1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <asm/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 struct ib_rss_caps { 265 /* Corresponding bit will be set if qp type from 266 * 'enum ib_qp_type' is supported, e.g. 267 * supported_qpts |= 1 << IB_QPT_UD 268 */ 269 u32 supported_qpts; 270 u32 max_rwq_indirection_tables; 271 u32 max_rwq_indirection_table_size; 272 }; 273 274 enum ib_cq_creation_flags { 275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 277 }; 278 279 struct ib_cq_init_attr { 280 unsigned int cqe; 281 int comp_vector; 282 u32 flags; 283 }; 284 285 struct ib_device_attr { 286 u64 fw_ver; 287 __be64 sys_image_guid; 288 u64 max_mr_size; 289 u64 page_size_cap; 290 u32 vendor_id; 291 u32 vendor_part_id; 292 u32 hw_ver; 293 int max_qp; 294 int max_qp_wr; 295 u64 device_cap_flags; 296 int max_sge; 297 int max_sge_rd; 298 int max_cq; 299 int max_cqe; 300 int max_mr; 301 int max_pd; 302 int max_qp_rd_atom; 303 int max_ee_rd_atom; 304 int max_res_rd_atom; 305 int max_qp_init_rd_atom; 306 int max_ee_init_rd_atom; 307 enum ib_atomic_cap atomic_cap; 308 enum ib_atomic_cap masked_atomic_cap; 309 int max_ee; 310 int max_rdd; 311 int max_mw; 312 int max_raw_ipv6_qp; 313 int max_raw_ethy_qp; 314 int max_mcast_grp; 315 int max_mcast_qp_attach; 316 int max_total_mcast_qp_attach; 317 int max_ah; 318 int max_fmr; 319 int max_map_per_fmr; 320 int max_srq; 321 int max_srq_wr; 322 int max_srq_sge; 323 unsigned int max_fast_reg_page_list_len; 324 u16 max_pkeys; 325 u8 local_ca_ack_delay; 326 int sig_prot_cap; 327 int sig_guard_cap; 328 struct ib_odp_caps odp_caps; 329 uint64_t timestamp_mask; 330 uint64_t hca_core_clock; /* in KHZ */ 331 struct ib_rss_caps rss_caps; 332 u32 max_wq_type_rq; 333 }; 334 335 enum ib_mtu { 336 IB_MTU_256 = 1, 337 IB_MTU_512 = 2, 338 IB_MTU_1024 = 3, 339 IB_MTU_2048 = 4, 340 IB_MTU_4096 = 5 341 }; 342 343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 344 { 345 switch (mtu) { 346 case IB_MTU_256: return 256; 347 case IB_MTU_512: return 512; 348 case IB_MTU_1024: return 1024; 349 case IB_MTU_2048: return 2048; 350 case IB_MTU_4096: return 4096; 351 default: return -1; 352 } 353 } 354 355 enum ib_port_state { 356 IB_PORT_NOP = 0, 357 IB_PORT_DOWN = 1, 358 IB_PORT_INIT = 2, 359 IB_PORT_ARMED = 3, 360 IB_PORT_ACTIVE = 4, 361 IB_PORT_ACTIVE_DEFER = 5 362 }; 363 364 enum ib_port_cap_flags { 365 IB_PORT_SM = 1 << 1, 366 IB_PORT_NOTICE_SUP = 1 << 2, 367 IB_PORT_TRAP_SUP = 1 << 3, 368 IB_PORT_OPT_IPD_SUP = 1 << 4, 369 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 370 IB_PORT_SL_MAP_SUP = 1 << 6, 371 IB_PORT_MKEY_NVRAM = 1 << 7, 372 IB_PORT_PKEY_NVRAM = 1 << 8, 373 IB_PORT_LED_INFO_SUP = 1 << 9, 374 IB_PORT_SM_DISABLED = 1 << 10, 375 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 376 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 377 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 378 IB_PORT_CM_SUP = 1 << 16, 379 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 380 IB_PORT_REINIT_SUP = 1 << 18, 381 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 382 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 383 IB_PORT_DR_NOTICE_SUP = 1 << 21, 384 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 385 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 386 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 387 IB_PORT_CLIENT_REG_SUP = 1 << 25, 388 IB_PORT_IP_BASED_GIDS = 1 << 26, 389 }; 390 391 enum ib_port_width { 392 IB_WIDTH_1X = 1, 393 IB_WIDTH_4X = 2, 394 IB_WIDTH_8X = 4, 395 IB_WIDTH_12X = 8 396 }; 397 398 static inline int ib_width_enum_to_int(enum ib_port_width width) 399 { 400 switch (width) { 401 case IB_WIDTH_1X: return 1; 402 case IB_WIDTH_4X: return 4; 403 case IB_WIDTH_8X: return 8; 404 case IB_WIDTH_12X: return 12; 405 default: return -1; 406 } 407 } 408 409 enum ib_port_speed { 410 IB_SPEED_SDR = 1, 411 IB_SPEED_DDR = 2, 412 IB_SPEED_QDR = 4, 413 IB_SPEED_FDR10 = 8, 414 IB_SPEED_FDR = 16, 415 IB_SPEED_EDR = 32 416 }; 417 418 /** 419 * struct rdma_hw_stats 420 * @timestamp - Used by the core code to track when the last update was 421 * @lifespan - Used by the core code to determine how old the counters 422 * should be before being updated again. Stored in jiffies, defaults 423 * to 10 milliseconds, drivers can override the default be specifying 424 * their own value during their allocation routine. 425 * @name - Array of pointers to static names used for the counters in 426 * directory. 427 * @num_counters - How many hardware counters there are. If name is 428 * shorter than this number, a kernel oops will result. Driver authors 429 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 430 * in their code to prevent this. 431 * @value - Array of u64 counters that are accessed by the sysfs code and 432 * filled in by the drivers get_stats routine 433 */ 434 struct rdma_hw_stats { 435 unsigned long timestamp; 436 unsigned long lifespan; 437 const char * const *names; 438 int num_counters; 439 u64 value[]; 440 }; 441 442 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 443 /** 444 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 445 * for drivers. 446 * @names - Array of static const char * 447 * @num_counters - How many elements in array 448 * @lifespan - How many milliseconds between updates 449 */ 450 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 451 const char * const *names, int num_counters, 452 unsigned long lifespan) 453 { 454 struct rdma_hw_stats *stats; 455 456 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 457 GFP_KERNEL); 458 if (!stats) 459 return NULL; 460 stats->names = names; 461 stats->num_counters = num_counters; 462 stats->lifespan = msecs_to_jiffies(lifespan); 463 464 return stats; 465 } 466 467 468 /* Define bits for the various functionality this port needs to be supported by 469 * the core. 470 */ 471 /* Management 0x00000FFF */ 472 #define RDMA_CORE_CAP_IB_MAD 0x00000001 473 #define RDMA_CORE_CAP_IB_SMI 0x00000002 474 #define RDMA_CORE_CAP_IB_CM 0x00000004 475 #define RDMA_CORE_CAP_IW_CM 0x00000008 476 #define RDMA_CORE_CAP_IB_SA 0x00000010 477 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 478 479 /* Address format 0x000FF000 */ 480 #define RDMA_CORE_CAP_AF_IB 0x00001000 481 #define RDMA_CORE_CAP_ETH_AH 0x00002000 482 483 /* Protocol 0xFFF00000 */ 484 #define RDMA_CORE_CAP_PROT_IB 0x00100000 485 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 486 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 487 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 488 489 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_SMI \ 492 | RDMA_CORE_CAP_IB_CM \ 493 | RDMA_CORE_CAP_IB_SA \ 494 | RDMA_CORE_CAP_AF_IB) 495 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 496 | RDMA_CORE_CAP_IB_MAD \ 497 | RDMA_CORE_CAP_IB_CM \ 498 | RDMA_CORE_CAP_AF_IB \ 499 | RDMA_CORE_CAP_ETH_AH) 500 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 501 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 502 | RDMA_CORE_CAP_IB_MAD \ 503 | RDMA_CORE_CAP_IB_CM \ 504 | RDMA_CORE_CAP_AF_IB \ 505 | RDMA_CORE_CAP_ETH_AH) 506 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 507 | RDMA_CORE_CAP_IW_CM) 508 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 509 | RDMA_CORE_CAP_OPA_MAD) 510 511 struct ib_port_attr { 512 u64 subnet_prefix; 513 enum ib_port_state state; 514 enum ib_mtu max_mtu; 515 enum ib_mtu active_mtu; 516 int gid_tbl_len; 517 u32 port_cap_flags; 518 u32 max_msg_sz; 519 u32 bad_pkey_cntr; 520 u32 qkey_viol_cntr; 521 u16 pkey_tbl_len; 522 u16 lid; 523 u16 sm_lid; 524 u8 lmc; 525 u8 max_vl_num; 526 u8 sm_sl; 527 u8 subnet_timeout; 528 u8 init_type_reply; 529 u8 active_width; 530 u8 active_speed; 531 u8 phys_state; 532 bool grh_required; 533 }; 534 535 enum ib_device_modify_flags { 536 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 537 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 538 }; 539 540 #define IB_DEVICE_NODE_DESC_MAX 64 541 542 struct ib_device_modify { 543 u64 sys_image_guid; 544 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 545 }; 546 547 enum ib_port_modify_flags { 548 IB_PORT_SHUTDOWN = 1, 549 IB_PORT_INIT_TYPE = (1<<2), 550 IB_PORT_RESET_QKEY_CNTR = (1<<3) 551 }; 552 553 struct ib_port_modify { 554 u32 set_port_cap_mask; 555 u32 clr_port_cap_mask; 556 u8 init_type; 557 }; 558 559 enum ib_event_type { 560 IB_EVENT_CQ_ERR, 561 IB_EVENT_QP_FATAL, 562 IB_EVENT_QP_REQ_ERR, 563 IB_EVENT_QP_ACCESS_ERR, 564 IB_EVENT_COMM_EST, 565 IB_EVENT_SQ_DRAINED, 566 IB_EVENT_PATH_MIG, 567 IB_EVENT_PATH_MIG_ERR, 568 IB_EVENT_DEVICE_FATAL, 569 IB_EVENT_PORT_ACTIVE, 570 IB_EVENT_PORT_ERR, 571 IB_EVENT_LID_CHANGE, 572 IB_EVENT_PKEY_CHANGE, 573 IB_EVENT_SM_CHANGE, 574 IB_EVENT_SRQ_ERR, 575 IB_EVENT_SRQ_LIMIT_REACHED, 576 IB_EVENT_QP_LAST_WQE_REACHED, 577 IB_EVENT_CLIENT_REREGISTER, 578 IB_EVENT_GID_CHANGE, 579 IB_EVENT_WQ_FATAL, 580 }; 581 582 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 583 584 struct ib_event { 585 struct ib_device *device; 586 union { 587 struct ib_cq *cq; 588 struct ib_qp *qp; 589 struct ib_srq *srq; 590 struct ib_wq *wq; 591 u8 port_num; 592 } element; 593 enum ib_event_type event; 594 }; 595 596 struct ib_event_handler { 597 struct ib_device *device; 598 void (*handler)(struct ib_event_handler *, struct ib_event *); 599 struct list_head list; 600 }; 601 602 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 603 do { \ 604 (_ptr)->device = _device; \ 605 (_ptr)->handler = _handler; \ 606 INIT_LIST_HEAD(&(_ptr)->list); \ 607 } while (0) 608 609 struct ib_global_route { 610 union ib_gid dgid; 611 u32 flow_label; 612 u8 sgid_index; 613 u8 hop_limit; 614 u8 traffic_class; 615 }; 616 617 struct ib_grh { 618 __be32 version_tclass_flow; 619 __be16 paylen; 620 u8 next_hdr; 621 u8 hop_limit; 622 union ib_gid sgid; 623 union ib_gid dgid; 624 }; 625 626 union rdma_network_hdr { 627 struct ib_grh ibgrh; 628 struct { 629 /* The IB spec states that if it's IPv4, the header 630 * is located in the last 20 bytes of the header. 631 */ 632 u8 reserved[20]; 633 struct iphdr roce4grh; 634 }; 635 }; 636 637 enum { 638 IB_MULTICAST_QPN = 0xffffff 639 }; 640 641 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 642 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 643 644 enum ib_ah_flags { 645 IB_AH_GRH = 1 646 }; 647 648 enum ib_rate { 649 IB_RATE_PORT_CURRENT = 0, 650 IB_RATE_2_5_GBPS = 2, 651 IB_RATE_5_GBPS = 5, 652 IB_RATE_10_GBPS = 3, 653 IB_RATE_20_GBPS = 6, 654 IB_RATE_30_GBPS = 4, 655 IB_RATE_40_GBPS = 7, 656 IB_RATE_60_GBPS = 8, 657 IB_RATE_80_GBPS = 9, 658 IB_RATE_120_GBPS = 10, 659 IB_RATE_14_GBPS = 11, 660 IB_RATE_56_GBPS = 12, 661 IB_RATE_112_GBPS = 13, 662 IB_RATE_168_GBPS = 14, 663 IB_RATE_25_GBPS = 15, 664 IB_RATE_100_GBPS = 16, 665 IB_RATE_200_GBPS = 17, 666 IB_RATE_300_GBPS = 18 667 }; 668 669 /** 670 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 671 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 672 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 673 * @rate: rate to convert. 674 */ 675 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 676 677 /** 678 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 679 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 680 * @rate: rate to convert. 681 */ 682 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 683 684 685 /** 686 * enum ib_mr_type - memory region type 687 * @IB_MR_TYPE_MEM_REG: memory region that is used for 688 * normal registration 689 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 690 * signature operations (data-integrity 691 * capable regions) 692 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 693 * register any arbitrary sg lists (without 694 * the normal mr constraints - see 695 * ib_map_mr_sg) 696 */ 697 enum ib_mr_type { 698 IB_MR_TYPE_MEM_REG, 699 IB_MR_TYPE_SIGNATURE, 700 IB_MR_TYPE_SG_GAPS, 701 }; 702 703 /** 704 * Signature types 705 * IB_SIG_TYPE_NONE: Unprotected. 