	u32			local_dma_lkey;
1505 	u32			flags;
1506 	struct ib_device       *device;
1507 	struct ib_uobject      *uobject;
1508 	atomic_t          	usecnt; /* count all resources */
1509 
1510 	u32			unsafe_global_rkey;
1511 
1512 	/*
1513 	 * Implementation details of the RDMA core, don't use in drivers:
1514 	 */
1515 	struct ib_mr	       *__internal_mr;
1516 	struct rdma_restrack_entry res;
1517 };
1518 
1519 struct ib_xrcd {
1520 	struct ib_device       *device;
1521 	atomic_t		usecnt; /* count all exposed resources */
1522 	struct inode	       *inode;
1523 
1524 	struct mutex		tgt_qp_mutex;
1525 	struct list_head	tgt_qp_list;
1526 };
1527 
1528 struct ib_ah {
1529 	struct ib_device	*device;
1530 	struct ib_pd		*pd;
1531 	struct ib_uobject	*uobject;
1532 	const struct ib_gid_attr *sgid_attr;
1533 	enum rdma_ah_attr_type	type;
1534 };
1535 
1536 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1537 
1538 enum ib_poll_context {
1539 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1540 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1541 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1542 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1543 };
1544 
1545 struct ib_cq {
1546 	struct ib_device       *device;
1547 	struct ib_uobject      *uobject;
1548 	ib_comp_handler   	comp_handler;
1549 	void                  (*event_handler)(struct ib_event *, void *);
1550 	void                   *cq_context;
1551 	int               	cqe;
1552 	atomic_t          	usecnt; /* count number of work queues */
1553 	enum ib_poll_context	poll_ctx;
1554 	struct ib_wc		*wc;
1555 	union {
1556 		struct irq_poll		iop;
1557 		struct work_struct	work;
1558 	};
1559 	struct workqueue_struct *comp_wq;
1560 	struct dim *dim;
1561 	/*
1562 	 * Implementation details of the RDMA core, don't use in drivers:
1563 	 */
1564 	struct rdma_restrack_entry res;
1565 };
1566 
1567 struct ib_srq {
1568 	struct ib_device       *device;
1569 	struct ib_pd	       *pd;
1570 	struct ib_uobject      *uobject;
1571 	void		      (*event_handler)(struct ib_event *, void *);
1572 	void		       *srq_context;
1573 	enum ib_srq_type	srq_type;
1574 	atomic_t		usecnt;
1575 
1576 	struct {
1577 		struct ib_cq   *cq;
1578 		union {
1579 			struct {
1580 				struct ib_xrcd *xrcd;
1581 				u32		srq_num;
1582 			} xrc;
1583 		};
1584 	} ext;
1585 };
1586 
1587 enum ib_raw_packet_caps {
1588 	/* Strip cvlan from incoming packet and report it in the matching work
1589 	 * completion is supported.
1590 	 */
1591 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1592 	/* Scatter FCS field of an incoming packet to host memory is supported.
1593 	 */
1594 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1595 	/* Checksum offloads are supported (for both send and receive). */
1596 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1597 	/* When a packet is received for an RQ with no receive WQEs, the
1598 	 * packet processing is delayed.
1599 	 */
1600 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1601 };
1602 
1603 enum ib_wq_type {
1604 	IB_WQT_RQ
1605 };
1606 
1607 enum ib_wq_state {
1608 	IB_WQS_RESET,
1609 	IB_WQS_RDY,
1610 	IB_WQS_ERR
1611 };
1612 
1613 struct ib_wq {
1614 	struct ib_device       *device;
1615 	struct ib_uobject      *uobject;
1616 	void		    *wq_context;
1617 	void		    (*event_handler)(struct ib_event *, void *);
1618 	struct ib_pd	       *pd;
1619 	struct ib_cq	       *cq;
1620 	u32		wq_num;
1621 	enum ib_wq_state       state;
1622 	enum ib_wq_type	wq_type;
1623 	atomic_t		usecnt;
1624 };
1625 
1626 enum ib_wq_flags {
1627 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1628 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1629 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1630 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1631 };
1632 
1633 struct ib_wq_init_attr {
1634 	void		       *wq_context;
1635 	enum ib_wq_type	wq_type;
1636 	u32		max_wr;
1637 	u32		max_sge;
1638 	struct	ib_cq	       *cq;
1639 	void		    (*event_handler)(struct ib_event *, void *);
1640 	u32		create_flags; /* Use enum ib_wq_flags */
1641 };
1642 
1643 enum ib_wq_attr_mask {
1644 	IB_WQ_STATE		= 1 << 0,
1645 	IB_WQ_CUR_STATE		= 1 << 1,
1646 	IB_WQ_FLAGS		= 1 << 2,
1647 };
1648 
1649 struct ib_wq_attr {
1650 	enum	ib_wq_state	wq_state;
1651 	enum	ib_wq_state	curr_wq_state;
1652 	u32			flags; /* Use enum ib_wq_flags */
1653 	u32			flags_mask; /* Use enum ib_wq_flags */
1654 };
1655 
1656 struct ib_rwq_ind_table {
1657 	struct ib_device	*device;
1658 	struct ib_uobject      *uobject;
1659 	atomic_t		usecnt;
1660 	u32		ind_tbl_num;
1661 	u32		log_ind_tbl_size;
1662 	struct ib_wq	**ind_tbl;
1663 };
1664 
1665 struct ib_rwq_ind_table_init_attr {
1666 	u32		log_ind_tbl_size;
1667 	/* Each entry is a pointer to Receive Work Queue */
1668 	struct ib_wq	**ind_tbl;
1669 };
1670 
1671 enum port_pkey_state {
1672 	IB_PORT_PKEY_NOT_VALID = 0,
1673 	IB_PORT_PKEY_VALID = 1,
1674 	IB_PORT_PKEY_LISTED = 2,
1675 };
1676 
1677 struct ib_qp_security;
1678 
1679 struct ib_port_pkey {
1680 	enum port_pkey_state	state;
1681 	u16			pkey_index;
1682 	u8			port_num;
1683 	struct list_head	qp_list;
1684 	struct list_head	to_error_list;
1685 	struct ib_qp_security  *sec;
1686 };
1687 
1688 struct ib_ports_pkeys {
1689 	struct ib_port_pkey	main;
1690 	struct ib_port_pkey	alt;
1691 };
1692 
1693 struct ib_qp_security {
1694 	struct ib_qp	       *qp;
1695 	struct ib_device       *dev;
1696 	/* Hold this mutex when changing port and pkey settings. */
1697 	struct mutex		mutex;
1698 	struct ib_ports_pkeys  *ports_pkeys;
1699 	/* A list of all open shared QP handles.  Required to enforce security
1700 	 * properly for all users of a shared QP.
1701 	 */
1702 	struct list_head        shared_qp_list;
1703 	void                   *security;
1704 	bool			destroying;
1705 	atomic_t		error_list_count;
1706 	struct completion	error_complete;
1707 	int			error_comps_pending;
1708 };
1709 
1710 /*
1711  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1712  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1713  */
1714 struct ib_qp {
1715 	struct ib_device       *device;
1716 	struct ib_pd	       *pd;
1717 	struct ib_cq	       *send_cq;
1718 	struct ib_cq	       *recv_cq;
1719 	spinlock_t		mr_lock;
1720 	int			mrs_used;
1721 	struct list_head	rdma_mrs;
1722 	struct list_head	sig_mrs;
1723 	struct ib_srq	       *srq;
1724 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1725 	struct list_head	xrcd_list;
1726 
1727 	/* count times opened, mcast attaches, flow attaches */
1728 	atomic_t		usecnt;
1729 	struct list_head	open_list;
1730 	struct ib_qp           *real_qp;
1731 	struct ib_uobject      *uobject;
1732 	void                  (*event_handler)(struct ib_event *, void *);
1733 	void		       *qp_context;
1734 	/* sgid_attrs associated with the AV's */
1735 	const struct ib_gid_attr *av_sgid_attr;
1736 	const struct ib_gid_attr *alt_path_sgid_attr;
1737 	u32			qp_num;
1738 	u32			max_write_sge;
1739 	u32			max_read_sge;
1740 	enum ib_qp_type		qp_type;
1741 	struct ib_rwq_ind_table *rwq_ind_tbl;
1742 	struct ib_qp_security  *qp_sec;
1743 	u8			port;
1744 
1745 	bool			integrity_en;
1746 	/*
1747 	 * Implementation details of the RDMA core, don't use in drivers:
1748 	 */
1749 	struct rdma_restrack_entry     res;
1750 
1751 	/* The counter the qp is bind to */
1752 	struct rdma_counter    *counter;
1753 };
1754 
1755 struct ib_dm {
1756 	struct ib_device  *device;
1757 	u32		   length;
1758 	u32		   flags;
1759 	struct ib_uobject *uobject;
1760 	atomic_t	   usecnt;
1761 };
1762 
1763 struct ib_mr {
1764 	struct ib_device  *device;
1765 	struct ib_pd	  *pd;
1766 	u32		   lkey;
1767 	u32		   rkey;
1768 	u64		   iova;
1769 	u64		   length;
1770 	unsigned int	   page_size;
1771 	enum ib_mr_type	   type;
1772 	bool		   need_inval;
1773 	union {
1774 		struct ib_uobject	*uobject;	/* user */
1775 		struct list_head	qp_entry;	/* FR */
1776 	};
1777 
1778 	struct ib_dm      *dm;
1779 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1780 	/*
1781 	 * Implementation details of the RDMA core, don't use in drivers:
1782 	 */
1783 	struct rdma_restrack_entry res;
1784 };
1785 
1786 struct ib_mw {
1787 	struct ib_device	*device;
1788 	struct ib_pd		*pd;
1789 	struct ib_uobject	*uobject;
1790 	u32			rkey;
1791 	enum ib_mw_type         type;
1792 };
1793 
1794 struct ib_fmr {
1795 	struct ib_device	*device;
1796 	struct ib_pd		*pd;
1797 	struct list_head	list;
1798 	u32			lkey;
1799 	u32			rkey;
1800 };
1801 
1802 /* Supported steering options */
1803 enum ib_flow_attr_type {
1804 	/* steering according to rule specifications */
1805 	IB_FLOW_ATTR_NORMAL		= 0x0,
1806 	/* default unicast and multicast rule -
1807 	 * receive all Eth traffic which isn't steered to any QP
1808 	 */
1809 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1810 	/* default multicast rule -
1811 	 * receive all Eth multicast traffic which isn't steered to any QP
1812 	 */
1813 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1814 	/* sniffer rule - receive all port traffic */
1815 	IB_FLOW_ATTR_SNIFFER		= 0x3
1816 };
1817 
1818 /* Supported steering header types */
1819 enum ib_flow_spec_type {
1820 	/* L2 headers*/
1821 	IB_FLOW_SPEC_ETH		= 0x20,
1822 	IB_FLOW_SPEC_IB			= 0x22,
1823 	/* L3 header*/
1824 	IB_FLOW_SPEC_IPV4		= 0x30,
1825 	IB_FLOW_SPEC_IPV6		= 0x31,
1826 	IB_FLOW_SPEC_ESP                = 0x34,
1827 	/* L4 headers*/
1828 	IB_FLOW_SPEC_TCP		= 0x40,
1829 	IB_FLOW_SPEC_UDP		= 0x41,
1830 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1831 	IB_FLOW_SPEC_GRE		= 0x51,
1832 	IB_FLOW_SPEC_MPLS		= 0x60,
1833 	IB_FLOW_SPEC_INNER		= 0x100,
1834 	/* Actions */
1835 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1836 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1837 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1838 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1839 };
1840 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1841 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1842 
1843 /* Flow steering rule priority is set according to it's domain.
1844  * Lower domain value means higher priority.
