1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/restrack.h> 67 #include <uapi/rdma/rdma_user_ioctl.h> 68 #include <uapi/rdma/ib_user_ioctl_verbs.h> 69 70 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 71 72 struct ib_umem_odp; 73 74 extern struct workqueue_struct *ib_wq; 75 extern struct workqueue_struct *ib_comp_wq; 76 extern struct workqueue_struct *ib_comp_unbound_wq; 77 78 union ib_gid { 79 u8 raw[16]; 80 struct { 81 __be64 subnet_prefix; 82 __be64 interface_id; 83 } global; 84 }; 85 86 extern union ib_gid zgid; 87 88 enum ib_gid_type { 89 /* If link layer is Ethernet, this is RoCE V1 */ 90 IB_GID_TYPE_IB = 0, 91 IB_GID_TYPE_ROCE = 0, 92 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 93 IB_GID_TYPE_SIZE 94 }; 95 96 #define ROCE_V2_UDP_DPORT 4791 97 struct ib_gid_attr { 98 struct net_device *ndev; 99 struct ib_device *device; 100 union ib_gid gid; 101 enum ib_gid_type gid_type; 102 u16 index; 103 u8 port_num; 104 }; 105 106 enum rdma_node_type { 107 /* IB values map to NodeInfo:NodeType. */ 108 RDMA_NODE_IB_CA = 1, 109 RDMA_NODE_IB_SWITCH, 110 RDMA_NODE_IB_ROUTER, 111 RDMA_NODE_RNIC, 112 RDMA_NODE_USNIC, 113 RDMA_NODE_USNIC_UDP, 114 }; 115 116 enum { 117 /* set the local administered indication */ 118 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 119 }; 120 121 enum rdma_transport_type { 122 RDMA_TRANSPORT_IB, 123 RDMA_TRANSPORT_IWARP, 124 RDMA_TRANSPORT_USNIC, 125 RDMA_TRANSPORT_USNIC_UDP 126 }; 127 128 enum rdma_protocol_type { 129 RDMA_PROTOCOL_IB, 130 RDMA_PROTOCOL_IBOE, 131 RDMA_PROTOCOL_IWARP, 132 RDMA_PROTOCOL_USNIC_UDP 133 }; 134 135 __attribute_const__ enum rdma_transport_type 136 rdma_node_get_transport(enum rdma_node_type node_type); 137 138 enum rdma_network_type { 139 RDMA_NETWORK_IB, 140 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 141 RDMA_NETWORK_IPV4, 142 RDMA_NETWORK_IPV6 143 }; 144 145 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 146 { 147 if (network_type == RDMA_NETWORK_IPV4 || 148 network_type == RDMA_NETWORK_IPV6) 149 return IB_GID_TYPE_ROCE_UDP_ENCAP; 150 151 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 152 return IB_GID_TYPE_IB; 153 } 154 155 static inline enum rdma_network_type 156 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 157 { 158 if (attr->gid_type == IB_GID_TYPE_IB) 159 return RDMA_NETWORK_IB; 160 161 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 162 return RDMA_NETWORK_IPV4; 163 else 164 return RDMA_NETWORK_IPV6; 165 } 166 167 enum rdma_link_layer { 168 IB_LINK_LAYER_UNSPECIFIED, 169 IB_LINK_LAYER_INFINIBAND, 170 IB_LINK_LAYER_ETHERNET, 171 }; 172 173 enum ib_device_cap_flags { 174 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 175 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 176 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 177 IB_DEVICE_RAW_MULTI = (1 << 3), 178 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 179 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 180 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 181 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 182 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 183 /* Not in use, former INIT_TYPE = (1 << 9),*/ 184 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 185 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 186 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 187 IB_DEVICE_SRQ_RESIZE = (1 << 13), 188 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 189 190 /* 191 * This device supports a per-device lkey or stag that can be 192 * used without performing a memory registration for the local 193 * memory. Note that ULPs should never check this flag, but 194 * instead of use the local_dma_lkey flag in the ib_pd structure, 195 * which will always contain a usable lkey. 196 */ 197 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 198 /* Reserved, old SEND_W_INV = (1 << 16),*/ 199 IB_DEVICE_MEM_WINDOW = (1 << 17), 200 /* 201 * Devices should set IB_DEVICE_UD_IP_SUM if they support 202 * insertion of UDP and TCP checksum on outgoing UD IPoIB 203 * messages and can verify the validity of checksum for 204 * incoming messages. Setting this flag implies that the 205 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 206 */ 207 IB_DEVICE_UD_IP_CSUM = (1 << 18), 208 IB_DEVICE_UD_TSO = (1 << 19), 209 IB_DEVICE_XRC = (1 << 20), 210 211 /* 212 * This device supports the IB "base memory management extension", 213 * which includes support for fast registrations (IB_WR_REG_MR, 214 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 215 * also be set by any iWarp device which must support FRs to comply 216 * to the iWarp verbs spec. iWarp devices also support the 217 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 218 * stag. 219 */ 220 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 221 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 222 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 223 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 224 IB_DEVICE_RC_IP_CSUM = (1 << 25), 225 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 226 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 227 /* 228 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 229 * support execution of WQEs that involve synchronization 230 * of I/O operations with single completion queue managed 231 * by hardware. 232 */ 233 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 234 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 235 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 236 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 237 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 238 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 239 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 240 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 241 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 242 /* The device supports padding incoming writes to cacheline. */ 243 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 244 }; 245 246 enum ib_signature_prot_cap { 247 IB_PROT_T10DIF_TYPE_1 = 1, 248 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 249 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 250 }; 251 252 enum ib_signature_guard_cap { 253 IB_GUARD_T10DIF_CRC = 1, 254 IB_GUARD_T10DIF_CSUM = 1 << 1, 255 }; 256 257 enum ib_atomic_cap { 258 IB_ATOMIC_NONE, 259 IB_ATOMIC_HCA, 260 IB_ATOMIC_GLOB 261 }; 262 263 enum ib_odp_general_cap_bits { 264 IB_ODP_SUPPORT = 1 << 0, 265 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 266 }; 267 268 enum ib_odp_transport_cap_bits { 269 IB_ODP_SUPPORT_SEND = 1 << 0, 270 IB_ODP_SUPPORT_RECV = 1 << 1, 271 IB_ODP_SUPPORT_WRITE = 1 << 2, 272 IB_ODP_SUPPORT_READ = 1 << 3, 273 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 274 }; 275 276 struct ib_odp_caps { 277 uint64_t general_caps; 278 struct { 279 uint32_t rc_odp_caps; 280 uint32_t uc_odp_caps; 281 uint32_t ud_odp_caps; 282 } per_transport_caps; 283 }; 284 285 struct ib_rss_caps { 286 /* Corresponding bit will be set if qp type from 287 * 'enum ib_qp_type' is supported, e.g. 288 * supported_qpts |= 1 << IB_QPT_UD 289 */ 290 u32 supported_qpts; 291 u32 max_rwq_indirection_tables; 292 u32 max_rwq_indirection_table_size; 293 }; 294 295 enum ib_tm_cap_flags { 296 /* Support tag matching on RC transport */ 297 IB_TM_CAP_RC = 1 << 0, 298 }; 299 300 struct ib_tm_caps { 301 /* Max size of RNDV header */ 302 u32 max_rndv_hdr_size; 303 /* Max number of entries in tag matching list */ 304 u32 max_num_tags; 305 /* From enum ib_tm_cap_flags */ 306 u32 flags; 307 /* Max number of outstanding list operations */ 308 u32 max_ops; 309 /* Max number of SGE in tag matching entry */ 310 u32 max_sge; 311 }; 312 313 struct ib_cq_init_attr { 314 unsigned int cqe; 315 int comp_vector; 316 u32 flags; 317 }; 318 319 enum ib_cq_attr_mask { 320 IB_CQ_MODERATE = 1 << 0, 321 }; 322 323 struct ib_cq_caps { 324 u16 max_cq_moderation_count; 325 u16 max_cq_moderation_period; 326 }; 327 328 struct ib_dm_mr_attr { 329 u64 length; 330 u64 offset; 331 u32 access_flags; 332 }; 333 334 struct ib_dm_alloc_attr { 335 u64 length; 336 u32 alignment; 337 u32 flags; 338 }; 339 340 struct ib_device_attr { 341 u64 fw_ver; 342 __be64 sys_image_guid; 343 u64 max_mr_size; 344 u64 page_size_cap; 345 u32 vendor_id; 346 u32 vendor_part_id; 347 u32 hw_ver; 348 int max_qp; 349 int max_qp_wr; 350 u64 device_cap_flags; 351 int max_send_sge; 352 int max_recv_sge; 353 int max_sge_rd; 354 int max_cq; 355 int max_cqe; 356 int max_mr; 357 int max_pd; 358 int max_qp_rd_atom; 359 int max_ee_rd_atom; 360 int max_res_rd_atom; 361 int max_qp_init_rd_atom; 362 int max_ee_init_rd_atom; 363 enum ib_atomic_cap atomic_cap; 364 enum ib_atomic_cap masked_atomic_cap; 365 int max_ee; 366 int max_rdd; 367 int max_mw; 368 int max_raw_ipv6_qp; 369 int max_raw_ethy_qp; 370 int max_mcast_grp; 371 int max_mcast_qp_attach; 372 int max_total_mcast_qp_attach; 373 int max_ah; 374 int max_fmr; 375 int max_map_per_fmr; 376 int max_srq; 377 int max_srq_wr; 378 int max_srq_sge; 379 unsigned int max_fast_reg_page_list_len; 380 u16 max_pkeys; 381 u8 local_ca_ack_delay; 382 int sig_prot_cap; 383 int sig_guard_cap; 384 struct ib_odp_caps odp_caps; 385 uint64_t timestamp_mask; 386 uint64_t hca_core_clock; /* in KHZ */ 387 struct ib_rss_caps rss_caps; 388 u32 max_wq_type_rq; 389 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 390 struct ib_tm_caps tm_caps; 391 struct ib_cq_caps cq_caps; 392 u64 max_dm_size; 393 }; 394 395 enum ib_mtu { 396 IB_MTU_256 = 1, 397 IB_MTU_512 = 2, 398 IB_MTU_1024 = 3, 399 IB_MTU_2048 = 4, 400 IB_MTU_4096 = 5 401 }; 402 403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 404 { 405 switch (mtu) { 406 case IB_MTU_256: return 256; 407 case IB_MTU_512: return 512; 408 case IB_MTU_1024: return 1024; 409 case IB_MTU_2048: return 2048; 410 case IB_MTU_4096: return 4096; 411 default: return -1; 412 } 413 } 414 415 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 416 { 417 if (mtu >= 4096) 418 return IB_MTU_4096; 419 else if (mtu >= 2048) 420 return IB_MTU_2048; 421 else if (mtu >= 1024) 422 return IB_MTU_1024; 423 else if (mtu >= 512) 424 return IB_MTU_512; 425 else 426 return IB_MTU_256; 427 } 428 429 enum ib_port_state { 430 IB_PORT_NOP = 0, 431 IB_PORT_DOWN = 1, 432 IB_PORT_INIT = 2, 433 IB_PORT_ARMED = 3, 434 IB_PORT_ACTIVE = 4, 435 IB_PORT_ACTIVE_DEFER = 5 436 }; 437 438 enum ib_port_width { 439 IB_WIDTH_1X = 1, 440 IB_WIDTH_4X = 2, 441 IB_WIDTH_8X = 4, 442 IB_WIDTH_12X = 8 443 }; 444 445 static inline int ib_width_enum_to_int(enum ib_port_width width) 446 { 447 switch (width) { 448 case IB_WIDTH_1X: return 1; 449 case IB_WIDTH_4X: return 4; 450 case IB_WIDTH_8X: return 8; 451 case IB_WIDTH_12X: return 12; 452 default: return -1; 453 } 454 } 455 456 enum ib_port_speed { 457 IB_SPEED_SDR = 1, 458 IB_SPEED_DDR = 2, 459 IB_SPEED_QDR = 4, 460 IB_SPEED_FDR10 = 8, 461 IB_SPEED_FDR = 16, 462 IB_SPEED_EDR = 32, 463 IB_SPEED_HDR = 64 464 }; 465 466 /** 467 * struct rdma_hw_stats 468 * @lock - Mutex to protect parallel write access to lifespan and values 469 * of counters, which are 64bits and not guaranteeed to be written 470 * atomicaly on 32bits systems. 471 * @timestamp - Used by the core code to track when the last update was 472 * @lifespan - Used by the core code to determine how old the counters 473 * should be before being updated again. Stored in jiffies, defaults 474 * to 10 milliseconds, drivers can override the default be specifying 475 * their own value during their allocation routine. 476 * @name - Array of pointers to static names used for the counters in 477 * directory. 478 * @num_counters - How many hardware counters there are. If name is 479 * shorter than this number, a kernel oops will result. Driver authors 480 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 481 * in their code to prevent this. 482 * @value - Array of u64 counters that are accessed by the sysfs code and 483 * filled in by the drivers get_stats routine 484 */ 485 struct rdma_hw_stats { 486 struct mutex lock; /* Protect lifespan and values[] */ 487 unsigned long timestamp; 488 unsigned long lifespan; 489 const char * const *names; 490 int num_counters; 491 u64 value[]; 492 }; 493 494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 495 /** 496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 497 * for drivers. 