706 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 707 */ 708 enum ib_signature_type { 709 IB_SIG_TYPE_NONE, 710 IB_SIG_TYPE_T10_DIF, 711 }; 712 713 /** 714 * Signature T10-DIF block-guard types 715 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 716 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 717 */ 718 enum ib_t10_dif_bg_type { 719 IB_T10DIF_CRC, 720 IB_T10DIF_CSUM 721 }; 722 723 /** 724 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 725 * domain. 726 * @bg_type: T10-DIF block guard type (CRC|CSUM) 727 * @pi_interval: protection information interval. 728 * @bg: seed of guard computation. 729 * @app_tag: application tag of guard block 730 * @ref_tag: initial guard block reference tag. 731 * @ref_remap: Indicate wethear the reftag increments each block 732 * @app_escape: Indicate to skip block check if apptag=0xffff 733 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 734 * @apptag_check_mask: check bitmask of application tag. 735 */ 736 struct ib_t10_dif_domain { 737 enum ib_t10_dif_bg_type bg_type; 738 u16 pi_interval; 739 u16 bg; 740 u16 app_tag; 741 u32 ref_tag; 742 bool ref_remap; 743 bool app_escape; 744 bool ref_escape; 745 u16 apptag_check_mask; 746 }; 747 748 /** 749 * struct ib_sig_domain - Parameters for signature domain 750 * @sig_type: specific signauture type 751 * @sig: union of all signature domain attributes that may 752 * be used to set domain layout. 753 */ 754 struct ib_sig_domain { 755 enum ib_signature_type sig_type; 756 union { 757 struct ib_t10_dif_domain dif; 758 } sig; 759 }; 760 761 /** 762 * struct ib_sig_attrs - Parameters for signature handover operation 763 * @check_mask: bitmask for signature byte check (8 bytes) 764 * @mem: memory domain layout desciptor. 765 * @wire: wire domain layout desciptor. 766 */ 767 struct ib_sig_attrs { 768 u8 check_mask; 769 struct ib_sig_domain mem; 770 struct ib_sig_domain wire; 771 }; 772 773 enum ib_sig_err_type { 774 IB_SIG_BAD_GUARD, 775 IB_SIG_BAD_REFTAG, 776 IB_SIG_BAD_APPTAG, 777 }; 778 779 /** 780 * struct ib_sig_err - signature error descriptor 781 */ 782 struct ib_sig_err { 783 enum ib_sig_err_type err_type; 784 u32 expected; 785 u32 actual; 786 u64 sig_err_offset; 787 u32 key; 788 }; 789 790 enum ib_mr_status_check { 791 IB_MR_CHECK_SIG_STATUS = 1, 792 }; 793 794 /** 795 * struct ib_mr_status - Memory region status container 796 * 797 * @fail_status: Bitmask of MR checks status. For each 798 * failed check a corresponding status bit is set. 799 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 800 * failure. 801 */ 802 struct ib_mr_status { 803 u32 fail_status; 804 struct ib_sig_err sig_err; 805 }; 806 807 /** 808 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 809 * enum. 810 * @mult: multiple to convert. 811 */ 812 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 813 814 struct ib_ah_attr { 815 struct ib_global_route grh; 816 u16 dlid; 817 u8 sl; 818 u8 src_path_bits; 819 u8 static_rate; 820 u8 ah_flags; 821 u8 port_num; 822 u8 dmac[ETH_ALEN]; 823 }; 824 825 enum ib_wc_status { 826 IB_WC_SUCCESS, 827 IB_WC_LOC_LEN_ERR, 828 IB_WC_LOC_QP_OP_ERR, 829 IB_WC_LOC_EEC_OP_ERR, 830 IB_WC_LOC_PROT_ERR, 831 IB_WC_WR_FLUSH_ERR, 832 IB_WC_MW_BIND_ERR, 833 IB_WC_BAD_RESP_ERR, 834 IB_WC_LOC_ACCESS_ERR, 835 IB_WC_REM_INV_REQ_ERR, 836 IB_WC_REM_ACCESS_ERR, 837 IB_WC_REM_OP_ERR, 838 IB_WC_RETRY_EXC_ERR, 839 IB_WC_RNR_RETRY_EXC_ERR, 840 IB_WC_LOC_RDD_VIOL_ERR, 841 IB_WC_REM_INV_RD_REQ_ERR, 842 IB_WC_REM_ABORT_ERR, 843 IB_WC_INV_EECN_ERR, 844 IB_WC_INV_EEC_STATE_ERR, 845 IB_WC_FATAL_ERR, 846 IB_WC_RESP_TIMEOUT_ERR, 847 IB_WC_GENERAL_ERR 848 }; 849 850 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 851 852 enum ib_wc_opcode { 853 IB_WC_SEND, 854 IB_WC_RDMA_WRITE, 855 IB_WC_RDMA_READ, 856 IB_WC_COMP_SWAP, 857 IB_WC_FETCH_ADD, 858 IB_WC_LSO, 859 IB_WC_LOCAL_INV, 860 IB_WC_REG_MR, 861 IB_WC_MASKED_COMP_SWAP, 862 IB_WC_MASKED_FETCH_ADD, 863 /* 864 * Set value of IB_WC_RECV so consumers can test if a completion is a 865 * receive by testing (opcode & IB_WC_RECV). 866 */ 867 IB_WC_RECV = 1 << 7, 868 IB_WC_RECV_RDMA_WITH_IMM 869 }; 870 871 enum ib_wc_flags { 872 IB_WC_GRH = 1, 873 IB_WC_WITH_IMM = (1<<1), 874 IB_WC_WITH_INVALIDATE = (1<<2), 875 IB_WC_IP_CSUM_OK = (1<<3), 876 IB_WC_WITH_SMAC = (1<<4), 877 IB_WC_WITH_VLAN = (1<<5), 878 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 879 }; 880 881 struct ib_wc { 882 union { 883 u64 wr_id; 884 struct ib_cqe *wr_cqe; 885 }; 886 enum ib_wc_status status; 887 enum ib_wc_opcode opcode; 888 u32 vendor_err; 889 u32 byte_len; 890 struct ib_qp *qp; 891 union { 892 __be32 imm_data; 893 u32 invalidate_rkey; 894 } ex; 895 u32 src_qp; 896 int wc_flags; 897 u16 pkey_index; 898 u16 slid; 899 u8 sl; 900 u8 dlid_path_bits; 901 u8 port_num; /* valid only for DR SMPs on switches */ 902 u8 smac[ETH_ALEN]; 903 u16 vlan_id; 904 u8 network_hdr_type; 905 }; 906 907 enum ib_cq_notify_flags { 908 IB_CQ_SOLICITED = 1 << 0, 909 IB_CQ_NEXT_COMP = 1 << 1, 910 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 911 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 912 }; 913 914 enum ib_srq_type { 915 IB_SRQT_BASIC, 916 IB_SRQT_XRC 917 }; 918 919 enum ib_srq_attr_mask { 920 IB_SRQ_MAX_WR = 1 << 0, 921 IB_SRQ_LIMIT = 1 << 1, 922 }; 923 924 struct ib_srq_attr { 925 u32 max_wr; 926 u32 max_sge; 927 u32 srq_limit; 928 }; 929 930 struct ib_srq_init_attr { 931 void (*event_handler)(struct ib_event *, void *); 932 void *srq_context; 933 struct ib_srq_attr attr; 934 enum ib_srq_type srq_type; 935 936 union { 937 struct { 938 struct ib_xrcd *xrcd; 939 struct ib_cq *cq; 940 } xrc; 941 } ext; 942 }; 943 944 struct ib_qp_cap { 945 u32 max_send_wr; 946 u32 max_recv_wr; 947 u32 max_send_sge; 948 u32 max_recv_sge; 949 u32 max_inline_data; 950 951 /* 952 * Maximum number of rdma_rw_ctx structures in flight at a time. 953 * ib_create_qp() will calculate the right amount of neededed WRs 954 * and MRs based on this. 955 */ 956 u32 max_rdma_ctxs; 957 }; 958 959 enum ib_sig_type { 960 IB_SIGNAL_ALL_WR, 961 IB_SIGNAL_REQ_WR 962 }; 963 964 enum ib_qp_type { 965 /* 966 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 967 * here (and in that order) since the MAD layer uses them as 968 * indices into a 2-entry table. 969 */ 970 IB_QPT_SMI, 971 IB_QPT_GSI, 972 973 IB_QPT_RC, 974 IB_QPT_UC, 975 IB_QPT_UD, 976 IB_QPT_RAW_IPV6, 977 IB_QPT_RAW_ETHERTYPE, 978 IB_QPT_RAW_PACKET = 8, 979 IB_QPT_XRC_INI = 9, 980 IB_QPT_XRC_TGT, 981 IB_QPT_MAX, 982 /* Reserve a range for qp types internal to the low level driver. 983 * These qp types will not be visible at the IB core layer, so the 984 * IB_QPT_MAX usages should not be affected in the core layer 985 */ 986 IB_QPT_RESERVED1 = 0x1000, 987 IB_QPT_RESERVED2, 988 IB_QPT_RESERVED3, 989 IB_QPT_RESERVED4, 990 IB_QPT_RESERVED5, 991 IB_QPT_RESERVED6, 992 IB_QPT_RESERVED7, 993 IB_QPT_RESERVED8, 994 IB_QPT_RESERVED9, 995 IB_QPT_RESERVED10, 996 }; 997 998 enum ib_qp_create_flags { 999 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1000 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1001 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1002 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1003 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1004 IB_QP_CREATE_NETIF_QP = 1 << 5, 1005 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1006 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1007 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1008 /* reserve bits 26-31 for low level drivers' internal use */ 1009 IB_QP_CREATE_RESERVED_START = 1 << 26, 1010 IB_QP_CREATE_RESERVED_END = 1 << 31, 1011 }; 1012 1013 /* 1014 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1015 * callback to destroy the passed in QP. 1016 */ 1017 1018 struct ib_qp_init_attr { 1019 void (*event_handler)(struct ib_event *, void *); 1020 void *qp_context; 1021 struct ib_cq *send_cq; 1022 struct ib_cq *recv_cq; 1023 struct ib_srq *srq; 1024 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1025 struct ib_qp_cap cap; 1026 enum ib_sig_type sq_sig_type; 1027 enum ib_qp_type qp_type; 1028 enum ib_qp_create_flags create_flags; 1029 1030 /* 1031 * Only needed for special QP types, or when using the RW API. 1032 */ 1033 u8 port_num; 1034 struct ib_rwq_ind_table *rwq_ind_tbl; 1035 }; 1036 1037 struct ib_qp_open_attr { 1038 void (*event_handler)(struct ib_event *, void *); 1039 void *qp_context; 1040 u32 qp_num; 1041 enum ib_qp_type qp_type; 1042 }; 1043 1044 enum ib_rnr_timeout { 1045 IB_RNR_TIMER_655_36 = 0, 1046 IB_RNR_TIMER_000_01 = 1, 1047 IB_RNR_TIMER_000_02 = 2, 1048 IB_RNR_TIMER_000_03 = 3, 1049 IB_RNR_TIMER_000_04 = 4, 1050 IB_RNR_TIMER_000_06 = 5, 1051 IB_RNR_TIMER_000_08 = 6, 1052 IB_RNR_TIMER_000_12 = 7, 1053 IB_RNR_TIMER_000_16 = 8, 1054 IB_RNR_TIMER_000_24 = 9, 1055 IB_RNR_TIMER_000_32 = 10, 1056 IB_RNR_TIMER_000_48 = 11, 1057 IB_RNR_TIMER_000_64 = 12, 1058 IB_RNR_TIMER_000_96 = 13, 1059 IB_RNR_TIMER_001_28 = 14, 1060 IB_RNR_TIMER_001_92 = 15, 1061 IB_RNR_TIMER_002_56 = 16, 1062 IB_RNR_TIMER_003_84 = 17, 1063 IB_RNR_TIMER_005_12 = 18, 1064 IB_RNR_TIMER_007_68 = 19, 1065 IB_RNR_TIMER_010_24 = 20, 1066 IB_RNR_TIMER_015_36 = 21, 1067 IB_RNR_TIMER_020_48 = 22, 1068 IB_RNR_TIMER_030_72 = 23, 1069 IB_RNR_TIMER_040_96 = 24, 1070 IB_RNR_TIMER_061_44 = 25, 1071 IB_RNR_TIMER_081_92 = 26, 1072 IB_RNR_TIMER_122_88 = 27, 1073 IB_RNR_TIMER_163_84 = 28, 1074 IB_RNR_TIMER_245_76 = 29, 1075 IB_RNR_TIMER_327_68 = 30, 1076 IB_RNR_TIMER_491_52 = 31 1077 }; 1078 1079 enum ib_qp_attr_mask { 1080 IB_QP_STATE = 1, 1081 IB_QP_CUR_STATE = (1<<1), 1082 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1083 IB_QP_ACCESS_FLAGS = (1<<3), 1084 IB_QP_PKEY_INDEX = (1<<4), 1085 IB_QP_PORT = (1<<5), 1086 IB_QP_QKEY = (1<<6), 1087 IB_QP_AV = (1<<7), 1088 IB_QP_PATH_MTU = (1<<8), 1089 IB_QP_TIMEOUT = (1<<9), 1090 IB_QP_RETRY_CNT = (1<<10), 1091 IB_QP_RNR_RETRY = (1<<11), 1092 IB_QP_RQ_PSN = (1<<12), 1093 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1094 IB_QP_ALT_PATH = (1<<14), 1095 IB_QP_MIN_RNR_TIMER = (1<<15), 1096 IB_QP_SQ_PSN = (1<<16), 1097 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1098 IB_QP_PATH_MIG_STATE = (1<<18), 1099 IB_QP_CAP = (1<<19), 1100 IB_QP_DEST_QPN = (1<<20), 1101 IB_QP_RESERVED1 = (1<<21), 1102 IB_QP_RESERVED2 = (1<<22), 1103 IB_QP_RESERVED3 = (1<<23), 1104 IB_QP_RESERVED4 = (1<<24), 1105 }; 1106 1107 enum ib_qp_state { 1108 IB_QPS_RESET, 1109 IB_QPS_INIT, 1110 IB_QPS_RTR, 1111 IB_QPS_RTS, 1112 IB_QPS_SQD, 1113 IB_QPS_SQE, 1114 IB_QPS_ERR 1115 }; 1116 1117 enum ib_mig_state { 1118 IB_MIG_MIGRATED, 1119 IB_MIG_REARM, 1120 IB_MIG_ARMED 1121 }; 1122 1123 enum ib_mw_type { 1124 IB_MW_TYPE_1 = 1, 1125 IB_MW_TYPE_2 = 2 1126 }; 1127 1128 struct ib_qp_attr { 1129 enum ib_qp_state qp_state; 1130 enum ib_qp_state cur_qp_state; 1131 enum ib_mtu path_mtu; 1132 enum ib_mig_state path_mig_state; 1133 u32 qkey; 1134 u32 rq_psn; 1135 u32 sq_psn; 1136 u32 dest_qp_num; 1137 int qp_access_flags; 1138 struct ib_qp_cap cap; 1139 struct ib_ah_attr ah_attr; 1140 struct ib_ah_attr alt_ah_attr; 1141 u16 pkey_index; 1142 u16 alt_pkey_index; 1143 u8 en_sqd_async_notify; 1144 u8 sq_draining; 1145 u8 max_rd_atomic; 1146 u8 max_dest_rd_atomic; 1147 u8 min_rnr_timer; 1148 u8 port_num; 1149 u8 timeout; 1150 u8 retry_cnt; 1151 u8 rnr_retry; 1152 u8 alt_port_num; 1153 u8 alt_timeout; 1154 }; 1155 1156 enum ib_wr_opcode { 1157 IB_WR_RDMA_WRITE, 1158 IB_WR_RDMA_WRITE_WITH_IMM, 1159 IB_WR_SEND, 1160 IB_WR_SEND_WITH_IMM, 1161 IB_WR_RDMA_READ, 1162 IB_WR_ATOMIC_CMP_AND_SWP, 1163 IB_WR_ATOMIC_FETCH_AND_ADD, 1164 IB_WR_LSO, 1165 IB_WR_SEND_WITH_INV, 1166 IB_WR_RDMA_READ_WITH_INV, 1167 IB_WR_LOCAL_INV, 1168 IB_WR_REG_MR, 1169 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1170 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1171 IB_WR_REG_SIG_MR, 1172 /* reserve values for low level drivers' internal use. 1173 * These values will not be used at all in the ib core layer. 