1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 68 69 extern struct workqueue_struct *ib_wq; 70 extern struct workqueue_struct *ib_comp_wq; 71 72 union ib_gid { 73 u8 raw[16]; 74 struct { 75 __be64 subnet_prefix; 76 __be64 interface_id; 77 } global; 78 }; 79 80 extern union ib_gid zgid; 81 82 enum ib_gid_type { 83 /* If link layer is Ethernet, this is RoCE V1 */ 84 IB_GID_TYPE_IB = 0, 85 IB_GID_TYPE_ROCE = 0, 86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 87 IB_GID_TYPE_SIZE 88 }; 89 90 #define ROCE_V2_UDP_DPORT 4791 91 struct ib_gid_attr { 92 enum ib_gid_type gid_type; 93 struct net_device *ndev; 94 }; 95 96 enum rdma_node_type { 97 /* IB values map to NodeInfo:NodeType. */ 98 RDMA_NODE_IB_CA = 1, 99 RDMA_NODE_IB_SWITCH, 100 RDMA_NODE_IB_ROUTER, 101 RDMA_NODE_RNIC, 102 RDMA_NODE_USNIC, 103 RDMA_NODE_USNIC_UDP, 104 }; 105 106 enum { 107 /* set the local administered indication */ 108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 109 }; 110 111 enum rdma_transport_type { 112 RDMA_TRANSPORT_IB, 113 RDMA_TRANSPORT_IWARP, 114 RDMA_TRANSPORT_USNIC, 115 RDMA_TRANSPORT_USNIC_UDP 116 }; 117 118 enum rdma_protocol_type { 119 RDMA_PROTOCOL_IB, 120 RDMA_PROTOCOL_IBOE, 121 RDMA_PROTOCOL_IWARP, 122 RDMA_PROTOCOL_USNIC_UDP 123 }; 124 125 __attribute_const__ enum rdma_transport_type 126 rdma_node_get_transport(enum rdma_node_type node_type); 127 128 enum rdma_network_type { 129 RDMA_NETWORK_IB, 130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 131 RDMA_NETWORK_IPV4, 132 RDMA_NETWORK_IPV6 133 }; 134 135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 136 { 137 if (network_type == RDMA_NETWORK_IPV4 || 138 network_type == RDMA_NETWORK_IPV6) 139 return IB_GID_TYPE_ROCE_UDP_ENCAP; 140 141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 142 return IB_GID_TYPE_IB; 143 } 144 145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 146 union ib_gid *gid) 147 { 148 if (gid_type == IB_GID_TYPE_IB) 149 return RDMA_NETWORK_IB; 150 151 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 152 return RDMA_NETWORK_IPV4; 153 else 154 return RDMA_NETWORK_IPV6; 155 } 156 157 enum rdma_link_layer { 158 IB_LINK_LAYER_UNSPECIFIED, 159 IB_LINK_LAYER_INFINIBAND, 160 IB_LINK_LAYER_ETHERNET, 161 }; 162 163 enum ib_device_cap_flags { 164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 167 IB_DEVICE_RAW_MULTI = (1 << 3), 168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 173 /* Not in use, former INIT_TYPE = (1 << 9),*/ 174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 177 IB_DEVICE_SRQ_RESIZE = (1 << 13), 178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 179 180 /* 181 * This device supports a per-device lkey or stag that can be 182 * used without performing a memory registration for the local 183 * memory. Note that ULPs should never check this flag, but 184 * instead of use the local_dma_lkey flag in the ib_pd structure, 185 * which will always contain a usable lkey. 186 */ 187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 188 /* Reserved, old SEND_W_INV = (1 << 16),*/ 189 IB_DEVICE_MEM_WINDOW = (1 << 17), 190 /* 191 * Devices should set IB_DEVICE_UD_IP_SUM if they support 192 * insertion of UDP and TCP checksum on outgoing UD IPoIB 193 * messages and can verify the validity of checksum for 194 * incoming messages. Setting this flag implies that the 195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 196 */ 197 IB_DEVICE_UD_IP_CSUM = (1 << 18), 198 IB_DEVICE_UD_TSO = (1 << 19), 199 IB_DEVICE_XRC = (1 << 20), 200 201 /* 202 * This device supports the IB "base memory management extension", 203 * which includes support for fast registrations (IB_WR_REG_MR, 204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 205 * also be set by any iWarp device which must support FRs to comply 206 * to the iWarp verbs spec. iWarp devices also support the 207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 208 * stag. 209 */ 210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 214 IB_DEVICE_RC_IP_CSUM = (1 << 25), 215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 216 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 217 /* 218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 219 * support execution of WQEs that involve synchronization 220 * of I/O operations with single completion queue managed 221 * by hardware. 222 */ 223 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 232 }; 233 234 enum ib_signature_prot_cap { 235 IB_PROT_T10DIF_TYPE_1 = 1, 236 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 237 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 238 }; 239 240 enum ib_signature_guard_cap { 241 IB_GUARD_T10DIF_CRC = 1, 242 IB_GUARD_T10DIF_CSUM = 1 << 1, 243 }; 244 245 enum ib_atomic_cap { 246 IB_ATOMIC_NONE, 247 IB_ATOMIC_HCA, 248 IB_ATOMIC_GLOB 249 }; 250 251 enum ib_odp_general_cap_bits { 252 IB_ODP_SUPPORT = 1 << 0, 253 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 254 }; 255 256 enum ib_odp_transport_cap_bits { 257 IB_ODP_SUPPORT_SEND = 1 << 0, 258 IB_ODP_SUPPORT_RECV = 1 << 1, 259 IB_ODP_SUPPORT_WRITE = 1 << 2, 260 IB_ODP_SUPPORT_READ = 1 << 3, 261 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 262 }; 263 264 struct ib_odp_caps { 265 uint64_t general_caps; 266 struct { 267 uint32_t rc_odp_caps; 268 uint32_t uc_odp_caps; 269 uint32_t ud_odp_caps; 270 } per_transport_caps; 271 }; 272 273 struct ib_rss_caps { 274 /* Corresponding bit will be set if qp type from 275 * 'enum ib_qp_type' is supported, e.g. 276 * supported_qpts |= 1 << IB_QPT_UD 277 */ 278 u32 supported_qpts; 279 u32 max_rwq_indirection_tables; 280 u32 max_rwq_indirection_table_size; 281 }; 282 283 enum ib_tm_cap_flags { 284 /* Support tag matching on RC transport */ 285 IB_TM_CAP_RC = 1 << 0, 286 }; 287 288 struct ib_xrq_caps { 289 /* Max size of RNDV header */ 290 u32 max_rndv_hdr_size; 291 /* Max number of entries in tag matching list */ 292 u32 max_num_tags; 293 /* From enum ib_tm_cap_flags */ 294 u32 flags; 295 /* Max number of outstanding list operations */ 296 u32 max_ops; 297 /* Max number of SGE in tag matching entry */ 298 u32 max_sge; 299 }; 300 301 enum ib_cq_creation_flags { 302 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 303 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 304 }; 305 306 struct ib_cq_init_attr { 307 unsigned int cqe; 308 int comp_vector; 309 u32 flags; 310 }; 311 312 struct ib_device_attr { 313 u64 fw_ver; 314 __be64 sys_image_guid; 315 u64 max_mr_size; 316 u64 page_size_cap; 317 u32 vendor_id; 318 u32 vendor_part_id; 319 u32 hw_ver; 320 int max_qp; 321 int max_qp_wr; 322 u64 device_cap_flags; 323 int max_sge; 324 int max_sge_rd; 325 int max_cq; 326 int max_cqe; 327 int max_mr; 328 int max_pd; 329 int max_qp_rd_atom; 330 int max_ee_rd_atom; 331 int max_res_rd_atom; 332 int max_qp_init_rd_atom; 333 int max_ee_init_rd_atom; 334 enum ib_atomic_cap atomic_cap; 335 enum ib_atomic_cap masked_atomic_cap; 336 int max_ee; 337 int max_rdd; 338 int max_mw; 339 int max_raw_ipv6_qp; 340 int max_raw_ethy_qp; 341 int max_mcast_grp; 342 int max_mcast_qp_attach; 343 int max_total_mcast_qp_attach; 344 int max_ah; 345 int max_fmr; 346 int max_map_per_fmr; 347 int max_srq; 348 int max_srq_wr; 349 int max_srq_sge; 350 unsigned int max_fast_reg_page_list_len; 351 u16 max_pkeys; 352 u8 local_ca_ack_delay; 353 int sig_prot_cap; 354 int sig_guard_cap; 355 struct ib_odp_caps odp_caps; 356 uint64_t timestamp_mask; 357 uint64_t hca_core_clock; /* in KHZ */ 358 struct ib_rss_caps rss_caps; 359 u32 max_wq_type_rq; 360 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 361 struct ib_xrq_caps xrq_caps; 362 }; 363 364 enum ib_mtu { 365 IB_MTU_256 = 1, 366 IB_MTU_512 = 2, 367 IB_MTU_1024 = 3, 368 IB_MTU_2048 = 4, 369 IB_MTU_4096 = 5 370 }; 371 372 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 373 { 374 switch (mtu) { 375 case IB_MTU_256: return 256; 376 case IB_MTU_512: return 512; 377 case IB_MTU_1024: return 1024; 378 case IB_MTU_2048: return 2048; 379 case IB_MTU_4096: return 4096; 380 default: return -1; 381 } 382 } 383 384 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 385 { 386 if (mtu >= 4096) 387 return IB_MTU_4096; 388 else if (mtu >= 2048) 389 return IB_MTU_2048; 390 else if (mtu >= 1024) 391 return IB_MTU_1024; 392 else if (mtu >= 512) 393 return IB_MTU_512; 394 else 395 return IB_MTU_256; 396 } 397 398 enum ib_port_state { 399 IB_PORT_NOP = 0, 400 IB_PORT_DOWN = 1, 401 IB_PORT_INIT = 2, 402 IB_PORT_ARMED = 3, 403 IB_PORT_ACTIVE = 4, 404 IB_PORT_ACTIVE_DEFER = 5 405 }; 406 407 enum ib_port_cap_flags { 408 IB_PORT_SM = 1 << 1, 409 IB_PORT_NOTICE_SUP = 1 << 2, 410 IB_PORT_TRAP_SUP = 1 << 3, 411 IB_PORT_OPT_IPD_SUP = 1 << 4, 412 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 413 IB_PORT_SL_MAP_SUP = 1 << 6, 414 IB_PORT_MKEY_NVRAM = 1 << 7, 415 IB_PORT_PKEY_NVRAM = 1 << 8, 416 IB_PORT_LED_INFO_SUP = 1 << 9, 417 IB_PORT_SM_DISABLED = 1 << 10, 418 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 419 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 420 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 421 IB_PORT_CM_SUP = 1 << 16, 422 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 423 IB_PORT_REINIT_SUP = 1 << 18, 424 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 425 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 426 IB_PORT_DR_NOTICE_SUP = 1 << 21, 427 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 428 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 429 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 430 IB_PORT_CLIENT_REG_SUP = 1 << 25, 431 IB_PORT_IP_BASED_GIDS = 1 << 26, 432 }; 433 434 enum ib_port_width { 435 IB_WIDTH_1X = 1, 436 IB_WIDTH_4X = 2, 437 IB_WIDTH_8X = 4, 438 IB_WIDTH_12X = 8 439 }; 440 441 static inline int ib_width_enum_to_int(enum ib_port_width width) 442 { 443 switch (width) { 444 case IB_WIDTH_1X: return 1; 445 case IB_WIDTH_4X: return 4; 446 case IB_WIDTH_8X: return 8; 447 case IB_WIDTH_12X: return 12; 448 default: return -1; 449 } 450 } 451 452 enum ib_port_speed { 453 IB_SPEED_SDR = 1, 454 IB_SPEED_DDR = 2, 455 IB_SPEED_QDR = 4, 456 IB_SPEED_FDR10 = 8, 457 IB_SPEED_FDR = 16, 458 IB_SPEED_EDR = 32, 459 IB_SPEED_HDR = 64 460 }; 461 462 /** 463 * struct rdma_hw_stats 464 * @timestamp - Used by the core code to track when the last update was 465 * @lifespan - Used by the core code to determine how old the counters 466 * should be before being updated again. Stored in jiffies, defaults 467 * to 10 milliseconds, drivers can override the default be specifying 468 * their own value during their allocation routine. 469 * @name - Array of pointers to static names used for the counters in 470 * directory. 471 * @num_counters - How many hardware counters there are. If name is 472 * shorter than this number, a kernel oops will result. Driver authors 473 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 474 * in their code to prevent this. 475 * @value - Array of u64 counters that are accessed by the sysfs code and 476 * filled in by the drivers get_stats routine 477 */ 478 struct rdma_hw_stats { 479 unsigned long timestamp; 480 unsigned long lifespan; 481 const char * const *names; 482 int num_counters; 483 u64 value[]; 484 }; 485 486 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 487 /** 488 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 489 * for drivers. 490 * @names - Array of static const char * 491 * @num_counters - How many elements in array 492 * @lifespan - How many milliseconds between updates 493 */ 494 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 495 const char * const *names, int num_counters, 496 unsigned long lifespan) 497 { 498 struct rdma_hw_stats *stats; 499 500 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 501 GFP_KERNEL); 502 if (!stats) 503 return NULL; 504 stats->names = names; 505 stats->num_counters = num_counters; 506 stats->lifespan = msecs_to_jiffies(lifespan); 507 508 return stats; 509 } 510 511 512 /* Define bits for the various functionality this port needs to be supported by 513 * the core. 514 */ 515 /* Management 0x00000FFF */ 516 #define RDMA_CORE_CAP_IB_MAD 0x00000001 517 #define RDMA_CORE_CAP_IB_SMI 0x00000002 518 #define RDMA_CORE_CAP_IB_CM 0x00000004 519 #define RDMA_CORE_CAP_IW_CM 0x00000008 520 #define RDMA_CORE_CAP_IB_SA 0x00000010 521 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 522 523 /* Address format 0x000FF000 */ 524 #define RDMA_CORE_CAP_AF_IB 0x00001000 525 #define RDMA_CORE_CAP_ETH_AH 0x00002000 526 #define RDMA_CORE_CAP_OPA_AH 0x00004000 527 528 /* Protocol 0xFFF00000 */ 529 #define RDMA_CORE_CAP_PROT_IB 0x00100000 530 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 531 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 532 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 533 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 534 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 535 536 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 537 | RDMA_CORE_CAP_IB_MAD \ 538 | RDMA_CORE_CAP_IB_SMI \ 539 | RDMA_CORE_CAP_IB_CM \ 540 | RDMA_CORE_CAP_IB_SA \ 541 | RDMA_CORE_CAP_AF_IB) 542 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 543 | RDMA_CORE_CAP_IB_MAD \ 544 | RDMA_CORE_CAP_IB_CM \ 545 | RDMA_CORE_CAP_AF_IB \ 546 | RDMA_CORE_CAP_ETH_AH) 547 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 548 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 549 | RDMA_CORE_CAP_IB_MAD \ 550 | RDMA_CORE_CAP_IB_CM \ 551 | RDMA_CORE_CAP_AF_IB \ 552 | RDMA_CORE_CAP_ETH_AH) 553 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 554 | RDMA_CORE_CAP_IW_CM) 555 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 556 | RDMA_CORE_CAP_OPA_MAD) 557 558 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 559 560 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 561 562 struct ib_port_attr { 563 u64 subnet_prefix; 564 enum ib_port_state state; 565 enum ib_mtu max_mtu; 566 enum ib_mtu active_mtu; 567 int gid_tbl_len; 568 u32 port_cap_flags; 569 u32 max_msg_sz; 570 u32 bad_pkey_cntr; 571 u32 qkey_viol_cntr; 572 u16 pkey_tbl_len; 573 u32 sm_lid; 574 u32 lid; 575 u8 lmc; 576 u8 max_vl_num; 577 u8 sm_sl; 578 u8 subnet_timeout; 579 