1845  */
1846 enum ib_flow_domain {
1847 	IB_FLOW_DOMAIN_USER,
1848 	IB_FLOW_DOMAIN_ETHTOOL,
1849 	IB_FLOW_DOMAIN_RFS,
1850 	IB_FLOW_DOMAIN_NIC,
1851 	IB_FLOW_DOMAIN_NUM /* Must be last */
1852 };
1853 
1854 enum ib_flow_flags {
1855 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1856 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1857 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1858 };
1859 
1860 struct ib_flow_eth_filter {
1861 	u8	dst_mac[6];
1862 	u8	src_mac[6];
1863 	__be16	ether_type;
1864 	__be16	vlan_tag;
1865 	/* Must be last */
1866 	u8	real_sz[0];
1867 };
1868 
1869 struct ib_flow_spec_eth {
1870 	u32			  type;
1871 	u16			  size;
1872 	struct ib_flow_eth_filter val;
1873 	struct ib_flow_eth_filter mask;
1874 };
1875 
1876 struct ib_flow_ib_filter {
1877 	__be16 dlid;
1878 	__u8   sl;
1879 	/* Must be last */
1880 	u8	real_sz[0];
1881 };
1882 
1883 struct ib_flow_spec_ib {
1884 	u32			 type;
1885 	u16			 size;
1886 	struct ib_flow_ib_filter val;
1887 	struct ib_flow_ib_filter mask;
1888 };
1889 
1890 /* IPv4 header flags */
1891 enum ib_ipv4_flags {
1892 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1893 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1894 				    last have this flag set */
1895 };
1896 
1897 struct ib_flow_ipv4_filter {
1898 	__be32	src_ip;
1899 	__be32	dst_ip;
1900 	u8	proto;
1901 	u8	tos;
1902 	u8	ttl;
1903 	u8	flags;
1904 	/* Must be last */
1905 	u8	real_sz[0];
1906 };
1907 
1908 struct ib_flow_spec_ipv4 {
1909 	u32			   type;
1910 	u16			   size;
1911 	struct ib_flow_ipv4_filter val;
1912 	struct ib_flow_ipv4_filter mask;
1913 };
1914 
1915 struct ib_flow_ipv6_filter {
1916 	u8	src_ip[16];
1917 	u8	dst_ip[16];
1918 	__be32	flow_label;
1919 	u8	next_hdr;
1920 	u8	traffic_class;
1921 	u8	hop_limit;
1922 	/* Must be last */
1923 	u8	real_sz[0];
1924 };
1925 
1926 struct ib_flow_spec_ipv6 {
1927 	u32			   type;
1928 	u16			   size;
1929 	struct ib_flow_ipv6_filter val;
1930 	struct ib_flow_ipv6_filter mask;
1931 };
1932 
1933 struct ib_flow_tcp_udp_filter {
1934 	__be16	dst_port;
1935 	__be16	src_port;
1936 	/* Must be last */
1937 	u8	real_sz[0];
1938 };
1939 
1940 struct ib_flow_spec_tcp_udp {
1941 	u32			      type;
1942 	u16			      size;
1943 	struct ib_flow_tcp_udp_filter val;
1944 	struct ib_flow_tcp_udp_filter mask;
1945 };
1946 
1947 struct ib_flow_tunnel_filter {
1948 	__be32	tunnel_id;
1949 	u8	real_sz[0];
1950 };
1951 
1952 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1953  * the tunnel_id from val has the vni value
1954  */
1955 struct ib_flow_spec_tunnel {
1956 	u32			      type;
1957 	u16			      size;
1958 	struct ib_flow_tunnel_filter  val;
1959 	struct ib_flow_tunnel_filter  mask;
1960 };
1961 
1962 struct ib_flow_esp_filter {
1963 	__be32	spi;
1964 	__be32  seq;
1965 	/* Must be last */
1966 	u8	real_sz[0];
1967 };
1968 
1969 struct ib_flow_spec_esp {
1970 	u32                           type;
1971 	u16			      size;
1972 	struct ib_flow_esp_filter     val;
1973 	struct ib_flow_esp_filter     mask;
1974 };
1975 
1976 struct ib_flow_gre_filter {
1977 	__be16 c_ks_res0_ver;
1978 	__be16 protocol;
1979 	__be32 key;
1980 	/* Must be last */
1981 	u8	real_sz[0];
1982 };
1983 
1984 struct ib_flow_spec_gre {
1985 	u32                           type;
1986 	u16			      size;
1987 	struct ib_flow_gre_filter     val;
1988 	struct ib_flow_gre_filter     mask;
1989 };
1990 
1991 struct ib_flow_mpls_filter {
1992 	__be32 tag;
1993 	/* Must be last */
1994 	u8	real_sz[0];
1995 };
1996 
1997 struct ib_flow_spec_mpls {
1998 	u32                           type;
1999 	u16			      size;
2000 	struct ib_flow_mpls_filter     val;
2001 	struct ib_flow_mpls_filter     mask;
2002 };
2003 
2004 struct ib_flow_spec_action_tag {
2005 	enum ib_flow_spec_type	      type;
2006 	u16			      size;
2007 	u32                           tag_id;
2008 };
2009 
2010 struct ib_flow_spec_action_drop {
2011 	enum ib_flow_spec_type	      type;
2012 	u16			      size;
2013 };
2014 
2015 struct ib_flow_spec_action_handle {
2016 	enum ib_flow_spec_type	      type;
2017 	u16			      size;
2018 	struct ib_flow_action	     *act;
2019 };
2020 
2021 enum ib_counters_description {
2022 	IB_COUNTER_PACKETS,
2023 	IB_COUNTER_BYTES,
2024 };
2025 
2026 struct ib_flow_spec_action_count {
2027 	enum ib_flow_spec_type type;
2028 	u16 size;
2029 	struct ib_counters *counters;
2030 };
2031 
2032 union ib_flow_spec {
2033 	struct {
2034 		u32			type;
2035 		u16			size;
2036 	};
2037 	struct ib_flow_spec_eth		eth;
2038 	struct ib_flow_spec_ib		ib;
2039 	struct ib_flow_spec_ipv4        ipv4;
2040 	struct ib_flow_spec_tcp_udp	tcp_udp;
2041 	struct ib_flow_spec_ipv6        ipv6;
2042 	struct ib_flow_spec_tunnel      tunnel;
2043 	struct ib_flow_spec_esp		esp;
2044 	struct ib_flow_spec_gre		gre;
2045 	struct ib_flow_spec_mpls	mpls;
2046 	struct ib_flow_spec_action_tag  flow_tag;
2047 	struct ib_flow_spec_action_drop drop;
2048 	struct ib_flow_spec_action_handle action;
2049 	struct ib_flow_spec_action_count flow_count;
2050 };
2051 
2052 struct ib_flow_attr {
2053 	enum ib_flow_attr_type type;
2054 	u16	     size;
2055 	u16	     priority;
2056 	u32	     flags;
2057 	u8	     num_of_specs;
2058 	u8	     port;
2059 	union ib_flow_spec flows[];
2060 };
2061 
2062 struct ib_flow {
2063 	struct ib_qp		*qp;
2064 	struct ib_device	*device;
2065 	struct ib_uobject	*uobject;
2066 };
2067 
2068 enum ib_flow_action_type {
2069 	IB_FLOW_ACTION_UNSPECIFIED,
2070 	IB_FLOW_ACTION_ESP = 1,
2071 };
2072 
2073 struct ib_flow_action_attrs_esp_keymats {
2074 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2075 	union {
2076 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2077 	} keymat;
2078 };
2079 
2080 struct ib_flow_action_attrs_esp_replays {
2081 	enum ib_uverbs_flow_action_esp_replay			protocol;
2082 	union {
2083 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2084 	} replay;
2085 };
2086 
2087 enum ib_flow_action_attrs_esp_flags {
2088 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2089 	 * This is done in order to share the same flags between user-space and
2090 	 * kernel and spare an unnecessary translation.
2091 	 */
2092 
2093 	/* Kernel flags */
2094 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2095 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2096 };
2097 
2098 struct ib_flow_spec_list {
2099 	struct ib_flow_spec_list	*next;
2100 	union ib_flow_spec		spec;
2101 };
2102 
2103 struct ib_flow_action_attrs_esp {
2104 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2105 	struct ib_flow_action_attrs_esp_replays		*replay;
2106 	struct ib_flow_spec_list			*encap;
2107 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2108 	 * Value of 0 is a valid value.
2109 	 */
2110 	u32						esn;
2111 	u32						spi;
2112 	u32						seq;
2113 	u32						tfc_pad;
2114 	/* Use enum ib_flow_action_attrs_esp_flags */
2115 	u64						flags;
2116 	u64						hard_limit_pkts;
2117 };
2118 
2119 struct ib_flow_action {
2120 	struct ib_device		*device;
2121 	struct ib_uobject		*uobject;
2122 	enum ib_flow_action_type	type;
2123 	atomic_t			usecnt;
2124 };
2125 
2126 struct ib_mad;
2127 struct ib_grh;
2128 
2129 enum ib_process_mad_flags {
2130 	IB_MAD_IGNORE_MKEY	= 1,
2131 	IB_MAD_IGNORE_BKEY	= 2,
2132 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2133 };
2134 
2135 enum ib_mad_result {
2136 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2137 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2138 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2139 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2140 };
2141 
2142 struct ib_port_cache {
2143 	u64		      subnet_prefix;
2144 	struct ib_pkey_cache  *pkey;
2145 	struct ib_gid_table   *gid;
2146 	u8                     lmc;
2147 	enum ib_port_state     port_state;
2148 };
2149 
2150 struct ib_cache {
2151 	rwlock_t                lock;
2152 	struct ib_event_handler event_handler;
2153 };
2154 
2155 struct ib_port_immutable {
2156 	int                           pkey_tbl_len;
2157 	int                           gid_tbl_len;
2158 	u32                           core_cap_flags;
2159 	u32                           max_mad_size;
2160 };
2161 
2162 struct ib_port_data {
2163 	struct ib_device *ib_dev;
2164 
2165 	struct ib_port_immutable immutable;
2166 
2167 	spinlock_t pkey_list_lock;
2168 	struct list_head pkey_list;
2169 
2170 	struct ib_port_cache cache;
2171 
2172 	spinlock_t netdev_lock;
2173 	struct net_device __rcu *netdev;
2174 	struct hlist_node ndev_hash_link;
2175 	struct rdma_port_counter port_counter;
2176 	struct rdma_hw_stats *hw_stats;
2177 };
2178 
2179 /* rdma netdev type - specifies protocol type */
2180 enum rdma_netdev_t {
2181 	RDMA_NETDEV_OPA_VNIC,
2182 	RDMA_NETDEV_IPOIB,
2183 };
2184 
2185 /**
2186  * struct rdma_netdev - rdma netdev
2187  * For cases where netstack interfacing is required.
2188  */
2189 struct rdma_netdev {
2190 	void              *clnt_priv;
2191 	struct ib_device  *hca;
2192 	u8                 port_num;
2193 
2194 	/*
2195 	 * cleanup function must be specified.
2196 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2197 	 * removed too.
2198 	 */
2199 	void (*free_rdma_netdev)(struct net_device *netdev);
2200 
2201 	/* control functions */
2202 	void (*set_id)(struct net_device *netdev, int id);
2203 	/* send packet */
2204 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2205 		    struct ib_ah *address, u32 dqpn);
2206 	/* multicast */
2207 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2208 			    union ib_gid *gid, u16 mlid,
2209 			    int set_qkey, u32 qkey);
2210 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2211 			    union ib_gid *gid, u16 mlid);
2212 };
2213 
2214 struct rdma_netdev_alloc_params {
2215 	size_t sizeof_priv;
2216 	unsigned int txqs;
2217 	unsigned int rxqs;
2218 	void *param;
2219 
2220 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2221 				      struct net_device *netdev, void *param);
2222 };
2223 
2224 struct ib_odp_counters {
2225 	atomic64_t faults;
2226 	atomic64_t invalidations;
2227 };
2228 
2229 struct ib_counters {
2230 	struct ib_device	*device;
2231 	struct ib_uobject	*uobject;
2232 	/* num of objects attached */
2233 	atomic_t	usecnt;
2234 };
2235 
2236 struct ib_counters_read_attr {
2237 	u64	*counters_buff;
2238 	u32	ncounters;
2239 	u32	flags; /* use enum ib_read_counters_flags */
2240 };
2241 
2242 struct uverbs_attr_bundle;
2243 struct iw_cm_id;
2244 struct iw_cm_conn_param;
2245 
2246 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2247 	.size_##ib_struct =                                                    \
2248 		(sizeof(struct drv_struct) +                                   \
2249 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2250 		 BUILD_BUG_ON_ZERO(                                            \
2251 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2252 				      struct ib_struct)))
2253 
2254 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2255 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2256 
2257 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2258 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2259 
2260 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2261 
2262 struct rdma_user_mmap_entry {
2263 	struct kref ref;
2264 	struct ib_ucontext *ucontext;
2265 	unsigned long start_pgoff;
2266 	size_t npages;
2267 	bool driver_removed;
2268 };
2269 
2270 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2271 static inline u64
2272 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2273 {
2274 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2275 }
2276 
2277 /**
2278  * struct ib_device_ops - InfiniBand device operations
2279  * This structure defines all the InfiniBand device operations, providers will
2280  * need to define the supported operations, otherwise they will be set to null.