1174 */ 1175 IB_WR_RESERVED1 = 0xf0, 1176 IB_WR_RESERVED2, 1177 IB_WR_RESERVED3, 1178 IB_WR_RESERVED4, 1179 IB_WR_RESERVED5, 1180 IB_WR_RESERVED6, 1181 IB_WR_RESERVED7, 1182 IB_WR_RESERVED8, 1183 IB_WR_RESERVED9, 1184 IB_WR_RESERVED10, 1185 }; 1186 1187 enum ib_send_flags { 1188 IB_SEND_FENCE = 1, 1189 IB_SEND_SIGNALED = (1<<1), 1190 IB_SEND_SOLICITED = (1<<2), 1191 IB_SEND_INLINE = (1<<3), 1192 IB_SEND_IP_CSUM = (1<<4), 1193 1194 /* reserve bits 26-31 for low level drivers' internal use */ 1195 IB_SEND_RESERVED_START = (1 << 26), 1196 IB_SEND_RESERVED_END = (1 << 31), 1197 }; 1198 1199 struct ib_sge { 1200 u64 addr; 1201 u32 length; 1202 u32 lkey; 1203 }; 1204 1205 struct ib_cqe { 1206 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1207 }; 1208 1209 struct ib_send_wr { 1210 struct ib_send_wr *next; 1211 union { 1212 u64 wr_id; 1213 struct ib_cqe *wr_cqe; 1214 }; 1215 struct ib_sge *sg_list; 1216 int num_sge; 1217 enum ib_wr_opcode opcode; 1218 int send_flags; 1219 union { 1220 __be32 imm_data; 1221 u32 invalidate_rkey; 1222 } ex; 1223 }; 1224 1225 struct ib_rdma_wr { 1226 struct ib_send_wr wr; 1227 u64 remote_addr; 1228 u32 rkey; 1229 }; 1230 1231 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1232 { 1233 return container_of(wr, struct ib_rdma_wr, wr); 1234 } 1235 1236 struct ib_atomic_wr { 1237 struct ib_send_wr wr; 1238 u64 remote_addr; 1239 u64 compare_add; 1240 u64 swap; 1241 u64 compare_add_mask; 1242 u64 swap_mask; 1243 u32 rkey; 1244 }; 1245 1246 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1247 { 1248 return container_of(wr, struct ib_atomic_wr, wr); 1249 } 1250 1251 struct ib_ud_wr { 1252 struct ib_send_wr wr; 1253 struct ib_ah *ah; 1254 void *header; 1255 int hlen; 1256 int mss; 1257 u32 remote_qpn; 1258 u32 remote_qkey; 1259 u16 pkey_index; /* valid for GSI only */ 1260 u8 port_num; /* valid for DR SMPs on switch only */ 1261 }; 1262 1263 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1264 { 1265 return container_of(wr, struct ib_ud_wr, wr); 1266 } 1267 1268 struct ib_reg_wr { 1269 struct ib_send_wr wr; 1270 struct ib_mr *mr; 1271 u32 key; 1272 int access; 1273 }; 1274 1275 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1276 { 1277 return container_of(wr, struct ib_reg_wr, wr); 1278 } 1279 1280 struct ib_sig_handover_wr { 1281 struct ib_send_wr wr; 1282 struct ib_sig_attrs *sig_attrs; 1283 struct ib_mr *sig_mr; 1284 int access_flags; 1285 struct ib_sge *prot; 1286 }; 1287 1288 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1289 { 1290 return container_of(wr, struct ib_sig_handover_wr, wr); 1291 } 1292 1293 struct ib_recv_wr { 1294 struct ib_recv_wr *next; 1295 union { 1296 u64 wr_id; 1297 struct ib_cqe *wr_cqe; 1298 }; 1299 struct ib_sge *sg_list; 1300 int num_sge; 1301 }; 1302 1303 enum ib_access_flags { 1304 IB_ACCESS_LOCAL_WRITE = 1, 1305 IB_ACCESS_REMOTE_WRITE = (1<<1), 1306 IB_ACCESS_REMOTE_READ = (1<<2), 1307 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1308 IB_ACCESS_MW_BIND = (1<<4), 1309 IB_ZERO_BASED = (1<<5), 1310 IB_ACCESS_ON_DEMAND = (1<<6), 1311 }; 1312 1313 /* 1314 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1315 * are hidden here instead of a uapi header! 1316 */ 1317 enum ib_mr_rereg_flags { 1318 IB_MR_REREG_TRANS = 1, 1319 IB_MR_REREG_PD = (1<<1), 1320 IB_MR_REREG_ACCESS = (1<<2), 1321 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1322 }; 1323 1324 struct ib_fmr_attr { 1325 int max_pages; 1326 int max_maps; 1327 u8 page_shift; 1328 }; 1329 1330 struct ib_umem; 1331 1332 struct ib_ucontext { 1333 struct ib_device *device; 1334 struct list_head pd_list; 1335 struct list_head mr_list; 1336 struct list_head mw_list; 1337 struct list_head cq_list; 1338 struct list_head qp_list; 1339 struct list_head srq_list; 1340 struct list_head ah_list; 1341 struct list_head xrcd_list; 1342 struct list_head rule_list; 1343 struct list_head wq_list; 1344 struct list_head rwq_ind_tbl_list; 1345 int closing; 1346 1347 struct pid *tgid; 1348 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1349 struct rb_root umem_tree; 1350 /* 1351 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1352 * mmu notifiers registration. 1353 */ 1354 struct rw_semaphore umem_rwsem; 1355 void (*invalidate_range)(struct ib_umem *umem, 1356 unsigned long start, unsigned long end); 1357 1358 struct mmu_notifier mn; 1359 atomic_t notifier_count; 1360 /* A list of umems that don't have private mmu notifier counters yet. */ 1361 struct list_head no_private_counters; 1362 int odp_mrs_count; 1363 #endif 1364 }; 1365 1366 struct ib_uobject { 1367 u64 user_handle; /* handle given to us by userspace */ 1368 struct ib_ucontext *context; /* associated user context */ 1369 void *object; /* containing object */ 1370 struct list_head list; /* link to context's list */ 1371 int id; /* index into kernel idr */ 1372 struct kref ref; 1373 struct rw_semaphore mutex; /* protects .live */ 1374 struct rcu_head rcu; /* kfree_rcu() overhead */ 1375 int live; 1376 }; 1377 1378 struct ib_udata { 1379 const void __user *inbuf; 1380 void __user *outbuf; 1381 size_t inlen; 1382 size_t outlen; 1383 }; 1384 1385 struct ib_pd { 1386 u32 local_dma_lkey; 1387 u32 flags; 1388 struct ib_device *device; 1389 struct ib_uobject *uobject; 1390 atomic_t usecnt; /* count all resources */ 1391 1392 u32 unsafe_global_rkey; 1393 1394 /* 1395 * Implementation details of the RDMA core, don't use in drivers: 1396 */ 1397 struct ib_mr *__internal_mr; 1398 }; 1399 1400 struct ib_xrcd { 1401 struct ib_device *device; 1402 atomic_t usecnt; /* count all exposed resources */ 1403 struct inode *inode; 1404 1405 struct mutex tgt_qp_mutex; 1406 struct list_head tgt_qp_list; 1407 }; 1408 1409 struct ib_ah { 1410 struct ib_device *device; 1411 struct ib_pd *pd; 1412 struct ib_uobject *uobject; 1413 }; 1414 1415 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1416 1417 enum ib_poll_context { 1418 IB_POLL_DIRECT, /* caller context, no hw completions */ 1419 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1420 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1421 }; 1422 1423 struct ib_cq { 1424 struct ib_device *device; 1425 struct ib_uobject *uobject; 1426 ib_comp_handler comp_handler; 1427 void (*event_handler)(struct ib_event *, void *); 1428 void *cq_context; 1429 int cqe; 1430 atomic_t usecnt; /* count number of work queues */ 1431 enum ib_poll_context poll_ctx; 1432 struct ib_wc *wc; 1433 union { 1434 struct irq_poll iop; 1435 struct work_struct work; 1436 }; 1437 }; 1438 1439 struct ib_srq { 1440 struct ib_device *device; 1441 struct ib_pd *pd; 1442 struct ib_uobject *uobject; 1443 void (*event_handler)(struct ib_event *, void *); 1444 void *srq_context; 1445 enum ib_srq_type srq_type; 1446 atomic_t usecnt; 1447 1448 union { 1449 struct { 1450 struct ib_xrcd *xrcd; 1451 struct ib_cq *cq; 1452 u32 srq_num; 1453 } xrc; 1454 } ext; 1455 }; 1456 1457 enum ib_wq_type { 1458 IB_WQT_RQ 1459 }; 1460 1461 enum ib_wq_state { 1462 IB_WQS_RESET, 1463 IB_WQS_RDY, 1464 IB_WQS_ERR 1465 }; 1466 1467 struct ib_wq { 1468 struct ib_device *device; 1469 struct ib_uobject *uobject; 1470 void *wq_context; 1471 void (*event_handler)(struct ib_event *, void *); 1472 struct ib_pd *pd; 1473 struct ib_cq *cq; 1474 u32 wq_num; 1475 enum ib_wq_state state; 1476 enum ib_wq_type wq_type; 1477 atomic_t usecnt; 1478 }; 1479 1480 struct ib_wq_init_attr { 1481 void *wq_context; 1482 enum ib_wq_type wq_type; 1483 u32 max_wr; 1484 u32 max_sge; 1485 struct ib_cq *cq; 1486 void (*event_handler)(struct ib_event *, void *); 1487 }; 1488 1489 enum ib_wq_attr_mask { 1490 IB_WQ_STATE = 1 << 0, 1491 IB_WQ_CUR_STATE = 1 << 1, 1492 }; 1493 1494 struct ib_wq_attr { 1495 enum ib_wq_state wq_state; 1496 enum ib_wq_state curr_wq_state; 1497 }; 1498 1499 struct ib_rwq_ind_table { 1500 struct ib_device *device; 1501 struct ib_uobject *uobject; 1502 atomic_t usecnt; 1503 u32 ind_tbl_num; 1504 u32 log_ind_tbl_size; 1505 struct ib_wq **ind_tbl; 1506 }; 1507 1508 struct ib_rwq_ind_table_init_attr { 1509 u32 log_ind_tbl_size; 1510 /* Each entry is a pointer to Receive Work Queue */ 1511 struct ib_wq **ind_tbl; 1512 }; 1513 1514 /* 1515 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1516 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1517 */ 1518 struct ib_qp { 1519 struct ib_device *device; 1520 struct ib_pd *pd; 1521 struct ib_cq *send_cq; 1522 struct ib_cq *recv_cq; 1523 spinlock_t mr_lock; 1524 int mrs_used; 1525 struct list_head rdma_mrs; 1526 struct list_head sig_mrs; 1527 struct ib_srq *srq; 1528 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1529 struct list_head xrcd_list; 1530 1531 /* count times opened, mcast attaches, flow attaches */ 1532 atomic_t usecnt; 1533 struct list_head open_list; 1534 struct ib_qp *real_qp; 1535 struct ib_uobject *uobject; 1536 void (*event_handler)(struct ib_event *, void *); 1537 void *qp_context; 1538 u32 qp_num; 1539 u32 max_write_sge; 1540 u32 max_read_sge; 1541 enum ib_qp_type qp_type; 1542 struct ib_rwq_ind_table *rwq_ind_tbl; 1543 }; 1544 1545 struct ib_mr { 1546 struct ib_device *device; 1547 struct ib_pd *pd; 1548 u32 lkey; 1549 u32 rkey; 1550 u64 iova; 1551 u32 length; 1552 unsigned int page_size; 1553 bool need_inval; 1554 union { 1555 struct ib_uobject *uobject; /* user */ 1556 struct list_head qp_entry; /* FR */ 1557 }; 1558 }; 1559 1560 struct ib_mw { 1561 struct ib_device *device; 1562 struct ib_pd *pd; 1563 struct ib_uobject *uobject; 1564 u32 rkey; 1565 enum ib_mw_type type; 1566 }; 1567 1568 struct ib_fmr { 1569 struct ib_device *device; 1570 struct ib_pd *pd; 1571 struct list_head list; 1572 u32 lkey; 1573 u32 rkey; 1574 }; 1575 1576 /* Supported steering options */ 1577 enum ib_flow_attr_type { 1578 /* steering according to rule specifications */ 1579 IB_FLOW_ATTR_NORMAL = 0x0, 1580 /* default unicast and multicast rule - 1581 * receive all Eth traffic which isn't steered to any QP 1582 */ 1583 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1584 /* default multicast rule - 1585 * receive all Eth multicast traffic which isn't steered to any QP 1586 */ 1587 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1588 /* sniffer rule - receive all port traffic */ 1589 IB_FLOW_ATTR_SNIFFER = 0x3 1590 }; 1591 1592 /* Supported steering header types */ 1593 enum ib_flow_spec_type { 1594 /* L2 headers*/ 1595 IB_FLOW_SPEC_ETH = 0x20, 1596 IB_FLOW_SPEC_IB = 0x22, 1597 /* L3 header*/ 1598 IB_FLOW_SPEC_IPV4 = 0x30, 1599 IB_FLOW_SPEC_IPV6 = 0x31, 1600 /* L4 headers*/ 1601 IB_FLOW_SPEC_TCP = 0x40, 1602 IB_FLOW_SPEC_UDP = 0x41 1603 }; 1604 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1605 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1606 1607 /* Flow steering rule priority is set according to it's domain. 1608 * Lower domain value means higher priority. 