498 * @names - Array of static const char * 499 * @num_counters - How many elements in array 500 * @lifespan - How many milliseconds between updates 501 */ 502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 503 const char * const *names, int num_counters, 504 unsigned long lifespan) 505 { 506 struct rdma_hw_stats *stats; 507 508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 509 GFP_KERNEL); 510 if (!stats) 511 return NULL; 512 stats->names = names; 513 stats->num_counters = num_counters; 514 stats->lifespan = msecs_to_jiffies(lifespan); 515 516 return stats; 517 } 518 519 520 /* Define bits for the various functionality this port needs to be supported by 521 * the core. 522 */ 523 /* Management 0x00000FFF */ 524 #define RDMA_CORE_CAP_IB_MAD 0x00000001 525 #define RDMA_CORE_CAP_IB_SMI 0x00000002 526 #define RDMA_CORE_CAP_IB_CM 0x00000004 527 #define RDMA_CORE_CAP_IW_CM 0x00000008 528 #define RDMA_CORE_CAP_IB_SA 0x00000010 529 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 530 531 /* Address format 0x000FF000 */ 532 #define RDMA_CORE_CAP_AF_IB 0x00001000 533 #define RDMA_CORE_CAP_ETH_AH 0x00002000 534 #define RDMA_CORE_CAP_OPA_AH 0x00004000 535 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 536 537 /* Protocol 0xFFF00000 */ 538 #define RDMA_CORE_CAP_PROT_IB 0x00100000 539 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 540 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 541 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 542 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 543 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 544 545 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 546 | RDMA_CORE_CAP_PROT_ROCE \ 547 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 548 549 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 550 | RDMA_CORE_CAP_IB_MAD \ 551 | RDMA_CORE_CAP_IB_SMI \ 552 | RDMA_CORE_CAP_IB_CM \ 553 | RDMA_CORE_CAP_IB_SA \ 554 | RDMA_CORE_CAP_AF_IB) 555 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 556 | RDMA_CORE_CAP_IB_MAD \ 557 | RDMA_CORE_CAP_IB_CM \ 558 | RDMA_CORE_CAP_AF_IB \ 559 | RDMA_CORE_CAP_ETH_AH) 560 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 561 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 562 | RDMA_CORE_CAP_IB_MAD \ 563 | RDMA_CORE_CAP_IB_CM \ 564 | RDMA_CORE_CAP_AF_IB \ 565 | RDMA_CORE_CAP_ETH_AH) 566 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 567 | RDMA_CORE_CAP_IW_CM) 568 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 569 | RDMA_CORE_CAP_OPA_MAD) 570 571 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 572 573 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 574 575 struct ib_port_attr { 576 u64 subnet_prefix; 577 enum ib_port_state state; 578 enum ib_mtu max_mtu; 579 enum ib_mtu active_mtu; 580 int gid_tbl_len; 581 unsigned int ip_gids:1; 582 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 583 u32 port_cap_flags; 584 u32 max_msg_sz; 585 u32 bad_pkey_cntr; 586 u32 qkey_viol_cntr; 587 u16 pkey_tbl_len; 588 u32 sm_lid; 589 u32 lid; 590 u8 lmc; 591 u8 max_vl_num; 592 u8 sm_sl; 593 u8 subnet_timeout; 594 u8 init_type_reply; 595 u8 active_width; 596 u8 active_speed; 597 u8 phys_state; 598 }; 599 600 enum ib_device_modify_flags { 601 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 602 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 603 }; 604 605 #define IB_DEVICE_NODE_DESC_MAX 64 606 607 struct ib_device_modify { 608 u64 sys_image_guid; 609 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 610 }; 611 612 enum ib_port_modify_flags { 613 IB_PORT_SHUTDOWN = 1, 614 IB_PORT_INIT_TYPE = (1<<2), 615 IB_PORT_RESET_QKEY_CNTR = (1<<3), 616 IB_PORT_OPA_MASK_CHG = (1<<4) 617 }; 618 619 struct ib_port_modify { 620 u32 set_port_cap_mask; 621 u32 clr_port_cap_mask; 622 u8 init_type; 623 }; 624 625 enum ib_event_type { 626 IB_EVENT_CQ_ERR, 627 IB_EVENT_QP_FATAL, 628 IB_EVENT_QP_REQ_ERR, 629 IB_EVENT_QP_ACCESS_ERR, 630 IB_EVENT_COMM_EST, 631 IB_EVENT_SQ_DRAINED, 632 IB_EVENT_PATH_MIG, 633 IB_EVENT_PATH_MIG_ERR, 634 IB_EVENT_DEVICE_FATAL, 635 IB_EVENT_PORT_ACTIVE, 636 IB_EVENT_PORT_ERR, 637 IB_EVENT_LID_CHANGE, 638 IB_EVENT_PKEY_CHANGE, 639 IB_EVENT_SM_CHANGE, 640 IB_EVENT_SRQ_ERR, 641 IB_EVENT_SRQ_LIMIT_REACHED, 642 IB_EVENT_QP_LAST_WQE_REACHED, 643 IB_EVENT_CLIENT_REREGISTER, 644 IB_EVENT_GID_CHANGE, 645 IB_EVENT_WQ_FATAL, 646 }; 647 648 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 649 650 struct ib_event { 651 struct ib_device *device; 652 union { 653 struct ib_cq *cq; 654 struct ib_qp *qp; 655 struct ib_srq *srq; 656 struct ib_wq *wq; 657 u8 port_num; 658 } element; 659 enum ib_event_type event; 660 }; 661 662 struct ib_event_handler { 663 struct ib_device *device; 664 void (*handler)(struct ib_event_handler *, struct ib_event *); 665 struct list_head list; 666 }; 667 668 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 669 do { \ 670 (_ptr)->device = _device; \ 671 (_ptr)->handler = _handler; \ 672 INIT_LIST_HEAD(&(_ptr)->list); \ 673 } while (0) 674 675 struct ib_global_route { 676 const struct ib_gid_attr *sgid_attr; 677 union ib_gid dgid; 678 u32 flow_label; 679 u8 sgid_index; 680 u8 hop_limit; 681 u8 traffic_class; 682 }; 683 684 struct ib_grh { 685 __be32 version_tclass_flow; 686 __be16 paylen; 687 u8 next_hdr; 688 u8 hop_limit; 689 union ib_gid sgid; 690 union ib_gid dgid; 691 }; 692 693 union rdma_network_hdr { 694 struct ib_grh ibgrh; 695 struct { 696 /* The IB spec states that if it's IPv4, the header 697 * is located in the last 20 bytes of the header. 698 */ 699 u8 reserved[20]; 700 struct iphdr roce4grh; 701 }; 702 }; 703 704 #define IB_QPN_MASK 0xFFFFFF 705 706 enum { 707 IB_MULTICAST_QPN = 0xffffff 708 }; 709 710 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 711 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 712 713 enum ib_ah_flags { 714 IB_AH_GRH = 1 715 }; 716 717 enum ib_rate { 718 IB_RATE_PORT_CURRENT = 0, 719 IB_RATE_2_5_GBPS = 2, 720 IB_RATE_5_GBPS = 5, 721 IB_RATE_10_GBPS = 3, 722 IB_RATE_20_GBPS = 6, 723 IB_RATE_30_GBPS = 4, 724 IB_RATE_40_GBPS = 7, 725 IB_RATE_60_GBPS = 8, 726 IB_RATE_80_GBPS = 9, 727 IB_RATE_120_GBPS = 10, 728 IB_RATE_14_GBPS = 11, 729 IB_RATE_56_GBPS = 12, 730 IB_RATE_112_GBPS = 13, 731 IB_RATE_168_GBPS = 14, 732 IB_RATE_25_GBPS = 15, 733 IB_RATE_100_GBPS = 16, 734 IB_RATE_200_GBPS = 17, 735 IB_RATE_300_GBPS = 18 736 }; 737 738 /** 739 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 740 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 741 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 742 * @rate: rate to convert. 743 */ 744 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 745 746 /** 747 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 748 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 749 * @rate: rate to convert. 750 */ 751 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 752 753 754 /** 755 * enum ib_mr_type - memory region type 756 * @IB_MR_TYPE_MEM_REG: memory region that is used for 757 * normal registration 758 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 759 * signature operations (data-integrity 760 * capable regions) 761 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 762 * register any arbitrary sg lists (without 763 * the normal mr constraints - see 764 * ib_map_mr_sg) 765 */ 766 enum ib_mr_type { 767 IB_MR_TYPE_MEM_REG, 768 IB_MR_TYPE_SIGNATURE, 769 IB_MR_TYPE_SG_GAPS, 770 }; 771 772 /** 773 * Signature types 774 * IB_SIG_TYPE_NONE: Unprotected. 