2281  */
2282 struct ib_device_ops {
2283 	struct module *owner;
2284 	enum rdma_driver_id driver_id;
2285 	u32 uverbs_abi_ver;
2286 	unsigned int uverbs_no_driver_id_binding:1;
2287 
2288 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2289 			 const struct ib_send_wr **bad_send_wr);
2290 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2291 			 const struct ib_recv_wr **bad_recv_wr);
2292 	void (*drain_rq)(struct ib_qp *qp);
2293 	void (*drain_sq)(struct ib_qp *qp);
2294 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2295 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2296 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2297 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2298 	int (*post_srq_recv)(struct ib_srq *srq,
2299 			     const struct ib_recv_wr *recv_wr,
2300 			     const struct ib_recv_wr **bad_recv_wr);
2301 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2302 			   u8 port_num, const struct ib_wc *in_wc,
2303 			   const struct ib_grh *in_grh,
2304 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2305 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2306 	int (*query_device)(struct ib_device *device,
2307 			    struct ib_device_attr *device_attr,
2308 			    struct ib_udata *udata);
2309 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2310 			     struct ib_device_modify *device_modify);
2311 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2312 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2313 						     int comp_vector);
2314 	int (*query_port)(struct ib_device *device, u8 port_num,
2315 			  struct ib_port_attr *port_attr);
2316 	int (*modify_port)(struct ib_device *device, u8 port_num,
2317 			   int port_modify_mask,
2318 			   struct ib_port_modify *port_modify);
2319 	/**
2320 	 * The following mandatory functions are used only at device
2321 	 * registration.  Keep functions such as these at the end of this
2322 	 * structure to avoid cache line misses when accessing struct ib_device
2323 	 * in fast paths.
2324 	 */
2325 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2326 				  struct ib_port_immutable *immutable);
2327 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2328 					       u8 port_num);
2329 	/**
2330 	 * When calling get_netdev, the HW vendor's driver should return the
2331 	 * net device of device @device at port @port_num or NULL if such
2332 	 * a net device doesn't exist. The vendor driver should call dev_hold
2333 	 * on this net device. The HW vendor's device driver must guarantee
2334 	 * that this function returns NULL before the net device has finished
2335 	 * NETDEV_UNREGISTER state.
2336 	 */
2337 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2338 	/**
2339 	 * rdma netdev operation
2340 	 *
2341 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2342 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2343 	 */
2344 	struct net_device *(*alloc_rdma_netdev)(
2345 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2346 		const char *name, unsigned char name_assign_type,
2347 		void (*setup)(struct net_device *));
2348 
2349 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2350 				      enum rdma_netdev_t type,
2351 				      struct rdma_netdev_alloc_params *params);
2352 	/**
2353 	 * query_gid should be return GID value for @device, when @port_num
2354 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2355 	 * is RoCE link layer.
2356 	 */
2357 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2358 			 union ib_gid *gid);
2359 	/**
2360 	 * When calling add_gid, the HW vendor's driver should add the gid
2361 	 * of device of port at gid index available at @attr. Meta-info of
2362 	 * that gid (for example, the network device related to this gid) is
2363 	 * available at @attr. @context allows the HW vendor driver to store
2364 	 * extra information together with a GID entry. The HW vendor driver may
2365 	 * allocate memory to contain this information and store it in @context
2366 	 * when a new GID entry is written to. Params are consistent until the
2367 	 * next call of add_gid or delete_gid. The function should return 0 on
2368 	 * success or error otherwise. The function could be called
2369 	 * concurrently for different ports. This function is only called when
2370 	 * roce_gid_table is used.
2371 	 */
2372 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2373 	/**
2374 	 * When calling del_gid, the HW vendor's driver should delete the
2375 	 * gid of device @device at gid index gid_index of port port_num
2376 	 * available in @attr.
2377 	 * Upon the deletion of a GID entry, the HW vendor must free any
2378 	 * allocated memory. The caller will clear @context afterwards.
2379 	 * This function is only called when roce_gid_table is used.
2380 	 */
2381 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2382 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2383 			  u16 *pkey);
2384 	int (*alloc_ucontext)(struct ib_ucontext *context,
2385 			      struct ib_udata *udata);
2386 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2387 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2388 	/**
2389 	 * This will be called once refcount of an entry in mmap_xa reaches
2390 	 * zero. The type of the memory that was mapped may differ between
2391 	 * entries and is opaque to the rdma_user_mmap interface.
2392 	 * Therefore needs to be implemented by the driver in mmap_free.
2393 	 */
2394 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2395 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2396 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2397 	void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2398 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2399 			 u32 flags, struct ib_udata *udata);
2400 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2401 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2402 	void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2403 	int (*create_srq)(struct ib_srq *srq,
2404 			  struct ib_srq_init_attr *srq_init_attr,
2405 			  struct ib_udata *udata);
2406 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2407 			  enum ib_srq_attr_mask srq_attr_mask,
2408 			  struct ib_udata *udata);
2409 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2410 	void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2411 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2412 				   struct ib_qp_init_attr *qp_init_attr,
2413 				   struct ib_udata *udata);
2414 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2415 			 int qp_attr_mask, struct ib_udata *udata);
2416 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2417 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2418 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2419 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2420 			 struct ib_udata *udata);
2421 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2422 	void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2423 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2424 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2425 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2426 				     u64 virt_addr, int mr_access_flags,
2427 				     struct ib_udata *udata);
2428 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2429 			     u64 virt_addr, int mr_access_flags,
2430 			     struct ib_pd *pd, struct ib_udata *udata);
2431 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2432 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2433 				  u32 max_num_sg, struct ib_udata *udata);
2434 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2435 					    u32 max_num_data_sg,
2436 					    u32 max_num_meta_sg);
2437 	int (*advise_mr)(struct ib_pd *pd,
2438 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2439 			 struct ib_sge *sg_list, u32 num_sge,
2440 			 struct uverbs_attr_bundle *attrs);
2441 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2442 			 unsigned int *sg_offset);
2443 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2444 			       struct ib_mr_status *mr_status);
2445 	struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2446 				  struct ib_udata *udata);
2447 	int (*dealloc_mw)(struct ib_mw *mw);
2448 	struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2449 				    struct ib_fmr_attr *fmr_attr);
2450 	int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2451 			    u64 iova);
2452 	int (*unmap_fmr)(struct list_head *fmr_list);
2453 	int (*dealloc_fmr)(struct ib_fmr *fmr);
2454 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2455 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2456 	struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2457 				      struct ib_udata *udata);
2458 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2459 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2460 				       struct ib_flow_attr *flow_attr,
2461 				       int domain, struct ib_udata *udata);
2462 	int (*destroy_flow)(struct ib_flow *flow_id);
2463 	struct ib_flow_action *(*create_flow_action_esp)(
2464 		struct ib_device *device,
2465 		const struct ib_flow_action_attrs_esp *attr,
2466 		struct uverbs_attr_bundle *attrs);
2467 	int (*destroy_flow_action)(struct ib_flow_action *action);
2468 	int (*modify_flow_action_esp)(
2469 		struct ib_flow_action *action,
2470 		const struct ib_flow_action_attrs_esp *attr,
2471 		struct uverbs_attr_bundle *attrs);
2472 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2473 				 int state);
2474 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2475 			     struct ifla_vf_info *ivf);
2476 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2477 			    struct ifla_vf_stats *stats);
2478 	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2479 			    struct ifla_vf_guid *node_guid,
2480 			    struct ifla_vf_guid *port_guid);
2481 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2482 			   int type);
2483 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2484 				   struct ib_wq_init_attr *init_attr,
2485 				   struct ib_udata *udata);
2486 	void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2487 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2488 			 u32 wq_attr_mask, struct ib_udata *udata);
2489 	struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2490 		struct ib_device *device,
2491 		struct ib_rwq_ind_table_init_attr *init_attr,
2492 		struct ib_udata *udata);
2493 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2494 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2495 				  struct ib_ucontext *context,
2496 				  struct ib_dm_alloc_attr *attr,
2497 				  struct uverbs_attr_bundle *attrs);
2498 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2499 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2500 				   struct ib_dm_mr_attr *attr,
2501 				   struct uverbs_attr_bundle *attrs);
2502 	struct ib_counters *(*create_counters)(
2503 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2504 	int (*destroy_counters)(struct ib_counters *counters);
2505 	int (*read_counters)(struct ib_counters *counters,
2506 			     struct ib_counters_read_attr *counters_read_attr,
2507 			     struct uverbs_attr_bundle *attrs);
2508 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2509 			    int data_sg_nents, unsigned int *data_sg_offset,
2510 			    struct scatterlist *meta_sg, int meta_sg_nents,
2511 			    unsigned int *meta_sg_offset);
2512 
2513 	/**
2514 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2515 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2516 	 *   core when the device is removed.  A lifespan of -1 in the return
2517 	 *   struct tells the core to set a default lifespan.
2518 	 */
2519 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2520 						u8 port_num);
2521 	/**
2522 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2523 	 * @index - The index in the value array we wish to have updated, or
2524 	 *   num_counters if we want all stats updated
2525 	 * Return codes -
2526 	 *   < 0 - Error, no counters updated
2527 	 *   index - Updated the single counter pointed to by index
2528 	 *   num_counters - Updated all counters (will reset the timestamp
2529 	 *     and prevent further calls for lifespan milliseconds)
2530 	 * Drivers are allowed to update all counters in leiu of just the
2531 	 *   one given in index at their option
2532 	 */
2533 	int (*get_hw_stats)(struct ib_device *device,
2534 			    struct rdma_hw_stats *stats, u8 port, int index);
2535 	/*
2536 	 * This function is called once for each port when a ib device is
2537 	 * registered.
2538 	 */
2539 	int (*init_port)(struct ib_device *device, u8 port_num,
2540 			 struct kobject *port_sysfs);
2541 	/**
2542 	 * Allows rdma drivers to add their own restrack attributes.
2543 	 */
2544 	int (*fill_res_entry)(struct sk_buff *msg,
2545 			      struct rdma_restrack_entry *entry);
2546 
2547 	/* Device lifecycle callbacks */
2548 	/*
2549 	 * Called after the device becomes registered, before clients are
2550 	 * attached
2551 	 */
2552 	int (*enable_driver)(struct ib_device *dev);
2553 	/*
2554 	 * This is called as part of ib_dealloc_device().
2555 	 */
2556 	void (*dealloc_driver)(struct ib_device *dev);
2557 
2558 	/* iWarp CM callbacks */
2559 	void (*iw_add_ref)(struct ib_qp *qp);
2560 	void (*iw_rem_ref)(struct ib_qp *qp);
2561 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2562 	int (*iw_connect)(struct iw_cm_id *cm_id,
2563 			  struct iw_cm_conn_param *conn_param);
2564 	int (*iw_accept)(struct iw_cm_id *cm_id,
2565 			 struct iw_cm_conn_param *conn_param);
2566 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2567 			 u8 pdata_len);
2568 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2569 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2570 	/**
2571 	 * counter_bind_qp - Bind a QP to a counter.
2572 	 * @counter - The counter to be bound. If counter->id is zero then
2573 	 *   the driver needs to allocate a new counter and set counter->id
2574 	 */
2575 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2576 	/**
2577 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2578 	 *   counter and bind it onto the default one
2579 	 */
2580 	int (*counter_unbind_qp)(struct ib_qp *qp);
2581 	/**
2582 	 * counter_dealloc -De-allocate the hw counter
2583 	 */
2584 	int (*counter_dealloc)(struct rdma_counter *counter);
2585 	/**
2586 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2587 	 * the driver initialized data.
2588 	 */
2589 	struct rdma_hw_stats *(*counter_alloc_stats)(
2590 		struct rdma_counter *counter);
2591 	/**
2592 	 * counter_update_stats - Query the stats value of this counter
2593 	 */
2594 	int (*counter_update_stats)(struct rdma_counter *counter);
2595 
2596 	/**
2597 	 * Allows rdma drivers to add their own restrack attributes
2598 	 * dumped via 'rdma stat' iproute2 command.
2599 	 */
2600 	int (*fill_stat_entry)(struct sk_buff *msg,
2601 			       struct rdma_restrack_entry *entry);
2602 
2603 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2604 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2605 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2606 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2607 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2608 };
2609 
2610 struct ib_core_device {
2611 	/* device must be the first element in structure until,
2612 	 * union of ib_core_device and device exists in ib_device.
2613 	 */
2614 	struct device dev;
2615 	possible_net_t rdma_net;
2616 	struct kobject *ports_kobj;
2617 	struct list_head port_list;
2618 	struct ib_device *owner; /* reach back to owner ib_device */
2619 };
2620 
2621 struct rdma_restrack_root;
2622 struct ib_device {
2623 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2624 	struct device                *dma_device;
2625 	struct ib_device_ops	     ops;
2626 	char                          name[IB_DEVICE_NAME_MAX];
2627 	struct rcu_head rcu_head;
2628 
2629 	struct list_head              event_handler_list;
2630 	spinlock_t                    event_handler_lock;
2631 
2632 	struct rw_semaphore	      client_data_rwsem;
2633 	struct xarray                 client_data;
2634 	struct mutex                  unregistration_lock;
2635 
2636 	struct ib_cache               cache;
2637 	/**
2638 	 * port_data is indexed by port number
2639 	 */
2640 	struct ib_port_data *port_data;
2641 
2642 	int			      num_comp_vectors;
2643 
2644 	union {
2645 		struct device		dev;
2646 		struct ib_core_device	coredev;
2647 	};
2648 
2649 	/* First group for device attributes,
2650 	 * Second group for driver provided attributes (optional).