1609 */ 1610 enum ib_flow_domain { 1611 IB_FLOW_DOMAIN_USER, 1612 IB_FLOW_DOMAIN_ETHTOOL, 1613 IB_FLOW_DOMAIN_RFS, 1614 IB_FLOW_DOMAIN_NIC, 1615 IB_FLOW_DOMAIN_NUM /* Must be last */ 1616 }; 1617 1618 enum ib_flow_flags { 1619 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1620 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1621 }; 1622 1623 struct ib_flow_eth_filter { 1624 u8 dst_mac[6]; 1625 u8 src_mac[6]; 1626 __be16 ether_type; 1627 __be16 vlan_tag; 1628 /* Must be last */ 1629 u8 real_sz[0]; 1630 }; 1631 1632 struct ib_flow_spec_eth { 1633 enum ib_flow_spec_type type; 1634 u16 size; 1635 struct ib_flow_eth_filter val; 1636 struct ib_flow_eth_filter mask; 1637 }; 1638 1639 struct ib_flow_ib_filter { 1640 __be16 dlid; 1641 __u8 sl; 1642 /* Must be last */ 1643 u8 real_sz[0]; 1644 }; 1645 1646 struct ib_flow_spec_ib { 1647 enum ib_flow_spec_type type; 1648 u16 size; 1649 struct ib_flow_ib_filter val; 1650 struct ib_flow_ib_filter mask; 1651 }; 1652 1653 /* IPv4 header flags */ 1654 enum ib_ipv4_flags { 1655 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1656 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1657 last have this flag set */ 1658 }; 1659 1660 struct ib_flow_ipv4_filter { 1661 __be32 src_ip; 1662 __be32 dst_ip; 1663 u8 proto; 1664 u8 tos; 1665 u8 ttl; 1666 u8 flags; 1667 /* Must be last */ 1668 u8 real_sz[0]; 1669 }; 1670 1671 struct ib_flow_spec_ipv4 { 1672 enum ib_flow_spec_type type; 1673 u16 size; 1674 struct ib_flow_ipv4_filter val; 1675 struct ib_flow_ipv4_filter mask; 1676 }; 1677 1678 struct ib_flow_ipv6_filter { 1679 u8 src_ip[16]; 1680 u8 dst_ip[16]; 1681 __be32 flow_label; 1682 u8 next_hdr; 1683 u8 traffic_class; 1684 u8 hop_limit; 1685 /* Must be last */ 1686 u8 real_sz[0]; 1687 }; 1688 1689 struct ib_flow_spec_ipv6 { 1690 enum ib_flow_spec_type type; 1691 u16 size; 1692 struct ib_flow_ipv6_filter val; 1693 struct ib_flow_ipv6_filter mask; 1694 }; 1695 1696 struct ib_flow_tcp_udp_filter { 1697 __be16 dst_port; 1698 __be16 src_port; 1699 /* Must be last */ 1700 u8 real_sz[0]; 1701 }; 1702 1703 struct ib_flow_spec_tcp_udp { 1704 enum ib_flow_spec_type type; 1705 u16 size; 1706 struct ib_flow_tcp_udp_filter val; 1707 struct ib_flow_tcp_udp_filter mask; 1708 }; 1709 1710 union ib_flow_spec { 1711 struct { 1712 enum ib_flow_spec_type type; 1713 u16 size; 1714 }; 1715 struct ib_flow_spec_eth eth; 1716 struct ib_flow_spec_ib ib; 1717 struct ib_flow_spec_ipv4 ipv4; 1718 struct ib_flow_spec_tcp_udp tcp_udp; 1719 struct ib_flow_spec_ipv6 ipv6; 1720 }; 1721 1722 struct ib_flow_attr { 1723 enum ib_flow_attr_type type; 1724 u16 size; 1725 u16 priority; 1726 u32 flags; 1727 u8 num_of_specs; 1728 u8 port; 1729 /* Following are the optional layers according to user request 1730 * struct ib_flow_spec_xxx 1731 * struct ib_flow_spec_yyy 1732 */ 1733 }; 1734 1735 struct ib_flow { 1736 struct ib_qp *qp; 1737 struct ib_uobject *uobject; 1738 }; 1739 1740 struct ib_mad_hdr; 1741 struct ib_grh; 1742 1743 enum ib_process_mad_flags { 1744 IB_MAD_IGNORE_MKEY = 1, 1745 IB_MAD_IGNORE_BKEY = 2, 1746 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1747 }; 1748 1749 enum ib_mad_result { 1750 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1751 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1752 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1753 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1754 }; 1755 1756 #define IB_DEVICE_NAME_MAX 64 1757 1758 struct ib_cache { 1759 rwlock_t lock; 1760 struct ib_event_handler event_handler; 1761 struct ib_pkey_cache **pkey_cache; 1762 struct ib_gid_table **gid_cache; 1763 u8 *lmc_cache; 1764 }; 1765 1766 struct ib_dma_mapping_ops { 1767 int (*mapping_error)(struct ib_device *dev, 1768 u64 dma_addr); 1769 u64 (*map_single)(struct ib_device *dev, 1770 void *ptr, size_t size, 1771 enum dma_data_direction direction); 1772 void (*unmap_single)(struct ib_device *dev, 1773 u64 addr, size_t size, 1774 enum dma_data_direction direction); 1775 u64 (*map_page)(struct ib_device *dev, 1776 struct page *page, unsigned long offset, 1777 size_t size, 1778 enum dma_data_direction direction); 1779 void (*unmap_page)(struct ib_device *dev, 1780 u64 addr, size_t size, 1781 enum dma_data_direction direction); 1782 int (*map_sg)(struct ib_device *dev, 1783 struct scatterlist *sg, int nents, 1784 enum dma_data_direction direction); 1785 void (*unmap_sg)(struct ib_device *dev, 1786 struct scatterlist *sg, int nents, 1787 enum dma_data_direction direction); 1788 int (*map_sg_attrs)(struct ib_device *dev, 1789 struct scatterlist *sg, int nents, 1790 enum dma_data_direction direction, 1791 unsigned long attrs); 1792 void (*unmap_sg_attrs)(struct ib_device *dev, 1793 struct scatterlist *sg, int nents, 1794 enum dma_data_direction direction, 1795 unsigned long attrs); 1796 void (*sync_single_for_cpu)(struct ib_device *dev, 1797 u64 dma_handle, 1798 size_t size, 1799 enum dma_data_direction dir); 1800 void (*sync_single_for_device)(struct ib_device *dev, 1801 u64 dma_handle, 1802 size_t size, 1803 enum dma_data_direction dir); 1804 void *(*alloc_coherent)(struct ib_device *dev, 1805 size_t size, 1806 u64 *dma_handle, 1807 gfp_t flag); 1808 void (*free_coherent)(struct ib_device *dev, 1809 size_t size, void *cpu_addr, 1810 u64 dma_handle); 1811 }; 1812 1813 struct iw_cm_verbs; 1814 1815 struct ib_port_immutable { 1816 int pkey_tbl_len; 1817 int gid_tbl_len; 1818 u32 core_cap_flags; 1819 u32 max_mad_size; 1820 }; 1821 1822 struct ib_device { 1823 struct device *dma_device; 1824 1825 char name[IB_DEVICE_NAME_MAX]; 1826 1827 struct list_head event_handler_list; 1828 spinlock_t event_handler_lock; 1829 1830 spinlock_t client_data_lock; 1831 struct list_head core_list; 1832 /* Access to the client_data_list is protected by the client_data_lock 1833 * spinlock and the lists_rwsem read-write semaphore */ 1834 struct list_head client_data_list; 1835 1836 struct ib_cache cache; 1837 /** 1838 * port_immutable is indexed by port number 1839 */ 1840 struct ib_port_immutable *port_immutable; 1841 1842 int num_comp_vectors; 1843 1844 struct iw_cm_verbs *iwcm; 1845 1846 /** 1847 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1848 * driver initialized data. The struct is kfree()'ed by the sysfs 1849 * core when the device is removed. A lifespan of -1 in the return 1850 * struct tells the core to set a default lifespan. 1851 */ 1852 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1853 u8 port_num); 1854 /** 1855 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1856 * @index - The index in the value array we wish to have updated, or 1857 * num_counters if we want all stats updated 1858 * Return codes - 1859 * < 0 - Error, no counters updated 1860 * index - Updated the single counter pointed to by index 1861 * num_counters - Updated all counters (will reset the timestamp 1862 * and prevent further calls for lifespan milliseconds) 1863 * Drivers are allowed to update all counters in leiu of just the 1864 * one given in index at their option 1865 */ 1866 int (*get_hw_stats)(struct ib_device *device, 1867 struct rdma_hw_stats *stats, 1868 u8 port, int index); 1869 int (*query_device)(struct ib_device *device, 1870 struct ib_device_attr *device_attr, 1871 struct ib_udata *udata); 1872 int (*query_port)(struct ib_device *device, 1873 u8 port_num, 1874 struct ib_port_attr *port_attr); 1875 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1876 u8 port_num); 1877 /* When calling get_netdev, the HW vendor's driver should return the 1878 * net device of device @device at port @port_num or NULL if such 1879 * a net device doesn't exist. The vendor driver should call dev_hold 1880 * on this net device. The HW vendor's device driver must guarantee 1881 * that this function returns NULL before the net device reaches 1882 * NETDEV_UNREGISTER_FINAL state. 1883 */ 1884 struct net_device *(*get_netdev)(struct ib_device *device, 1885 u8 port_num); 1886 int (*query_gid)(struct ib_device *device, 1887 u8 port_num, int index, 1888 union ib_gid *gid); 1889 /* When calling add_gid, the HW vendor's driver should 1890 * add the gid of device @device at gid index @index of 1891 * port @port_num to be @gid. Meta-info of that gid (for example, 1892 * the network device related to this gid is available 1893 * at @attr. @context allows the HW vendor driver to store extra 1894 * information together with a GID entry. The HW vendor may allocate 1895 * memory to contain this information and store it in @context when a 1896 * new GID entry is written to. Params are consistent until the next 1897 * call of add_gid or delete_gid. The function should return 0 on 1898 * success or error otherwise. The function could be called 1899 * concurrently for different ports. This function is only called 1900 * when roce_gid_table is used. 1901 */ 1902 int (*add_gid)(struct ib_device *device, 1903 u8 port_num, 1904 unsigned int index, 1905 const union ib_gid *gid, 1906 const struct ib_gid_attr *attr, 1907 void **context); 1908 /* When calling del_gid, the HW vendor's driver should delete the 1909 * gid of device @device at gid index @index of port @port_num. 1910 * Upon the deletion of a GID entry, the HW vendor must free any 1911 * allocated memory. The caller will clear @context afterwards. 1912 * This function is only called when roce_gid_table is used. 1913 */ 1914 int (*del_gid)(struct ib_device *device, 1915 u8 port_num, 1916 unsigned int index, 1917 void **context); 1918 int (*query_pkey)(struct ib_device *device, 1919 u8 port_num, u16 index, u16 *pkey); 1920 int (*modify_device)(struct ib_device *device, 1921 int device_modify_mask, 1922 struct ib_device_modify *device_modify); 1923 int (*modify_port)(struct ib_device *device, 1924 u8 port_num, int port_modify_mask, 1925 struct ib_port_modify *port_modify); 1926 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1927 struct ib_udata *udata); 1928 int (*dealloc_ucontext)(struct ib_ucontext *context); 1929 int (*mmap)(struct ib_ucontext *context, 1930 struct vm_area_struct *vma); 1931 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1932 struct ib_ucontext *context, 1933 struct ib_udata *udata); 1934 int (*dealloc_pd)(struct ib_pd *pd); 1935 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1936 struct ib_ah_attr *ah_attr); 1937 int (*modify_ah)(struct ib_ah *ah, 1938 struct ib_ah_attr *ah_attr); 1939 int (*query_ah)(struct ib_ah *ah, 1940 struct ib_ah_attr *ah_attr); 1941 int (*destroy_ah)(struct ib_ah *ah); 1942 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1943 struct ib_srq_init_attr *srq_init_attr, 1944 struct ib_udata *udata); 1945 int (*modify_srq)(struct ib_srq *srq, 1946 struct ib_srq_attr *srq_attr, 1947 enum ib_srq_attr_mask srq_attr_mask, 1948 struct ib_udata *udata); 1949 int (*query_srq)(struct ib_srq *srq, 1950 struct ib_srq_attr *srq_attr); 1951 int (*destroy_srq)(struct ib_srq *srq); 1952 int (*post_srq_recv)(struct ib_srq *srq, 1953 struct ib_recv_wr *recv_wr, 1954 struct ib_recv_wr **bad_recv_wr); 1955 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1956 struct ib_qp_init_attr *qp_init_attr, 1957 struct ib_udata *udata); 1958 int (*modify_qp)(struct ib_qp *qp, 1959 struct ib_qp_attr *qp_attr, 1960 int qp_attr_mask, 1961 struct ib_udata *udata); 1962 int (*query_qp)(struct ib_qp *qp, 1963 struct ib_qp_attr *qp_attr, 1964 int qp_attr_mask, 1965 struct ib_qp_init_attr *qp_init_attr); 1966 int (*destroy_qp)(struct ib_qp *qp); 1967 int (*post_send)(struct ib_qp *qp, 1968 struct ib_send_wr *send_wr, 1969 struct ib_send_wr **bad_send_wr); 1970 int (*post_recv)(struct ib_qp *qp, 1971 struct ib_recv_wr *recv_wr, 1972 struct ib_recv_wr **bad_recv_wr); 1973 struct ib_cq * (*create_cq)(struct ib_device *device, 1974 const struct ib_cq_init_attr *attr, 1975 struct ib_ucontext *context, 1976 struct ib_udata *udata); 1977 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1978 u16 cq_period); 1979 int (*destroy_cq)(struct ib_cq *cq); 1980 int (*resize_cq)(struct ib_cq *cq, int cqe, 1981 struct ib_udata *udata); 1982 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1983 struct ib_wc *wc); 1984 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1985 int (*req_notify_cq)(struct ib_cq *cq, 1986 enum ib_cq_notify_flags flags); 1987 int (*req_ncomp_notif)(struct ib_cq *cq, 1988 int wc_cnt); 1989 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1990 int mr_access_flags); 1991 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1992 u64 start, u64 length, 1993 u64 virt_addr, 1994 int mr_access_flags, 1995 struct ib_udata *udata); 1996 int (*rereg_user_mr)(struct ib_mr *mr, 1997 int flags, 1998 u64 start, u64 length, 1999 u64 virt_addr, 2000 int mr_access_flags, 2001 struct ib_pd *pd, 2002 struct ib_udata *udata); 2003 int (*dereg_mr)(struct ib_mr *mr); 2004 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2005 enum ib_mr_type mr_type, 2006 u32 max_num_sg); 2007 int (*map_mr_sg)(struct ib_mr *mr, 2008 struct scatterlist *sg, 2009 int sg_nents, 2010 unsigned int *sg_offset); 2011 