u8 init_type_reply; 580 u8 active_width; 581 u8 active_speed; 582 u8 phys_state; 583 bool grh_required; 584 }; 585 586 enum ib_device_modify_flags { 587 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 588 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 589 }; 590 591 #define IB_DEVICE_NODE_DESC_MAX 64 592 593 struct ib_device_modify { 594 u64 sys_image_guid; 595 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 596 }; 597 598 enum ib_port_modify_flags { 599 IB_PORT_SHUTDOWN = 1, 600 IB_PORT_INIT_TYPE = (1<<2), 601 IB_PORT_RESET_QKEY_CNTR = (1<<3), 602 IB_PORT_OPA_MASK_CHG = (1<<4) 603 }; 604 605 struct ib_port_modify { 606 u32 set_port_cap_mask; 607 u32 clr_port_cap_mask; 608 u8 init_type; 609 }; 610 611 enum ib_event_type { 612 IB_EVENT_CQ_ERR, 613 IB_EVENT_QP_FATAL, 614 IB_EVENT_QP_REQ_ERR, 615 IB_EVENT_QP_ACCESS_ERR, 616 IB_EVENT_COMM_EST, 617 IB_EVENT_SQ_DRAINED, 618 IB_EVENT_PATH_MIG, 619 IB_EVENT_PATH_MIG_ERR, 620 IB_EVENT_DEVICE_FATAL, 621 IB_EVENT_PORT_ACTIVE, 622 IB_EVENT_PORT_ERR, 623 IB_EVENT_LID_CHANGE, 624 IB_EVENT_PKEY_CHANGE, 625 IB_EVENT_SM_CHANGE, 626 IB_EVENT_SRQ_ERR, 627 IB_EVENT_SRQ_LIMIT_REACHED, 628 IB_EVENT_QP_LAST_WQE_REACHED, 629 IB_EVENT_CLIENT_REREGISTER, 630 IB_EVENT_GID_CHANGE, 631 IB_EVENT_WQ_FATAL, 632 }; 633 634 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 635 636 struct ib_event { 637 struct ib_device *device; 638 union { 639 struct ib_cq *cq; 640 struct ib_qp *qp; 641 struct ib_srq *srq; 642 struct ib_wq *wq; 643 u8 port_num; 644 } element; 645 enum ib_event_type event; 646 }; 647 648 struct ib_event_handler { 649 struct ib_device *device; 650 void (*handler)(struct ib_event_handler *, struct ib_event *); 651 struct list_head list; 652 }; 653 654 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 655 do { \ 656 (_ptr)->device = _device; \ 657 (_ptr)->handler = _handler; \ 658 INIT_LIST_HEAD(&(_ptr)->list); \ 659 } while (0) 660 661 struct ib_global_route { 662 union ib_gid dgid; 663 u32 flow_label; 664 u8 sgid_index; 665 u8 hop_limit; 666 u8 traffic_class; 667 }; 668 669 struct ib_grh { 670 __be32 version_tclass_flow; 671 __be16 paylen; 672 u8 next_hdr; 673 u8 hop_limit; 674 union ib_gid sgid; 675 union ib_gid dgid; 676 }; 677 678 union rdma_network_hdr { 679 struct ib_grh ibgrh; 680 struct { 681 /* The IB spec states that if it's IPv4, the header 682 * is located in the last 20 bytes of the header. 683 */ 684 u8 reserved[20]; 685 struct iphdr roce4grh; 686 }; 687 }; 688 689 #define IB_QPN_MASK 0xFFFFFF 690 691 enum { 692 IB_MULTICAST_QPN = 0xffffff 693 }; 694 695 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 696 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 697 698 enum ib_ah_flags { 699 IB_AH_GRH = 1 700 }; 701 702 enum ib_rate { 703 IB_RATE_PORT_CURRENT = 0, 704 IB_RATE_2_5_GBPS = 2, 705 IB_RATE_5_GBPS = 5, 706 IB_RATE_10_GBPS = 3, 707 IB_RATE_20_GBPS = 6, 708 IB_RATE_30_GBPS = 4, 709 IB_RATE_40_GBPS = 7, 710 IB_RATE_60_GBPS = 8, 711 IB_RATE_80_GBPS = 9, 712 IB_RATE_120_GBPS = 10, 713 IB_RATE_14_GBPS = 11, 714 IB_RATE_56_GBPS = 12, 715 IB_RATE_112_GBPS = 13, 716 IB_RATE_168_GBPS = 14, 717 IB_RATE_25_GBPS = 15, 718 IB_RATE_100_GBPS = 16, 719 IB_RATE_200_GBPS = 17, 720 IB_RATE_300_GBPS = 18 721 }; 722 723 /** 724 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 725 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 726 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 727 * @rate: rate to convert. 728 */ 729 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 730 731 /** 732 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 733 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 734 * @rate: rate to convert. 735 */ 736 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 737 738 739 /** 740 * enum ib_mr_type - memory region type 741 * @IB_MR_TYPE_MEM_REG: memory region that is used for 742 * normal registration 743 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 744 * signature operations (data-integrity 745 * capable regions) 746 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 747 * register any arbitrary sg lists (without 748 * the normal mr constraints - see 749 * ib_map_mr_sg) 750 */ 751 enum ib_mr_type { 752 IB_MR_TYPE_MEM_REG, 753 IB_MR_TYPE_SIGNATURE, 754 IB_MR_TYPE_SG_GAPS, 755 }; 756 757 /** 758 * Signature types 759 * IB_SIG_TYPE_NONE: Unprotected. 760 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 761 */ 762 enum ib_signature_type { 763 IB_SIG_TYPE_NONE, 764 IB_SIG_TYPE_T10_DIF, 765 }; 766 767 /** 768 * Signature T10-DIF block-guard types 769 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 770 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 771 */ 772 enum ib_t10_dif_bg_type { 773 IB_T10DIF_CRC, 774 IB_T10DIF_CSUM 775 }; 776 777 /** 778 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 779 * domain. 780 * @bg_type: T10-DIF block guard type (CRC|CSUM) 781 * @pi_interval: protection information interval. 782 * @bg: seed of guard computation. 783 * @app_tag: application tag of guard block 784 * @ref_tag: initial guard block reference tag. 785 * @ref_remap: Indicate wethear the reftag increments each block 786 * @app_escape: Indicate to skip block check if apptag=0xffff 787 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 788 * @apptag_check_mask: check bitmask of application tag. 789 */ 790 struct ib_t10_dif_domain { 791 enum ib_t10_dif_bg_type bg_type; 792 u16 pi_interval; 793 u16 bg; 794 u16 app_tag; 795 u32 ref_tag; 796 bool ref_remap; 797 bool app_escape; 798 bool ref_escape; 799 u16 apptag_check_mask; 800 }; 801 802 /** 803 * struct ib_sig_domain - Parameters for signature domain 804 * @sig_type: specific signauture type 805 * @sig: union of all signature domain attributes that may 806 * be used to set domain layout. 807 */ 808 struct ib_sig_domain { 809 enum ib_signature_type sig_type; 810 union { 811 struct ib_t10_dif_domain dif; 812 } sig; 813 }; 814 815 /** 816 * struct ib_sig_attrs - Parameters for signature handover operation 817 * @check_mask: bitmask for signature byte check (8 bytes) 818 * @mem: memory domain layout desciptor. 819 * @wire: wire domain layout desciptor. 820 */ 821 struct ib_sig_attrs { 822 u8 check_mask; 823 struct ib_sig_domain mem; 824 struct ib_sig_domain wire; 825 }; 826 827 enum ib_sig_err_type { 828 IB_SIG_BAD_GUARD, 829 IB_SIG_BAD_REFTAG, 830 IB_SIG_BAD_APPTAG, 831 }; 832 833 /** 834 * struct ib_sig_err - signature error descriptor 835 */ 836 struct ib_sig_err { 837 enum ib_sig_err_type err_type; 838 u32 expected; 839 u32 actual; 840 u64 sig_err_offset; 841 u32 key; 842 }; 843 844 enum ib_mr_status_check { 845 IB_MR_CHECK_SIG_STATUS = 1, 846 }; 847 848 /** 849 * struct ib_mr_status - Memory region status container 850 * 851 * @fail_status: Bitmask of MR checks status. For each 852 * failed check a corresponding status bit is set. 853 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 854 * failure. 855 */ 856 struct ib_mr_status { 857 u32 fail_status; 858 struct ib_sig_err sig_err; 859 }; 860 861 /** 862 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 863 * enum. 864 * @mult: multiple to convert. 865 */ 866 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 867 868 enum rdma_ah_attr_type { 869 RDMA_AH_ATTR_TYPE_IB, 870 RDMA_AH_ATTR_TYPE_ROCE, 871 RDMA_AH_ATTR_TYPE_OPA, 872 }; 873 874 struct ib_ah_attr { 875 u16 dlid; 876 u8 src_path_bits; 877 }; 878 879 struct roce_ah_attr { 880 u8 dmac[ETH_ALEN]; 881 }; 882 883 struct opa_ah_attr { 884 u32 dlid; 885 u8 src_path_bits; 886 bool make_grd; 887 }; 888 889 struct rdma_ah_attr { 890 struct ib_global_route grh; 891 u8 sl; 892 u8 static_rate; 893 u8 port_num; 894 u8 ah_flags; 895 enum rdma_ah_attr_type type; 896 union { 897 struct ib_ah_attr ib; 898 struct roce_ah_attr roce; 899 struct opa_ah_attr opa; 900 }; 901 }; 902 903 enum ib_wc_status { 904 IB_WC_SUCCESS, 905 IB_WC_LOC_LEN_ERR, 906 IB_WC_LOC_QP_OP_ERR, 907 IB_WC_LOC_EEC_OP_ERR, 908 IB_WC_LOC_PROT_ERR, 909 IB_WC_WR_FLUSH_ERR, 910 IB_WC_MW_BIND_ERR, 911 IB_WC_BAD_RESP_ERR, 912 IB_WC_LOC_ACCESS_ERR, 913 IB_WC_REM_INV_REQ_ERR, 914 IB_WC_REM_ACCESS_ERR, 915 IB_WC_REM_OP_ERR, 916 IB_WC_RETRY_EXC_ERR, 917 IB_WC_RNR_RETRY_EXC_ERR, 918 IB_WC_LOC_RDD_VIOL_ERR, 919 IB_WC_REM_INV_RD_REQ_ERR, 920 IB_WC_REM_ABORT_ERR, 921 IB_WC_INV_EECN_ERR, 922 IB_WC_INV_EEC_STATE_ERR, 923 IB_WC_FATAL_ERR, 924 IB_WC_RESP_TIMEOUT_ERR, 925 IB_WC_GENERAL_ERR 926 }; 927 928 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 929 930 enum ib_wc_opcode { 931 IB_WC_SEND, 932 IB_WC_RDMA_WRITE, 933 IB_WC_RDMA_READ, 934 IB_WC_COMP_SWAP, 935 IB_WC_FETCH_ADD, 936 IB_WC_LSO, 937 IB_WC_LOCAL_INV, 938 IB_WC_REG_MR, 939 IB_WC_MASKED_COMP_SWAP, 940 IB_WC_MASKED_FETCH_ADD, 941 /* 942 * Set value of IB_WC_RECV so consumers can test if a completion is a 943 * receive by testing (opcode & IB_WC_RECV). 944 */ 945 IB_WC_RECV = 1 << 7, 946 IB_WC_RECV_RDMA_WITH_IMM 947 }; 948 949 enum ib_wc_flags { 950 IB_WC_GRH = 1, 951 IB_WC_WITH_IMM = (1<<1), 952 IB_WC_WITH_INVALIDATE = (1<<2), 953 IB_WC_IP_CSUM_OK = (1<<3), 954 IB_WC_WITH_SMAC = (1<<4), 955 IB_WC_WITH_VLAN = (1<<5), 956 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 957 }; 958 959 struct ib_wc { 960 union { 961 u64 wr_id; 962 struct ib_cqe *wr_cqe; 963 }; 964 enum ib_wc_status status; 965 enum ib_wc_opcode opcode; 966 u32 vendor_err; 967 u32 byte_len; 968 struct ib_qp *qp; 969 union { 970 __be32 imm_data; 971 u32 invalidate_rkey; 972 } ex; 973 u32 src_qp; 974 int wc_flags; 975 u16 pkey_index; 976 u32 slid; 977 u8 sl; 978 u8 dlid_path_bits; 979 u8 port_num; /* valid only for DR SMPs on switches */ 980 u8 smac[ETH_ALEN]; 981 u16 vlan_id; 982 u8 network_hdr_type; 983 }; 984 985 enum ib_cq_notify_flags { 986 IB_CQ_SOLICITED = 1 << 0, 987 IB_CQ_NEXT_COMP = 1 << 1, 988 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 989 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 990 }; 991 992 enum ib_srq_type { 993 IB_SRQT_BASIC, 994 IB_SRQT_XRC, 995 IB_SRQT_TM, 996 }; 997 998 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 999 { 1000 return srq_type == IB_SRQT_XRC || 1001 srq_type == IB_SRQT_TM; 1002 } 1003 1004 enum ib_srq_attr_mask { 1005 IB_SRQ_MAX_WR = 1 << 0, 1006 IB_SRQ_LIMIT = 1 << 1, 1007 }; 1008 1009 struct ib_srq_attr { 1010 u32 max_wr; 1011 u32 max_sge; 1012 u32 srq_limit; 1013 }; 1014 1015 struct ib_srq_init_attr { 1016 void (*event_handler)(struct ib_event *, void *); 1017 void *srq_context; 1018 struct ib_srq_attr attr; 1019 enum ib_srq_type srq_type; 1020 1021 struct { 1022 struct ib_cq *cq; 1023 union { 1024 struct { 1025 struct ib_xrcd *xrcd; 1026 } xrc; 1027 1028 struct { 1029 u32 max_num_tags; 1030 } tag_matching; 1031 }; 1032 } ext; 1033 }; 1034 1035 struct ib_qp_cap { 1036 u32 max_send_wr; 1037 u32 max_recv_wr; 1038 u32 max_send_sge; 1039 u32 max_recv_sge; 1040 u32 max_inline_data; 1041 1042 /* 1043 * Maximum number of rdma_rw_ctx structures in flight at a time. 1044 * ib_create_qp() will calculate the right amount of neededed WRs 1045 * and MRs based on this. 1046 */ 1047 u32 max_rdma_ctxs; 1048 }; 1049 1050 enum ib_sig_type { 1051 IB_SIGNAL_ALL_WR, 1052 IB_SIGNAL_REQ_WR 1053 }; 1054 1055 enum ib_qp_type { 1056 /* 1057 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1058 * here (and in that order) since the MAD layer uses them as 1059 * indices into a 2-entry table. 1060 */ 1061 IB_QPT_SMI, 1062 IB_QPT_GSI, 1063 1064 IB_QPT_RC, 1065 IB_QPT_UC, 1066 IB_QPT_UD, 1067 IB_QPT_RAW_IPV6, 1068 IB_QPT_RAW_ETHERTYPE, 1069 IB_QPT_RAW_PACKET = 8, 1070 IB_QPT_XRC_INI = 9, 1071 IB_QPT_XRC_TGT, 1072 IB_QPT_MAX, 1073 /* Reserve a range for qp types internal to the low level driver. 1074 * These qp types will not be visible at the IB core layer, so the 1075 * IB_QPT_MAX usages should not be affected in the core layer 1076 */ 1077 IB_QPT_RESERVED1 = 0x1000, 1078 IB_QPT_RESERVED2, 1079 IB_QPT_RESERVED3, 1080 IB_QPT_RESERVED4, 1081 IB_QPT_RESERVED5, 1082 IB_QPT_RESERVED6, 1083 IB_QPT_RESERVED7, 1084 IB_QPT_RESERVED8, 1085 IB_QPT_RESERVED9, 1086 IB_QPT_RESERVED10, 1087 }; 1088 1089 enum ib_qp_create_flags { 1090 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1091 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1092 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1093 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1094 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1095 IB_QP_CREATE_NETIF_QP = 1 << 5, 1096 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1097 /* FREE = 1 << 7, */ 1098 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1099 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1100 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1101 /* reserve bits 26-31 for low level drivers' internal use */ 1102 IB_QP_CREATE_RESERVED_START = 1 << 26, 1103 IB_QP_CREATE_RESERVED_END = 1 << 31, 1104 }; 1105 1106 /* 1107 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1108 * callback to destroy the passed in QP. 1109 */ 1110 1111 struct ib_qp_init_attr { 1112 void (*event_handler)(struct ib_event *, void *); 1113 void *qp_context; 1114 struct ib_cq *send_cq; 1115 struct ib_cq *recv_cq; 1116 struct ib_srq *srq; 1117 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1118 struct ib_qp_cap cap; 1119 enum ib_sig_type sq_sig_type; 1120 enum ib_qp_type qp_type; 1121 enum ib_qp_create_flags create_flags; 1122 1123 /* 1124 * Only needed for special QP types, or when using the RW API. 1125 */ 1126 u8 port_num; 1127 struct ib_rwq_ind_table *rwq_ind_tbl; 1128 u32 source_qpn; 1129 }; 1130 1131 struct ib_qp_open_attr { 1132 void (*event_handler)(struct ib_event *, void *); 1133 void *qp_context; 1134 u32 qp_num; 1135 enum ib_qp_type qp_type; 1136 }; 1137 1138 enum ib_rnr_timeout { 1139 IB_RNR_TIMER_655_36 = 0, 1140 IB_RNR_TIMER_000_01 = 1, 1141 IB_RNR_TIMER_000_02 = 2, 1142 IB_RNR_TIMER_000_03 = 3, 1143 IB_RNR_TIMER_000_04 = 4, 1144 IB_RNR_TIMER_000_06 = 5, 1145 IB_RNR_TIMER_000_08 = 6, 1146 IB_RNR_TIMER_000_12 = 7, 1147 IB_RNR_TIMER_000_16 = 8, 1148 IB_RNR_TIMER_000_24 = 9, 1149 IB_RNR_TIMER_000_32 = 10, 1150 IB_RNR_TIMER_000_48 = 11, 1151 IB_RNR_TIMER_000_64 = 12, 1152 IB_RNR_TIMER_000_96 = 13, 1153 IB_RNR_TIMER_001_28 = 14, 1154 IB_RNR_TIMER_001_92 = 15, 1155 IB_RNR_TIMER_002_56 = 16, 1156 IB_RNR_TIMER_003_84 = 17, 1157 IB_RNR_TIMER_005_12 = 18, 1158 IB_RNR_TIMER_007_68 = 19, 1159 IB_RNR_TIMER_010_24 = 20, 1160 IB_RNR_TIMER_015_36 = 21, 1161 IB_RNR_TIMER_020_48 = 22, 1162 IB_RNR_TIMER_030_72 = 23, 1163 IB_RNR_TIMER_040_96 = 24, 1164 IB_RNR_TIMER_061_44 = 25, 1165 IB_RNR_TIMER_081_92 = 26, 1166 IB_RNR_TIMER_122_88 = 27, 1167 IB_RNR_TIMER_163_84 = 28, 1168 IB_RNR_TIMER_245_76 = 29, 1169 IB_RNR_TIMER_327_68 = 30, 1170 IB_RNR_TIMER_491_52 = 31 1171 }; 1172 1173 enum ib_qp_attr_mask { 1174 IB_QP_STATE = 1, 1175 IB_QP_CUR_STATE = (1<<1), 1176 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1177 IB_QP_ACCESS_FLAGS = (1<<3), 1178 IB_QP_PKEY_INDEX = (1<<4), 1179 IB_QP_PORT = (1<<5), 1180 IB_QP_QKEY = (1<<6), 1181 IB_QP_AV = (1<<7), 1182 IB_QP_PATH_MTU = (1<<8), 1183 IB_QP_TIMEOUT = (1<<9), 1184 IB_QP_RETRY_CNT = (1<<10), 1185 IB_QP_RNR_RETRY = (1<<11), 1186 IB_QP_RQ_PSN = (1<<12), 1187 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1188 IB_QP_ALT_PATH = (1<<14), 1189 IB_QP_MIN_RNR_TIMER = (1<<15), 1190 IB_QP_SQ_PSN = (1<<16), 1191 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1192 IB_QP_PATH_MIG_STATE = (1<<18), 1193 IB_QP_CAP = (1<<19), 1194 IB_QP_DEST_QPN = (1<<20), 1195 IB_QP_RESERVED1 = (1<<21), 1196 IB_QP_RESERVED2 = (1<<22), 1197 IB_QP_RESERVED3 = (1<<23), 1198 IB_QP_RESERVED4 = (1<<24), 1199 IB_QP_RATE_LIMIT = (1<<25), 1200 }; 1201 1202 enum ib_qp_state { 1203 IB_QPS_RESET, 1204 IB_QPS_INIT, 1205 IB_QPS_RTR, 1206 IB_QPS_RTS, 1207 IB_QPS_SQD, 1208 IB_QPS_SQE, 1209 IB_QPS_ERR 1210 }; 1211 1212 enum ib_mig_state { 1213 IB_MIG_MIGRATED, 1214 IB_MIG_REARM, 1215 IB_MIG_ARMED 1216 }; 1217 1218 enum ib_mw_type { 1219 IB_MW_TYPE_1 = 1, 1220 IB_MW_TYPE_2 = 2 1221 }; 1222 1223 struct ib_qp_attr { 1224 enum ib_qp_state qp_state; 1225 enum ib_qp_state cur_qp_state; 1226 enum ib_mtu path_mtu; 1227 enum ib_mig_state path_mig_state; 1228 u32 qkey; 1229 u32 rq_psn; 1230 u32 sq_psn; 1231 u32 dest_qp_num; 1232 int qp_access_flags; 1233 struct ib_qp_cap cap; 1234 struct rdma_ah_attr ah_attr; 1235 struct rdma_ah_attr alt_ah_attr; 1236 u16 pkey_index; 1237 u16 alt_pkey_index; 1238 u8 en_sqd_async_notify; 1239 u8 sq_draining; 1240 u8 max_rd_atomic; 1241 u8 max_dest_rd_atomic; 1242 u8 min_rnr_timer; 1243 u8 port_num; 1244 u8 timeout; 1245 u8 retry_cnt; 1246 u8 rnr_retry; 1247 u8 alt_port_num; 1248 u8 alt_timeout; 1249 u32 rate_limit; 1250 }; 1251 1252 enum ib_wr_opcode { 1253 IB_WR_RDMA_WRITE, 1254 IB_WR_RDMA_WRITE_WITH_IMM, 1255 IB_WR_SEND, 1256 IB_WR_SEND_WITH_IMM, 1257 IB_WR_RDMA_READ, 1258 IB_WR_ATOMIC_CMP_AND_SWP, 1259 IB_WR_ATOMIC_FETCH_AND_ADD, 1260 IB_WR_LSO, 1261 IB_WR_SEND_WITH_INV, 1262 IB_WR_RDMA_READ_WITH_INV, 1263 IB_WR_LOCAL_INV, 1264 IB_WR_REG_MR, 1265 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1266 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1267 IB_WR_REG_SIG_MR, 1268 /* reserve values for low level drivers' internal use. 1269 * These values will not be used at all in the ib core layer. 1270 */ 1271 IB_WR_RESERVED1 = 0xf0, 1272 IB_WR_RESERVED2, 1273 IB_WR_RESERVED3, 1274 IB_WR_RESERVED4, 1275 IB_WR_RESERVED5, 1276 IB_WR_RESERVED6, 1277 IB_WR_RESERVED7, 1278 IB_WR_RESERVED8, 1279 IB_WR_RESERVED9, 1280 IB_WR_RESERVED10, 1281 }; 1282 1283 enum ib_send_flags { 1284 IB_SEND_FENCE = 1, 1285 IB_SEND_SIGNALED = (1<<1), 1286 IB_SEND_SOLICITED = (1<<2), 1287 IB_SEND_INLINE = (1<<3), 1288 IB_SEND_IP_CSUM = (1<<4), 1289 1290 /* reserve bits 26-31 for low level drivers' internal use */ 1291 IB_SEND_RESERVED_START = (1 << 26), 1292 IB_SEND_RESERVED_END = (1 << 31), 1293 }; 1294 1295 struct ib_sge { 1296 u64 addr; 1297 u32 length; 1298 u32 lkey; 1299 }; 1300 1301 struct ib_cqe { 1302 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1303 }; 1304 1305 struct ib_send_wr { 1306 struct ib_send_wr *next; 1307 union { 1308 u64 wr_id; 1309 struct ib_cqe *wr_cqe; 1310 }; 1311 struct ib_sge *sg_list; 1312 int num_sge; 1313 enum ib_wr_opcode opcode; 1314 int send_flags; 1315 union { 1316 __be32 imm_data; 1317 u32 invalidate_rkey; 1318 } ex; 1319 }; 1320 1321 struct ib_rdma_wr { 1322 struct ib_send_wr wr; 1323 u64 remote_addr; 1324 u32 rkey; 1325 }; 1326 1327 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1328 { 1329 return container_of(wr, struct ib_rdma_wr, wr); 1330 } 1331 1332 struct ib_atomic_wr { 1333 struct ib_send_wr wr; 1334 u64 remote_addr; 1335 u64 compare_add; 1336 u64 swap; 1337 u64 compare_add_mask; 1338 u64 swap_mask; 1339 u32 rkey; 1340 }; 1341 1342 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1343 { 1344 return container_of(wr, struct ib_atomic_wr, wr); 1345 } 1346 1347 struct ib_ud_wr { 1348 struct ib_send_wr wr; 1349 struct ib_ah *ah; 1350 void *header; 1351 int hlen; 1352 int mss; 1353 u32 remote_qpn; 1354 u32 remote_qkey; 1355 u16 pkey_index; /* valid for GSI only */ 1356 u8 port_num; /* valid for DR SMPs on switch only */ 1357 }; 1358 1359 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1360 { 1361 return container_of(wr, struct ib_ud_wr, wr); 1362 } 1363 1364 struct ib_reg_wr { 1365 struct ib_send_wr wr; 1366 struct ib_mr *mr; 1367 u32 key; 1368 int access; 1369 }; 1370 1371 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1372 { 1373 return container_of(wr, struct ib_reg_wr, wr); 1374 } 1375 1376 struct ib_sig_handover_wr { 1377 struct ib_send_wr wr; 1378 struct ib_sig_attrs *sig_attrs; 1379 struct ib_mr *sig_mr; 1380 int access_flags; 1381 struct ib_sge *prot; 1382 }; 1383 1384 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1385 { 1386 return container_of(wr, struct ib_sig_handover_wr, wr); 1387 } 1388 1389 struct ib_recv_wr { 1390 struct ib_recv_wr *next; 1391 union { 1392 u64 wr_id; 1393 struct ib_cqe *wr_cqe; 1394 }; 1395 struct ib_sge *sg_list; 1396 int num_sge; 1397 }; 1398 1399 enum ib_access_flags { 1400 IB_ACCESS_LOCAL_WRITE = 1, 1401 IB_ACCESS_REMOTE_WRITE = (1<<1), 1402 IB_ACCESS_REMOTE_READ = (1<<2), 1403 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1404 IB_ACCESS_MW_BIND = (1<<4), 1405 IB_ZERO_BASED = (1<<5), 1406 IB_ACCESS_ON_DEMAND = (1<<6), 1407 IB_ACCESS_HUGETLB = (1<<7), 1408 }; 1409 1410 /* 1411 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1412 * are hidden here instead of a uapi header! 1413 */ 1414 enum ib_mr_rereg_flags { 1415 IB_MR_REREG_TRANS = 1, 1416 IB_MR_REREG_PD = (1<<1), 1417 IB_MR_REREG_ACCESS = (1<<2), 1418 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1419 }; 1420 1421 struct ib_fmr_attr { 1422 int max_pages; 1423 int max_maps; 1424 u8 page_shift; 1425 }; 1426 1427 struct ib_umem; 1428 1429 enum rdma_remove_reason { 1430 /* Userspace requested uobject deletion. Call could fail */ 1431 RDMA_REMOVE_DESTROY, 1432 /* Context deletion. This call should delete the actual object itself */ 1433 RDMA_REMOVE_CLOSE, 1434 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1435 RDMA_REMOVE_DRIVER_REMOVE, 1436 /* Context is being cleaned-up, but commit was just completed */ 1437 RDMA_REMOVE_DURING_CLEANUP, 1438 }; 1439 1440 struct ib_rdmacg_object { 1441 #ifdef CONFIG_CGROUP_RDMA 1442 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1443 #endif 1444 }; 1445 1446 struct ib_ucontext { 1447 struct ib_device *device; 1448 struct ib_uverbs_file *ufile; 1449 int closing; 1450 1451 /* locking the uobjects_list */ 1452 struct mutex uobjects_lock; 1453 struct list_head uobjects; 1454 /* protects cleanup process from other actions */ 1455 struct rw_semaphore cleanup_rwsem; 1456 enum rdma_remove_reason cleanup_reason; 1457 1458 struct pid *tgid; 1459 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1460 struct rb_root_cached umem_tree; 1461 /* 1462 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1463 * mmu notifiers registration. 1464 */ 1465 struct rw_semaphore umem_rwsem; 1466 void (*invalidate_range)(struct ib_umem *umem, 1467 unsigned long start, unsigned long end); 1468 1469 struct mmu_notifier mn; 1470 atomic_t notifier_count; 1471 /* A list of umems that don't have private mmu notifier counters yet. */ 1472 struct list_head no_private_counters; 1473 int odp_mrs_count; 1474 #endif 1475 1476 struct ib_rdmacg_object cg_obj; 1477 }; 1478 1479 struct ib_uobject { 1480 u64 user_handle; /* handle given to us by userspace */ 1481 struct ib_ucontext *context; /* associated user context */ 1482 void *object; /* containing object */ 1483 struct list_head list; /* link to context's list */ 1484 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1485 int id; /* index into kernel idr */ 1486 struct kref ref; 1487 atomic_t usecnt; /* protects exclusive access */ 1488 struct rcu_head rcu; /* kfree_rcu() overhead */ 1489 1490 const struct uverbs_obj_type *type; 1491 }; 1492 1493 struct ib_uobject_file { 1494 struct ib_uobject uobj; 1495 /* ufile contains the lock between context release and file close */ 1496 struct ib_uverbs_file *ufile; 1497 }; 1498 1499 struct ib_udata { 1500 const void __user *inbuf; 1501 void __user *outbuf; 1502 size_t inlen; 1503 size_t outlen; 1504 }; 1505 1506 struct ib_pd { 1507 u32 local_dma_lkey; 1508 u32 flags; 1509 struct ib_device *device; 1510 struct ib_uobject *uobject; 1511 atomic_t usecnt; /* count all resources */ 1512 1513 u32 unsafe_global_rkey; 1514 1515 /* 1516 * Implementation details of the RDMA core, don't use in drivers: 1517 */ 1518 struct ib_mr *__internal_mr; 1519 }; 1520 1521 struct ib_xrcd { 1522 struct ib_device *device; 1523 atomic_t usecnt; /* count all exposed resources */ 1524 struct inode *inode; 1525 1526 struct mutex tgt_qp_mutex; 1527 struct list_head tgt_qp_list; 1528 }; 1529 1530 struct ib_ah { 1531 struct ib_device *device; 1532 struct ib_pd *pd; 1533 struct ib_uobject *uobject; 1534 enum rdma_ah_attr_type type; 1535 }; 1536 1537 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1538 1539 enum ib_poll_context { 1540 IB_POLL_DIRECT, /* caller context, no hw completions */ 1541 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1542 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1543 }; 1544 1545 struct ib_cq { 1546 struct ib_device *device; 1547 struct ib_uobject *uobject; 1548 ib_comp_handler comp_handler; 1549 void (*event_handler)(struct ib_event *, void *); 1550 void *cq_context; 1551 int cqe; 1552 atomic_t usecnt; /* count number of work queues */ 1553 enum ib_poll_context poll_ctx; 1554 struct ib_wc *wc; 1555 union { 1556 struct irq_poll iop; 1557 struct work_struct work; 1558 }; 1559 }; 1560 1561 struct ib_srq { 1562 struct ib_device *device; 1563 struct ib_pd *pd; 1564 struct ib_uobject *uobject; 1565 void (*event_handler)(struct ib_event *, void *); 1566 void *srq_context; 1567 enum ib_srq_type srq_type; 1568 atomic_t usecnt; 1569 1570 struct { 1571 struct ib_cq *cq; 1572 union { 1573 struct { 1574 struct ib_xrcd *xrcd; 1575 u32 srq_num; 1576 } xrc; 1577 }; 1578 } ext; 1579 }; 1580 1581 enum ib_raw_packet_caps { 1582 /* Strip cvlan from incoming packet and report it in the matching work 1583 * completion is supported. 1584 */ 1585 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1586 /* Scatter FCS field of an incoming packet to host memory is supported. 1587 */ 1588 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1589 /* Checksum offloads are supported (for both send and receive). */ 1590 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1591 /* When a packet is received for an RQ with no receive WQEs, the 1592 * packet processing is delayed. 1593 */ 1594 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1595 }; 1596 1597 enum ib_wq_type { 1598 IB_WQT_RQ 1599 }; 1600 1601 enum ib_wq_state { 1602 IB_WQS_RESET, 1603 IB_WQS_RDY, 1604 IB_WQS_ERR 1605 }; 1606 1607 struct ib_wq { 1608 struct ib_device *device; 1609 struct ib_uobject *uobject; 1610 void *wq_context; 1611 void (*event_handler)(struct ib_event *, void *); 1612 struct ib_pd *pd; 1613 struct ib_cq *cq; 1614 u32 wq_num; 1615 enum ib_wq_state state; 1616 enum ib_wq_type wq_type; 1617 atomic_t usecnt; 1618 }; 1619 1620 enum ib_wq_flags { 1621 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1622 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1623 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1624 }; 1625 1626 struct ib_wq_init_attr { 1627 void *wq_context; 1628 enum ib_wq_type wq_type; 1629 u32 max_wr; 1630 u32 max_sge; 1631 struct ib_cq *cq; 1632 void (*event_handler)(struct ib_event *, void *); 1633 u32 create_flags; /* Use enum ib_wq_flags */ 1634 }; 1635 1636 enum ib_wq_attr_mask { 1637 IB_WQ_STATE = 1 << 0, 1638 IB_WQ_CUR_STATE = 1 << 1, 1639 IB_WQ_FLAGS = 1 << 2, 1640 }; 1641 1642 struct ib_wq_attr { 1643 enum ib_wq_state wq_state; 1644 enum ib_wq_state curr_wq_state; 1645 u32 flags; /* Use enum ib_wq_flags */ 1646 u32 flags_mask; /* Use enum ib_wq_flags */ 1647 }; 1648 1649 struct ib_rwq_ind_table { 1650 struct ib_device *device; 1651 struct ib_uobject *uobject; 1652 atomic_t usecnt; 1653 u32 ind_tbl_num; 1654 u32 log_ind_tbl_size; 1655 struct ib_wq **ind_tbl; 1656 }; 1657 1658 struct ib_rwq_ind_table_init_attr { 1659 u32 log_ind_tbl_size; 1660 /* Each entry is a pointer to Receive Work Queue */ 1661 struct ib_wq **ind_tbl; 1662 }; 1663 1664 enum port_pkey_state { 1665 IB_PORT_PKEY_NOT_VALID = 0, 1666 IB_PORT_PKEY_VALID = 1, 1667 IB_PORT_PKEY_LISTED = 2, 1668 }; 1669 1670 struct ib_qp_security; 1671 1672 struct ib_port_pkey { 1673 enum port_pkey_state state; 1674 u16 pkey_index; 1675 u8 port_num; 1676 struct list_head qp_list; 1677 struct list_head to_error_list; 1678 struct ib_qp_security *sec; 1679 }; 1680 1681 struct ib_ports_pkeys { 1682 struct ib_port_pkey main; 1683 struct ib_port_pkey alt; 1684 }; 1685 1686 struct ib_qp_security { 1687 struct ib_qp *qp; 1688 struct ib_device *dev; 1689 /* Hold this mutex when changing port and pkey settings. */ 1690 struct mutex mutex; 1691 struct ib_ports_pkeys *ports_pkeys; 1692 /* A list of all open shared QP handles. Required to enforce security 1693 * properly for all users of a shared QP. 1694 */ 1695 struct list_head shared_qp_list; 1696 void *security; 1697 bool destroying; 1698 atomic_t error_list_count; 1699 struct completion error_complete; 1700 int error_comps_pending; 1701 }; 1702 1703 /* 1704 