775 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 776 */ 777 enum ib_signature_type { 778 IB_SIG_TYPE_NONE, 779 IB_SIG_TYPE_T10_DIF, 780 }; 781 782 /** 783 * Signature T10-DIF block-guard types 784 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 785 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 786 */ 787 enum ib_t10_dif_bg_type { 788 IB_T10DIF_CRC, 789 IB_T10DIF_CSUM 790 }; 791 792 /** 793 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 794 * domain. 795 * @bg_type: T10-DIF block guard type (CRC|CSUM) 796 * @pi_interval: protection information interval. 797 * @bg: seed of guard computation. 798 * @app_tag: application tag of guard block 799 * @ref_tag: initial guard block reference tag. 800 * @ref_remap: Indicate wethear the reftag increments each block 801 * @app_escape: Indicate to skip block check if apptag=0xffff 802 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 803 * @apptag_check_mask: check bitmask of application tag. 804 */ 805 struct ib_t10_dif_domain { 806 enum ib_t10_dif_bg_type bg_type; 807 u16 pi_interval; 808 u16 bg; 809 u16 app_tag; 810 u32 ref_tag; 811 bool ref_remap; 812 bool app_escape; 813 bool ref_escape; 814 u16 apptag_check_mask; 815 }; 816 817 /** 818 * struct ib_sig_domain - Parameters for signature domain 819 * @sig_type: specific signauture type 820 * @sig: union of all signature domain attributes that may 821 * be used to set domain layout. 822 */ 823 struct ib_sig_domain { 824 enum ib_signature_type sig_type; 825 union { 826 struct ib_t10_dif_domain dif; 827 } sig; 828 }; 829 830 /** 831 * struct ib_sig_attrs - Parameters for signature handover operation 832 * @check_mask: bitmask for signature byte check (8 bytes) 833 * @mem: memory domain layout desciptor. 834 * @wire: wire domain layout desciptor. 835 */ 836 struct ib_sig_attrs { 837 u8 check_mask; 838 struct ib_sig_domain mem; 839 struct ib_sig_domain wire; 840 }; 841 842 enum ib_sig_err_type { 843 IB_SIG_BAD_GUARD, 844 IB_SIG_BAD_REFTAG, 845 IB_SIG_BAD_APPTAG, 846 }; 847 848 /** 849 * Signature check masks (8 bytes in total) according to the T10-PI standard: 850 * -------- -------- ------------ 851 * | GUARD | APPTAG | REFTAG | 852 * | 2B | 2B | 4B | 853 * -------- -------- ------------ 854 */ 855 enum { 856 IB_SIG_CHECK_GUARD = 0xc0, 857 IB_SIG_CHECK_APPTAG = 0x30, 858 IB_SIG_CHECK_REFTAG = 0x0f, 859 }; 860 861 /** 862 * struct ib_sig_err - signature error descriptor 863 */ 864 struct ib_sig_err { 865 enum ib_sig_err_type err_type; 866 u32 expected; 867 u32 actual; 868 u64 sig_err_offset; 869 u32 key; 870 }; 871 872 enum ib_mr_status_check { 873 IB_MR_CHECK_SIG_STATUS = 1, 874 }; 875 876 /** 877 * struct ib_mr_status - Memory region status container 878 * 879 * @fail_status: Bitmask of MR checks status. For each 880 * failed check a corresponding status bit is set. 881 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 882 * failure. 883 */ 884 struct ib_mr_status { 885 u32 fail_status; 886 struct ib_sig_err sig_err; 887 }; 888 889 /** 890 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 891 * enum. 892 * @mult: multiple to convert. 893 */ 894 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 895 896 enum rdma_ah_attr_type { 897 RDMA_AH_ATTR_TYPE_UNDEFINED, 898 RDMA_AH_ATTR_TYPE_IB, 899 RDMA_AH_ATTR_TYPE_ROCE, 900 RDMA_AH_ATTR_TYPE_OPA, 901 }; 902 903 struct ib_ah_attr { 904 u16 dlid; 905 u8 src_path_bits; 906 }; 907 908 struct roce_ah_attr { 909 u8 dmac[ETH_ALEN]; 910 }; 911 912 struct opa_ah_attr { 913 u32 dlid; 914 u8 src_path_bits; 915 bool make_grd; 916 }; 917 918 struct rdma_ah_attr { 919 struct ib_global_route grh; 920 u8 sl; 921 u8 static_rate; 922 u8 port_num; 923 u8 ah_flags; 924 enum rdma_ah_attr_type type; 925 union { 926 struct ib_ah_attr ib; 927 struct roce_ah_attr roce; 928 struct opa_ah_attr opa; 929 }; 930 }; 931 932 enum ib_wc_status { 933 IB_WC_SUCCESS, 934 IB_WC_LOC_LEN_ERR, 935 IB_WC_LOC_QP_OP_ERR, 936 IB_WC_LOC_EEC_OP_ERR, 937 IB_WC_LOC_PROT_ERR, 938 IB_WC_WR_FLUSH_ERR, 939 IB_WC_MW_BIND_ERR, 940 IB_WC_BAD_RESP_ERR, 941 IB_WC_LOC_ACCESS_ERR, 942 IB_WC_REM_INV_REQ_ERR, 943 IB_WC_REM_ACCESS_ERR, 944 IB_WC_REM_OP_ERR, 945 IB_WC_RETRY_EXC_ERR, 946 IB_WC_RNR_RETRY_EXC_ERR, 947 IB_WC_LOC_RDD_VIOL_ERR, 948 IB_WC_REM_INV_RD_REQ_ERR, 949 IB_WC_REM_ABORT_ERR, 950 IB_WC_INV_EECN_ERR, 951 IB_WC_INV_EEC_STATE_ERR, 952 IB_WC_FATAL_ERR, 953 IB_WC_RESP_TIMEOUT_ERR, 954 IB_WC_GENERAL_ERR 955 }; 956 957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 958 959 enum ib_wc_opcode { 960 IB_WC_SEND, 961 IB_WC_RDMA_WRITE, 962 IB_WC_RDMA_READ, 963 IB_WC_COMP_SWAP, 964 IB_WC_FETCH_ADD, 965 IB_WC_LSO, 966 IB_WC_LOCAL_INV, 967 IB_WC_REG_MR, 968 IB_WC_MASKED_COMP_SWAP, 969 IB_WC_MASKED_FETCH_ADD, 970 /* 971 * Set value of IB_WC_RECV so consumers can test if a completion is a 972 * receive by testing (opcode & IB_WC_RECV). 973 */ 974 IB_WC_RECV = 1 << 7, 975 IB_WC_RECV_RDMA_WITH_IMM 976 }; 977 978 enum ib_wc_flags { 979 IB_WC_GRH = 1, 980 IB_WC_WITH_IMM = (1<<1), 981 IB_WC_WITH_INVALIDATE = (1<<2), 982 IB_WC_IP_CSUM_OK = (1<<3), 983 IB_WC_WITH_SMAC = (1<<4), 984 IB_WC_WITH_VLAN = (1<<5), 985 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 986 }; 987 988 struct ib_wc { 989 union { 990 u64 wr_id; 991 struct ib_cqe *wr_cqe; 992 }; 993 enum ib_wc_status status; 994 enum ib_wc_opcode opcode; 995 u32 vendor_err; 996 u32 byte_len; 997 struct ib_qp *qp; 998 union { 999 __be32 imm_data; 1000 u32 invalidate_rkey; 1001 } ex; 1002 u32 src_qp; 1003 u32 slid; 1004 int wc_flags; 1005 u16 pkey_index; 1006 u8 sl; 1007 u8 dlid_path_bits; 1008 u8 port_num; /* valid only for DR SMPs on switches */ 1009 u8 smac[ETH_ALEN]; 1010 u16 vlan_id; 1011 u8 network_hdr_type; 1012 }; 1013 1014 enum ib_cq_notify_flags { 1015 IB_CQ_SOLICITED = 1 << 0, 1016 IB_CQ_NEXT_COMP = 1 << 1, 1017 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1018 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1019 }; 1020 1021 enum ib_srq_type { 1022 IB_SRQT_BASIC, 1023 IB_SRQT_XRC, 1024 IB_SRQT_TM, 1025 }; 1026 1027 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1028 { 1029 return srq_type == IB_SRQT_XRC || 1030 srq_type == IB_SRQT_TM; 1031 } 1032 1033 enum ib_srq_attr_mask { 1034 IB_SRQ_MAX_WR = 1 << 0, 1035 IB_SRQ_LIMIT = 1 << 1, 1036 }; 1037 1038 struct ib_srq_attr { 1039 u32 max_wr; 1040 u32 max_sge; 1041 u32 srq_limit; 1042 }; 1043 1044 struct ib_srq_init_attr { 1045 void (*event_handler)(struct ib_event *, void *); 1046 void *srq_context; 1047 struct ib_srq_attr attr; 1048 enum ib_srq_type srq_type; 1049 1050 struct { 1051 struct ib_cq *cq; 1052 union { 1053 struct { 1054 struct ib_xrcd *xrcd; 1055 } xrc; 1056 1057 struct { 1058 u32 max_num_tags; 1059 } tag_matching; 1060 }; 1061 } ext; 1062 }; 1063 1064 struct ib_qp_cap { 1065 u32 max_send_wr; 1066 u32 max_recv_wr; 1067 u32 max_send_sge; 1068 u32 max_recv_sge; 1069 u32 max_inline_data; 1070 1071 /* 1072 * Maximum number of rdma_rw_ctx structures in flight at a time. 1073 * ib_create_qp() will calculate the right amount of neededed WRs 1074 * and MRs based on this. 1075 */ 1076 u32 max_rdma_ctxs; 1077 }; 1078 1079 enum ib_sig_type { 1080 IB_SIGNAL_ALL_WR, 1081 IB_SIGNAL_REQ_WR 1082 }; 1083 1084 enum ib_qp_type { 1085 /* 1086 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1087 * here (and in that order) since the MAD layer uses them as 1088 * indices into a 2-entry table. 