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2012 enum ib_mw_type type, 2013 struct ib_udata *udata); 2014 int (*dealloc_mw)(struct ib_mw *mw); 2015 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2016 int mr_access_flags, 2017 struct ib_fmr_attr *fmr_attr); 2018 int (*map_phys_fmr)(struct ib_fmr *fmr, 2019 u64 *page_list, int list_len, 2020 u64 iova); 2021 int (*unmap_fmr)(struct list_head *fmr_list); 2022 int (*dealloc_fmr)(struct ib_fmr *fmr); 2023 int (*attach_mcast)(struct ib_qp *qp, 2024 union ib_gid *gid, 2025 u16 lid); 2026 int (*detach_mcast)(struct ib_qp *qp, 2027 union ib_gid *gid, 2028 u16 lid); 2029 int (*process_mad)(struct ib_device *device, 2030 int process_mad_flags, 2031 u8 port_num, 2032 const struct ib_wc *in_wc, 2033 const struct ib_grh *in_grh, 2034 const struct ib_mad_hdr *in_mad, 2035 size_t in_mad_size, 2036 struct ib_mad_hdr *out_mad, 2037 size_t *out_mad_size, 2038 u16 *out_mad_pkey_index); 2039 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2040 struct ib_ucontext *ucontext, 2041 struct ib_udata *udata); 2042 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2043 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2044 struct ib_flow_attr 2045 *flow_attr, 2046 int domain); 2047 int (*destroy_flow)(struct ib_flow *flow_id); 2048 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2049 struct ib_mr_status *mr_status); 2050 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2051 void (*drain_rq)(struct ib_qp *qp); 2052 void (*drain_sq)(struct ib_qp *qp); 2053 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2054 int state); 2055 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2056 struct ifla_vf_info *ivf); 2057 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2058 struct ifla_vf_stats *stats); 2059 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2060 int type); 2061 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2062 struct ib_wq_init_attr *init_attr, 2063 struct ib_udata *udata); 2064 int (*destroy_wq)(struct ib_wq *wq); 2065 int (*modify_wq)(struct ib_wq *wq, 2066 struct ib_wq_attr *attr, 2067 u32 wq_attr_mask, 2068 struct ib_udata *udata); 2069 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2070 struct ib_rwq_ind_table_init_attr *init_attr, 2071 struct ib_udata *udata); 2072 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2073 struct ib_dma_mapping_ops *dma_ops; 2074 2075 struct module *owner; 2076 struct device dev; 2077 struct kobject *ports_parent; 2078 struct list_head port_list; 2079 2080 enum { 2081 IB_DEV_UNINITIALIZED, 2082 IB_DEV_REGISTERED, 2083 IB_DEV_UNREGISTERED 2084 } reg_state; 2085 2086 int uverbs_abi_ver; 2087 u64 uverbs_cmd_mask; 2088 u64 uverbs_ex_cmd_mask; 2089 2090 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2091 __be64 node_guid; 2092 u32 local_dma_lkey; 2093 u16 is_switch:1; 2094 u8 node_type; 2095 u8 phys_port_cnt; 2096 struct ib_device_attr attrs; 2097 struct attribute_group *hw_stats_ag; 2098 struct rdma_hw_stats *hw_stats; 2099 2100 /** 2101 * The following mandatory functions are used only at device 2102 * registration. Keep functions such as these at the end of this 2103 * structure to avoid cache line misses when accessing struct ib_device 2104 * in fast paths. 2105 */ 2106 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2107 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2108 }; 2109 2110 struct ib_client { 2111 char *name; 2112 void (*add) (struct ib_device *); 2113 void (*remove)(struct ib_device *, void *client_data); 2114 2115 /* Returns the net_dev belonging to this ib_client and matching the 2116 * given parameters. 2117 * @dev: An RDMA device that the net_dev use for communication. 2118 * @port: A physical port number on the RDMA device. 2119 * @pkey: P_Key that the net_dev uses if applicable. 2120 * @gid: A GID that the net_dev uses to communicate. 2121 * @addr: An IP address the net_dev is configured with. 2122 * @client_data: The device's client data set by ib_set_client_data(). 2123 * 2124 * An ib_client that implements a net_dev on top of RDMA devices 2125 * (such as IP over IB) should implement this callback, allowing the 2126 * rdma_cm module to find the right net_dev for a given request. 2127 * 2128 * The caller is responsible for calling dev_put on the returned 2129 * netdev. */ 2130 struct net_device *(*get_net_dev_by_params)( 2131 struct ib_device *dev, 2132 u8 port, 2133 u16 pkey, 2134 const union ib_gid *gid, 2135 const struct sockaddr *addr, 2136 void *client_data); 2137 struct list_head list; 2138 }; 2139 2140 struct ib_device *ib_alloc_device(size_t size); 2141 void ib_dealloc_device(struct ib_device *device); 2142 2143 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2144 2145 int ib_register_device(struct ib_device *device, 2146 int (*port_callback)(struct ib_device *, 2147 u8, struct kobject *)); 2148 void ib_unregister_device(struct ib_device *device); 2149 2150 int ib_register_client (struct ib_client *client); 2151 void ib_unregister_client(struct ib_client *client); 2152 2153 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2154 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2155 void *data); 2156 2157 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2158 { 2159 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2160 } 2161 2162 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2163 { 2164 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2165 } 2166 2167 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2168 size_t offset, 2169 size_t len) 2170 { 2171 const void __user *p = udata->inbuf + offset; 2172 bool ret; 2173 u8 *buf; 2174 2175 if (len > USHRT_MAX) 2176 return false; 2177 2178 buf = memdup_user(p, len); 2179 if (IS_ERR(buf)) 2180 return false; 2181 2182 ret = !memchr_inv(buf, 0, len); 2183 kfree(buf); 2184 return ret; 2185 } 2186 2187 /** 2188 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2189 * contains all required attributes and no attributes not allowed for 2190 * the given QP state transition. 2191 * @cur_state: Current QP state 2192 * @next_state: Next QP state 2193 * @type: QP type 2194 * @mask: Mask of supplied QP attributes 2195 * @ll : link layer of port 2196 * 2197 * This function is a helper function that a low-level driver's 2198 * modify_qp method can use to validate the consumer's input. It 2199 * checks that cur_state and next_state are valid QP states, that a 2200 * transition from cur_state to next_state is allowed by the IB spec, 2201 * and that the attribute mask supplied is allowed for the transition. 2202 */ 2203 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2204 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2205 enum rdma_link_layer ll); 2206 2207 int ib_register_event_handler (struct ib_event_handler *event_handler); 2208 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2209 void ib_dispatch_event(struct ib_event *event); 2210 2211 int ib_query_port(struct ib_device *device, 2212 u8 port_num, struct ib_port_attr *port_attr); 2213 2214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2215 u8 port_num); 2216 2217 /** 2218 * rdma_cap_ib_switch - Check if the device is IB switch 2219 * @device: Device to check 2220 * 2221 * Device driver is responsible for setting is_switch bit on 2222 * in ib_device structure at init time. 2223 * 2224 * Return: true if the device is IB switch. 2225 */ 2226 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2227 { 2228 return device->is_switch; 2229 } 2230 2231 /** 2232 * rdma_start_port - Return the first valid port number for the device 2233 * specified 2234 * 2235 * @device: Device to be checked 2236 * 2237 * Return start port number 2238 */ 2239 static inline u8 rdma_start_port(const struct ib_device *device) 2240 { 2241 return rdma_cap_ib_switch(device) ? 0 : 1; 2242 } 2243 2244 /** 2245 * rdma_end_port - Return the last valid port number for the device 2246 * specified 2247 * 2248 * @device: Device to be checked 2249 * 2250 * Return last port number 2251 */ 2252 static inline u8 rdma_end_port(const struct ib_device *device) 2253 { 2254 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2255 } 2256 2257 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2258 { 2259 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2260 } 2261 2262 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2263 { 2264 return device->port_immutable[port_num].core_cap_flags & 2265 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2266 } 2267 2268 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2269 { 2270 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2271 } 2272 2273 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2274 { 2275 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2276 } 2277 2278 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2279 { 2280 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2281 } 2282 2283 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2284 { 2285 return rdma_protocol_ib(device, port_num) || 2286 rdma_protocol_roce(device, port_num); 2287 } 2288 2289 /** 2290 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2291 * Management Datagrams. 2292 * @device: Device to check 2293 * @port_num: Port number to check 2294 * 2295 * Management Datagrams (MAD) are a required part of the InfiniBand 2296 * specification and are supported on all InfiniBand devices. A slightly 2297 * extended version are also supported on OPA interfaces. 2298 * 2299 * Return: true if the port supports sending/receiving of MAD packets. 2300 */ 2301 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2302 { 2303 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2304 } 2305 2306 /** 2307 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2308 * Management Datagrams. 2309 * @device: Device to check 2310 * @port_num: Port number to check 2311 * 2312 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2313 * datagrams with their own versions. These OPA MADs share many but not all of 2314 * the characteristics of InfiniBand MADs. 2315 * 2316 * OPA MADs differ in the following ways: 2317 * 2318 * 1) MADs are variable size up to 2K 2319 * IBTA defined MADs remain fixed at 256 bytes 2320 * 2) OPA SMPs must carry valid PKeys 2321 * 3) OPA SMP packets are a different format 2322 * 2323 * Return: true if the port supports OPA MAD packet formats. 2324 */ 2325 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2326 { 2327 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2328 == RDMA_CORE_CAP_OPA_MAD; 2329 } 2330 2331 /** 2332 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2333 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2334 * @device: Device to check 2335 * @port_num: Port number to check 2336 * 2337 * Each InfiniBand node is required to provide a Subnet Management Agent 2338 * that the subnet manager can access. Prior to the fabric being fully 2339 * configured by the subnet manager, the SMA is accessed via a well known 2340 * interface called the Subnet Management Interface (SMI). This interface 2341 * uses directed route packets to communicate with the SM to get around the 2342 * chicken and egg problem of the SM needing to know what's on the fabric 2343 * in order to configure the fabric, and needing to configure the fabric in 2344 * order to send packets to the devices on the fabric. These directed 2345 * route packets do not need the fabric fully configured in order to reach 2346 * their destination. The SMI is the only method allowed to send 2347 * directed route packets on an InfiniBand fabric. 2348 * 2349 * Return: true if the port provides an SMI. 2350 */ 2351 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2352 { 2353 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2354 } 2355 2356 /** 2357 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2358 * Communication Manager. 