2651 	 * It is NULL terminated array.
2652 	 */
2653 	const struct attribute_group	*groups[3];
2654 
2655 	u64			     uverbs_cmd_mask;
2656 	u64			     uverbs_ex_cmd_mask;
2657 
2658 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2659 	__be64			     node_guid;
2660 	u32			     local_dma_lkey;
2661 	u16                          is_switch:1;
2662 	/* Indicates kernel verbs support, should not be used in drivers */
2663 	u16                          kverbs_provider:1;
2664 	/* CQ adaptive moderation (RDMA DIM) */
2665 	u16                          use_cq_dim:1;
2666 	u8                           node_type;
2667 	u8                           phys_port_cnt;
2668 	struct ib_device_attr        attrs;
2669 	struct attribute_group	     *hw_stats_ag;
2670 	struct rdma_hw_stats         *hw_stats;
2671 
2672 #ifdef CONFIG_CGROUP_RDMA
2673 	struct rdmacg_device         cg_device;
2674 #endif
2675 
2676 	u32                          index;
2677 	struct rdma_restrack_root *res;
2678 
2679 	const struct uapi_definition   *driver_def;
2680 
2681 	/*
2682 	 * Positive refcount indicates that the device is currently
2683 	 * registered and cannot be unregistered.
2684 	 */
2685 	refcount_t refcount;
2686 	struct completion unreg_completion;
2687 	struct work_struct unregistration_work;
2688 
2689 	const struct rdma_link_ops *link_ops;
2690 
2691 	/* Protects compat_devs xarray modifications */
2692 	struct mutex compat_devs_mutex;
2693 	/* Maintains compat devices for each net namespace */
2694 	struct xarray compat_devs;
2695 
2696 	/* Used by iWarp CM */
2697 	char iw_ifname[IFNAMSIZ];
2698 	u32 iw_driver_flags;
2699 };
2700 
2701 struct ib_client_nl_info;
2702 struct ib_client {
2703 	const char *name;
2704 	void (*add)   (struct ib_device *);
2705 	void (*remove)(struct ib_device *, void *client_data);
2706 	void (*rename)(struct ib_device *dev, void *client_data);
2707 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2708 			   struct ib_client_nl_info *res);
2709 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2710 
2711 	/* Returns the net_dev belonging to this ib_client and matching the
2712 	 * given parameters.
2713 	 * @dev:	 An RDMA device that the net_dev use for communication.
2714 	 * @port:	 A physical port number on the RDMA device.
2715 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2716 	 * @gid:	 A GID that the net_dev uses to communicate.
2717 	 * @addr:	 An IP address the net_dev is configured with.
2718 	 * @client_data: The device's client data set by ib_set_client_data().
2719 	 *
2720 	 * An ib_client that implements a net_dev on top of RDMA devices
2721 	 * (such as IP over IB) should implement this callback, allowing the
2722 	 * rdma_cm module to find the right net_dev for a given request.
2723 	 *
2724 	 * The caller is responsible for calling dev_put on the returned
2725 	 * netdev. */
2726 	struct net_device *(*get_net_dev_by_params)(
2727 			struct ib_device *dev,
2728 			u8 port,
2729 			u16 pkey,
2730 			const union ib_gid *gid,
2731 			const struct sockaddr *addr,
2732 			void *client_data);
2733 
2734 	refcount_t uses;
2735 	struct completion uses_zero;
2736 	u32 client_id;
2737 
2738 	/* kverbs are not required by the client */
2739 	u8 no_kverbs_req:1;
2740 };
2741 
2742 /*
2743  * IB block DMA iterator
2744  *
2745  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2746  * to a HW supported page size.
2747  */
2748 struct ib_block_iter {
2749 	/* internal states */
2750 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2751 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2752 	unsigned int __sg_nents;	/* number of SG entries */
2753 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2754 	unsigned int __pg_bit;		/* alignment of current block */
2755 };
2756 
2757 struct ib_device *_ib_alloc_device(size_t size);
2758 #define ib_alloc_device(drv_struct, member)                                    \
2759 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2760 				      BUILD_BUG_ON_ZERO(offsetof(              \
2761 					      struct drv_struct, member))),    \
2762 		     struct drv_struct, member)
2763 
2764 void ib_dealloc_device(struct ib_device *device);
2765 
2766 void ib_get_device_fw_str(struct ib_device *device, char *str);
2767 
2768 int ib_register_device(struct ib_device *device, const char *name);
2769 void ib_unregister_device(struct ib_device *device);
2770 void ib_unregister_driver(enum rdma_driver_id driver_id);
2771 void ib_unregister_device_and_put(struct ib_device *device);
2772 void ib_unregister_device_queued(struct ib_device *ib_dev);
2773 
2774 int ib_register_client   (struct ib_client *client);
2775 void ib_unregister_client(struct ib_client *client);
2776 
2777 void __rdma_block_iter_start(struct ib_block_iter *biter,
2778 			     struct scatterlist *sglist,
2779 			     unsigned int nents,
2780 			     unsigned long pgsz);
2781 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2782 
2783 /**
2784  * rdma_block_iter_dma_address - get the aligned dma address of the current
2785  * block held by the block iterator.
2786  * @biter: block iterator holding the memory block
2787  */
2788 static inline dma_addr_t
2789 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2790 {
2791 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2792 }
2793 
2794 /**
2795  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2796  * @sglist: sglist to iterate over
2797  * @biter: block iterator holding the memory block
2798  * @nents: maximum number of sg entries to iterate over
2799  * @pgsz: best HW supported page size to use
2800  *
2801  * Callers may use rdma_block_iter_dma_address() to get each
2802  * blocks aligned DMA address.
2803  */
2804 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2805 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2806 				     pgsz);			\
2807 	     __rdma_block_iter_next(biter);)
2808 
2809 /**
2810  * ib_get_client_data - Get IB client context
2811  * @device:Device to get context for
2812  * @client:Client to get context for
2813  *
2814  * ib_get_client_data() returns the client context data set with
2815  * ib_set_client_data(). This can only be called while the client is
2816  * registered to the device, once the ib_client remove() callback returns this
2817  * cannot be called.
2818  */
2819 static inline void *ib_get_client_data(struct ib_device *device,
2820 				       struct ib_client *client)
2821 {
2822 	return xa_load(&device->client_data, client->client_id);
2823 }
2824 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2825 			 void *data);
2826 void ib_set_device_ops(struct ib_device *device,
2827 		       const struct ib_device_ops *ops);
2828 
2829 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2830 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2831 		      struct rdma_user_mmap_entry *entry);
2832 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2833 				struct rdma_user_mmap_entry *entry,
2834 				size_t length);
2835 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2836 				      struct rdma_user_mmap_entry *entry,
2837 				      size_t length, u32 min_pgoff,
2838 				      u32 max_pgoff);
2839 
2840 struct rdma_user_mmap_entry *
2841 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2842 			       unsigned long pgoff);
2843 struct rdma_user_mmap_entry *
2844 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2845 			 struct vm_area_struct *vma);
2846 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2847 
2848 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2849 
2850 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2851 {
2852 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2853 }
2854 
2855 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2856 {
2857 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2858 }
2859 
2860 static inline bool ib_is_buffer_cleared(const void __user *p,
2861 					size_t len)
2862 {
2863 	bool ret;
2864 	u8 *buf;
2865 
2866 	if (len > USHRT_MAX)
2867 		return false;
2868 
2869 	buf = memdup_user(p, len);
2870 	if (IS_ERR(buf))
2871 		return false;
2872 
2873 	ret = !memchr_inv(buf, 0, len);
2874 	kfree(buf);
2875 	return ret;
2876 }
2877 
2878 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2879 				       size_t offset,
2880 				       size_t len)
2881 {
2882 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2883 }
2884 
2885 /**
2886  * ib_is_destroy_retryable - Check whether the uobject destruction
2887  * is retryable.
2888  * @ret: The initial destruction return code
2889  * @why: remove reason
2890  * @uobj: The uobject that is destroyed
2891  *
2892  * This function is a helper function that IB layer and low-level drivers
2893  * can use to consider whether the destruction of the given uobject is
2894  * retry-able.
2895  * It checks the original return code, if it wasn't success the destruction
2896  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2897  * the remove reason. (i.e. why).
2898  * Must be called with the object locked for destroy.
2899  */
2900 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2901 					   struct ib_uobject *uobj)
2902 {
2903 	return ret && (why == RDMA_REMOVE_DESTROY ||
2904 		       uobj->context->cleanup_retryable);
2905 }
2906 
2907 /**
2908  * ib_destroy_usecnt - Called during destruction to check the usecnt
2909  * @usecnt: The usecnt atomic
2910  * @why: remove reason
2911  * @uobj: The uobject that is destroyed
2912  *
2913  * Non-zero usecnts will block destruction unless destruction was triggered by
2914  * a ucontext cleanup.
2915  */
2916 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2917 				    enum rdma_remove_reason why,
2918 				    struct ib_uobject *uobj)
2919 {
2920 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2921 		return -EBUSY;
2922 	return 0;
2923 }
2924 
2925 /**
2926  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2927  * contains all required attributes and no attributes not allowed for
2928  * the given QP state transition.
2929  * @cur_state: Current QP state
2930  * @next_state: Next QP state
2931  * @type: QP type
2932  * @mask: Mask of supplied QP attributes
2933  *
2934  * This function is a helper function that a low-level driver's
2935  * modify_qp method can use to validate the consumer's input.  It
2936  * checks that cur_state and next_state are valid QP states, that a
2937  * transition from cur_state to next_state is allowed by the IB spec,
2938  * and that the attribute mask supplied is allowed for the transition.
2939  */
2940 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2941 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2942 
2943 void ib_register_event_handler(struct ib_event_handler *event_handler);
2944 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2945 void ib_dispatch_event(struct ib_event *event);
2946 
2947 int ib_query_port(struct ib_device *device,
2948 		  u8 port_num, struct ib_port_attr *port_attr);
2949 
2950 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2951 					       u8 port_num);
2952 
2953 /**
2954  * rdma_cap_ib_switch - Check if the device is IB switch
2955  * @device: Device to check
2956  *
2957  * Device driver is responsible for setting is_switch bit on
2958  * in ib_device structure at init time.
2959  *
2960  * Return: true if the device is IB switch.
2961  */
2962 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2963 {
2964 	return device->is_switch;
2965 }
2966 
2967 /**
2968  * rdma_start_port - Return the first valid port number for the device
2969  * specified
2970  *
2971  * @device: Device to be checked
2972  *
2973  * Return start port number
2974  */
2975 static inline u8 rdma_start_port(const struct ib_device *device)
2976 {
2977 	return rdma_cap_ib_switch(device) ? 0 : 1;
2978 }
2979 
2980 /**
2981  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2982  * @device - The struct ib_device * to iterate over
2983  * @iter - The unsigned int to store the port number
2984  */
2985 #define rdma_for_each_port(device, iter)                                       \
2986 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2987 						     unsigned int, iter)));    \
2988 	     iter <= rdma_end_port(device); (iter)++)
2989 
2990 /**
2991  * rdma_end_port - Return the last valid port number for the device
2992  * specified
2993  *
2994  * @device: Device to be checked
2995  *
2996  * Return last port number
2997  */
2998 static inline u8 rdma_end_port(const struct ib_device *device)
2999 {
3000 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3001 }
3002 
3003 static inline int rdma_is_port_valid(const struct ib_device *device,
3004 				     unsigned int port)
3005 {
3006 	return (port >= rdma_start_port(device) &&
3007 		port <= rdma_end_port(device));
3008 }
3009 
3010 static inline bool rdma_is_grh_required(const struct ib_device *device,
3011 					u8 port_num)
3012 {
3013 	return device->port_data[port_num].immutable.core_cap_flags &
3014 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3015 }
3016 
3017 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3018 {
3019 	return device->port_data[port_num].immutable.core_cap_flags &
3020 	       RDMA_CORE_CAP_PROT_IB;
3021 }
3022 
3023 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3024 {
3025 	return device->port_data[port_num].immutable.core_cap_flags &
3026 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3027 }
3028 
3029 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3030 {
3031 	return device->port_data[port_num].immutable.core_cap_flags &
3032 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3033 }
3034 
3035 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3036 {
3037 	return device->port_data[port_num].immutable.core_cap_flags &
3038 	       RDMA_CORE_CAP_PROT_ROCE;
3039 }
3040 
3041 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3042 {
3043 	return device->port_data[port_num].immutable.core_cap_flags &
3044 	       RDMA_CORE_CAP_PROT_IWARP;
3045 }
3046 
3047 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3048 {
3049 	return rdma_protocol_ib(device, port_num) ||
3050 		rdma_protocol_roce(device, port_num);
3051 }
3052 
3053 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3054 {
3055 	return device->port_data[port_num].immutable.core_cap_flags &
3056 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3057 }
3058 
3059 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3060 {
3061 	return device->port_data[port_num].immutable.core_cap_flags &
3062 	       RDMA_CORE_CAP_PROT_USNIC;
3063 }
3064 
3065 /**
3066  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3067  * Management Datagrams.