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1705 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1706 */ 1707 struct ib_qp { 1708 struct ib_device *device; 1709 struct ib_pd *pd; 1710 struct ib_cq *send_cq; 1711 struct ib_cq *recv_cq; 1712 spinlock_t mr_lock; 1713 int mrs_used; 1714 struct list_head rdma_mrs; 1715 struct list_head sig_mrs; 1716 struct ib_srq *srq; 1717 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1718 struct list_head xrcd_list; 1719 1720 /* count times opened, mcast attaches, flow attaches */ 1721 atomic_t usecnt; 1722 struct list_head open_list; 1723 struct ib_qp *real_qp; 1724 struct ib_uobject *uobject; 1725 void (*event_handler)(struct ib_event *, void *); 1726 void *qp_context; 1727 u32 qp_num; 1728 u32 max_write_sge; 1729 u32 max_read_sge; 1730 enum ib_qp_type qp_type; 1731 struct ib_rwq_ind_table *rwq_ind_tbl; 1732 struct ib_qp_security *qp_sec; 1733 u8 port; 1734 }; 1735 1736 struct ib_mr { 1737 struct ib_device *device; 1738 struct ib_pd *pd; 1739 u32 lkey; 1740 u32 rkey; 1741 u64 iova; 1742 u32 length; 1743 unsigned int page_size; 1744 bool need_inval; 1745 union { 1746 struct ib_uobject *uobject; /* user */ 1747 struct list_head qp_entry; /* FR */ 1748 }; 1749 }; 1750 1751 struct ib_mw { 1752 struct ib_device *device; 1753 struct ib_pd *pd; 1754 struct ib_uobject *uobject; 1755 u32 rkey; 1756 enum ib_mw_type type; 1757 }; 1758 1759 struct ib_fmr { 1760 struct ib_device *device; 1761 struct ib_pd *pd; 1762 struct list_head list; 1763 u32 lkey; 1764 u32 rkey; 1765 }; 1766 1767 /* Supported steering options */ 1768 enum ib_flow_attr_type { 1769 /* steering according to rule specifications */ 1770 IB_FLOW_ATTR_NORMAL = 0x0, 1771 /* default unicast and multicast rule - 1772 * receive all Eth traffic which isn't steered to any QP 1773 */ 1774 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1775 /* default multicast rule - 1776 * receive all Eth multicast traffic which isn't steered to any QP 1777 */ 1778 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1779 /* sniffer rule - receive all port traffic */ 1780 IB_FLOW_ATTR_SNIFFER = 0x3 1781 }; 1782 1783 /* Supported steering header types */ 1784 enum ib_flow_spec_type { 1785 /* L2 headers*/ 1786 IB_FLOW_SPEC_ETH = 0x20, 1787 IB_FLOW_SPEC_IB = 0x22, 1788 /* L3 header*/ 1789 IB_FLOW_SPEC_IPV4 = 0x30, 1790 IB_FLOW_SPEC_IPV6 = 0x31, 1791 /* L4 headers*/ 1792 IB_FLOW_SPEC_TCP = 0x40, 1793 IB_FLOW_SPEC_UDP = 0x41, 1794 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1795 IB_FLOW_SPEC_INNER = 0x100, 1796 /* Actions */ 1797 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1798 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1799 }; 1800 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1801 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1802 1803 /* Flow steering rule priority is set according to it's domain. 1804 * Lower domain value means higher priority. 1805 */ 1806 enum ib_flow_domain { 1807 IB_FLOW_DOMAIN_USER, 1808 IB_FLOW_DOMAIN_ETHTOOL, 1809 IB_FLOW_DOMAIN_RFS, 1810 IB_FLOW_DOMAIN_NIC, 1811 IB_FLOW_DOMAIN_NUM /* Must be last */ 1812 }; 1813 1814 enum ib_flow_flags { 1815 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1816 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1817 }; 1818 1819 struct ib_flow_eth_filter { 1820 u8 dst_mac[6]; 1821 u8 src_mac[6]; 1822 __be16 ether_type; 1823 __be16 vlan_tag; 1824 /* Must be last */ 1825 u8 real_sz[0]; 1826 }; 1827 1828 struct ib_flow_spec_eth { 1829 u32 type; 1830 u16 size; 1831 struct ib_flow_eth_filter val; 1832 struct ib_flow_eth_filter mask; 1833 }; 1834 1835 struct ib_flow_ib_filter { 1836 __be16 dlid; 1837 __u8 sl; 1838 /* Must be last */ 1839 u8 real_sz[0]; 1840 }; 1841 1842 struct ib_flow_spec_ib { 1843 u32 type; 1844 u16 size; 1845 struct ib_flow_ib_filter val; 1846 struct ib_flow_ib_filter mask; 1847 }; 1848 1849 /* IPv4 header flags */ 1850 enum ib_ipv4_flags { 1851 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1852 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1853 last have this flag set */ 1854 }; 1855 1856 struct ib_flow_ipv4_filter { 1857 __be32 src_ip; 1858 __be32 dst_ip; 1859 u8 proto; 1860 u8 tos; 1861 u8 ttl; 1862 u8 flags; 1863 /* Must be last */ 1864 u8 real_sz[0]; 1865 }; 1866 1867 struct ib_flow_spec_ipv4 { 1868 u32 type; 1869 u16 size; 1870 struct ib_flow_ipv4_filter val; 1871 struct ib_flow_ipv4_filter mask; 1872 }; 1873 1874 struct ib_flow_ipv6_filter { 1875 u8 src_ip[16]; 1876 u8 dst_ip[16]; 1877 __be32 flow_label; 1878 u8 next_hdr; 1879 u8 traffic_class; 1880 u8 hop_limit; 1881 /* Must be last */ 1882 u8 real_sz[0]; 1883 }; 1884 1885 struct ib_flow_spec_ipv6 { 1886 u32 type; 1887 u16 size; 1888 struct ib_flow_ipv6_filter val; 1889 struct ib_flow_ipv6_filter mask; 1890 }; 1891 1892 struct ib_flow_tcp_udp_filter { 1893 __be16 dst_port; 1894 __be16 src_port; 1895 /* Must be last */ 1896 u8 real_sz[0]; 1897 }; 1898 1899 struct ib_flow_spec_tcp_udp { 1900 u32 type; 1901 u16 size; 1902 struct ib_flow_tcp_udp_filter val; 1903 struct ib_flow_tcp_udp_filter mask; 1904 }; 1905 1906 struct ib_flow_tunnel_filter { 1907 __be32 tunnel_id; 1908 u8 real_sz[0]; 1909 }; 1910 1911 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1912 * the tunnel_id from val has the vni value 1913 */ 1914 struct ib_flow_spec_tunnel { 1915 u32 type; 1916 u16 size; 1917 struct ib_flow_tunnel_filter val; 1918 struct ib_flow_tunnel_filter mask; 1919 }; 1920 1921 struct ib_flow_spec_action_tag { 1922 enum ib_flow_spec_type type; 1923 u16 size; 1924 u32 tag_id; 1925 }; 1926 1927 struct ib_flow_spec_action_drop { 1928 enum ib_flow_spec_type type; 1929 u16 size; 1930 }; 1931 1932 union ib_flow_spec { 1933 struct { 1934 u32 type; 1935 u16 size; 1936 }; 1937 struct ib_flow_spec_eth eth; 1938 struct ib_flow_spec_ib ib; 1939 struct ib_flow_spec_ipv4 ipv4; 1940 struct ib_flow_spec_tcp_udp tcp_udp; 1941 struct ib_flow_spec_ipv6 ipv6; 1942 struct ib_flow_spec_tunnel tunnel; 1943 struct ib_flow_spec_action_tag flow_tag; 1944 struct ib_flow_spec_action_drop drop; 1945 }; 1946 1947 struct ib_flow_attr { 1948 enum ib_flow_attr_type type; 1949 u16 size; 1950 u16 priority; 1951 u32 flags; 1952 u8 num_of_specs; 1953 u8 port; 1954 /* Following are the optional layers according to user request 1955 * struct ib_flow_spec_xxx 1956 * struct ib_flow_spec_yyy 1957 */ 1958 }; 1959 1960 struct ib_flow { 1961 struct ib_qp *qp; 1962 struct ib_uobject *uobject; 1963 }; 1964 1965 struct ib_mad_hdr; 1966 struct ib_grh; 1967 1968 enum ib_process_mad_flags { 1969 IB_MAD_IGNORE_MKEY = 1, 1970 IB_MAD_IGNORE_BKEY = 2, 1971 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1972 }; 1973 1974 enum ib_mad_result { 1975 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1976 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1977 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1978 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1979 }; 1980 1981 struct ib_port_cache { 1982 u64 subnet_prefix; 1983 struct ib_pkey_cache *pkey; 1984 struct ib_gid_table *gid; 1985 u8 lmc; 1986 enum ib_port_state port_state; 1987 }; 1988 1989 struct ib_cache { 1990 rwlock_t lock; 1991 struct ib_event_handler event_handler; 1992 struct ib_port_cache *ports; 1993 }; 1994 1995 struct iw_cm_verbs; 1996 1997 struct ib_port_immutable { 1998 int pkey_tbl_len; 1999 int gid_tbl_len; 2000 u32 core_cap_flags; 2001 u32 max_mad_size; 2002 }; 2003 2004 /* rdma netdev type - specifies protocol type */ 2005 enum rdma_netdev_t { 2006 RDMA_NETDEV_OPA_VNIC, 2007 RDMA_NETDEV_IPOIB, 2008 }; 2009 2010 /** 2011 * struct rdma_netdev - rdma netdev 2012 * For cases where netstack interfacing is required. 2013 */ 2014 struct rdma_netdev { 2015 void *clnt_priv; 2016 struct ib_device *hca; 2017 u8 port_num; 2018 2019 /* cleanup function must be specified */ 2020 void (*free_rdma_netdev)(struct net_device *netdev); 2021 2022 /* control functions */ 2023 void (*set_id)(struct net_device *netdev, int id); 2024 /* send packet */ 2025 int (*send)(struct net_device *dev, struct sk_buff *skb, 2026 struct ib_ah *address, u32 dqpn); 2027 /* multicast */ 2028 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2029 union ib_gid *gid, u16 mlid, 2030 int set_qkey, u32 qkey); 2031 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2032 union ib_gid *gid, u16 mlid); 2033 }; 2034 2035 struct ib_port_pkey_list { 2036 /* Lock to hold while modifying the list. */ 2037 spinlock_t list_lock; 2038 struct list_head pkey_list; 2039 }; 2040 2041 struct ib_device { 2042 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2043 struct device *dma_device; 2044 2045 char name[IB_DEVICE_NAME_MAX]; 2046 2047 struct list_head event_handler_list; 2048 spinlock_t event_handler_lock; 2049 2050 spinlock_t client_data_lock; 2051 struct list_head core_list; 2052 /* Access to the client_data_list is protected by the client_data_lock 2053 * spinlock and the lists_rwsem read-write semaphore */ 2054 struct list_head client_data_list; 2055 2056 struct ib_cache cache; 2057 /** 2058 * port_immutable is indexed by port number 2059 */ 2060 struct ib_port_immutable *port_immutable; 2061 2062 int num_comp_vectors; 2063 2064 struct ib_port_pkey_list *port_pkey_list; 2065 2066 struct iw_cm_verbs *iwcm; 2067 2068 /** 2069 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2070 * driver initialized data. The struct is kfree()'ed by the sysfs 2071 * core when the device is removed. A lifespan of -1 in the return 2072 * struct tells the core to set a default lifespan. 2073 */ 2074 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2075 u8 port_num); 2076 /** 2077 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2078 * @index - The index in the value array we wish to have updated, or 2079 * num_counters if we want all stats updated 2080 * Return codes - 2081 * < 0 - Error, no counters updated 2082 * index - Updated the single counter pointed to by index 2083 * num_counters - Updated all counters (will reset the timestamp 2084 * and prevent further calls for lifespan milliseconds) 2085 * Drivers are allowed to update all counters in leiu of just the 2086 * one given in index at their option 2087 */ 2088 int (*get_hw_stats)(struct ib_device *device, 2089 struct rdma_hw_stats *stats, 2090 u8 port, int index); 2091 int (*query_device)(struct ib_device *device, 2092 struct ib_device_attr *device_attr, 2093 struct ib_udata *udata); 2094 int (*query_port)(struct ib_device *device, 2095 u8 port_num, 2096 struct ib_port_attr *port_attr); 2097 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2098 u8 port_num); 2099 /* When calling get_netdev, the HW vendor's driver should return the 2100 * net device of device @device at port @port_num or NULL if such 2101 * a net device doesn't exist. The vendor driver should call dev_hold 2102 * on this net device. The HW vendor's device driver must guarantee 2103 * that this function returns NULL before the net device reaches 2104 * NETDEV_UNREGISTER_FINAL state. 2105 */ 2106 struct net_device *(*get_netdev)(struct ib_device *device, 2107 u8 port_num); 2108 int (*query_gid)(struct ib_device *device, 2109 u8 port_num, int index, 2110 union ib_gid *gid); 2111 /* When calling add_gid, the HW vendor's driver should 2112 * add the gid of device @device at gid index @index of 2113 * port @port_num to be @gid. Meta-info of that gid (for example, 2114 * the network device related to this gid is available 2115 * at @attr. @context allows the HW vendor driver to store extra 2116 * information together with a GID entry. The HW vendor may allocate 2117 * memory to contain this information and store it in @context when a 2118 * new GID entry is written to. Params are consistent until the next 2119 * call of add_gid or delete_gid. The function should return 0 on 2120 * success or error otherwise. The function could be called 2121 * concurrently for different ports. This function is only called 2122 * when roce_gid_table is used. 2123 */ 2124 int (*add_gid)(struct ib_device *device, 2125 u8 port_num, 2126 unsigned int index, 2127 const union ib_gid *gid, 2128 const struct ib_gid_attr *attr, 2129 void **context); 2130 /* When calling del_gid, the HW vendor's driver should delete the 2131 * gid of device @device at gid index @index of port @port_num. 2132 * Upon the deletion of a GID entry, the HW vendor must free any 2133 * allocated memory. The caller will clear @context afterwards. 