2359 * @device: Device to check 2360 * @port_num: Port number to check 2361 * 2362 * The InfiniBand Communication Manager is one of many pre-defined General 2363 * Service Agents (GSA) that are accessed via the General Service 2364 * Interface (GSI). It's role is to facilitate establishment of connections 2365 * between nodes as well as other management related tasks for established 2366 * connections. 2367 * 2368 * Return: true if the port supports an IB CM (this does not guarantee that 2369 * a CM is actually running however). 2370 */ 2371 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2372 { 2373 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2374 } 2375 2376 /** 2377 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2378 * Communication Manager. 2379 * @device: Device to check 2380 * @port_num: Port number to check 2381 * 2382 * Similar to above, but specific to iWARP connections which have a different 2383 * managment protocol than InfiniBand. 2384 * 2385 * Return: true if the port supports an iWARP CM (this does not guarantee that 2386 * a CM is actually running however). 2387 */ 2388 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2389 { 2390 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2391 } 2392 2393 /** 2394 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2395 * Subnet Administration. 2396 * @device: Device to check 2397 * @port_num: Port number to check 2398 * 2399 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2400 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2401 * fabrics, devices should resolve routes to other hosts by contacting the 2402 * SA to query the proper route. 2403 * 2404 * Return: true if the port should act as a client to the fabric Subnet 2405 * Administration interface. This does not imply that the SA service is 2406 * running locally. 2407 */ 2408 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2409 { 2410 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2411 } 2412 2413 /** 2414 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2415 * Multicast. 2416 * @device: Device to check 2417 * @port_num: Port number to check 2418 * 2419 * InfiniBand multicast registration is more complex than normal IPv4 or 2420 * IPv6 multicast registration. Each Host Channel Adapter must register 2421 * with the Subnet Manager when it wishes to join a multicast group. It 2422 * should do so only once regardless of how many queue pairs it subscribes 2423 * to this group. And it should leave the group only after all queue pairs 2424 * attached to the group have been detached. 2425 * 2426 * Return: true if the port must undertake the additional adminstrative 2427 * overhead of registering/unregistering with the SM and tracking of the 2428 * total number of queue pairs attached to the multicast group. 2429 */ 2430 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2431 { 2432 return rdma_cap_ib_sa(device, port_num); 2433 } 2434 2435 /** 2436 * rdma_cap_af_ib - Check if the port of device has the capability 2437 * Native Infiniband Address. 2438 * @device: Device to check 2439 * @port_num: Port number to check 2440 * 2441 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2442 * GID. RoCE uses a different mechanism, but still generates a GID via 2443 * a prescribed mechanism and port specific data. 2444 * 2445 * Return: true if the port uses a GID address to identify devices on the 2446 * network. 2447 */ 2448 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2449 { 2450 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2451 } 2452 2453 /** 2454 * rdma_cap_eth_ah - Check if the port of device has the capability 2455 * Ethernet Address Handle. 2456 * @device: Device to check 2457 * @port_num: Port number to check 2458 * 2459 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2460 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2461 * port. Normally, packet headers are generated by the sending host 2462 * adapter, but when sending connectionless datagrams, we must manually 2463 * inject the proper headers for the fabric we are communicating over. 2464 * 2465 * Return: true if we are running as a RoCE port and must force the 2466 * addition of a Global Route Header built from our Ethernet Address 2467 * Handle into our header list for connectionless packets. 2468 */ 2469 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2470 { 2471 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2472 } 2473 2474 /** 2475 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2476 * 2477 * @device: Device 2478 * @port_num: Port number 2479 * 2480 * This MAD size includes the MAD headers and MAD payload. No other headers 2481 * are included. 2482 * 2483 * Return the max MAD size required by the Port. Will return 0 if the port 2484 * does not support MADs 2485 */ 2486 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2487 { 2488 return device->port_immutable[port_num].max_mad_size; 2489 } 2490 2491 /** 2492 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2493 * @device: Device to check 2494 * @port_num: Port number to check 2495 * 2496 * RoCE GID table mechanism manages the various GIDs for a device. 2497 * 2498 * NOTE: if allocating the port's GID table has failed, this call will still 2499 * return true, but any RoCE GID table API will fail. 2500 * 2501 * Return: true if the port uses RoCE GID table mechanism in order to manage 2502 * its GIDs. 2503 */ 2504 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2505 u8 port_num) 2506 { 2507 return rdma_protocol_roce(device, port_num) && 2508 device->add_gid && device->del_gid; 2509 } 2510 2511 /* 2512 * Check if the device supports READ W/ INVALIDATE. 2513 */ 2514 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2515 { 2516 /* 2517 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2518 * has support for it yet. 2519 */ 2520 return rdma_protocol_iwarp(dev, port_num); 2521 } 2522 2523 int ib_query_gid(struct ib_device *device, 2524 u8 port_num, int index, union ib_gid *gid, 2525 struct ib_gid_attr *attr); 2526 2527 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2528 int state); 2529 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2530 struct ifla_vf_info *info); 2531 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2532 struct ifla_vf_stats *stats); 2533 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2534 int type); 2535 2536 int ib_query_pkey(struct ib_device *device, 2537 u8 port_num, u16 index, u16 *pkey); 2538 2539 int ib_modify_device(struct ib_device *device, 2540 int device_modify_mask, 2541 struct ib_device_modify *device_modify); 2542 2543 int ib_modify_port(struct ib_device *device, 2544 u8 port_num, int port_modify_mask, 2545 struct ib_port_modify *port_modify); 2546 2547 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2548 enum ib_gid_type gid_type, struct net_device *ndev, 2549 u8 *port_num, u16 *index); 2550 2551 int ib_find_pkey(struct ib_device *device, 2552 u8 port_num, u16 pkey, u16 *index); 2553 2554 enum ib_pd_flags { 2555 /* 2556 * Create a memory registration for all memory in the system and place 2557 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2558 * ULPs to avoid the overhead of dynamic MRs. 2559 * 2560 * This flag is generally considered unsafe and must only be used in 2561 * extremly trusted environments. Every use of it will log a warning 2562 * in the kernel log. 2563 */ 2564 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2565 }; 2566 2567 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2568 const char *caller); 2569 #define ib_alloc_pd(device, flags) \ 2570 __ib_alloc_pd((device), (flags), __func__) 2571 void ib_dealloc_pd(struct ib_pd *pd); 2572 2573 /** 2574 * ib_create_ah - Creates an address handle for the given address vector. 2575 * @pd: The protection domain associated with the address handle. 2576 * @ah_attr: The attributes of the address vector. 2577 * 2578 * The address handle is used to reference a local or global destination 2579 * in all UD QP post sends. 2580 */ 2581 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2582 2583 /** 2584 * ib_init_ah_from_wc - Initializes address handle attributes from a 2585 * work completion. 2586 * @device: Device on which the received message arrived. 2587 * @port_num: Port on which the received message arrived. 2588 * @wc: Work completion associated with the received message. 2589 * @grh: References the received global route header. This parameter is 2590 * ignored unless the work completion indicates that the GRH is valid. 2591 * @ah_attr: Returned attributes that can be used when creating an address 2592 * handle for replying to the message. 2593 */ 2594 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2595 const struct ib_wc *wc, const struct ib_grh *grh, 2596 struct ib_ah_attr *ah_attr); 2597 2598 /** 2599 * ib_create_ah_from_wc - Creates an address handle associated with the 2600 * sender of the specified work completion. 2601 * @pd: The protection domain associated with the address handle. 2602 * @wc: Work completion information associated with a received message. 2603 * @grh: References the received global route header. This parameter is 2604 * ignored unless the work completion indicates that the GRH is valid. 2605 * @port_num: The outbound port number to associate with the address. 2606 * 2607 * The address handle is used to reference a local or global destination 2608 * in all UD QP post sends. 2609 */ 2610 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2611 const struct ib_grh *grh, u8 port_num); 2612 2613 /** 2614 * ib_modify_ah - Modifies the address vector associated with an address 2615 * handle. 2616 * @ah: The address handle to modify. 2617 * @ah_attr: The new address vector attributes to associate with the 2618 * address handle. 2619 */ 2620 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2621 2622 /** 2623 * ib_query_ah - Queries the address vector associated with an address 2624 * handle. 2625 * @ah: The address handle to query. 2626 * @ah_attr: The address vector attributes associated with the address 2627 * handle. 2628 */ 2629 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2630 2631 /** 2632 * ib_destroy_ah - Destroys an address handle. 2633 * @ah: The address handle to destroy. 2634 */ 2635 int ib_destroy_ah(struct ib_ah *ah); 2636 2637 /** 2638 * ib_create_srq - Creates a SRQ associated with the specified protection 2639 * domain. 2640 * @pd: The protection domain associated with the SRQ. 2641 * @srq_init_attr: A list of initial attributes required to create the 2642 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2643 * the actual capabilities of the created SRQ. 2644 * 2645 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2646 * requested size of the SRQ, and set to the actual values allocated 2647 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2648 * will always be at least as large as the requested values. 2649 */ 2650 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2651 struct ib_srq_init_attr *srq_init_attr); 2652 2653 /** 2654 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2655 * @srq: The SRQ to modify. 2656 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2657 * the current values of selected SRQ attributes are returned. 2658 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2659 * are being modified. 2660 * 2661 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2662 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2663 * the number of receives queued drops below the limit. 2664 */ 2665 int ib_modify_srq(struct ib_srq *srq, 2666 struct ib_srq_attr *srq_attr, 2667 enum ib_srq_attr_mask srq_attr_mask); 2668 2669 /** 2670 * ib_query_srq - Returns the attribute list and current values for the 2671 * specified SRQ. 2672 * @srq: The SRQ to query. 2673 * @srq_attr: The attributes of the specified SRQ. 2674 */ 2675 int ib_query_srq(struct ib_srq *srq, 2676 struct ib_srq_attr *srq_attr); 2677 2678 /** 2679 * ib_destroy_srq - Destroys the specified SRQ. 2680 * @srq: The SRQ to destroy. 