1089 */ 1090 IB_QPT_SMI, 1091 IB_QPT_GSI, 1092 1093 IB_QPT_RC, 1094 IB_QPT_UC, 1095 IB_QPT_UD, 1096 IB_QPT_RAW_IPV6, 1097 IB_QPT_RAW_ETHERTYPE, 1098 IB_QPT_RAW_PACKET = 8, 1099 IB_QPT_XRC_INI = 9, 1100 IB_QPT_XRC_TGT, 1101 IB_QPT_MAX, 1102 IB_QPT_DRIVER = 0xFF, 1103 /* Reserve a range for qp types internal to the low level driver. 1104 * These qp types will not be visible at the IB core layer, so the 1105 * IB_QPT_MAX usages should not be affected in the core layer 1106 */ 1107 IB_QPT_RESERVED1 = 0x1000, 1108 IB_QPT_RESERVED2, 1109 IB_QPT_RESERVED3, 1110 IB_QPT_RESERVED4, 1111 IB_QPT_RESERVED5, 1112 IB_QPT_RESERVED6, 1113 IB_QPT_RESERVED7, 1114 IB_QPT_RESERVED8, 1115 IB_QPT_RESERVED9, 1116 IB_QPT_RESERVED10, 1117 }; 1118 1119 enum ib_qp_create_flags { 1120 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1121 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1122 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1123 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1124 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1125 IB_QP_CREATE_NETIF_QP = 1 << 5, 1126 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1127 /* FREE = 1 << 7, */ 1128 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1129 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1130 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1131 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1132 /* reserve bits 26-31 for low level drivers' internal use */ 1133 IB_QP_CREATE_RESERVED_START = 1 << 26, 1134 IB_QP_CREATE_RESERVED_END = 1 << 31, 1135 }; 1136 1137 /* 1138 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1139 * callback to destroy the passed in QP. 1140 */ 1141 1142 struct ib_qp_init_attr { 1143 /* Consumer's event_handler callback must not block */ 1144 void (*event_handler)(struct ib_event *, void *); 1145 1146 void *qp_context; 1147 struct ib_cq *send_cq; 1148 struct ib_cq *recv_cq; 1149 struct ib_srq *srq; 1150 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1151 struct ib_qp_cap cap; 1152 enum ib_sig_type sq_sig_type; 1153 enum ib_qp_type qp_type; 1154 u32 create_flags; 1155 1156 /* 1157 * Only needed for special QP types, or when using the RW API. 1158 */ 1159 u8 port_num; 1160 struct ib_rwq_ind_table *rwq_ind_tbl; 1161 u32 source_qpn; 1162 }; 1163 1164 struct ib_qp_open_attr { 1165 void (*event_handler)(struct ib_event *, void *); 1166 void *qp_context; 1167 u32 qp_num; 1168 enum ib_qp_type qp_type; 1169 }; 1170 1171 enum ib_rnr_timeout { 1172 IB_RNR_TIMER_655_36 = 0, 1173 IB_RNR_TIMER_000_01 = 1, 1174 IB_RNR_TIMER_000_02 = 2, 1175 IB_RNR_TIMER_000_03 = 3, 1176 IB_RNR_TIMER_000_04 = 4, 1177 IB_RNR_TIMER_000_06 = 5, 1178 IB_RNR_TIMER_000_08 = 6, 1179 IB_RNR_TIMER_000_12 = 7, 1180 IB_RNR_TIMER_000_16 = 8, 1181 IB_RNR_TIMER_000_24 = 9, 1182 IB_RNR_TIMER_000_32 = 10, 1183 IB_RNR_TIMER_000_48 = 11, 1184 IB_RNR_TIMER_000_64 = 12, 1185 IB_RNR_TIMER_000_96 = 13, 1186 IB_RNR_TIMER_001_28 = 14, 1187 IB_RNR_TIMER_001_92 = 15, 1188 IB_RNR_TIMER_002_56 = 16, 1189 IB_RNR_TIMER_003_84 = 17, 1190 IB_RNR_TIMER_005_12 = 18, 1191 IB_RNR_TIMER_007_68 = 19, 1192 IB_RNR_TIMER_010_24 = 20, 1193 IB_RNR_TIMER_015_36 = 21, 1194 IB_RNR_TIMER_020_48 = 22, 1195 IB_RNR_TIMER_030_72 = 23, 1196 IB_RNR_TIMER_040_96 = 24, 1197 IB_RNR_TIMER_061_44 = 25, 1198 IB_RNR_TIMER_081_92 = 26, 1199 IB_RNR_TIMER_122_88 = 27, 1200 IB_RNR_TIMER_163_84 = 28, 1201 IB_RNR_TIMER_245_76 = 29, 1202 IB_RNR_TIMER_327_68 = 30, 1203 IB_RNR_TIMER_491_52 = 31 1204 }; 1205 1206 enum ib_qp_attr_mask { 1207 IB_QP_STATE = 1, 1208 IB_QP_CUR_STATE = (1<<1), 1209 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1210 IB_QP_ACCESS_FLAGS = (1<<3), 1211 IB_QP_PKEY_INDEX = (1<<4), 1212 IB_QP_PORT = (1<<5), 1213 IB_QP_QKEY = (1<<6), 1214 IB_QP_AV = (1<<7), 1215 IB_QP_PATH_MTU = (1<<8), 1216 IB_QP_TIMEOUT = (1<<9), 1217 IB_QP_RETRY_CNT = (1<<10), 1218 IB_QP_RNR_RETRY = (1<<11), 1219 IB_QP_RQ_PSN = (1<<12), 1220 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1221 IB_QP_ALT_PATH = (1<<14), 1222 IB_QP_MIN_RNR_TIMER = (1<<15), 1223 IB_QP_SQ_PSN = (1<<16), 1224 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1225 IB_QP_PATH_MIG_STATE = (1<<18), 1226 IB_QP_CAP = (1<<19), 1227 IB_QP_DEST_QPN = (1<<20), 1228 IB_QP_RESERVED1 = (1<<21), 1229 IB_QP_RESERVED2 = (1<<22), 1230 IB_QP_RESERVED3 = (1<<23), 1231 IB_QP_RESERVED4 = (1<<24), 1232 IB_QP_RATE_LIMIT = (1<<25), 1233 }; 1234 1235 enum ib_qp_state { 1236 IB_QPS_RESET, 1237 IB_QPS_INIT, 1238 IB_QPS_RTR, 1239 IB_QPS_RTS, 1240 IB_QPS_SQD, 1241 IB_QPS_SQE, 1242 IB_QPS_ERR 1243 }; 1244 1245 enum ib_mig_state { 1246 IB_MIG_MIGRATED, 1247 IB_MIG_REARM, 1248 IB_MIG_ARMED 1249 }; 1250 1251 enum ib_mw_type { 1252 IB_MW_TYPE_1 = 1, 1253 IB_MW_TYPE_2 = 2 1254 }; 1255 1256 struct ib_qp_attr { 1257 enum ib_qp_state qp_state; 1258 enum ib_qp_state cur_qp_state; 1259 enum ib_mtu path_mtu; 1260 enum ib_mig_state path_mig_state; 1261 u32 qkey; 1262 u32 rq_psn; 1263 u32 sq_psn; 1264 u32 dest_qp_num; 1265 int qp_access_flags; 1266 struct ib_qp_cap cap; 1267 struct rdma_ah_attr ah_attr; 1268 struct rdma_ah_attr alt_ah_attr; 1269 u16 pkey_index; 1270 u16 alt_pkey_index; 1271 u8 en_sqd_async_notify; 1272 u8 sq_draining; 1273 u8 max_rd_atomic; 1274 u8 max_dest_rd_atomic; 1275 u8 min_rnr_timer; 1276 u8 port_num; 1277 u8 timeout; 1278 u8 retry_cnt; 1279 u8 rnr_retry; 1280 u8 alt_port_num; 1281 u8 alt_timeout; 1282 u32 rate_limit; 1283 }; 1284 1285 enum ib_wr_opcode { 1286 /* These are shared with userspace */ 1287 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1288 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1289 IB_WR_SEND = IB_UVERBS_WR_SEND, 1290 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1291 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1292 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1293 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1294 IB_WR_LSO = IB_UVERBS_WR_TSO, 1295 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1296 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1297 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1299 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1300 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1301 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1302 1303 /* These are kernel only and can not be issued by userspace */ 1304 IB_WR_REG_MR = 0x20, 1305 IB_WR_REG_SIG_MR, 1306 1307 /* reserve values for low level drivers' internal use. 1308 * These values will not be used at all in the ib core layer. 