2134 * This function is only called when roce_gid_table is used. 2135 */ 2136 int (*del_gid)(struct ib_device *device, 2137 u8 port_num, 2138 unsigned int index, 2139 void **context); 2140 int (*query_pkey)(struct ib_device *device, 2141 u8 port_num, u16 index, u16 *pkey); 2142 int (*modify_device)(struct ib_device *device, 2143 int device_modify_mask, 2144 struct ib_device_modify *device_modify); 2145 int (*modify_port)(struct ib_device *device, 2146 u8 port_num, int port_modify_mask, 2147 struct ib_port_modify *port_modify); 2148 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2149 struct ib_udata *udata); 2150 int (*dealloc_ucontext)(struct ib_ucontext *context); 2151 int (*mmap)(struct ib_ucontext *context, 2152 struct vm_area_struct *vma); 2153 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2154 struct ib_ucontext *context, 2155 struct ib_udata *udata); 2156 int (*dealloc_pd)(struct ib_pd *pd); 2157 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2158 struct rdma_ah_attr *ah_attr, 2159 struct ib_udata *udata); 2160 int (*modify_ah)(struct ib_ah *ah, 2161 struct rdma_ah_attr *ah_attr); 2162 int (*query_ah)(struct ib_ah *ah, 2163 struct rdma_ah_attr *ah_attr); 2164 int (*destroy_ah)(struct ib_ah *ah); 2165 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2166 struct ib_srq_init_attr *srq_init_attr, 2167 struct ib_udata *udata); 2168 int (*modify_srq)(struct ib_srq *srq, 2169 struct ib_srq_attr *srq_attr, 2170 enum ib_srq_attr_mask srq_attr_mask, 2171 struct ib_udata *udata); 2172 int (*query_srq)(struct ib_srq *srq, 2173 struct ib_srq_attr *srq_attr); 2174 int (*destroy_srq)(struct ib_srq *srq); 2175 int (*post_srq_recv)(struct ib_srq *srq, 2176 struct ib_recv_wr *recv_wr, 2177 struct ib_recv_wr **bad_recv_wr); 2178 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2179 struct ib_qp_init_attr *qp_init_attr, 2180 struct ib_udata *udata); 2181 int (*modify_qp)(struct ib_qp *qp, 2182 struct ib_qp_attr *qp_attr, 2183 int qp_attr_mask, 2184 struct ib_udata *udata); 2185 int (*query_qp)(struct ib_qp *qp, 2186 struct ib_qp_attr *qp_attr, 2187 int qp_attr_mask, 2188 struct ib_qp_init_attr *qp_init_attr); 2189 int (*destroy_qp)(struct ib_qp *qp); 2190 int (*post_send)(struct ib_qp *qp, 2191 struct ib_send_wr *send_wr, 2192 struct ib_send_wr **bad_send_wr); 2193 int (*post_recv)(struct ib_qp *qp, 2194 struct ib_recv_wr *recv_wr, 2195 struct ib_recv_wr **bad_recv_wr); 2196 struct ib_cq * (*create_cq)(struct ib_device *device, 2197 const struct ib_cq_init_attr *attr, 2198 struct ib_ucontext *context, 2199 struct ib_udata *udata); 2200 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2201 u16 cq_period); 2202 int (*destroy_cq)(struct ib_cq *cq); 2203 int (*resize_cq)(struct ib_cq *cq, int cqe, 2204 struct ib_udata *udata); 2205 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2206 struct ib_wc *wc); 2207 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2208 int (*req_notify_cq)(struct ib_cq *cq, 2209 enum ib_cq_notify_flags flags); 2210 int (*req_ncomp_notif)(struct ib_cq *cq, 2211 int wc_cnt); 2212 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2213 int mr_access_flags); 2214 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2215 u64 start, u64 length, 2216 u64 virt_addr, 2217 int mr_access_flags, 2218 struct ib_udata *udata); 2219 int (*rereg_user_mr)(struct ib_mr *mr, 2220 int flags, 2221 u64 start, u64 length, 2222 u64 virt_addr, 2223 int mr_access_flags, 2224 struct ib_pd *pd, 2225 struct ib_udata *udata); 2226 int (*dereg_mr)(struct ib_mr *mr); 2227 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2228 enum ib_mr_type mr_type, 2229 u32 max_num_sg); 2230 int (*map_mr_sg)(struct ib_mr *mr, 2231 struct scatterlist *sg, 2232 int sg_nents, 2233 unsigned int *sg_offset); 2234 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2235 enum ib_mw_type type, 2236 struct ib_udata *udata); 2237 int (*dealloc_mw)(struct ib_mw *mw); 2238 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2239 int mr_access_flags, 2240 struct ib_fmr_attr *fmr_attr); 2241 int (*map_phys_fmr)(struct ib_fmr *fmr, 2242 u64 *page_list, int list_len, 2243 u64 iova); 2244 int (*unmap_fmr)(struct list_head *fmr_list); 2245 int (*dealloc_fmr)(struct ib_fmr *fmr); 2246 int (*attach_mcast)(struct ib_qp *qp, 2247 union ib_gid *gid, 2248 u16 lid); 2249 int (*detach_mcast)(struct ib_qp *qp, 2250 union ib_gid *gid, 2251 u16 lid); 2252 int (*process_mad)(struct ib_device *device, 2253 int process_mad_flags, 2254 u8 port_num, 2255 const struct ib_wc *in_wc, 2256 const struct ib_grh *in_grh, 2257 const struct ib_mad_hdr *in_mad, 2258 size_t in_mad_size, 2259 struct ib_mad_hdr *out_mad, 2260 size_t *out_mad_size, 2261 u16 *out_mad_pkey_index); 2262 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2263 struct ib_ucontext *ucontext, 2264 struct ib_udata *udata); 2265 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2266 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2267 struct ib_flow_attr 2268 *flow_attr, 2269 int domain); 2270 int (*destroy_flow)(struct ib_flow *flow_id); 2271 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2272 struct ib_mr_status *mr_status); 2273 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2274 void (*drain_rq)(struct ib_qp *qp); 2275 void (*drain_sq)(struct ib_qp *qp); 2276 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2277 int state); 2278 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2279 struct ifla_vf_info *ivf); 2280 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2281 struct ifla_vf_stats *stats); 2282 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2283 int type); 2284 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2285 struct ib_wq_init_attr *init_attr, 2286 struct ib_udata *udata); 2287 int (*destroy_wq)(struct ib_wq *wq); 2288 int (*modify_wq)(struct ib_wq *wq, 2289 struct ib_wq_attr *attr, 2290 u32 wq_attr_mask, 2291 struct ib_udata *udata); 2292 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2293 struct ib_rwq_ind_table_init_attr *init_attr, 2294 struct ib_udata *udata); 2295 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2296 /** 2297 * rdma netdev operation 2298 * 2299 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2300 * doesn't support the specified rdma netdev type. 2301 */ 2302 struct net_device *(*alloc_rdma_netdev)( 2303 struct ib_device *device, 2304 u8 port_num, 2305 enum rdma_netdev_t type, 2306 const char *name, 2307 unsigned char name_assign_type, 2308 void (*setup)(struct net_device *)); 2309 2310 struct module *owner; 2311 struct device dev; 2312 struct kobject *ports_parent; 2313 struct list_head port_list; 2314 2315 enum { 2316 IB_DEV_UNINITIALIZED, 2317 IB_DEV_REGISTERED, 2318 IB_DEV_UNREGISTERED 2319 } reg_state; 2320 2321 int uverbs_abi_ver; 2322 u64 uverbs_cmd_mask; 2323 u64 uverbs_ex_cmd_mask; 2324 2325 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2326 __be64 node_guid; 2327 u32 local_dma_lkey; 2328 u16 is_switch:1; 2329 u8 node_type; 2330 u8 phys_port_cnt; 2331 struct ib_device_attr attrs; 2332 struct attribute_group *hw_stats_ag; 2333 struct rdma_hw_stats *hw_stats; 2334 2335 #ifdef CONFIG_CGROUP_RDMA 2336 struct rdmacg_device cg_device; 2337 #endif 2338 2339 u32 index; 2340 2341 /** 2342 * The following mandatory functions are used only at device 2343 * registration. Keep functions such as these at the end of this 2344 * structure to avoid cache line misses when accessing struct ib_device 2345 * in fast paths. 2346 */ 2347 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2348 void (*get_dev_fw_str)(struct ib_device *, char *str); 2349 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2350 int comp_vector); 2351 2352 struct uverbs_root_spec *specs_root; 2353 }; 2354 2355 struct ib_client { 2356 char *name; 2357 void (*add) (struct ib_device *); 2358 void (*remove)(struct ib_device *, void *client_data); 2359 2360 /* Returns the net_dev belonging to this ib_client and matching the 2361 * given parameters. 2362 * @dev: An RDMA device that the net_dev use for communication. 2363 * @port: A physical port number on the RDMA device. 2364 * @pkey: P_Key that the net_dev uses if applicable. 2365 * @gid: A GID that the net_dev uses to communicate. 2366 * @addr: An IP address the net_dev is configured with. 2367 * @client_data: The device's client data set by ib_set_client_data(). 2368 * 2369 * An ib_client that implements a net_dev on top of RDMA devices 2370 * (such as IP over IB) should implement this callback, allowing the 2371 * rdma_cm module to find the right net_dev for a given request. 2372 * 2373 * The caller is responsible for calling dev_put on the returned 2374 * netdev. */ 2375 struct net_device *(*get_net_dev_by_params)( 2376 struct ib_device *dev, 2377 u8 port, 2378 u16 pkey, 2379 const union ib_gid *gid, 2380 const struct sockaddr *addr, 2381 void *client_data); 2382 struct list_head list; 2383 }; 2384 2385 struct ib_device *ib_alloc_device(size_t size); 2386 void ib_dealloc_device(struct ib_device *device); 2387 2388 void ib_get_device_fw_str(struct ib_device *device, char *str); 2389 2390 int ib_register_device(struct ib_device *device, 2391 int (*port_callback)(struct ib_device *, 2392 u8, struct kobject *)); 2393 void ib_unregister_device(struct ib_device *device); 2394 2395 int ib_register_client (struct ib_client *client); 2396 void ib_unregister_client(struct ib_client *client); 2397 2398 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2399 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2400 void *data); 2401 2402 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2403 { 2404 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2405 } 2406 2407 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2408 { 2409 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2410 } 2411 2412 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2413 size_t offset, 2414 size_t len) 2415 { 2416 const void __user *p = udata->inbuf + offset; 2417 bool ret; 2418 u8 *buf; 2419 2420 if (len > USHRT_MAX) 2421 return false; 2422 2423 buf = memdup_user(p, len); 2424 if (IS_ERR(buf)) 2425 return false; 2426 2427 ret = !memchr_inv(buf, 0, len); 2428 kfree(buf); 2429 return ret; 2430 } 2431 2432 /** 2433 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2434 * contains all required attributes and no attributes not allowed for 2435 * the given QP state transition. 2436 * @cur_state: Current QP state 2437 * @next_state: Next QP state 2438 * @type: QP type 2439 * @mask: Mask of supplied QP attributes 2440 * @ll : link layer of port 2441 * 2442 * This function is a helper function that a low-level driver's 2443 * modify_qp method can use to validate the consumer's input. It 2444 * checks that cur_state and next_state are valid QP states, that a 2445 * transition from cur_state to next_state is allowed by the IB spec, 2446 * and that the attribute mask supplied is allowed for the transition. 2447 */ 2448 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2449 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2450 enum rdma_link_layer ll); 2451 2452 void ib_register_event_handler(struct ib_event_handler *event_handler); 2453 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2454 void ib_dispatch_event(struct ib_event *event); 2455 2456 int ib_query_port(struct ib_device *device, 2457 u8 port_num, struct ib_port_attr *port_attr); 2458 2459 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2460 u8 port_num); 2461 2462 /** 2463 * rdma_cap_ib_switch - Check if the device is IB switch 2464 * @device: Device to check 2465 * 2466 * Device driver is responsible for setting is_switch bit on 2467 * in ib_device structure at init time. 2468 * 2469 * Return: true if the device is IB switch. 2470 */ 2471 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2472 { 2473 return device->is_switch; 2474 } 2475 2476 /** 2477 * rdma_start_port - Return the first valid port number for the device 2478 * specified 2479 * 2480 * @device: Device to be checked 2481 * 2482 * Return start port number 2483 */ 2484 static inline u8 rdma_start_port(const struct ib_device *device) 2485 { 2486 return rdma_cap_ib_switch(device) ? 0 : 1; 2487 } 2488 2489 /** 2490 * rdma_end_port - Return the last valid port number for the device 2491 * specified 2492 * 2493 * @device: Device to be checked 2494 * 2495 * Return last port number 2496 */ 2497 static inline u8 rdma_end_port(const struct ib_device *device) 2498 { 2499 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2500 } 2501 2502 static inline int rdma_is_port_valid(const struct ib_device *device, 2503 unsigned int port) 2504 { 2505 return (port >= rdma_start_port(device) && 2506 port <= rdma_end_port(device)); 2507 } 2508 2509 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2510 { 2511 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2512 } 2513 2514 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2515 { 2516 return device->port_immutable[port_num].core_cap_flags & 2517 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2518 } 2519 2520 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2521 { 2522 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2523 } 2524 2525 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2526 { 2527 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2528 } 2529 2530 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2531 { 2532 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2533 } 2534 2535 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2536 { 2537 return rdma_protocol_ib(device, port_num) || 2538 rdma_protocol_roce(device, port_num); 2539 } 2540 2541 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2542 { 2543 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2544 } 2545 2546 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2547 { 2548 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2549 } 2550 2551 /** 2552 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2553 * Management Datagrams. 2554 * @device: Device to check 2555 * @port_num: Port number to check 2556 * 2557 * Management Datagrams (MAD) are a required part of the InfiniBand 2558 * specification and are supported on all InfiniBand devices. A slightly 2559 * extended version are also supported on OPA interfaces. 2560 * 2561 * Return: true if the port supports sending/receiving of MAD packets. 2562 */ 2563 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2564 { 2565 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2566 } 2567 2568 /** 2569 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2570 * Management Datagrams. 2571 * @device: Device to check 2572 * @port_num: Port number to check 2573 * 2574 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2575 * datagrams with their own versions. These OPA MADs share many but not all of 2576 * the characteristics of InfiniBand MADs. 2577 * 2578 * OPA MADs differ in the following ways: 2579 * 2580 * 1) MADs are variable size up to 2K 2581 * IBTA defined MADs remain fixed at 256 bytes 2582 * 2) OPA SMPs must carry valid PKeys 2583 * 3) OPA SMP packets are a different format 2584 * 2585 * Return: true if the port supports OPA MAD packet formats. 2586 */ 2587 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2588 { 2589 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2590 == RDMA_CORE_CAP_OPA_MAD; 2591 } 2592 2593 /** 2594 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2595 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2596 * @device: Device to check 2597 * @port_num: Port number to check 2598 * 2599 * Each InfiniBand node is required to provide a Subnet Management Agent 2600 * that the subnet manager can access. Prior to the fabric being fully 2601 * configured by the subnet manager, the SMA is accessed via a well known 2602 * interface called the Subnet Management Interface (SMI). This interface 2603 * uses directed route packets to communicate with the SM to get around the 2604 * chicken and egg problem of the SM needing to know what's on the fabric 2605 * in order to configure the fabric, and needing to configure the fabric in 2606 * order to send packets to the devices on the fabric. These directed 2607 * route packets do not need the fabric fully configured in order to reach 2608 * their destination. The SMI is the only method allowed to send 2609 * directed route packets on an InfiniBand fabric. 