2681 */ 2682 int ib_destroy_srq(struct ib_srq *srq); 2683 2684 /** 2685 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2686 * @srq: The SRQ to post the work request on. 2687 * @recv_wr: A list of work requests to post on the receive queue. 2688 * @bad_recv_wr: On an immediate failure, this parameter will reference 2689 * the work request that failed to be posted on the QP. 2690 */ 2691 static inline int ib_post_srq_recv(struct ib_srq *srq, 2692 struct ib_recv_wr *recv_wr, 2693 struct ib_recv_wr **bad_recv_wr) 2694 { 2695 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2696 } 2697 2698 /** 2699 * ib_create_qp - Creates a QP associated with the specified protection 2700 * domain. 2701 * @pd: The protection domain associated with the QP. 2702 * @qp_init_attr: A list of initial attributes required to create the 2703 * QP. If QP creation succeeds, then the attributes are updated to 2704 * the actual capabilities of the created QP. 2705 */ 2706 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2707 struct ib_qp_init_attr *qp_init_attr); 2708 2709 /** 2710 * ib_modify_qp - Modifies the attributes for the specified QP and then 2711 * transitions the QP to the given state. 2712 * @qp: The QP to modify. 2713 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2714 * the current values of selected QP attributes are returned. 2715 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2716 * are being modified. 2717 */ 2718 int ib_modify_qp(struct ib_qp *qp, 2719 struct ib_qp_attr *qp_attr, 2720 int qp_attr_mask); 2721 2722 /** 2723 * ib_query_qp - Returns the attribute list and current values for the 2724 * specified QP. 2725 * @qp: The QP to query. 2726 * @qp_attr: The attributes of the specified QP. 2727 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2728 * @qp_init_attr: Additional attributes of the selected QP. 2729 * 2730 * The qp_attr_mask may be used to limit the query to gathering only the 2731 * selected attributes. 2732 */ 2733 int ib_query_qp(struct ib_qp *qp, 2734 struct ib_qp_attr *qp_attr, 2735 int qp_attr_mask, 2736 struct ib_qp_init_attr *qp_init_attr); 2737 2738 /** 2739 * ib_destroy_qp - Destroys the specified QP. 2740 * @qp: The QP to destroy. 2741 */ 2742 int ib_destroy_qp(struct ib_qp *qp); 2743 2744 /** 2745 * ib_open_qp - Obtain a reference to an existing sharable QP. 2746 * @xrcd - XRC domain 2747 * @qp_open_attr: Attributes identifying the QP to open. 2748 * 2749 * Returns a reference to a sharable QP. 2750 */ 2751 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2752 struct ib_qp_open_attr *qp_open_attr); 2753 2754 /** 2755 * ib_close_qp - Release an external reference to a QP. 2756 * @qp: The QP handle to release 2757 * 2758 * The opened QP handle is released by the caller. The underlying 2759 * shared QP is not destroyed until all internal references are released. 2760 */ 2761 int ib_close_qp(struct ib_qp *qp); 2762 2763 /** 2764 * ib_post_send - Posts a list of work requests to the send queue of 2765 * the specified QP. 2766 * @qp: The QP to post the work request on. 2767 * @send_wr: A list of work requests to post on the send queue. 2768 * @bad_send_wr: On an immediate failure, this parameter will reference 2769 * the work request that failed to be posted on the QP. 2770 * 2771 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2772 * error is returned, the QP state shall not be affected, 2773 * ib_post_send() will return an immediate error after queueing any 2774 * earlier work requests in the list. 2775 */ 2776 static inline int ib_post_send(struct ib_qp *qp, 2777 struct ib_send_wr *send_wr, 2778 struct ib_send_wr **bad_send_wr) 2779 { 2780 return qp->device->post_send(qp, send_wr, bad_send_wr); 2781 } 2782 2783 /** 2784 * ib_post_recv - Posts a list of work requests to the receive queue of 2785 * the specified QP. 2786 * @qp: The QP to post the work request on. 2787 * @recv_wr: A list of work requests to post on the receive queue. 2788 * @bad_recv_wr: On an immediate failure, this parameter will reference 2789 * the work request that failed to be posted on the QP. 2790 */ 2791 static inline int ib_post_recv(struct ib_qp *qp, 2792 struct ib_recv_wr *recv_wr, 2793 struct ib_recv_wr **bad_recv_wr) 2794 { 2795 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2796 } 2797 2798 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2799 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2800 void ib_free_cq(struct ib_cq *cq); 2801 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2802 2803 /** 2804 * ib_create_cq - Creates a CQ on the specified device. 2805 * @device: The device on which to create the CQ. 2806 * @comp_handler: A user-specified callback that is invoked when a 2807 * completion event occurs on the CQ. 2808 * @event_handler: A user-specified callback that is invoked when an 2809 * asynchronous event not associated with a completion occurs on the CQ. 2810 * @cq_context: Context associated with the CQ returned to the user via 2811 * the associated completion and event handlers. 2812 * @cq_attr: The attributes the CQ should be created upon. 2813 * 2814 * Users can examine the cq structure to determine the actual CQ size. 2815 */ 2816 struct ib_cq *ib_create_cq(struct ib_device *device, 2817 ib_comp_handler comp_handler, 2818 void (*event_handler)(struct ib_event *, void *), 2819 void *cq_context, 2820 const struct ib_cq_init_attr *cq_attr); 2821 2822 /** 2823 * ib_resize_cq - Modifies the capacity of the CQ. 2824 * @cq: The CQ to resize. 2825 * @cqe: The minimum size of the CQ. 2826 * 2827 * Users can examine the cq structure to determine the actual CQ size. 2828 */ 2829 int ib_resize_cq(struct ib_cq *cq, int cqe); 2830 2831 /** 2832 * ib_modify_cq - Modifies moderation params of the CQ 2833 * @cq: The CQ to modify. 2834 * @cq_count: number of CQEs that will trigger an event 2835 * @cq_period: max period of time in usec before triggering an event 2836 * 2837 */ 2838 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2839 2840 /** 2841 * ib_destroy_cq - Destroys the specified CQ. 2842 * @cq: The CQ to destroy. 2843 */ 2844 int ib_destroy_cq(struct ib_cq *cq); 2845 2846 /** 2847 * ib_poll_cq - poll a CQ for completion(s) 2848 * @cq:the CQ being polled 2849 * @num_entries:maximum number of completions to return 2850 * @wc:array of at least @num_entries &struct ib_wc where completions 2851 * will be returned 2852 * 2853 * Poll a CQ for (possibly multiple) completions. If the return value 2854 * is < 0, an error occurred. If the return value is >= 0, it is the 2855 * number of completions returned. If the return value is 2856 * non-negative and < num_entries, then the CQ was emptied. 2857 */ 2858 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2859 struct ib_wc *wc) 2860 { 2861 return cq->device->poll_cq(cq, num_entries, wc); 2862 } 2863 2864 /** 2865 * ib_peek_cq - Returns the number of unreaped completions currently 2866 * on the specified CQ. 2867 * @cq: The CQ to peek. 2868 * @wc_cnt: A minimum number of unreaped completions to check for. 2869 * 2870 * If the number of unreaped completions is greater than or equal to wc_cnt, 2871 * this function returns wc_cnt, otherwise, it returns the actual number of 2872 * unreaped completions. 2873 */ 2874 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2875 2876 /** 2877 * ib_req_notify_cq - Request completion notification on a CQ. 2878 * @cq: The CQ to generate an event for. 2879 * @flags: 2880 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2881 * to request an event on the next solicited event or next work 2882 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2883 * may also be |ed in to request a hint about missed events, as 2884 * described below. 2885 * 2886 * Return Value: 2887 * < 0 means an error occurred while requesting notification 2888 * == 0 means notification was requested successfully, and if 2889 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2890 * were missed and it is safe to wait for another event. In 2891 * this case is it guaranteed that any work completions added 2892 * to the CQ since the last CQ poll will trigger a completion 2893 * notification event. 2894 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2895 * in. It means that the consumer must poll the CQ again to 2896 * make sure it is empty to avoid missing an event because of a 2897 * race between requesting notification and an entry being 2898 * added to the CQ. This return value means it is possible 2899 * (but not guaranteed) that a work completion has been added 2900 * to the CQ since the last poll without triggering a 2901 * completion notification event. 2902 */ 2903 static inline int ib_req_notify_cq(struct ib_cq *cq, 2904 enum ib_cq_notify_flags flags) 2905 { 2906 return cq->device->req_notify_cq(cq, flags); 2907 } 2908 2909 /** 2910 * ib_req_ncomp_notif - Request completion notification when there are 2911 * at least the specified number of unreaped completions on the CQ. 2912 * @cq: The CQ to generate an event for. 2913 * @wc_cnt: The number of unreaped completions that should be on the 2914 * CQ before an event is generated. 2915 */ 2916 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2917 { 2918 return cq->device->req_ncomp_notif ? 2919 cq->device->req_ncomp_notif(cq, wc_cnt) : 2920 -ENOSYS; 2921 } 2922 2923 /** 2924 * ib_dma_mapping_error - check a DMA addr for error 2925 * @dev: The device for which the dma_addr was created 2926 * @dma_addr: The DMA address to check 2927 */ 2928 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2929 { 2930 if (dev->dma_ops) 2931 return dev->dma_ops->mapping_error(dev, dma_addr); 2932 return dma_mapping_error(dev->dma_device, dma_addr); 2933 } 2934 2935 /** 2936 * ib_dma_map_single - Map a kernel virtual address to DMA address 2937 * @dev: The device for which the dma_addr is to be created 2938 * @cpu_addr: The kernel virtual address 2939 * @size: The size of the region in bytes 2940 * @direction: The direction of the DMA 2941 */ 2942 static inline u64 ib_dma_map_single(struct ib_device *dev, 2943 void *cpu_addr, size_t size, 2944 enum dma_data_direction direction) 2945 { 2946 if (dev->dma_ops) 2947 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2948 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2949 } 2950 2951 /** 2952 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2953 * @dev: The device for which the DMA address was created 2954 * @addr: The DMA address 2955 * @size: The size of the region in bytes 2956 * @direction: The direction of the DMA 2957 */ 2958 static inline void ib_dma_unmap_single(struct ib_device *dev, 2959 u64 addr, size_t size, 2960 enum dma_data_direction direction) 2961 { 2962 if (dev->dma_ops) 2963 dev->dma_ops->unmap_single(dev, addr, size, direction); 2964 else 2965 dma_unmap_single(dev->dma_device, addr, size, direction); 2966 } 2967 2968 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2969 void *cpu_addr, size_t size, 2970 enum dma_data_direction direction, 2971 unsigned long dma_attrs) 2972 { 2973 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2974 direction, dma_attrs); 2975 } 2976 2977 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2978 u64 addr, size_t size, 2979 enum dma_data_direction direction, 2980 unsigned long dma_attrs) 2981 { 2982 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2983 direction, dma_attrs); 2984 } 2985 2986 /** 2987 * ib_dma_map_page - Map a physical page to DMA address 2988 * @dev: The device for which the dma_addr is to be created 2989 * @page: The page to be mapped 2990 * @offset: The offset within the page 2991 * @size: The size of the region in bytes 2992 * @direction: The direction of the DMA 2993 */ 2994 static inline u64 ib_dma_map_page(struct ib_device *dev, 2995 struct page *page, 2996 unsigned long offset, 2997 size_t size, 2998 enum dma_data_direction direction) 2999 { 3000 if (dev->dma_ops) 