1309 */ 1310 IB_WR_RESERVED1 = 0xf0, 1311 IB_WR_RESERVED2, 1312 IB_WR_RESERVED3, 1313 IB_WR_RESERVED4, 1314 IB_WR_RESERVED5, 1315 IB_WR_RESERVED6, 1316 IB_WR_RESERVED7, 1317 IB_WR_RESERVED8, 1318 IB_WR_RESERVED9, 1319 IB_WR_RESERVED10, 1320 }; 1321 1322 enum ib_send_flags { 1323 IB_SEND_FENCE = 1, 1324 IB_SEND_SIGNALED = (1<<1), 1325 IB_SEND_SOLICITED = (1<<2), 1326 IB_SEND_INLINE = (1<<3), 1327 IB_SEND_IP_CSUM = (1<<4), 1328 1329 /* reserve bits 26-31 for low level drivers' internal use */ 1330 IB_SEND_RESERVED_START = (1 << 26), 1331 IB_SEND_RESERVED_END = (1 << 31), 1332 }; 1333 1334 struct ib_sge { 1335 u64 addr; 1336 u32 length; 1337 u32 lkey; 1338 }; 1339 1340 struct ib_cqe { 1341 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1342 }; 1343 1344 struct ib_send_wr { 1345 struct ib_send_wr *next; 1346 union { 1347 u64 wr_id; 1348 struct ib_cqe *wr_cqe; 1349 }; 1350 struct ib_sge *sg_list; 1351 int num_sge; 1352 enum ib_wr_opcode opcode; 1353 int send_flags; 1354 union { 1355 __be32 imm_data; 1356 u32 invalidate_rkey; 1357 } ex; 1358 }; 1359 1360 struct ib_rdma_wr { 1361 struct ib_send_wr wr; 1362 u64 remote_addr; 1363 u32 rkey; 1364 }; 1365 1366 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1367 { 1368 return container_of(wr, struct ib_rdma_wr, wr); 1369 } 1370 1371 struct ib_atomic_wr { 1372 struct ib_send_wr wr; 1373 u64 remote_addr; 1374 u64 compare_add; 1375 u64 swap; 1376 u64 compare_add_mask; 1377 u64 swap_mask; 1378 u32 rkey; 1379 }; 1380 1381 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1382 { 1383 return container_of(wr, struct ib_atomic_wr, wr); 1384 } 1385 1386 struct ib_ud_wr { 1387 struct ib_send_wr wr; 1388 struct ib_ah *ah; 1389 void *header; 1390 int hlen; 1391 int mss; 1392 u32 remote_qpn; 1393 u32 remote_qkey; 1394 u16 pkey_index; /* valid for GSI only */ 1395 u8 port_num; /* valid for DR SMPs on switch only */ 1396 }; 1397 1398 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1399 { 1400 return container_of(wr, struct ib_ud_wr, wr); 1401 } 1402 1403 struct ib_reg_wr { 1404 struct ib_send_wr wr; 1405 struct ib_mr *mr; 1406 u32 key; 1407 int access; 1408 }; 1409 1410 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1411 { 1412 return container_of(wr, struct ib_reg_wr, wr); 1413 } 1414 1415 struct ib_sig_handover_wr { 1416 struct ib_send_wr wr; 1417 struct ib_sig_attrs *sig_attrs; 1418 struct ib_mr *sig_mr; 1419 int access_flags; 1420 struct ib_sge *prot; 1421 }; 1422 1423 static inline const struct ib_sig_handover_wr * 1424 sig_handover_wr(const struct ib_send_wr *wr) 1425 { 1426 return container_of(wr, struct ib_sig_handover_wr, wr); 1427 } 1428 1429 struct ib_recv_wr { 1430 struct ib_recv_wr *next; 1431 union { 1432 u64 wr_id; 1433 struct ib_cqe *wr_cqe; 1434 }; 1435 struct ib_sge *sg_list; 1436 int num_sge; 1437 }; 1438 1439 enum ib_access_flags { 1440 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1441 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1442 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1443 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1444 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1445 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1446 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1447 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1448 1449 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1450 }; 1451 1452 /* 1453 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1454 * are hidden here instead of a uapi header! 1455 */ 1456 enum ib_mr_rereg_flags { 1457 IB_MR_REREG_TRANS = 1, 1458 IB_MR_REREG_PD = (1<<1), 1459 IB_MR_REREG_ACCESS = (1<<2), 1460 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1461 }; 1462 1463 struct ib_fmr_attr { 1464 int max_pages; 1465 int max_maps; 1466 u8 page_shift; 1467 }; 1468 1469 struct ib_umem; 1470 1471 enum rdma_remove_reason { 1472 /* 1473 * Userspace requested uobject deletion or initial try 1474 * to remove uobject via cleanup. Call could fail 1475 */ 1476 RDMA_REMOVE_DESTROY, 1477 /* Context deletion. This call should delete the actual object itself */ 1478 RDMA_REMOVE_CLOSE, 1479 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1480 RDMA_REMOVE_DRIVER_REMOVE, 1481 /* uobj is being cleaned-up before being committed */ 1482 RDMA_REMOVE_ABORT, 1483 }; 1484 1485 struct ib_rdmacg_object { 1486 #ifdef CONFIG_CGROUP_RDMA 1487 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1488 #endif 1489 }; 1490 1491 struct ib_ucontext { 1492 struct ib_device *device; 1493 struct ib_uverbs_file *ufile; 1494 /* 1495 * 'closing' can be read by the driver only during a destroy callback, 1496 * it is set when we are closing the file descriptor and indicates 1497 * that mm_sem may be locked. 1498 */ 1499 bool closing; 1500 1501 bool cleanup_retryable; 1502 1503 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1504 void (*invalidate_range)(struct ib_umem_odp *umem_odp, 1505 unsigned long start, unsigned long end); 1506 struct mutex per_mm_list_lock; 1507 struct list_head per_mm_list; 1508 #endif 1509 1510 struct ib_rdmacg_object cg_obj; 1511 }; 1512 1513 struct ib_uobject { 1514 u64 user_handle; /* handle given to us by userspace */ 1515 /* ufile & ucontext owning this object */ 1516 struct ib_uverbs_file *ufile; 1517 /* FIXME, save memory: ufile->context == context */ 1518 struct ib_ucontext *context; /* associated user context */ 1519 void *object; /* containing object */ 1520 struct list_head list; /* link to context's list */ 1521 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1522 int id; /* index into kernel idr */ 1523 struct kref ref; 1524 atomic_t usecnt; /* protects exclusive access */ 1525 struct rcu_head rcu; /* kfree_rcu() overhead */ 1526 1527 const struct uverbs_api_object *uapi_object; 1528 }; 1529 1530 struct ib_udata { 1531 const void __user *inbuf; 1532 void __user *outbuf; 1533 size_t inlen; 1534 size_t outlen; 1535 }; 1536 1537 struct ib_pd { 1538 u32 local_dma_lkey; 1539 u32 flags; 1540 struct ib_device *device; 1541 struct ib_uobject *uobject; 1542 atomic_t usecnt; /* count all resources */ 1543 1544 