2610 * 2611 * Return: true if the port provides an SMI. 2612 */ 2613 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2614 { 2615 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2616 } 2617 2618 /** 2619 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2620 * Communication Manager. 2621 * @device: Device to check 2622 * @port_num: Port number to check 2623 * 2624 * The InfiniBand Communication Manager is one of many pre-defined General 2625 * Service Agents (GSA) that are accessed via the General Service 2626 * Interface (GSI). It's role is to facilitate establishment of connections 2627 * between nodes as well as other management related tasks for established 2628 * connections. 2629 * 2630 * Return: true if the port supports an IB CM (this does not guarantee that 2631 * a CM is actually running however). 2632 */ 2633 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2634 { 2635 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2636 } 2637 2638 /** 2639 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2640 * Communication Manager. 2641 * @device: Device to check 2642 * @port_num: Port number to check 2643 * 2644 * Similar to above, but specific to iWARP connections which have a different 2645 * managment protocol than InfiniBand. 2646 * 2647 * Return: true if the port supports an iWARP CM (this does not guarantee that 2648 * a CM is actually running however). 2649 */ 2650 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2651 { 2652 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2653 } 2654 2655 /** 2656 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2657 * Subnet Administration. 2658 * @device: Device to check 2659 * @port_num: Port number to check 2660 * 2661 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2662 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2663 * fabrics, devices should resolve routes to other hosts by contacting the 2664 * SA to query the proper route. 2665 * 2666 * Return: true if the port should act as a client to the fabric Subnet 2667 * Administration interface. This does not imply that the SA service is 2668 * running locally. 2669 */ 2670 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2671 { 2672 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2673 } 2674 2675 /** 2676 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2677 * Multicast. 2678 * @device: Device to check 2679 * @port_num: Port number to check 2680 * 2681 * InfiniBand multicast registration is more complex than normal IPv4 or 2682 * IPv6 multicast registration. Each Host Channel Adapter must register 2683 * with the Subnet Manager when it wishes to join a multicast group. It 2684 * should do so only once regardless of how many queue pairs it subscribes 2685 * to this group. And it should leave the group only after all queue pairs 2686 * attached to the group have been detached. 2687 * 2688 * Return: true if the port must undertake the additional adminstrative 2689 * overhead of registering/unregistering with the SM and tracking of the 2690 * total number of queue pairs attached to the multicast group. 2691 */ 2692 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2693 { 2694 return rdma_cap_ib_sa(device, port_num); 2695 } 2696 2697 /** 2698 * rdma_cap_af_ib - Check if the port of device has the capability 2699 * Native Infiniband Address. 2700 * @device: Device to check 2701 * @port_num: Port number to check 2702 * 2703 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2704 * GID. RoCE uses a different mechanism, but still generates a GID via 2705 * a prescribed mechanism and port specific data. 2706 * 2707 * Return: true if the port uses a GID address to identify devices on the 2708 * network. 2709 */ 2710 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2711 { 2712 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2713 } 2714 2715 /** 2716 * rdma_cap_eth_ah - Check if the port of device has the capability 2717 * Ethernet Address Handle. 2718 * @device: Device to check 2719 * @port_num: Port number to check 2720 * 2721 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2722 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2723 * port. Normally, packet headers are generated by the sending host 2724 * adapter, but when sending connectionless datagrams, we must manually 2725 * inject the proper headers for the fabric we are communicating over. 2726 * 2727 * Return: true if we are running as a RoCE port and must force the 2728 * addition of a Global Route Header built from our Ethernet Address 2729 * Handle into our header list for connectionless packets. 2730 */ 2731 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2732 { 2733 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2734 } 2735 2736 /** 2737 * rdma_cap_opa_ah - Check if the port of device supports 2738 * OPA Address handles 2739 * @device: Device to check 2740 * @port_num: Port number to check 2741 * 2742 * Return: true if we are running on an OPA device which supports 2743 * the extended OPA addressing. 2744 */ 2745 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 2746 { 2747 return (device->port_immutable[port_num].core_cap_flags & 2748 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 2749 } 2750 2751 /** 2752 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2753 * 2754 * @device: Device 2755 * @port_num: Port number 2756 * 2757 * This MAD size includes the MAD headers and MAD payload. No other headers 2758 * are included. 2759 * 2760 * Return the max MAD size required by the Port. Will return 0 if the port 2761 * does not support MADs 2762 */ 2763 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2764 { 2765 return device->port_immutable[port_num].max_mad_size; 2766 } 2767 2768 /** 2769 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2770 * @device: Device to check 2771 * @port_num: Port number to check 2772 * 2773 * RoCE GID table mechanism manages the various GIDs for a device. 2774 * 2775 * NOTE: if allocating the port's GID table has failed, this call will still 2776 * return true, but any RoCE GID table API will fail. 2777 * 2778 * Return: true if the port uses RoCE GID table mechanism in order to manage 2779 * its GIDs. 2780 */ 2781 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2782 u8 port_num) 2783 { 2784 return rdma_protocol_roce(device, port_num) && 2785 device->add_gid && device->del_gid; 2786 } 2787 2788 /* 2789 * Check if the device supports READ W/ INVALIDATE. 2790 */ 2791 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2792 { 2793 /* 2794 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2795 * has support for it yet. 2796 */ 2797 return rdma_protocol_iwarp(dev, port_num); 2798 } 2799 2800 int ib_query_gid(struct ib_device *device, 2801 u8 port_num, int index, union ib_gid *gid, 2802 struct ib_gid_attr *attr); 2803 2804 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2805 int state); 2806 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2807 struct ifla_vf_info *info); 2808 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2809 struct ifla_vf_stats *stats); 2810 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2811 int type); 2812 2813 int ib_query_pkey(struct ib_device *device, 2814 u8 port_num, u16 index, u16 *pkey); 2815 2816 int ib_modify_device(struct ib_device *device, 2817 int device_modify_mask, 2818 struct ib_device_modify *device_modify); 2819 2820 int ib_modify_port(struct ib_device *device, 2821 u8 port_num, int port_modify_mask, 2822 struct ib_port_modify *port_modify); 2823 2824 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2825 enum ib_gid_type gid_type, struct net_device *ndev, 2826 u8 *port_num, u16 *index); 2827 2828 int ib_find_pkey(struct ib_device *device, 2829 u8 port_num, u16 pkey, u16 *index); 2830 2831 enum ib_pd_flags { 2832 /* 2833 * Create a memory registration for all memory in the system and place 2834 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2835 * ULPs to avoid the overhead of dynamic MRs. 2836 * 2837 * This flag is generally considered unsafe and must only be used in 2838 * extremly trusted environments. Every use of it will log a warning 2839 * in the kernel log. 2840 */ 2841 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2842 }; 2843 2844 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2845 const char *caller); 2846 #define ib_alloc_pd(device, flags) \ 2847 __ib_alloc_pd((device), (flags), __func__) 2848 void ib_dealloc_pd(struct ib_pd *pd); 2849 2850 /** 2851 * rdma_create_ah - Creates an address handle for the given address vector. 2852 * @pd: The protection domain associated with the address handle. 2853 * @ah_attr: The attributes of the address vector. 2854 * 2855 * The address handle is used to reference a local or global destination 2856 * in all UD QP post sends. 2857 */ 2858 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 2859 2860 /** 2861 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2862 * work completion. 2863 * @hdr: the L3 header to parse 2864 * @net_type: type of header to parse 2865 * @sgid: place to store source gid 2866 * @dgid: place to store destination gid 2867 */ 2868 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2869 enum rdma_network_type net_type, 2870 union ib_gid *sgid, union ib_gid *dgid); 2871 2872 /** 2873 * ib_get_rdma_header_version - Get the header version 2874 * @hdr: the L3 header to parse 2875 */ 2876 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2877 2878 /** 2879 * ib_init_ah_from_wc - Initializes address handle attributes from a 2880 * work completion. 2881 * @device: Device on which the received message arrived. 2882 * @port_num: Port on which the received message arrived. 2883 * @wc: Work completion associated with the received message. 2884 * @grh: References the received global route header. This parameter is 2885 * ignored unless the work completion indicates that the GRH is valid. 2886 * @ah_attr: Returned attributes that can be used when creating an address 2887 * handle for replying to the message. 2888 */ 2889 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2890 const struct ib_wc *wc, const struct ib_grh *grh, 2891 struct rdma_ah_attr *ah_attr); 2892 2893 /** 2894 * ib_create_ah_from_wc - Creates an address handle associated with the 2895 * sender of the specified work completion. 2896 * @pd: The protection domain associated with the address handle. 2897 * @wc: Work completion information associated with a received message. 2898 * @grh: References the received global route header. This parameter is 2899 * ignored unless the work completion indicates that the GRH is valid. 2900 * @port_num: The outbound port number to associate with the address. 2901 * 2902 * The address handle is used to reference a local or global destination 2903 * in all UD QP post sends. 2904 */ 2905 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2906 const struct ib_grh *grh, u8 port_num); 2907 2908 /** 2909 * rdma_modify_ah - Modifies the address vector associated with an address 2910 * handle. 2911 * @ah: The address handle to modify. 2912 * @ah_attr: The new address vector attributes to associate with the 2913 * address handle. 2914 */ 2915 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2916 2917 /** 2918 * rdma_query_ah - Queries the address vector associated with an address 2919 * handle. 2920 * @ah: The address handle to query. 2921 * @ah_attr: The address vector attributes associated with the address 2922 * handle. 2923 */ 2924 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2925 2926 /** 2927 * rdma_destroy_ah - Destroys an address handle. 2928 * @ah: The address handle to destroy. 2929 */ 2930 int rdma_destroy_ah(struct ib_ah *ah); 2931 2932 /** 2933 * ib_create_srq - Creates a SRQ associated with the specified protection 2934 * domain. 2935 * @pd: The protection domain associated with the SRQ. 2936 * @srq_init_attr: A list of initial attributes required to create the 2937 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2938 * the actual capabilities of the created SRQ. 2939 * 2940 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2941 * requested size of the SRQ, and set to the actual values allocated 2942 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2943 * will always be at least as large as the requested values. 2944 */ 2945 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2946 struct ib_srq_init_attr *srq_init_attr); 2947 2948 /** 2949 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2950 * @srq: The SRQ to modify. 2951 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2952 * the current values of selected SRQ attributes are returned. 2953 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2954 * are being modified. 2955 * 2956 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2957 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2958 * the number of receives queued drops below the limit. 2959 */ 2960 int ib_modify_srq(struct ib_srq *srq, 2961 struct ib_srq_attr *srq_attr, 2962 enum ib_srq_attr_mask srq_attr_mask); 2963 2964 /** 2965 * ib_query_srq - Returns the attribute list and current values for the 2966 * specified SRQ. 2967 * @srq: The SRQ to query. 2968 * @srq_attr: The attributes of the specified SRQ. 2969 */ 2970 int ib_query_srq(struct ib_srq *srq, 2971 struct ib_srq_attr *srq_attr); 2972 2973 /** 2974 * ib_destroy_srq - Destroys the specified SRQ. 2975 * @srq: The SRQ to destroy. 2976 */ 2977 int ib_destroy_srq(struct ib_srq *srq); 2978 2979 /** 2980 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2981 * @srq: The SRQ to post the work request on. 2982 * @recv_wr: A list of work requests to post on the receive queue. 