3001 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3002 return dma_map_page(dev->dma_device, page, offset, size, direction); 3003 } 3004 3005 /** 3006 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3007 * @dev: The device for which the DMA address was created 3008 * @addr: The DMA address 3009 * @size: The size of the region in bytes 3010 * @direction: The direction of the DMA 3011 */ 3012 static inline void ib_dma_unmap_page(struct ib_device *dev, 3013 u64 addr, size_t size, 3014 enum dma_data_direction direction) 3015 { 3016 if (dev->dma_ops) 3017 dev->dma_ops->unmap_page(dev, addr, size, direction); 3018 else 3019 dma_unmap_page(dev->dma_device, addr, size, direction); 3020 } 3021 3022 /** 3023 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3024 * @dev: The device for which the DMA addresses are to be created 3025 * @sg: The array of scatter/gather entries 3026 * @nents: The number of scatter/gather entries 3027 * @direction: The direction of the DMA 3028 */ 3029 static inline int ib_dma_map_sg(struct ib_device *dev, 3030 struct scatterlist *sg, int nents, 3031 enum dma_data_direction direction) 3032 { 3033 if (dev->dma_ops) 3034 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3035 return dma_map_sg(dev->dma_device, sg, nents, direction); 3036 } 3037 3038 /** 3039 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3040 * @dev: The device for which the DMA addresses were created 3041 * @sg: The array of scatter/gather entries 3042 * @nents: The number of scatter/gather entries 3043 * @direction: The direction of the DMA 3044 */ 3045 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3046 struct scatterlist *sg, int nents, 3047 enum dma_data_direction direction) 3048 { 3049 if (dev->dma_ops) 3050 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3051 else 3052 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3053 } 3054 3055 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3056 struct scatterlist *sg, int nents, 3057 enum dma_data_direction direction, 3058 unsigned long dma_attrs) 3059 { 3060 if (dev->dma_ops) 3061 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3062 dma_attrs); 3063 else 3064 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3065 dma_attrs); 3066 } 3067 3068 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3069 struct scatterlist *sg, int nents, 3070 enum dma_data_direction direction, 3071 unsigned long dma_attrs) 3072 { 3073 if (dev->dma_ops) 3074 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3075 dma_attrs); 3076 else 3077 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3078 dma_attrs); 3079 } 3080 /** 3081 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3082 * @dev: The device for which the DMA addresses were created 3083 * @sg: The scatter/gather entry 3084 * 3085 * Note: this function is obsolete. To do: change all occurrences of 3086 * ib_sg_dma_address() into sg_dma_address(). 3087 */ 3088 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3089 struct scatterlist *sg) 3090 { 3091 return sg_dma_address(sg); 3092 } 3093 3094 /** 3095 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3096 * @dev: The device for which the DMA addresses were created 3097 * @sg: The scatter/gather entry 3098 * 3099 * Note: this function is obsolete. To do: change all occurrences of 3100 * ib_sg_dma_len() into sg_dma_len(). 3101 */ 3102 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3103 struct scatterlist *sg) 3104 { 3105 return sg_dma_len(sg); 3106 } 3107 3108 /** 3109 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3110 * @dev: The device for which the DMA address was created 3111 * @addr: The DMA address 3112 * @size: The size of the region in bytes 3113 * @dir: The direction of the DMA 3114 */ 3115 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3116 u64 addr, 3117 size_t size, 3118 enum dma_data_direction dir) 3119 { 3120 if (dev->dma_ops) 3121 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3122 else 3123 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3124 } 3125 3126 /** 3127 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3128 * @dev: The device for which the DMA address was created 3129 * @addr: The DMA address 3130 * @size: The size of the region in bytes 3131 * @dir: The direction of the DMA 3132 */ 3133 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3134 u64 addr, 3135 size_t size, 3136 enum dma_data_direction dir) 3137 { 3138 if (dev->dma_ops) 3139 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3140 else 3141 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3142 } 3143 3144 /** 3145 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3146 * @dev: The device for which the DMA address is requested 3147 * @size: The size of the region to allocate in bytes 3148 * @dma_handle: A pointer for returning the DMA address of the region 3149 * @flag: memory allocator flags 3150 */ 3151 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3152 size_t size, 3153 u64 *dma_handle, 3154 gfp_t flag) 3155 { 3156 if (dev->dma_ops) 3157 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3158 else { 3159 dma_addr_t handle; 3160 void *ret; 3161 3162 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3163 *dma_handle = handle; 3164 return ret; 3165 } 3166 } 3167 3168 /** 3169 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3170 * @dev: The device for which the DMA addresses were allocated 3171 * @size: The size of the region 3172 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3173 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3174 */ 3175 static inline void ib_dma_free_coherent(struct ib_device *dev, 3176 size_t size, void *cpu_addr, 3177 u64 dma_handle) 3178 { 3179 if (dev->dma_ops) 3180 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3181 else 3182 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3183 } 3184 3185 /** 3186 * ib_dereg_mr - Deregisters a memory region and removes it from the 3187 * HCA translation table. 3188 * @mr: The memory region to deregister. 3189 * 3190 * This function can fail, if the memory region has memory windows bound to it. 3191 */ 3192 int ib_dereg_mr(struct ib_mr *mr); 3193 3194 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3195 enum ib_mr_type mr_type, 3196 u32 max_num_sg); 3197 3198 /** 3199 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3200 * R_Key and L_Key. 3201 * @mr - struct ib_mr pointer to be updated. 3202 * @newkey - new key to be used. 3203 */ 3204 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3205 { 3206 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3207 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3208 } 3209 3210 /** 3211 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3212 * for calculating a new rkey for type 2 memory windows. 3213 * @rkey - the rkey to increment. 3214 */ 3215 static inline u32 ib_inc_rkey(u32 rkey) 3216 { 3217 const u32 mask = 0x000000ff; 3218 return ((rkey + 1) & mask) | (rkey & ~mask); 3219 } 3220 3221 /** 3222 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3223 * @pd: The protection domain associated with the unmapped region. 3224 * @mr_access_flags: Specifies the memory access rights. 3225 * @fmr_attr: Attributes of the unmapped region. 3226 * 3227 * A fast memory region must be mapped before it can be used as part of 3228 * a work request. 3229 */ 3230 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3231 int mr_access_flags, 3232 struct ib_fmr_attr *fmr_attr); 3233 3234 /** 3235 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3236 * @fmr: The fast memory region to associate with the pages. 3237 * @page_list: An array of physical pages to map to the fast memory region. 3238 * @list_len: The number of pages in page_list. 3239 * @iova: The I/O virtual address to use with the mapped region. 3240 */ 3241 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3242 u64 *page_list, int list_len, 3243 u64 iova) 3244 { 3245 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3246 } 3247 3248 /** 3249 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3250 * @fmr_list: A linked list of fast memory regions to unmap. 3251 */ 3252 int ib_unmap_fmr(struct list_head *fmr_list); 3253 3254 /** 3255 * ib_dealloc_fmr - Deallocates a fast memory region. 3256 * @fmr: The fast memory region to deallocate. 3257 */ 3258 int ib_dealloc_fmr(struct ib_fmr *fmr); 3259 3260 /** 3261 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3262 * @qp: QP to attach to the multicast group. The QP must be type 3263 * IB_QPT_UD. 3264 * @gid: Multicast group GID. 3265 * @lid: Multicast group LID in host byte order. 3266 * 3267 * In order to send and receive multicast packets, subnet 3268 * administration must have created the multicast group and configured 3269 * the fabric appropriately. The port associated with the specified 3270 * QP must also be a member of the multicast group. 3271 */ 3272 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3273 3274 /** 3275 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3276 * @qp: QP to detach from the multicast group. 3277 * @gid: Multicast group GID. 3278 * @lid: Multicast group LID in host byte order. 3279 */ 3280 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3281 3282 /** 3283 * ib_alloc_xrcd - Allocates an XRC domain. 3284 * @device: The device on which to allocate the XRC domain. 3285 */ 3286 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3287 3288 /** 3289 * ib_dealloc_xrcd - Deallocates an XRC domain. 3290 * @xrcd: The XRC domain to deallocate. 3291 */ 3292 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3293 3294 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3295 struct ib_flow_attr *flow_attr, int domain); 3296 int ib_destroy_flow(struct ib_flow *flow_id); 3297 3298 static inline int ib_check_mr_access(int flags) 3299 { 3300 /* 3301 * Local write permission is required if remote write or 3302 * remote atomic permission is also requested. 3303 */ 3304 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3305 !(flags & IB_ACCESS_LOCAL_WRITE)) 3306 return -EINVAL; 3307 3308 return 0; 3309 } 3310 3311 /** 3312 * ib_check_mr_status: lightweight check of MR status. 3313 * This routine may provide status checks on a selected 3314 * ib_mr. first use is for signature status check. 3315 * 3316 * @mr: A memory region. 3317 * @check_mask: Bitmask of which checks to perform from 3318 * ib_mr_status_check enumeration. 3319 * @mr_status: The container of relevant status checks. 3320 * failed checks will be indicated in the status bitmask 3321 * and the relevant info shall be in the error item. 3322 */ 3323 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3324 struct ib_mr_status *mr_status); 3325 3326 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3327 u16 pkey, const union ib_gid *gid, 3328 const struct sockaddr *addr); 3329 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3330 struct ib_wq_init_attr *init_attr); 3331 int ib_destroy_wq(struct ib_wq *wq); 3332 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3333 u32 wq_attr_mask); 3334 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3335 struct ib_rwq_ind_table_init_attr* 3336 wq_ind_table_init_attr); 3337 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3338 3339 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3340 unsigned int *sg_offset, unsigned int page_size); 3341 3342 static inline int 3343 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3344 unsigned int *sg_offset, unsigned int page_size) 3345 { 3346 int n; 3347 3348 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3349 mr->iova = 0; 3350 3351 return n; 3352 } 3353 3354 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3355 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3356 3357 void ib_drain_rq(struct ib_qp *qp); 3358 void ib_drain_sq(struct ib_qp *qp); 3359 void ib_drain_qp(struct ib_qp *qp); 3360 #endif /* IB_VERBS_H */ 3361