u32 unsafe_global_rkey; 1545 1546 /* 1547 * Implementation details of the RDMA core, don't use in drivers: 1548 */ 1549 struct ib_mr *__internal_mr; 1550 struct rdma_restrack_entry res; 1551 }; 1552 1553 struct ib_xrcd { 1554 struct ib_device *device; 1555 atomic_t usecnt; /* count all exposed resources */ 1556 struct inode *inode; 1557 1558 struct mutex tgt_qp_mutex; 1559 struct list_head tgt_qp_list; 1560 }; 1561 1562 struct ib_ah { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 const struct ib_gid_attr *sgid_attr; 1567 enum rdma_ah_attr_type type; 1568 }; 1569 1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1571 1572 enum ib_poll_context { 1573 IB_POLL_DIRECT, /* caller context, no hw completions */ 1574 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1575 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1576 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1577 }; 1578 1579 struct ib_cq { 1580 struct ib_device *device; 1581 struct ib_uobject *uobject; 1582 ib_comp_handler comp_handler; 1583 void (*event_handler)(struct ib_event *, void *); 1584 void *cq_context; 1585 int cqe; 1586 atomic_t usecnt; /* count number of work queues */ 1587 enum ib_poll_context poll_ctx; 1588 struct ib_wc *wc; 1589 union { 1590 struct irq_poll iop; 1591 struct work_struct work; 1592 }; 1593 struct workqueue_struct *comp_wq; 1594 /* 1595 * Implementation details of the RDMA core, don't use in drivers: 1596 */ 1597 struct rdma_restrack_entry res; 1598 }; 1599 1600 struct ib_srq { 1601 struct ib_device *device; 1602 struct ib_pd *pd; 1603 struct ib_uobject *uobject; 1604 void (*event_handler)(struct ib_event *, void *); 1605 void *srq_context; 1606 enum ib_srq_type srq_type; 1607 atomic_t usecnt; 1608 1609 struct { 1610 struct ib_cq *cq; 1611 union { 1612 struct { 1613 struct ib_xrcd *xrcd; 1614 u32 srq_num; 1615 } xrc; 1616 }; 1617 } ext; 1618 }; 1619 1620 enum ib_raw_packet_caps { 1621 /* Strip cvlan from incoming packet and report it in the matching work 1622 * completion is supported. 1623 */ 1624 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1625 /* Scatter FCS field of an incoming packet to host memory is supported. 1626 */ 1627 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1628 /* Checksum offloads are supported (for both send and receive). */ 1629 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1630 /* When a packet is received for an RQ with no receive WQEs, the 1631 * packet processing is delayed. 1632 */ 1633 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1634 }; 1635 1636 enum ib_wq_type { 1637 IB_WQT_RQ 1638 }; 1639 1640 enum ib_wq_state { 1641 IB_WQS_RESET, 1642 IB_WQS_RDY, 1643 IB_WQS_ERR 1644 }; 1645 1646 struct ib_wq { 1647 struct ib_device *device; 1648 struct ib_uobject *uobject; 1649 void *wq_context; 1650 void (*event_handler)(struct ib_event *, void *); 1651 struct ib_pd *pd; 1652 struct ib_cq *cq; 1653 u32 wq_num; 1654 enum ib_wq_state state; 1655 enum ib_wq_type wq_type; 1656 atomic_t usecnt; 1657 }; 1658 1659 enum ib_wq_flags { 1660 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1661 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1662 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1663 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1664 }; 1665 1666 struct ib_wq_init_attr { 1667 void *wq_context; 1668 enum ib_wq_type wq_type; 1669 u32 max_wr; 1670 u32 max_sge; 1671 struct ib_cq *cq; 1672 void (*event_handler)(struct ib_event *, void *); 1673 u32 create_flags; /* Use enum ib_wq_flags */ 1674 }; 1675 1676 enum ib_wq_attr_mask { 1677 IB_WQ_STATE = 1 << 0, 1678 IB_WQ_CUR_STATE = 1 << 1, 1679 IB_WQ_FLAGS = 1 << 2, 1680 }; 1681 1682 struct ib_wq_attr { 1683 enum ib_wq_state wq_state; 1684 enum ib_wq_state curr_wq_state; 1685 u32 flags; /* Use enum ib_wq_flags */ 1686 u32 flags_mask; /* Use enum ib_wq_flags */ 1687 }; 1688 1689 struct ib_rwq_ind_table { 1690 struct ib_device *device; 1691 struct ib_uobject *uobject; 1692 atomic_t usecnt; 1693 u32 ind_tbl_num; 1694 u32 log_ind_tbl_size; 1695 struct ib_wq **ind_tbl; 1696 }; 1697 1698 struct ib_rwq_ind_table_init_attr { 1699 u32 log_ind_tbl_size; 1700 /* Each entry is a pointer to Receive Work Queue */ 1701 struct ib_wq **ind_tbl; 1702 }; 1703 1704 enum port_pkey_state { 1705 IB_PORT_PKEY_NOT_VALID = 0, 1706 IB_PORT_PKEY_VALID = 1, 1707 IB_PORT_PKEY_LISTED = 2, 1708 }; 1709 1710 struct ib_qp_security; 1711 1712 struct ib_port_pkey { 1713 enum port_pkey_state state; 1714 u16 pkey_index; 1715 u8 port_num; 1716 struct list_head qp_list; 1717 struct list_head to_error_list; 1718 struct ib_qp_security *sec; 1719 }; 1720 1721 struct ib_ports_pkeys { 1722 struct ib_port_pkey main; 1723 struct ib_port_pkey alt; 1724 }; 1725 1726 struct ib_qp_security { 1727 struct ib_qp *qp; 1728 struct ib_device *dev; 1729 /* Hold this mutex when changing port and pkey settings. */ 1730 struct mutex mutex; 1731 struct ib_ports_pkeys *ports_pkeys; 1732 /* A list of all open shared QP handles. Required to enforce security 1733 * properly for all users of a shared QP. 1734 */ 1735 struct list_head shared_qp_list; 1736 void *security; 1737 bool destroying; 1738 atomic_t error_list_count; 1739 struct completion error_complete; 1740 int error_comps_pending; 1741 }; 1742 1743 /* 1744 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1745 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1746 */ 1747 struct ib_qp { 1748 struct ib_device *device; 1749 struct ib_pd *pd; 1750 struct ib_cq *send_cq; 1751 struct ib_cq *recv_cq; 1752 spinlock_t mr_lock; 1753 int mrs_used; 1754 struct list_head rdma_mrs; 1755 struct list_head sig_mrs; 1756 struct ib_srq *srq; 1757 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1758 struct list_head xrcd_list; 1759 1760 /* count times opened, mcast attaches, flow attaches */ 1761 atomic_t usecnt; 1762 struct list_head open_list; 1763 struct ib_qp *real_qp; 1764 struct ib_uobject *uobject; 1765 void (*event_handler)(struct ib_event *, void *); 1766 void *qp_context; 1767 /* sgid_attrs associated with the AV's */ 1768 const struct ib_gid_attr *av_sgid_attr; 1769 const struct ib_gid_attr *alt_path_sgid_attr; 1770 u32 qp_num; 1771 u32 max_write_sge; 1772 u32 max_read_sge; 1773 enum ib_qp_type qp_type; 1774 struct ib_rwq_ind_table *rwq_ind_tbl; 1775 struct ib_qp_security *qp_sec; 1776 u8 port; 1777 1778 /* 1779 * Implementation details of the RDMA core, don't use in drivers: 1780 */ 1781 struct rdma_restrack_entry res; 1782 }; 1783 1784 struct ib_dm { 1785 struct ib_device *device; 1786 u32 length; 1787 u32 flags; 1788 struct ib_uobject *uobject; 1789 atomic_t usecnt; 1790 }; 1791 1792 