2983 * @bad_recv_wr: On an immediate failure, this parameter will reference 2984 * the work request that failed to be posted on the QP. 2985 */ 2986 static inline int ib_post_srq_recv(struct ib_srq *srq, 2987 struct ib_recv_wr *recv_wr, 2988 struct ib_recv_wr **bad_recv_wr) 2989 { 2990 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2991 } 2992 2993 /** 2994 * ib_create_qp - Creates a QP associated with the specified protection 2995 * domain. 2996 * @pd: The protection domain associated with the QP. 2997 * @qp_init_attr: A list of initial attributes required to create the 2998 * QP. If QP creation succeeds, then the attributes are updated to 2999 * the actual capabilities of the created QP. 3000 */ 3001 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3002 struct ib_qp_init_attr *qp_init_attr); 3003 3004 /** 3005 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3006 * @qp: The QP to modify. 3007 * @attr: On input, specifies the QP attributes to modify. On output, 3008 * the current values of selected QP attributes are returned. 3009 * @attr_mask: A bit-mask used to specify which attributes of the QP 3010 * are being modified. 3011 * @udata: pointer to user's input output buffer information 3012 * are being modified. 3013 * It returns 0 on success and returns appropriate error code on error. 3014 */ 3015 int ib_modify_qp_with_udata(struct ib_qp *qp, 3016 struct ib_qp_attr *attr, 3017 int attr_mask, 3018 struct ib_udata *udata); 3019 3020 /** 3021 * ib_modify_qp - Modifies the attributes for the specified QP and then 3022 * transitions the QP to the given state. 3023 * @qp: The QP to modify. 3024 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3025 * the current values of selected QP attributes are returned. 3026 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3027 * are being modified. 3028 */ 3029 int ib_modify_qp(struct ib_qp *qp, 3030 struct ib_qp_attr *qp_attr, 3031 int qp_attr_mask); 3032 3033 /** 3034 * ib_query_qp - Returns the attribute list and current values for the 3035 * specified QP. 3036 * @qp: The QP to query. 3037 * @qp_attr: The attributes of the specified QP. 3038 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3039 * @qp_init_attr: Additional attributes of the selected QP. 3040 * 3041 * The qp_attr_mask may be used to limit the query to gathering only the 3042 * selected attributes. 3043 */ 3044 int ib_query_qp(struct ib_qp *qp, 3045 struct ib_qp_attr *qp_attr, 3046 int qp_attr_mask, 3047 struct ib_qp_init_attr *qp_init_attr); 3048 3049 /** 3050 * ib_destroy_qp - Destroys the specified QP. 3051 * @qp: The QP to destroy. 3052 */ 3053 int ib_destroy_qp(struct ib_qp *qp); 3054 3055 /** 3056 * ib_open_qp - Obtain a reference to an existing sharable QP. 3057 * @xrcd - XRC domain 3058 * @qp_open_attr: Attributes identifying the QP to open. 3059 * 3060 * Returns a reference to a sharable QP. 3061 */ 3062 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3063 struct ib_qp_open_attr *qp_open_attr); 3064 3065 /** 3066 * ib_close_qp - Release an external reference to a QP. 3067 * @qp: The QP handle to release 3068 * 3069 * The opened QP handle is released by the caller. The underlying 3070 * shared QP is not destroyed until all internal references are released. 3071 */ 3072 int ib_close_qp(struct ib_qp *qp); 3073 3074 /** 3075 * ib_post_send - Posts a list of work requests to the send queue of 3076 * the specified QP. 3077 * @qp: The QP to post the work request on. 3078 * @send_wr: A list of work requests to post on the send queue. 3079 * @bad_send_wr: On an immediate failure, this parameter will reference 3080 * the work request that failed to be posted on the QP. 3081 * 3082 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3083 * error is returned, the QP state shall not be affected, 3084 * ib_post_send() will return an immediate error after queueing any 3085 * earlier work requests in the list. 3086 */ 3087 static inline int ib_post_send(struct ib_qp *qp, 3088 struct ib_send_wr *send_wr, 3089 struct ib_send_wr **bad_send_wr) 3090 { 3091 return qp->device->post_send(qp, send_wr, bad_send_wr); 3092 } 3093 3094 /** 3095 * ib_post_recv - Posts a list of work requests to the receive queue of 3096 * the specified QP. 3097 * @qp: The QP to post the work request on. 3098 * @recv_wr: A list of work requests to post on the receive queue. 3099 * @bad_recv_wr: On an immediate failure, this parameter will reference 3100 * the work request that failed to be posted on the QP. 3101 */ 3102 static inline int ib_post_recv(struct ib_qp *qp, 3103 struct ib_recv_wr *recv_wr, 3104 struct ib_recv_wr **bad_recv_wr) 3105 { 3106 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3107 } 3108 3109 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3110 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 3111 void ib_free_cq(struct ib_cq *cq); 3112 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3113 3114 /** 3115 * ib_create_cq - Creates a CQ on the specified device. 3116 * @device: The device on which to create the CQ. 3117 * @comp_handler: A user-specified callback that is invoked when a 3118 * completion event occurs on the CQ. 3119 * @event_handler: A user-specified callback that is invoked when an 3120 * asynchronous event not associated with a completion occurs on the CQ. 3121 * @cq_context: Context associated with the CQ returned to the user via 3122 * the associated completion and event handlers. 3123 * @cq_attr: The attributes the CQ should be created upon. 3124 * 3125 * Users can examine the cq structure to determine the actual CQ size. 3126 */ 3127 struct ib_cq *ib_create_cq(struct ib_device *device, 3128 ib_comp_handler comp_handler, 3129 void (*event_handler)(struct ib_event *, void *), 3130 void *cq_context, 3131 const struct ib_cq_init_attr *cq_attr); 3132 3133 /** 3134 * ib_resize_cq - Modifies the capacity of the CQ. 3135 * @cq: The CQ to resize. 3136 * @cqe: The minimum size of the CQ. 3137 * 3138 * Users can examine the cq structure to determine the actual CQ size. 3139 */ 3140 int ib_resize_cq(struct ib_cq *cq, int cqe); 3141 3142 /** 3143 * ib_modify_cq - Modifies moderation params of the CQ 3144 * @cq: The CQ to modify. 3145 * @cq_count: number of CQEs that will trigger an event 3146 * @cq_period: max period of time in usec before triggering an event 3147 * 3148 */ 3149 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3150 3151 /** 3152 * ib_destroy_cq - Destroys the specified CQ. 3153 * @cq: The CQ to destroy. 3154 */ 3155 int ib_destroy_cq(struct ib_cq *cq); 3156 3157 /** 3158 * ib_poll_cq - poll a CQ for completion(s) 3159 * @cq:the CQ being polled 3160 * @num_entries:maximum number of completions to return 3161 * @wc:array of at least @num_entries &struct ib_wc where completions 3162 * will be returned 3163 * 3164 * Poll a CQ for (possibly multiple) completions. If the return value 3165 * is < 0, an error occurred. If the return value is >= 0, it is the 3166 * number of completions returned. If the return value is 3167 * non-negative and < num_entries, then the CQ was emptied. 3168 */ 3169 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3170 struct ib_wc *wc) 3171 { 3172 return cq->device->poll_cq(cq, num_entries, wc); 3173 } 3174 3175 /** 3176 * ib_peek_cq - Returns the number of unreaped completions currently 3177 * on the specified CQ. 3178 * @cq: The CQ to peek. 3179 * @wc_cnt: A minimum number of unreaped completions to check for. 3180 * 3181 * If the number of unreaped completions is greater than or equal to wc_cnt, 3182 * this function returns wc_cnt, otherwise, it returns the actual number of 3183 * unreaped completions. 3184 */ 3185 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3186 3187 /** 3188 * ib_req_notify_cq - Request completion notification on a CQ. 3189 * @cq: The CQ to generate an event for. 3190 * @flags: 3191 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3192 * to request an event on the next solicited event or next work 3193 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3194 * may also be |ed in to request a hint about missed events, as 3195 * described below. 3196 * 3197 * Return Value: 3198 * < 0 means an error occurred while requesting notification 3199 * == 0 means notification was requested successfully, and if 3200 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3201 * were missed and it is safe to wait for another event. In 3202 * this case is it guaranteed that any work completions added 3203 * to the CQ since the last CQ poll will trigger a completion 3204 * notification event. 3205 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3206 * in. It means that the consumer must poll the CQ again to 3207 * make sure it is empty to avoid missing an event because of a 3208 * race between requesting notification and an entry being 3209 * added to the CQ. This return value means it is possible 3210 * (but not guaranteed) that a work completion has been added 3211 * to the CQ since the last poll without triggering a 3212 * completion notification event. 3213 */ 3214 static inline int ib_req_notify_cq(struct ib_cq *cq, 3215 enum ib_cq_notify_flags flags) 3216 { 3217 return cq->device->req_notify_cq(cq, flags); 3218 } 3219 3220 /** 3221 * ib_req_ncomp_notif - Request completion notification when there are 3222 * at least the specified number of unreaped completions on the CQ. 3223 * @cq: The CQ to generate an event for. 3224 * @wc_cnt: The number of unreaped completions that should be on the 3225 * CQ before an event is generated. 3226 */ 3227 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3228 { 3229 return cq->device->req_ncomp_notif ? 3230 cq->device->req_ncomp_notif(cq, wc_cnt) : 3231 -ENOSYS; 3232 } 3233 3234 /** 3235 * ib_dma_mapping_error - check a DMA addr for error 3236 * @dev: The device for which the dma_addr was created 3237 * @dma_addr: The DMA address to check 3238 */ 3239 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3240 { 3241 return dma_mapping_error(dev->dma_device, dma_addr); 3242 } 3243 3244 /** 3245 * ib_dma_map_single - Map a kernel virtual address to DMA address 3246 * @dev: The device for which the dma_addr is to be created 3247 * @cpu_addr: The kernel virtual address 3248 * @size: The size of the region in bytes 3249 * @direction: The direction of the DMA 3250 */ 3251 static inline u64 ib_dma_map_single(struct ib_device *dev, 3252 void *cpu_addr, size_t size, 3253 enum dma_data_direction direction) 3254 { 3255 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3256 } 3257 3258 /** 3259 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3260 * @dev: The device for which the DMA address was created 3261 * @addr: The DMA address 3262 * @size: The size of the region in bytes 3263 * @direction: The direction of the DMA 3264 */ 3265 static inline void ib_dma_unmap_single(struct ib_device *dev, 3266 u64 addr, size_t size, 3267 enum dma_data_direction direction) 3268 { 3269 dma_unmap_single(dev->dma_device, addr, size, direction); 3270 } 3271 3272 /** 3273 * ib_dma_map_page - Map a physical page to DMA address 3274 * @dev: The device for which the dma_addr is to be created 3275 * @page: The page to be mapped 3276 * @offset: The offset within the page 3277 * @size: The size of the region in bytes 3278 * @direction: The direction of the DMA 3279 */ 3280 static inline u64 ib_dma_map_page(struct ib_device *dev, 3281 struct page *page, 3282 unsigned long offset, 3283 size_t size, 3284 enum dma_data_direction direction) 3285 { 3286 return dma_map_page(dev->dma_device, page, offset, size, direction); 3287 } 3288 3289 /** 3290 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3291 * @dev: The device for which the DMA address was created 3292 * @addr: The DMA address 3293 * @size: The size of the region in bytes 3294 * @direction: The direction of the DMA 3295 */ 3296 static inline void ib_dma_unmap_page(struct ib_device *dev, 3297 u64 addr, size_t size, 3298 enum dma_data_direction direction) 3299 { 3300 dma_unmap_page(dev->dma_device, addr, size, direction); 3301 } 3302 3303 /** 3304 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3305 * @dev: The device for which the DMA addresses are to be created 3306 * @sg: The array of scatter/gather entries 3307 * @nents: The number of scatter/gather entries 3308 * @direction: The direction of the DMA 3309 */ 3310 static inline int ib_dma_map_sg(struct ib_device *dev, 3311 struct scatterlist *sg, int nents, 3312 enum dma_data_direction direction) 3313 { 3314 return dma_map_sg(dev->dma_device, sg, nents, direction); 3315 } 3316 3317 /** 3318 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3319 * @dev: The device for which the DMA addresses were created 3320 * @sg: The array of scatter/gather entries 3321 * @nents: The number of scatter/gather entries 3322 * @direction: The direction of the DMA 3323 */ 3324 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3325 struct scatterlist *sg, int nents, 3326 enum dma_data_direction direction) 3327 { 3328 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3329 } 3330 3331 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3332 struct scatterlist *sg, int nents, 3333 enum dma_data_direction direction, 3334 unsigned long dma_attrs) 3335 { 3336 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3337 dma_attrs); 3338 } 3339 3340 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3341 struct scatterlist *sg, int nents, 3342 enum dma_data_direction direction, 3343 unsigned long dma_attrs) 3344 { 3345 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3346 } 3347 /** 3348 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3349 * @dev: The device for which the DMA addresses were created 3350 * @sg: The scatter/gather entry 3351 * 3352 * Note: this function is obsolete. To do: change all occurrences of 3353 * ib_sg_dma_address() into sg_dma_address(). 3354 */ 3355 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3356 struct scatterlist *sg) 3357 { 3358 return sg_dma_address(sg); 3359 } 3360 3361 /** 3362 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3363 * @dev: The device for which the DMA addresses were created 3364 * @sg: The scatter/gather entry 3365 * 3366 * Note: this function is obsolete. To do: change all occurrences of 3367 * ib_sg_dma_len() into sg_dma_len(). 