3068  * @device: Device to check
3069  * @port_num: Port number to check
3070  *
3071  * Management Datagrams (MAD) are a required part of the InfiniBand
3072  * specification and are supported on all InfiniBand devices.  A slightly
3073  * extended version are also supported on OPA interfaces.
3074  *
3075  * Return: true if the port supports sending/receiving of MAD packets.
3076  */
3077 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3078 {
3079 	return device->port_data[port_num].immutable.core_cap_flags &
3080 	       RDMA_CORE_CAP_IB_MAD;
3081 }
3082 
3083 /**
3084  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3085  * Management Datagrams.
3086  * @device: Device to check
3087  * @port_num: Port number to check
3088  *
3089  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3090  * datagrams with their own versions.  These OPA MADs share many but not all of
3091  * the characteristics of InfiniBand MADs.
3092  *
3093  * OPA MADs differ in the following ways:
3094  *
3095  *    1) MADs are variable size up to 2K
3096  *       IBTA defined MADs remain fixed at 256 bytes
3097  *    2) OPA SMPs must carry valid PKeys
3098  *    3) OPA SMP packets are a different format
3099  *
3100  * Return: true if the port supports OPA MAD packet formats.
3101  */
3102 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3103 {
3104 	return device->port_data[port_num].immutable.core_cap_flags &
3105 		RDMA_CORE_CAP_OPA_MAD;
3106 }
3107 
3108 /**
3109  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3110  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3111  * @device: Device to check
3112  * @port_num: Port number to check
3113  *
3114  * Each InfiniBand node is required to provide a Subnet Management Agent
3115  * that the subnet manager can access.  Prior to the fabric being fully
3116  * configured by the subnet manager, the SMA is accessed via a well known
3117  * interface called the Subnet Management Interface (SMI).  This interface
3118  * uses directed route packets to communicate with the SM to get around the
3119  * chicken and egg problem of the SM needing to know what's on the fabric
3120  * in order to configure the fabric, and needing to configure the fabric in
3121  * order to send packets to the devices on the fabric.  These directed
3122  * route packets do not need the fabric fully configured in order to reach
3123  * their destination.  The SMI is the only method allowed to send
3124  * directed route packets on an InfiniBand fabric.
3125  *
3126  * Return: true if the port provides an SMI.
3127  */
3128 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3129 {
3130 	return device->port_data[port_num].immutable.core_cap_flags &
3131 	       RDMA_CORE_CAP_IB_SMI;
3132 }
3133 
3134 /**
3135  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3136  * Communication Manager.
3137  * @device: Device to check
3138  * @port_num: Port number to check
3139  *
3140  * The InfiniBand Communication Manager is one of many pre-defined General
3141  * Service Agents (GSA) that are accessed via the General Service
3142  * Interface (GSI).  It's role is to facilitate establishment of connections
3143  * between nodes as well as other management related tasks for established
3144  * connections.
3145  *
3146  * Return: true if the port supports an IB CM (this does not guarantee that
3147  * a CM is actually running however).
3148  */
3149 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3150 {
3151 	return device->port_data[port_num].immutable.core_cap_flags &
3152 	       RDMA_CORE_CAP_IB_CM;
3153 }
3154 
3155 /**
3156  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3157  * Communication Manager.
3158  * @device: Device to check
3159  * @port_num: Port number to check
3160  *
3161  * Similar to above, but specific to iWARP connections which have a different
3162  * managment protocol than InfiniBand.
3163  *
3164  * Return: true if the port supports an iWARP CM (this does not guarantee that
3165  * a CM is actually running however).
3166  */
3167 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3168 {
3169 	return device->port_data[port_num].immutable.core_cap_flags &
3170 	       RDMA_CORE_CAP_IW_CM;
3171 }
3172 
3173 /**
3174  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3175  * Subnet Administration.
3176  * @device: Device to check
3177  * @port_num: Port number to check
3178  *
3179  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3180  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3181  * fabrics, devices should resolve routes to other hosts by contacting the
3182  * SA to query the proper route.
3183  *
3184  * Return: true if the port should act as a client to the fabric Subnet
3185  * Administration interface.  This does not imply that the SA service is
3186  * running locally.
3187  */
3188 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3189 {
3190 	return device->port_data[port_num].immutable.core_cap_flags &
3191 	       RDMA_CORE_CAP_IB_SA;
3192 }
3193 
3194 /**
3195  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3196  * Multicast.
3197  * @device: Device to check
3198  * @port_num: Port number to check
3199  *
3200  * InfiniBand multicast registration is more complex than normal IPv4 or
3201  * IPv6 multicast registration.  Each Host Channel Adapter must register
3202  * with the Subnet Manager when it wishes to join a multicast group.  It
3203  * should do so only once regardless of how many queue pairs it subscribes
3204  * to this group.  And it should leave the group only after all queue pairs
3205  * attached to the group have been detached.
3206  *
3207  * Return: true if the port must undertake the additional adminstrative
3208  * overhead of registering/unregistering with the SM and tracking of the
3209  * total number of queue pairs attached to the multicast group.
3210  */
3211 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3212 {
3213 	return rdma_cap_ib_sa(device, port_num);
3214 }
3215 
3216 /**
3217  * rdma_cap_af_ib - Check if the port of device has the capability
3218  * Native Infiniband Address.
3219  * @device: Device to check
3220  * @port_num: Port number to check
3221  *
3222  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3223  * GID.  RoCE uses a different mechanism, but still generates a GID via
3224  * a prescribed mechanism and port specific data.
3225  *
3226  * Return: true if the port uses a GID address to identify devices on the
3227  * network.
3228  */
3229 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3230 {
3231 	return device->port_data[port_num].immutable.core_cap_flags &
3232 	       RDMA_CORE_CAP_AF_IB;
3233 }
3234 
3235 /**
3236  * rdma_cap_eth_ah - Check if the port of device has the capability
3237  * Ethernet Address Handle.
3238  * @device: Device to check
3239  * @port_num: Port number to check
3240  *
3241  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3242  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3243  * port.  Normally, packet headers are generated by the sending host
3244  * adapter, but when sending connectionless datagrams, we must manually
3245  * inject the proper headers for the fabric we are communicating over.
3246  *
3247  * Return: true if we are running as a RoCE port and must force the
3248  * addition of a Global Route Header built from our Ethernet Address
3249  * Handle into our header list for connectionless packets.
3250  */
3251 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3252 {
3253 	return device->port_data[port_num].immutable.core_cap_flags &
3254 	       RDMA_CORE_CAP_ETH_AH;
3255 }
3256 
3257 /**
3258  * rdma_cap_opa_ah - Check if the port of device supports
3259  * OPA Address handles
3260  * @device: Device to check
3261  * @port_num: Port number to check
3262  *
3263  * Return: true if we are running on an OPA device which supports
3264  * the extended OPA addressing.
3265  */
3266 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3267 {
3268 	return (device->port_data[port_num].immutable.core_cap_flags &
3269 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3270 }
3271 
3272 /**
3273  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3274  *
3275  * @device: Device
3276  * @port_num: Port number
3277  *
3278  * This MAD size includes the MAD headers and MAD payload.  No other headers
3279  * are included.
3280  *
3281  * Return the max MAD size required by the Port.  Will return 0 if the port
3282  * does not support MADs
3283  */
3284 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3285 {
3286 	return device->port_data[port_num].immutable.max_mad_size;
3287 }
3288 
3289 /**
3290  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3291  * @device: Device to check
3292  * @port_num: Port number to check
3293  *
3294  * RoCE GID table mechanism manages the various GIDs for a device.
3295  *
3296  * NOTE: if allocating the port's GID table has failed, this call will still
3297  * return true, but any RoCE GID table API will fail.
3298  *
3299  * Return: true if the port uses RoCE GID table mechanism in order to manage
3300  * its GIDs.
3301  */
3302 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3303 					   u8 port_num)
3304 {
3305 	return rdma_protocol_roce(device, port_num) &&
3306 		device->ops.add_gid && device->ops.del_gid;
3307 }
3308 
3309 /*
3310  * Check if the device supports READ W/ INVALIDATE.
3311  */
3312 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3313 {
3314 	/*
3315 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3316 	 * has support for it yet.
3317 	 */
3318 	return rdma_protocol_iwarp(dev, port_num);
3319 }
3320 
3321 /**
3322  * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3323  *
3324  * @addr: address
3325  * @pgsz_bitmap: bitmap of HW supported page sizes
3326  */
3327 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3328 					    unsigned long pgsz_bitmap)
3329 {
3330 	unsigned long align;
3331 	unsigned long pgsz;
3332 
3333 	align = addr & -addr;
3334 
3335 	/* Find page bit such that addr is aligned to the highest supported
3336 	 * HW page size
3337 	 */
3338 	pgsz = pgsz_bitmap & ~(-align << 1);
3339 	if (!pgsz)
3340 		return __ffs(pgsz_bitmap);
3341 
3342 	return __fls(pgsz);
3343 }
3344 
3345 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3346 			 int state);
3347 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3348 		     struct ifla_vf_info *info);
3349 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3350 		    struct ifla_vf_stats *stats);
3351 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3352 		    struct ifla_vf_guid *node_guid,
3353 		    struct ifla_vf_guid *port_guid);
3354 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3355 		   int type);
3356 
3357 int ib_query_pkey(struct ib_device *device,
3358 		  u8 port_num, u16 index, u16 *pkey);
3359 
3360 int ib_modify_device(struct ib_device *device,
3361 		     int device_modify_mask,
3362 		     struct ib_device_modify *device_modify);
3363 
3364 int ib_modify_port(struct ib_device *device,
3365 		   u8 port_num, int port_modify_mask,
3366 		   struct ib_port_modify *port_modify);
3367 
3368 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3369 		u8 *port_num, u16 *index);
3370 
3371 int ib_find_pkey(struct ib_device *device,
3372 		 u8 port_num, u16 pkey, u16 *index);
3373 
3374 enum ib_pd_flags {
3375 	/*
3376 	 * Create a memory registration for all memory in the system and place
3377 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3378 	 * ULPs to avoid the overhead of dynamic MRs.
3379 	 *
3380 	 * This flag is generally considered unsafe and must only be used in
3381 	 * extremly trusted environments.  Every use of it will log a warning
3382 	 * in the kernel log.
3383 	 */
3384 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3385 };
3386 
3387 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3388 		const char *caller);
3389 
3390 #define ib_alloc_pd(device, flags) \
3391 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3392 
3393 /**
3394  * ib_dealloc_pd_user - Deallocate kernel/user PD
3395  * @pd: The protection domain
3396  * @udata: Valid user data or NULL for kernel objects
3397  */
3398 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3399 
3400 /**
3401  * ib_dealloc_pd - Deallocate kernel PD
3402  * @pd: The protection domain
3403  *
3404  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3405  */
3406 static inline void ib_dealloc_pd(struct ib_pd *pd)
3407 {
3408 	ib_dealloc_pd_user(pd, NULL);
3409 }
3410 
3411 enum rdma_create_ah_flags {
3412 	/* In a sleepable context */
3413 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3414 };
3415 
3416 /**
3417  * rdma_create_ah - Creates an address handle for the given address vector.
3418  * @pd: The protection domain associated with the address handle.
3419  * @ah_attr: The attributes of the address vector.
3420  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3421  *
3422  * The address handle is used to reference a local or global destination
3423  * in all UD QP post sends.
3424  */
3425 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3426 			     u32 flags);
3427 
3428 /**
3429  * rdma_create_user_ah - Creates an address handle for the given address vector.
3430  * It resolves destination mac address for ah attribute of RoCE type.
3431  * @pd: The protection domain associated with the address handle.
3432  * @ah_attr: The attributes of the address vector.
3433  * @udata: pointer to user's input output buffer information need by
3434  *         provider driver.
3435  *
3436  * It returns 0 on success and returns appropriate error code on error.
3437  * The address handle is used to reference a local or global destination
3438  * in all UD QP post sends.
3439  */
3440 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3441 				  struct rdma_ah_attr *ah_attr,
3442 				  struct ib_udata *udata);
3443 /**
3444  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3445  *   work completion.
3446  * @hdr: the L3 header to parse
3447  * @net_type: type of header to parse
3448  * @sgid: place to store source gid
3449  * @dgid: place to store destination gid
3450  */
3451 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3452 			      enum rdma_network_type net_type,
3453 			      union ib_gid *sgid, union ib_gid *dgid);
3454 
3455 /**
3456  * ib_get_rdma_header_version - Get the header version
3457  * @hdr: the L3 header to parse
3458  */
3459 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3460 
3461 /**
3462  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3463  *   work completion.
3464  * @device: Device on which the received message arrived.
3465  * @port_num: Port on which the received message arrived.
3466  * @wc: Work completion associated with the received message.
3467  * @grh: References the received global route header.  This parameter is
3468  *   ignored unless the work completion indicates that the GRH is valid.
3469  * @ah_attr: Returned attributes that can be used when creating an address
3470  *   handle for replying to the message.
3471  * When ib_init_ah_attr_from_wc() returns success,
3472  * (a) for IB link layer it optionally contains a reference to SGID attribute
3473  * when GRH is present for IB link layer.
3474  * (b) for RoCE link layer it contains a reference to SGID attribute.
3475  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3476  * attributes which are initialized using ib_init_ah_attr_from_wc().
3477  *
3478  */
3479 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3480 			    const struct ib_wc *wc, const struct ib_grh *grh,
3481 			    struct rdma_ah_attr *ah_attr);
3482 
3483 /**
3484  * ib_create_ah_from_wc - Creates an address handle associated with the
3485  *   sender of the specified work completion.
3486  * @pd: The protection domain associated with the address handle.
3487  * @wc: Work completion information associated with a received message.
3488  * @grh: References the received global route header.  This parameter is
3489  *   ignored unless the work completion indicates that the GRH is valid.
3490  * @port_num: The outbound port number to associate with the address.
3491  *
3492  * The address handle is used to reference a local or global destination
3493  * in all UD QP post sends.
3494  */
3495 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3496 				   const struct ib_grh *grh, u8 port_num);
3497 
3498 /**
3499  * rdma_modify_ah - Modifies the address vector associated with an address
3500  *   handle.
3501  * @ah: The address handle to modify.
3502  * @ah_attr: The new address vector attributes to associate with the
3503  *   address handle.
3504  */
3505 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3506 
3507 /**
3508  * rdma_query_ah - Queries the address vector associated with an address
3509  *   handle.
3510  * @ah: The address handle to query.
3511  * @ah_attr: The address vector attributes associated with the address
3512  *   handle.
3513  */
3514 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3515 
3516 enum rdma_destroy_ah_flags {
3517 	/* In a sleepable context */
3518 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3519 };
3520 
3521 /**
3522  * rdma_destroy_ah_user - Destroys an address handle.
3523  * @ah: The address handle to destroy.
3524  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3525  * @udata: Valid user data or NULL for kernel objects
3526  */
3527 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3528 
3529 /**
3530  * rdma_destroy_ah - Destroys an kernel address handle.
3531  * @ah: The address handle to destroy.
3532  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3533  *
3534  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3535  */
3536 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3537 {
3538 	return rdma_destroy_ah_user(ah, flags, NULL);
3539 }
3540 
3541 /**
3542  * ib_create_srq - Creates a SRQ associated with the specified protection
3543  *   domain.
3544  * @pd: The protection domain associated with the SRQ.
3545  * @srq_init_attr: A list of initial attributes required to create the
3546  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3547  *   the actual capabilities of the created SRQ.
3548  *
3549  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3550  * requested size of the SRQ, and set to the actual values allocated
3551  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3552  * will always be at least as large as the requested values.
3553  */
3554 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3555 			     struct ib_srq_init_attr *srq_init_attr);
3556 
3557 /**
3558  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3559  * @srq: The SRQ to modify.
3560  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3561  *   the current values of selected SRQ attributes are returned.
3562  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3563  *   are being modified.
3564  *
3565  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3566  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3567  * the number of receives queued drops below the limit.
3568  */
3569 int ib_modify_srq(struct ib_srq *srq,
3570 		  struct ib_srq_attr *srq_attr,
3571 		  enum ib_srq_attr_mask srq_attr_mask);
3572 
3573 /**
3574  * ib_query_srq - Returns the attribute list and current values for the
3575  *   specified SRQ.
3576  * @srq: The SRQ to query.
3577  * @srq_attr: The attributes of the specified SRQ.
3578  */
3579 int ib_query_srq(struct ib_srq *srq,
3580 		 struct ib_srq_attr *srq_attr);
3581 
3582 /**
3583  * ib_destroy_srq_user - Destroys the specified SRQ.
3584  * @srq: The SRQ to destroy.
3585  * @udata: Valid user data or NULL for kernel objects
3586  */
3587 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3588 
3589 /**
3590  * ib_destroy_srq - Destroys the specified kernel SRQ.
3591  * @srq: The SRQ to destroy.
3592  *
3593  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3594  */
3595 static inline int ib_destroy_srq(struct ib_srq *srq)
3596 {
3597 	return ib_destroy_srq_user(srq, NULL);
3598 }
3599 
3600 /**
3601  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3602  * @srq: The SRQ to post the work request on.
3603  * @recv_wr: A list of work requests to post on the receive queue.
3604  * @bad_recv_wr: On an immediate failure, this parameter will reference
3605  *   the work request that failed to be posted on the QP.
3606  */
3607 static inline int ib_post_srq_recv(struct ib_srq *srq,
3608 				   const struct ib_recv_wr *recv_wr,
3609 				   const struct ib_recv_wr **bad_recv_wr)
3610 {
3611 	const struct ib_recv_wr *dummy;
3612 
3613 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3614 					      bad_recv_wr ? : &dummy);
3615 }
3616 
3617 /**
3618  * ib_create_qp_user - Creates a QP associated with the specified protection
3619  *   domain.
3620  * @pd: The protection domain associated with the QP.
3621  * @qp_init_attr: A list of initial attributes required to create the
3622  *   QP.  If QP creation succeeds, then the attributes are updated to
3623  *   the actual capabilities of the created QP.
3624  * @udata: Valid user data or NULL for kernel objects
3625  */
3626 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3627 				struct ib_qp_init_attr *qp_init_attr,
3628 				struct ib_udata *udata);
3629 
3630 /**
3631  * ib_create_qp - Creates a kernel QP associated with the specified protection
3632  *   domain.
3633  * @pd: The protection domain associated with the QP.
3634  * @qp_init_attr: A list of initial attributes required to create the
3635  *   QP.  If QP creation succeeds, then the attributes are updated to
3636  *   the actual capabilities of the created QP.
3637  * @udata: Valid user data or NULL for kernel objects
3638  *
3639  * NOTE: for user qp use ib_create_qp_user with valid udata!
3640  */
3641 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3642 					 struct ib_qp_init_attr *qp_init_attr)
3643 {
3644 	return ib_create_qp_user(pd, qp_init_attr, NULL);
3645 }
3646 
3647 /**
3648  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3649  * @qp: The QP to modify.
3650  * @attr: On input, specifies the QP attributes to modify.  On output,
3651  *   the current values of selected QP attributes are returned.
3652  * @attr_mask: A bit-mask used to specify which attributes of the QP
3653  *   are being modified.
3654  * @udata: pointer to user's input output buffer information
3655  *   are being modified.
3656  * It returns 0 on success and returns appropriate error code on error.
3657  */
3658 int ib_modify_qp_with_udata(struct ib_qp *qp,
3659 			    struct ib_qp_attr *attr,
3660 			    int attr_mask,
3661 			    struct ib_udata *udata);
3662 
3663 /**
3664  * ib_modify_qp - Modifies the attributes for the specified QP and then
3665  *   transitions the QP to the given state.
3666  * @qp: The QP to modify.
3667  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3668  *   the current values of selected QP attributes are returned.
3669  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3670  *   are being modified.
3671  */
3672 int ib_modify_qp(struct ib_qp *qp,
3673 		 struct ib_qp_attr *qp_attr,
3674 		 int qp_attr_mask);
3675 
3676 /**
3677  * ib_query_qp - Returns the attribute list and current values for the
3678  *   specified QP.
3679  * @qp: The QP to query.
3680  * @qp_attr: The attributes of the specified QP.
3681  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3682  * @qp_init_attr: Additional attributes of the selected QP.
3683  *
3684  * The qp_attr_mask may be used to limit the query to gathering only the
3685  * selected attributes.
3686  */
3687 int ib_query_qp(struct ib_qp *qp,
3688 		struct ib_qp_attr *qp_attr,
3689 		int qp_attr_mask,
3690 		struct ib_qp_init_attr *qp_init_attr);
3691 
3692 /**
3693  * ib_destroy_qp - Destroys the specified QP.
3694  * @qp: The QP to destroy.
3695  * @udata: Valid udata or NULL for kernel objects
3696  */
3697 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3698 
3699 /**
3700  * ib_destroy_qp - Destroys the specified kernel QP.
3701  * @qp: The QP to destroy.
3702  *
3703  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3704  */
3705 static inline int ib_destroy_qp(struct ib_qp *qp)
3706 {
3707 	return ib_destroy_qp_user(qp, NULL);
3708 }
3709 
3710 /**
3711  * ib_open_qp - Obtain a reference to an existing sharable QP.
3712  * @xrcd - XRC domain
3713  * @qp_open_attr: Attributes identifying the QP to open.
3714  *
3715  * Returns a reference to a sharable QP.
3716  */
3717 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3718 			 struct ib_qp_open_attr *qp_open_attr);
3719 
3720 /**
3721  * ib_close_qp - Release an external reference to a QP.
3722  * @qp: The QP handle to release
3723  *
3724  * The opened QP handle is released by the caller.  The underlying
3725  * shared QP is not destroyed until all internal references are released.
3726  */
3727 int ib_close_qp(struct ib_qp *qp);
3728 
3729 /**
3730  * ib_post_send - Posts a list of work requests to the send queue of
3731  *   the specified QP.
3732  * @qp: The QP to post the work request on.
3733  * @send_wr: A list of work requests to post on the send queue.
3734  * @bad_send_wr: On an immediate failure, this parameter will reference
3735  *   the work request that failed to be posted on the QP.
3736  *
3737  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3738  * error is returned, the QP state shall not be affected,
3739  * ib_post_send() will return an immediate error after queueing any
3740  * earlier work requests in the list.
3741  */
3742 static inline int ib_post_send(struct ib_qp *qp,
3743 			       const struct ib_send_wr *send_wr,
3744 			       const struct ib_send_wr **bad_send_wr)
3745 {
3746 	const struct ib_send_wr *dummy;
3747 
3748 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3749 }
3750 
3751 /**
3752  * ib_post_recv - Posts a list of work requests to the receive queue of
3753  *   the specified QP.
3754  * @qp: The QP to post the work request on.
3755  * @recv_wr: A list of work requests to post on the receive queue.
3756  * @bad_recv_wr: On an immediate failure, this parameter will reference
3757  *   the work request that failed to be posted on the QP.
3758  */
3759 static inline int ib_post_recv(struct ib_qp *qp,
3760 			       const struct ib_recv_wr *recv_wr,
3761 			       const struct ib_recv_wr **bad_recv_wr)
3762 {
3763 	const struct ib_recv_wr *dummy;
3764 
3765 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3766 }
3767 
3768 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3769 				 int nr_cqe, int comp_vector,
3770 				 enum ib_poll_context poll_ctx,
3771 				 const char *caller, struct ib_udata *udata);
3772 
3773 /**
3774  * ib_alloc_cq_user: Allocate kernel/user CQ
3775  * @dev: The IB device
3776  * @private: Private data attached to the CQE
3777  * @nr_cqe: Number of CQEs in the CQ
3778  * @comp_vector: Completion vector used for the IRQs
3779  * @poll_ctx: Context used for polling the CQ
3780  * @udata: Valid user data or NULL for kernel objects
3781  */
3782 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3783 					     void *private, int nr_cqe,
3784 					     int comp_vector,
3785 					     enum ib_poll_context poll_ctx,
3786 					     struct ib_udata *udata)
3787 {
3788 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3789 				  KBUILD_MODNAME, udata);
3790 }
3791 
3792 /**
3793  * ib_alloc_cq: Allocate kernel CQ
3794  * @dev: The IB device
3795  * @private: Private data attached to the CQE
3796  * @nr_cqe: Number of CQEs in the CQ
3797  * @comp_vector: Completion vector used for the IRQs
3798  * @poll_ctx: Context used for polling the CQ
3799  *
3800  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3801  */
3802 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3803 					int nr_cqe, int comp_vector,
3804 					enum ib_poll_context poll_ctx)
3805 {
3806 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3807 				NULL);
3808 }
3809 
3810 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3811 				int nr_cqe, enum ib_poll_context poll_ctx,
3812 				const char *caller);
3813 
3814 /**
3815  * ib_alloc_cq_any: Allocate kernel CQ
3816  * @dev: The IB device
3817  * @private: Private data attached to the CQE
3818  * @nr_cqe: Number of CQEs in the CQ
3819  * @poll_ctx: Context used for polling the CQ
3820  */
3821 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3822 					    void *private, int nr_cqe,
3823 					    enum ib_poll_context poll_ctx)
3824 {
3825 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3826 				 KBUILD_MODNAME);
3827 }
3828 
3829 /**
3830  * ib_free_cq_user - Free kernel/user CQ
3831  * @cq: The CQ to free
3832  * @udata: Valid user data or NULL for kernel objects
3833  */
3834 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3835 
3836 /**
3837  * ib_free_cq - Free kernel CQ
3838  * @cq: The CQ to free
3839  *
3840  * NOTE: for user cq use ib_free_cq_user with valid udata!