3368 */ 3369 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3370 struct scatterlist *sg) 3371 { 3372 return sg_dma_len(sg); 3373 } 3374 3375 /** 3376 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3377 * @dev: The device for which the DMA address was created 3378 * @addr: The DMA address 3379 * @size: The size of the region in bytes 3380 * @dir: The direction of the DMA 3381 */ 3382 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3383 u64 addr, 3384 size_t size, 3385 enum dma_data_direction dir) 3386 { 3387 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3388 } 3389 3390 /** 3391 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3392 * @dev: The device for which the DMA address was created 3393 * @addr: The DMA address 3394 * @size: The size of the region in bytes 3395 * @dir: The direction of the DMA 3396 */ 3397 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3398 u64 addr, 3399 size_t size, 3400 enum dma_data_direction dir) 3401 { 3402 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3403 } 3404 3405 /** 3406 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3407 * @dev: The device for which the DMA address is requested 3408 * @size: The size of the region to allocate in bytes 3409 * @dma_handle: A pointer for returning the DMA address of the region 3410 * @flag: memory allocator flags 3411 */ 3412 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3413 size_t size, 3414 dma_addr_t *dma_handle, 3415 gfp_t flag) 3416 { 3417 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3418 } 3419 3420 /** 3421 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3422 * @dev: The device for which the DMA addresses were allocated 3423 * @size: The size of the region 3424 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3425 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3426 */ 3427 static inline void ib_dma_free_coherent(struct ib_device *dev, 3428 size_t size, void *cpu_addr, 3429 dma_addr_t dma_handle) 3430 { 3431 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3432 } 3433 3434 /** 3435 * ib_dereg_mr - Deregisters a memory region and removes it from the 3436 * HCA translation table. 3437 * @mr: The memory region to deregister. 3438 * 3439 * This function can fail, if the memory region has memory windows bound to it. 3440 */ 3441 int ib_dereg_mr(struct ib_mr *mr); 3442 3443 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3444 enum ib_mr_type mr_type, 3445 u32 max_num_sg); 3446 3447 /** 3448 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3449 * R_Key and L_Key. 3450 * @mr - struct ib_mr pointer to be updated. 3451 * @newkey - new key to be used. 3452 */ 3453 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3454 { 3455 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3456 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3457 } 3458 3459 /** 3460 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3461 * for calculating a new rkey for type 2 memory windows. 3462 * @rkey - the rkey to increment. 3463 */ 3464 static inline u32 ib_inc_rkey(u32 rkey) 3465 { 3466 const u32 mask = 0x000000ff; 3467 return ((rkey + 1) & mask) | (rkey & ~mask); 3468 } 3469 3470 /** 3471 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3472 * @pd: The protection domain associated with the unmapped region. 3473 * @mr_access_flags: Specifies the memory access rights. 3474 * @fmr_attr: Attributes of the unmapped region. 3475 * 3476 * A fast memory region must be mapped before it can be used as part of 3477 * a work request. 3478 */ 3479 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3480 int mr_access_flags, 3481 struct ib_fmr_attr *fmr_attr); 3482 3483 /** 3484 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3485 * @fmr: The fast memory region to associate with the pages. 3486 * @page_list: An array of physical pages to map to the fast memory region. 3487 * @list_len: The number of pages in page_list. 3488 * @iova: The I/O virtual address to use with the mapped region. 3489 */ 3490 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3491 u64 *page_list, int list_len, 3492 u64 iova) 3493 { 3494 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3495 } 3496 3497 /** 3498 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3499 * @fmr_list: A linked list of fast memory regions to unmap. 3500 */ 3501 int ib_unmap_fmr(struct list_head *fmr_list); 3502 3503 /** 3504 * ib_dealloc_fmr - Deallocates a fast memory region. 3505 * @fmr: The fast memory region to deallocate. 3506 */ 3507 int ib_dealloc_fmr(struct ib_fmr *fmr); 3508 3509 /** 3510 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3511 * @qp: QP to attach to the multicast group. The QP must be type 3512 * IB_QPT_UD. 3513 * @gid: Multicast group GID. 3514 * @lid: Multicast group LID in host byte order. 3515 * 3516 * In order to send and receive multicast packets, subnet 3517 * administration must have created the multicast group and configured 3518 * the fabric appropriately. The port associated with the specified 3519 * QP must also be a member of the multicast group. 3520 */ 3521 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3522 3523 /** 3524 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3525 * @qp: QP to detach from the multicast group. 3526 * @gid: Multicast group GID. 3527 * @lid: Multicast group LID in host byte order. 3528 */ 3529 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3530 3531 /** 3532 * ib_alloc_xrcd - Allocates an XRC domain. 3533 * @device: The device on which to allocate the XRC domain. 3534 */ 3535 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3536 3537 /** 3538 * ib_dealloc_xrcd - Deallocates an XRC domain. 3539 * @xrcd: The XRC domain to deallocate. 3540 */ 3541 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3542 3543 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3544 struct ib_flow_attr *flow_attr, int domain); 3545 int ib_destroy_flow(struct ib_flow *flow_id); 3546 3547 static inline int ib_check_mr_access(int flags) 3548 { 3549 /* 3550 * Local write permission is required if remote write or 3551 * remote atomic permission is also requested. 3552 */ 3553 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3554 !(flags & IB_ACCESS_LOCAL_WRITE)) 3555 return -EINVAL; 3556 3557 return 0; 3558 } 3559 3560 /** 3561 * ib_check_mr_status: lightweight check of MR status. 3562 * This routine may provide status checks on a selected 3563 * ib_mr. first use is for signature status check. 3564 * 3565 * @mr: A memory region. 3566 * @check_mask: Bitmask of which checks to perform from 3567 * ib_mr_status_check enumeration. 3568 * @mr_status: The container of relevant status checks. 3569 * failed checks will be indicated in the status bitmask 3570 * and the relevant info shall be in the error item. 3571 */ 3572 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3573 struct ib_mr_status *mr_status); 3574 3575 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3576 u16 pkey, const union ib_gid *gid, 3577 const struct sockaddr *addr); 3578 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3579 struct ib_wq_init_attr *init_attr); 3580 int ib_destroy_wq(struct ib_wq *wq); 3581 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3582 u32 wq_attr_mask); 3583 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3584 struct ib_rwq_ind_table_init_attr* 3585 wq_ind_table_init_attr); 3586 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3587 3588 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3589 unsigned int *sg_offset, unsigned int page_size); 3590 3591 static inline int 3592 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3593 unsigned int *sg_offset, unsigned int page_size) 3594 { 3595 int n; 3596 3597 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3598 mr->iova = 0; 3599 3600 return n; 3601 } 3602 3603 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3604 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3605 3606 void ib_drain_rq(struct ib_qp *qp); 3607 void ib_drain_sq(struct ib_qp *qp); 3608 void ib_drain_qp(struct ib_qp *qp); 3609 3610 int ib_resolve_eth_dmac(struct ib_device *device, 3611 struct rdma_ah_attr *ah_attr); 3612 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3613 3614 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3615 { 3616 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3617 return attr->roce.dmac; 3618 return NULL; 3619 } 3620 3621 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3622 { 3623 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3624 attr->ib.dlid = (u16)dlid; 3625 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3626 attr->opa.dlid = dlid; 3627 } 3628 3629 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3630 { 3631 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3632 return attr->ib.dlid; 3633 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3634 return attr->opa.dlid; 3635 return 0; 3636 } 3637 3638 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3639 { 3640 attr->sl = sl; 3641 } 3642 3643 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3644 { 3645 return attr->sl; 3646 } 3647 3648 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3649 u8 src_path_bits) 3650 { 3651 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3652 attr->ib.src_path_bits = src_path_bits; 3653 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3654 attr->opa.src_path_bits = src_path_bits; 3655 } 3656 3657 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3658 { 3659 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3660 return attr->ib.src_path_bits; 3661 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3662 return attr->opa.src_path_bits; 3663 return 0; 3664 } 3665 3666 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 3667 bool make_grd) 3668 { 3669 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3670 attr->opa.make_grd = make_grd; 3671 } 3672 3673 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 3674 { 3675 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3676 return attr->opa.make_grd; 3677 return false; 3678 } 3679 3680 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3681 { 3682 attr->port_num = port_num; 3683 } 3684 3685 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3686 { 3687 return attr->port_num; 3688 } 3689 3690 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 3691 u8 static_rate) 3692 { 3693 attr->static_rate = static_rate; 3694 } 3695 3696 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 3697 { 3698 return attr->static_rate; 3699 } 3700 3701 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 3702 enum ib_ah_flags flag) 3703 { 3704 attr->ah_flags = flag; 3705 } 3706 3707 static inline enum ib_ah_flags 3708 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 3709 { 3710 return attr->ah_flags; 3711 } 3712 3713 static inline const struct ib_global_route 3714 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 3715 { 3716 return &attr->grh; 3717 } 3718 3719 /*To retrieve and modify the grh */ 3720 static inline struct ib_global_route 3721 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 3722 { 3723 return &attr->grh; 3724 } 3725 3726 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 3727 { 3728 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3729 3730 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 3731 } 3732 3733 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 3734 __be64 prefix) 3735 { 3736 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3737 3738 grh->dgid.global.subnet_prefix = prefix; 3739 } 3740 3741 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 3742 __be64 if_id) 3743 { 3744 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3745 3746 grh->dgid.global.interface_id = if_id; 3747 } 3748 3749 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 3750 union ib_gid *dgid, u32 flow_label, 3751 u8 sgid_index, u8 hop_limit, 3752 u8 traffic_class) 3753 { 3754 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3755 3756 attr->ah_flags = IB_AH_GRH; 3757 if (dgid) 3758 grh->dgid = *dgid; 3759 grh->flow_label = flow_label; 3760 grh->sgid_index = sgid_index; 3761 grh->hop_limit = hop_limit; 3762 grh->traffic_class = traffic_class; 3763 } 3764 3765 /*Get AH type */ 3766 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 3767 u32 port_num) 3768 { 3769 if ((rdma_protocol_roce(dev, port_num)) || 3770 (rdma_protocol_iwarp(dev, port_num))) 3771 return RDMA_AH_ATTR_TYPE_ROCE; 3772 else if ((rdma_protocol_ib(dev, port_num)) && 3773 (rdma_cap_opa_ah(dev, port_num))) 3774 return RDMA_AH_ATTR_TYPE_OPA; 3775 else 3776 return RDMA_AH_ATTR_TYPE_IB; 3777 } 3778 3779 /** 3780 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 3781 * In the current implementation the only way to get 3782 * get the 32bit lid is from other sources for OPA. 3783 * For IB, lids will always be 16bits so cast the 3784 * value accordingly. 3785 * 3786 * @lid: A 32bit LID 3787 */ 3788 static inline u16 ib_lid_cpu16(u32 lid) 3789 { 3790 WARN_ON_ONCE(lid & 0xFFFF0000); 3791 return (u16)lid; 3792 } 3793 3794 /** 3795 * ib_lid_be16 - Return lid in 16bit BE encoding. 3796 * 3797 * @lid: A 32bit LID 3798 */ 3799 static inline __be16 ib_lid_be16(u32 lid) 3800 { 3801 WARN_ON_ONCE(lid & 0xFFFF0000); 3802 return cpu_to_be16((u16)lid); 3803 } 3804 3805 /** 3806 * ib_get_vector_affinity - Get the affinity mappings of a given completion 3807 * vector 3808 * @device: the rdma device 3809 * @comp_vector: index of completion vector 3810 * 3811 * Returns NULL on failure, otherwise a corresponding cpu map of the 3812 * completion vector (returns all-cpus map if the device driver doesn't 3813 * implement get_vector_affinity). 3814 */ 3815 static inline const struct cpumask * 3816 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 3817 { 3818 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 3819 !device->get_vector_affinity) 3820 return NULL; 3821 3822 return device->get_vector_affinity(device, comp_vector); 3823 3824 } 3825 3826 #endif /* IB_VERBS_H */ 3827