3841  */
3842 static inline void ib_free_cq(struct ib_cq *cq)
3843 {
3844 	ib_free_cq_user(cq, NULL);
3845 }
3846 
3847 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3848 
3849 /**
3850  * ib_create_cq - Creates a CQ on the specified device.
3851  * @device: The device on which to create the CQ.
3852  * @comp_handler: A user-specified callback that is invoked when a
3853  *   completion event occurs on the CQ.
3854  * @event_handler: A user-specified callback that is invoked when an
3855  *   asynchronous event not associated with a completion occurs on the CQ.
3856  * @cq_context: Context associated with the CQ returned to the user via
3857  *   the associated completion and event handlers.
3858  * @cq_attr: The attributes the CQ should be created upon.
3859  *
3860  * Users can examine the cq structure to determine the actual CQ size.
3861  */
3862 struct ib_cq *__ib_create_cq(struct ib_device *device,
3863 			     ib_comp_handler comp_handler,
3864 			     void (*event_handler)(struct ib_event *, void *),
3865 			     void *cq_context,
3866 			     const struct ib_cq_init_attr *cq_attr,
3867 			     const char *caller);
3868 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3869 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3870 
3871 /**
3872  * ib_resize_cq - Modifies the capacity of the CQ.
3873  * @cq: The CQ to resize.
3874  * @cqe: The minimum size of the CQ.
3875  *
3876  * Users can examine the cq structure to determine the actual CQ size.
3877  */
3878 int ib_resize_cq(struct ib_cq *cq, int cqe);
3879 
3880 /**
3881  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3882  * @cq: The CQ to modify.
3883  * @cq_count: number of CQEs that will trigger an event
3884  * @cq_period: max period of time in usec before triggering an event
3885  *
3886  */
3887 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3888 
3889 /**
3890  * ib_destroy_cq_user - Destroys the specified CQ.
3891  * @cq: The CQ to destroy.
3892  * @udata: Valid user data or NULL for kernel objects
3893  */
3894 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3895 
3896 /**
3897  * ib_destroy_cq - Destroys the specified kernel CQ.
3898  * @cq: The CQ to destroy.
3899  *
3900  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3901  */
3902 static inline void ib_destroy_cq(struct ib_cq *cq)
3903 {
3904 	ib_destroy_cq_user(cq, NULL);
3905 }
3906 
3907 /**
3908  * ib_poll_cq - poll a CQ for completion(s)
3909  * @cq:the CQ being polled
3910  * @num_entries:maximum number of completions to return
3911  * @wc:array of at least @num_entries &struct ib_wc where completions
3912  *   will be returned
3913  *
3914  * Poll a CQ for (possibly multiple) completions.  If the return value
3915  * is < 0, an error occurred.  If the return value is >= 0, it is the
3916  * number of completions returned.  If the return value is
3917  * non-negative and < num_entries, then the CQ was emptied.
3918  */
3919 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3920 			     struct ib_wc *wc)
3921 {
3922 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3923 }
3924 
3925 /**
3926  * ib_req_notify_cq - Request completion notification on a CQ.
3927  * @cq: The CQ to generate an event for.
3928  * @flags:
3929  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3930  *   to request an event on the next solicited event or next work
3931  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3932  *   may also be |ed in to request a hint about missed events, as
3933  *   described below.
3934  *
3935  * Return Value:
3936  *    < 0 means an error occurred while requesting notification
3937  *   == 0 means notification was requested successfully, and if
3938  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3939  *        were missed and it is safe to wait for another event.  In
3940  *        this case is it guaranteed that any work completions added
3941  *        to the CQ since the last CQ poll will trigger a completion
3942  *        notification event.
3943  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3944  *        in.  It means that the consumer must poll the CQ again to
3945  *        make sure it is empty to avoid missing an event because of a
3946  *        race between requesting notification and an entry being
3947  *        added to the CQ.  This return value means it is possible
3948  *        (but not guaranteed) that a work completion has been added
3949  *        to the CQ since the last poll without triggering a
3950  *        completion notification event.
3951  */
3952 static inline int ib_req_notify_cq(struct ib_cq *cq,
3953 				   enum ib_cq_notify_flags flags)
3954 {
3955 	return cq->device->ops.req_notify_cq(cq, flags);
3956 }
3957 
3958 /**
3959  * ib_req_ncomp_notif - Request completion notification when there are
3960  *   at least the specified number of unreaped completions on the CQ.
3961  * @cq: The CQ to generate an event for.
3962  * @wc_cnt: The number of unreaped completions that should be on the
3963  *   CQ before an event is generated.
3964  */
3965 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3966 {
3967 	return cq->device->ops.req_ncomp_notif ?
3968 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3969 		-ENOSYS;
3970 }
3971 
3972 /**
3973  * ib_dma_mapping_error - check a DMA addr for error
3974  * @dev: The device for which the dma_addr was created
3975  * @dma_addr: The DMA address to check
3976  */
3977 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3978 {
3979 	return dma_mapping_error(dev->dma_device, dma_addr);
3980 }
3981 
3982 /**
3983  * ib_dma_map_single - Map a kernel virtual address to DMA address
3984  * @dev: The device for which the dma_addr is to be created
3985  * @cpu_addr: The kernel virtual address
3986  * @size: The size of the region in bytes
3987  * @direction: The direction of the DMA
3988  */
3989 static inline u64 ib_dma_map_single(struct ib_device *dev,
3990 				    void *cpu_addr, size_t size,
3991 				    enum dma_data_direction direction)
3992 {
3993 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3994 }
3995 
3996 /**
3997  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3998  * @dev: The device for which the DMA address was created
3999  * @addr: The DMA address
4000  * @size: The size of the region in bytes
4001  * @direction: The direction of the DMA
4002  */
4003 static inline void ib_dma_unmap_single(struct ib_device *dev,
4004 				       u64 addr, size_t size,
4005 				       enum dma_data_direction direction)
4006 {
4007 	dma_unmap_single(dev->dma_device, addr, size, direction);
4008 }
4009 
4010 /**
4011  * ib_dma_map_page - Map a physical page to DMA address
4012  * @dev: The device for which the dma_addr is to be created
4013  * @page: The page to be mapped
4014  * @offset: The offset within the page
4015  * @size: The size of the region in bytes
4016  * @direction: The direction of the DMA
4017  */
4018 static inline u64 ib_dma_map_page(struct ib_device *dev,
4019 				  struct page *page,
4020 				  unsigned long offset,
4021 				  size_t size,
4022 					 enum dma_data_direction direction)
4023 {
4024 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4025 }
4026 
4027 /**
4028  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4029  * @dev: The device for which the DMA address was created
4030  * @addr: The DMA address
4031  * @size: The size of the region in bytes
4032  * @direction: The direction of the DMA
4033  */
4034 static inline void ib_dma_unmap_page(struct ib_device *dev,
4035 				     u64 addr, size_t size,
4036 				     enum dma_data_direction direction)
4037 {
4038 	dma_unmap_page(dev->dma_device, addr, size, direction);
4039 }
4040 
4041 /**
4042  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4043  * @dev: The device for which the DMA addresses are to be created
4044  * @sg: The array of scatter/gather entries
4045  * @nents: The number of scatter/gather entries
4046  * @direction: The direction of the DMA
4047  */
4048 static inline int ib_dma_map_sg(struct ib_device *dev,
4049 				struct scatterlist *sg, int nents,
4050 				enum dma_data_direction direction)
4051 {
4052 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4053 }
4054 
4055 /**
4056  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4057  * @dev: The device for which the DMA addresses were created
4058  * @sg: The array of scatter/gather entries
4059  * @nents: The number of scatter/gather entries
4060  * @direction: The direction of the DMA
4061  */
4062 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4063 				   struct scatterlist *sg, int nents,
4064 				   enum dma_data_direction direction)
4065 {
4066 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4067 }
4068 
4069 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4070 				      struct scatterlist *sg, int nents,
4071 				      enum dma_data_direction direction,
4072 				      unsigned long dma_attrs)
4073 {
4074 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4075 				dma_attrs);
4076 }
4077 
4078 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4079 					 struct scatterlist *sg, int nents,
4080 					 enum dma_data_direction direction,
4081 					 unsigned long dma_attrs)
4082 {
4083 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4084 }
4085 
4086 /**
4087  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4088  * @dev: The device to query
4089  *
4090  * The returned value represents a size in bytes.
4091  */
4092 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4093 {
4094 	return dma_get_max_seg_size(dev->dma_device);
4095 }
4096 
4097 /**
4098  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4099  * @dev: The device for which the DMA address was created
4100  * @addr: The DMA address
4101  * @size: The size of the region in bytes
4102  * @dir: The direction of the DMA
4103  */
4104 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4105 					      u64 addr,
4106 					      size_t size,
4107 					      enum dma_data_direction dir)
4108 {
4109 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4110 }
4111 
4112 /**
4113  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4114  * @dev: The device for which the DMA address was created
4115  * @addr: The DMA address
4116  * @size: The size of the region in bytes
4117  * @dir: The direction of the DMA
4118  */
4119 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4120 						 u64 addr,
4121 						 size_t size,
4122 						 enum dma_data_direction dir)
4123 {
4124 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4125 }
4126 
4127 /**
4128  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4129  * @dev: The device for which the DMA address is requested
4130  * @size: The size of the region to allocate in bytes
4131  * @dma_handle: A pointer for returning the DMA address of the region
4132  * @flag: memory allocator flags
4133  */
4134 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4135 					   size_t size,
4136 					   dma_addr_t *dma_handle,
4137 					   gfp_t flag)
4138 {
4139 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4140 }
4141 
4142 /**
4143  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4144  * @dev: The device for which the DMA addresses were allocated
4145  * @size: The size of the region
4146  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4147  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4148  */
4149 static inline void ib_dma_free_coherent(struct ib_device *dev,
4150 					size_t size, void *cpu_addr,
4151 					dma_addr_t dma_handle)
4152 {
4153 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4154 }
4155 
4156 /**
4157  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4158  *   HCA translation table.
4159  * @mr: The memory region to deregister.
4160  * @udata: Valid user data or NULL for kernel object
4161  *
4162  * This function can fail, if the memory region has memory windows bound to it.
4163  */
4164 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4165 
4166 /**
4167  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4168  *   HCA translation table.
4169  * @mr: The memory region to deregister.
4170  *
4171  * This function can fail, if the memory region has memory windows bound to it.
4172  *
4173  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4174  */
4175 static inline int ib_dereg_mr(struct ib_mr *mr)
4176 {
4177 	return ib_dereg_mr_user(mr, NULL);
4178 }
4179 
4180 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4181 			       u32 max_num_sg, struct ib_udata *udata);
4182 
4183 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4184 					enum ib_mr_type mr_type, u32 max_num_sg)
4185 {
4186 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4187 }
4188 
4189 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4190 				    u32 max_num_data_sg,
4191 				    u32 max_num_meta_sg);
4192 
4193 /**
4194  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4195  *   R_Key and L_Key.
4196  * @mr - struct ib_mr pointer to be updated.
4197  * @newkey - new key to be used.
4198  */
4199 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4200 {
4201 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4202 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4203 }
4204 
4205 /**
4206  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4207  * for calculating a new rkey for type 2 memory windows.
4208  * @rkey - the rkey to increment.
4209  */
4210 static inline u32 ib_inc_rkey(u32 rkey)
4211 {
4212 	const u32 mask = 0x000000ff;
4213 	return ((rkey + 1) & mask) | (rkey & ~mask);
4214 }
4215 
4216 /**
4217  * ib_alloc_fmr - Allocates a unmapped fast memory region.
4218  * @pd: The protection domain associated with the unmapped region.
4219  * @mr_access_flags: Specifies the memory access rights.
4220  * @fmr_attr: Attributes of the unmapped region.
4221  *
4222  * A fast memory region must be mapped before it can be used as part of
4223  * a work request.
4224  */
4225 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4226 			    int mr_access_flags,
4227 			    struct ib_fmr_attr *fmr_attr);
4228 
4229 /**
4230  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4231  * @fmr: The fast memory region to associate with the pages.
4232  * @page_list: An array of physical pages to map to the fast memory region.
4233  * @list_len: The number of pages in page_list.
4234  * @iova: The I/O virtual address to use with the mapped region.
4235  */
4236 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4237 				  u64 *page_list, int list_len,
4238 				  u64 iova)
4239 {
4240 	return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4241 }
4242 
4243 /**
4244  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4245  * @fmr_list: A linked list of fast memory regions to unmap.
4246  */
4247 int ib_unmap_fmr(struct list_head *fmr_list);
4248 
4249 /**
4250  * ib_dealloc_fmr - Deallocates a fast memory region.
4251  * @fmr: The fast memory region to deallocate.
4252  */
4253 int ib_dealloc_fmr(struct ib_fmr *fmr);
4254 
4255 /**
4256  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4257  * @qp: QP to attach to the multicast group.  The QP must be type
4258  *   IB_QPT_UD.
4259  * @gid: Multicast group GID.
4260  * @lid: Multicast group LID in host byte order.
4261  *
4262  * In order to send and receive multicast packets, subnet
4263  * administration must have created the multicast group and configured
4264  * the fabric appropriately.  The port associated with the specified
4265  * QP must also be a member of the multicast group.
4266  */
4267 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4268 
4269 /**
4270  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4271  * @qp: QP to detach from the multicast group.
4272  * @gid: Multicast group GID.
4273  * @lid: Multicast group LID in host byte order.
4274  */
4275 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4276 
4277 /**
4278  * ib_alloc_xrcd - Allocates an XRC domain.
4279  * @device: The device on which to allocate the XRC domain.
4280  * @caller: Module name for kernel consumers
4281  */
4282 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4283 #define ib_alloc_xrcd(device) \
4284 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
4285 
4286 /**
4287  * ib_dealloc_xrcd - Deallocates an XRC domain.
4288  * @xrcd: The XRC domain to deallocate.
4289  * @udata: Valid user data or NULL for kernel object
4290  */
4291 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4292 
4293 static inline int ib_check_mr_access(int flags)
4294 {
4295 	/*
4296 	 * Local write permission is required if remote write or
4297 	 * remote atomic permission is also requested.
4298 	 */
4299 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4300 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4301 		return -EINVAL;
4302 
4303 	return 0;
4304 }
4305 
4306 static inline bool ib_access_writable(int access_flags)
4307 {
4308 	/*
4309 	 * We have writable memory backing the MR if any of the following
4310 	 * access flags are set.  "Local write" and "remote write" obviously
4311 	 * require write access.  "Remote atomic" can do things like fetch and
4312 	 * add, which will modify memory, and "MW bind" can change permissions
4313 	 * by binding a window.
4314 	 */
4315 	return access_flags &
4316 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4317 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4318 }
4319 
4320 /**
4321  * ib_check_mr_status: lightweight check of MR status.
4322  *     This routine may provide status checks on a selected
4323  *     ib_mr. first use is for signature status check.
4324  *
4325  * @mr: A memory region.
4326  * @check_mask: Bitmask of which checks to perform from
4327  *     ib_mr_status_check enumeration.
4328  * @mr_status: The container of relevant status checks.
4329  *     failed checks will be indicated in the status bitmask
4330  *     and the relevant info shall be in the error item.
4331  */
4332 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4333 		       struct ib_mr_status *mr_status);
4334 
4335 /**
4336  * ib_device_try_get: Hold a registration lock
4337  * device: The device to lock
4338  *
4339  * A device under an active registration lock cannot become unregistered. It
4340  * is only possible to obtain a registration lock on a device that is fully
4341  * registered, otherwise this function returns false.
4342  *
4343  * The registration lock is only necessary for actions which require the
4344  * device to still be registered. Uses that only require the device pointer to
4345  * be valid should use get_device(&ibdev->dev) to hold the memory.
4346  *
4347  */
4348 static inline bool ib_device_try_get(struct ib_device *dev)
4349 {
4350 	return refcount_inc_not_zero(&dev->refcount);
4351 }
4352 
4353 void ib_device_put(struct ib_device *device);
4354 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4355 					  enum rdma_driver_id driver_id);
4356 struct ib_device *ib_device_get_by_name(const char *name,
4357 					enum rdma_driver_id driver_id);
4358 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4359 					    u16 pkey, const union ib_gid *gid,
4360 					    const struct sockaddr *addr);
4361 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4362 			 unsigned int port);
4363 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4364 
4365 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4366 			   struct ib_wq_init_attr *init_attr);
4367 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4368 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4369 		 u32 wq_attr_mask);
4370 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4371 						 struct ib_rwq_ind_table_init_attr*
4372 						 wq_ind_table_init_attr);
4373 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4374 
4375 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4376 		 unsigned int *sg_offset, unsigned int page_size);
4377 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4378 		    int data_sg_nents, unsigned int *data_sg_offset,
4379 		    struct scatterlist *meta_sg, int meta_sg_nents,
4380 		    unsigned int *meta_sg_offset, unsigned int page_size);
4381 
4382 static inline int
4383 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4384 		  unsigned int *sg_offset, unsigned int page_size)
4385 {
4386 	int n;
4387 
4388 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4389 	mr->iova = 0;
4390 
4391 	return n;
4392 }
4393 
4394 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4395 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4396 
4397 void ib_drain_rq(struct ib_qp *qp);
4398 void ib_drain_sq(struct ib_qp *qp);
4399 void ib_drain_qp(struct ib_qp *qp);
4400 
4401 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4402 
4403 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4404 {
4405 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4406 		return attr->roce.dmac;
4407 	return NULL;
4408 }
4409 
4410 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4411 {
4412 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4413 		attr->ib.dlid = (u16)dlid;
4414 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4415 		attr->opa.dlid = dlid;
4416 }
4417 
4418 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4419 {
4420 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4421 		return attr->ib.dlid;
4422 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4423 		return attr->opa.dlid;
4424 	return 0;
4425 }
4426 
4427 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4428 {
4429 	attr->sl = sl;
4430 }
4431 
4432 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4433 {
4434 	return attr->sl;
4435 }
4436 
4437 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4438 					 u8 src_path_bits)
4439 {
4440 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4441 		attr->ib.src_path_bits = src_path_bits;
4442 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4443 		attr->opa.src_path_bits = src_path_bits;
4444 }
4445 
4446 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4447 {
4448 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4449 		return attr->ib.src_path_bits;
4450 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4451 		return attr->opa.src_path_bits;
4452 	return 0;
4453 }
4454 
4455 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4456 					bool make_grd)
4457 {
4458 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4459 		attr->opa.make_grd = make_grd;
4460 }
4461 
4462 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4463 {
4464 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4465 		return attr->opa.make_grd;
4466 	return false;
4467 }
4468 
4469 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4470 {
4471 	attr->port_num = port_num;
4472 }
4473 
4474 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4475 {
4476 	return attr->port_num;
4477 }
4478 
4479 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4480 					   u8 static_rate)
4481 {
4482 	attr->static_rate = static_rate;
4483 }
4484 
4485 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4486 {
4487 	return attr->static_rate;
4488 }
4489 
4490 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4491 					enum ib_ah_flags flag)
4492 {
4493 	attr->ah_flags = flag;
4494 }
4495 
4496 static inline enum ib_ah_flags
4497 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4498 {
4499 	return attr->ah_flags;
4500 }
4501 
4502 static inline const struct ib_global_route
4503 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4504 {
4505 	return &attr->grh;
4506 }
4507 
4508 /*To retrieve and modify the grh */
4509 static inline struct ib_global_route
4510 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4511 {
4512 	return &attr->grh;
4513 }
4514 
4515 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4516 {
4517 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4518 
4519 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4520 }
4521 
4522 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4523 					     __be64 prefix)
4524 {
4525 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4526 
4527 	grh->dgid.global.subnet_prefix = prefix;
4528 }
4529 
4530 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4531 					    __be64 if_id)
4532 {
4533 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4534 
4535 	grh->dgid.global.interface_id = if_id;
4536 }
4537 
4538 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4539 				   union ib_gid *dgid, u32 flow_label,
4540 				   u8 sgid_index, u8 hop_limit,
4541 				   u8 traffic_class)
4542 {
4543 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4544 
4545 	attr->ah_flags = IB_AH_GRH;
4546 	if (dgid)
4547 		grh->dgid = *dgid;
4548 	grh->flow_label = flow_label;
4549 	grh->sgid_index = sgid_index;
4550 	grh->hop_limit = hop_limit;
4551 	grh->traffic_class = traffic_class;
4552 	grh->sgid_attr = NULL;
4553 }
4554 
4555 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4556 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4557 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4558 			     const struct ib_gid_attr *sgid_attr);
4559 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4560 		       const struct rdma_ah_attr *src);
4561 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4562 			  const struct rdma_ah_attr *new);
4563 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4564 
4565 /**
4566  * rdma_ah_find_type - Return address handle type.
4567  *
4568  * @dev: Device to be checked
4569  * @port_num: Port number
4570  */
4571 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4572 						       u8 port_num)
4573 {
4574 	if (rdma_protocol_roce(dev, port_num))
4575 		return RDMA_AH_ATTR_TYPE_ROCE;
4576 	if (rdma_protocol_ib(dev, port_num)) {
4577 		if (rdma_cap_opa_ah(dev, port_num))
4578 			return RDMA_AH_ATTR_TYPE_OPA;
4579 		return RDMA_AH_ATTR_TYPE_IB;
4580 	}
4581 
4582 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4583 }
4584 
4585 /**
4586  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4587  *     In the current implementation the only way to get
4588  *     get the 32bit lid is from other sources for OPA.
4589  *     For IB, lids will always be 16bits so cast the
4590  *     value accordingly.
4591  *
4592  * @lid: A 32bit LID
4593  */
4594 static inline u16 ib_lid_cpu16(u32 lid)
4595 {
4596 	WARN_ON_ONCE(lid & 0xFFFF0000);
4597 	return (u16)lid;
4598 }
4599 
4600 /**
4601  * ib_lid_be16 - Return lid in 16bit BE encoding.
4602  *
4603  * @lid: A 32bit LID
4604  */
4605 static inline __be16 ib_lid_be16(u32 lid)
4606 {
4607 	WARN_ON_ONCE(lid & 0xFFFF0000);
4608 	return cpu_to_be16((u16)lid);
4609 }
4610 
4611 /**
4612  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4613  *   vector
4614  * @device:         the rdma device
4615  * @comp_vector:    index of completion vector
4616  *
4617  * Returns NULL on failure, otherwise a corresponding cpu map of the
4618  * completion vector (returns all-cpus map if the device driver doesn't
4619  * implement get_vector_affinity).
4620  */
4621 static inline const struct cpumask *
4622 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4623 {
4624 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4625 	    !device->ops.get_vector_affinity)
4626 		return NULL;
4627 
4628 	return device->ops.get_vector_affinity(device, comp_vector);
4629 
4630 }
4631 
4632 /**
4633  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4634  * and add their gids, as needed, to the relevant RoCE devices.
4635  *
4636  * @device:         the rdma device
4637  */
4638 void rdma_roce_rescan_device(struct ib_device *ibdev);
4639 
4640 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4641 
4642 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4643 
4644 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4645 				     enum rdma_netdev_t type, const char *name,
4646 				     unsigned char name_assign_type,
4647 				     void (*setup)(struct net_device *));
4648 
4649 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4650 		     enum rdma_netdev_t type, const char *name,
4651 		     unsigned char name_assign_type,
4652 		     void (*setup)(struct net_device *),
4653 		     struct net_device *netdev);
4654 
4655 /**
4656  * rdma_set_device_sysfs_group - Set device attributes group to have
4657  *				 driver specific sysfs entries at
4658  *				 for infiniband class.
4659  *
4660  * @device:	device pointer for which attributes to be created
4661  * @group:	Pointer to group which should be added when device
4662  *		is registered with sysfs.
4663  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4664  * group per device to have sysfs attributes.
4665  *
4666  * NOTE: New drivers should not make use of this API; instead new device
4667  * parameter should be exposed via netlink command. This API and mechanism
4668  * exist only for existing drivers.
4669  */
4670 static inline void
4671 rdma_set_device_sysfs_group(struct ib_device *dev,
4672 			    const struct attribute_group *group)
4673 {
4674 	dev->groups[1] = group;
4675 }
4676 
4677 /**
4678  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4679  *
4680  * @device:	device pointer for which ib_device pointer to retrieve
4681  *
4682  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4683  *
4684  */
4685 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4686 {
4687 	struct ib_core_device *coredev =
4688 		container_of(device, struct ib_core_device, dev);
4689 
4690 	return coredev->owner;
4691 }
4692 
4693 /**
4694  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4695  *			       ib_device holder structure from device pointer.
4696  *
4697  * NOTE: New drivers should not make use of this API; This API is only for
4698  * existing drivers who have exposed sysfs entries using
4699  * rdma_set_device_sysfs_group().
4700  */
4701 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4702 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4703 
4704 bool rdma_dev_access_netns(const struct ib_device *device,
4705 			   const struct net *net);
4706 #endif /* IB_VERBS_H */
4707