struct ib_mr { 1793 struct ib_device *device; 1794 struct ib_pd *pd; 1795 u32 lkey; 1796 u32 rkey; 1797 u64 iova; 1798 u64 length; 1799 unsigned int page_size; 1800 bool need_inval; 1801 union { 1802 struct ib_uobject *uobject; /* user */ 1803 struct list_head qp_entry; /* FR */ 1804 }; 1805 1806 struct ib_dm *dm; 1807 1808 /* 1809 * Implementation details of the RDMA core, don't use in drivers: 1810 */ 1811 struct rdma_restrack_entry res; 1812 }; 1813 1814 struct ib_mw { 1815 struct ib_device *device; 1816 struct ib_pd *pd; 1817 struct ib_uobject *uobject; 1818 u32 rkey; 1819 enum ib_mw_type type; 1820 }; 1821 1822 struct ib_fmr { 1823 struct ib_device *device; 1824 struct ib_pd *pd; 1825 struct list_head list; 1826 u32 lkey; 1827 u32 rkey; 1828 }; 1829 1830 /* Supported steering options */ 1831 enum ib_flow_attr_type { 1832 /* steering according to rule specifications */ 1833 IB_FLOW_ATTR_NORMAL = 0x0, 1834 /* default unicast and multicast rule - 1835 * receive all Eth traffic which isn't steered to any QP 1836 */ 1837 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1838 /* default multicast rule - 1839 * receive all Eth multicast traffic which isn't steered to any QP 1840 */ 1841 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1842 /* sniffer rule - receive all port traffic */ 1843 IB_FLOW_ATTR_SNIFFER = 0x3 1844 }; 1845 1846 /* Supported steering header types */ 1847 enum ib_flow_spec_type { 1848 /* L2 headers*/ 1849 IB_FLOW_SPEC_ETH = 0x20, 1850 IB_FLOW_SPEC_IB = 0x22, 1851 /* L3 header*/ 1852 IB_FLOW_SPEC_IPV4 = 0x30, 1853 IB_FLOW_SPEC_IPV6 = 0x31, 1854 IB_FLOW_SPEC_ESP = 0x34, 1855 /* L4 headers*/ 1856 IB_FLOW_SPEC_TCP = 0x40, 1857 IB_FLOW_SPEC_UDP = 0x41, 1858 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1859 IB_FLOW_SPEC_GRE = 0x51, 1860 IB_FLOW_SPEC_MPLS = 0x60, 1861 IB_FLOW_SPEC_INNER = 0x100, 1862 /* Actions */ 1863 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1864 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1865 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1866 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1867 }; 1868 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1869 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1870 1871 /* Flow steering rule priority is set according to it's domain. 1872 * Lower domain value means higher priority. 1873 */ 1874 enum ib_flow_domain { 1875 IB_FLOW_DOMAIN_USER, 1876 IB_FLOW_DOMAIN_ETHTOOL, 1877 IB_FLOW_DOMAIN_RFS, 1878 IB_FLOW_DOMAIN_NIC, 1879 IB_FLOW_DOMAIN_NUM /* Must be last */ 1880 }; 1881 1882 enum ib_flow_flags { 1883 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1884 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1885 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1886 }; 1887 1888 struct ib_flow_eth_filter { 1889 u8 dst_mac[6]; 1890 u8 src_mac[6]; 1891 __be16 ether_type; 1892 __be16 vlan_tag; 1893 /* Must be last */ 1894 u8 real_sz[0]; 1895 }; 1896 1897 struct ib_flow_spec_eth { 1898 u32 type; 1899 u16 size; 1900 struct ib_flow_eth_filter val; 1901 struct ib_flow_eth_filter mask; 1902 }; 1903 1904 struct ib_flow_ib_filter { 1905 __be16 dlid; 1906 __u8 sl; 1907 /* Must be last */ 1908 u8 real_sz[0]; 1909 }; 1910 1911 struct ib_flow_spec_ib { 1912 u32 type; 1913 u16 size; 1914 struct ib_flow_ib_filter val; 1915 struct ib_flow_ib_filter mask; 1916 }; 1917 1918 /* IPv4 header flags */ 1919 enum ib_ipv4_flags { 1920 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1921 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1922 last have this flag set */ 1923 }; 1924 1925 struct ib_flow_ipv4_filter { 1926 __be32 src_ip; 1927 __be32 dst_ip; 1928 u8 proto; 1929 u8 tos; 1930 u8 ttl; 1931 u8 flags; 1932 /* Must be last */ 1933 u8 real_sz[0]; 1934 }; 1935 1936 struct ib_flow_spec_ipv4 { 1937 u32 type; 1938 u16 size; 1939 struct ib_flow_ipv4_filter val; 1940 struct ib_flow_ipv4_filter mask; 1941 }; 1942 1943 struct ib_flow_ipv6_filter { 1944 u8 src_ip[16]; 1945 u8 dst_ip[16]; 1946 __be32 flow_label; 1947 u8 next_hdr; 1948 u8 traffic_class; 1949 u8 hop_limit; 1950 /* Must be last */ 1951 u8 real_sz[0]; 1952 }; 1953 1954 struct ib_flow_spec_ipv6 { 1955 u32 type; 1956 u16 size; 1957 struct ib_flow_ipv6_filter val; 1958 struct ib_flow_ipv6_filter mask; 1959 }; 1960 1961 struct ib_flow_tcp_udp_filter { 1962 __be16 dst_port; 1963 __be16 src_port; 1964 /* Must be last */ 1965 u8 real_sz[0]; 1966 }; 1967 1968 struct ib_flow_spec_tcp_udp { 1969 u32 type; 1970 u16 size; 1971 struct ib_flow_tcp_udp_filter val; 1972 struct ib_flow_tcp_udp_filter mask; 1973 }; 1974 1975 struct ib_flow_tunnel_filter { 1976 __be32 tunnel_id; 1977 u8 real_sz[0]; 1978 }; 1979 1980 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1981 * the tunnel_id from val has the vni value 1982 */ 1983 struct ib_flow_spec_tunnel { 1984 u32 type; 1985 u16 size; 1986 struct ib_flow_tunnel_filter val; 1987 struct ib_flow_tunnel_filter mask; 1988 }; 1989 1990 struct ib_flow_esp_filter { 1991 __be32 spi; 1992 __be32 seq; 1993 /* Must be last */ 1994 u8 real_sz[0]; 1995 }; 1996 1997 struct ib_flow_spec_esp { 1998 u32 type; 1999 u16 size; 2000 struct ib_flow_esp_filter val; 2001 struct ib_flow_esp_filter mask; 2002 }; 2003 2004 struct ib_flow_gre_filter { 2005 __be16 c_ks_res0_ver; 2006 __be16 protocol; 2007 __be32 key; 2008 /* Must be last */ 2009 u8 real_sz[0]; 2010 }; 2011 2012 struct ib_flow_spec_gre { 2013 u32 type; 2014 u16 size; 2015 struct ib_flow_gre_filter val; 2016 struct ib_flow_gre_filter mask; 2017 }; 2018 2019 struct ib_flow_mpls_filter { 2020 __be32 tag; 2021 /* Must be last */ 2022 u8 real_sz[0]; 2023 }; 2024 2025 struct ib_flow_spec_mpls { 2026 u32 type; 2027 u16 size; 2028 struct ib_flow_mpls_filter val; 2029 struct ib_flow_mpls_filter mask; 2030 }; 2031 2032 struct ib_flow_spec_action_tag { 2033 enum ib_flow_spec_type type; 2034 u16 size; 2035 u32 tag_id; 2036 }; 2037 2038 struct ib_flow_spec_action_drop { 2039 enum ib_flow_spec_type type; 2040 u16 size; 2041 }; 2042 2043 struct ib_flow_spec_action_handle { 2044 enum ib_flow_spec_type type; 2045 u16 size; 2046 struct ib_flow_action *act; 2047 }; 2048 2049 enum ib_counters_description { 2050 IB_COUNTER_PACKETS, 2051 IB_COUNTER_BYTES, 2052 }; 2053 2054 struct ib_flow_spec_action_count { 2055 enum ib_flow_spec_type type; 2056 u16 size; 2057 struct ib_counters *counters; 2058 }; 2059 2060 union ib_flow_spec { 2061 struct { 2062 u32 type; 2063 u16 size; 2064 }; 2065 struct ib_flow_spec_eth eth; 2066 struct ib_flow_spec_ib ib; 2067 struct ib_flow_spec_ipv4 ipv4; 2068 struct ib_flow_spec_tcp_udp tcp_udp; 2069 struct ib_flow_spec_ipv6 ipv6; 2070 struct ib_flow_spec_tunnel tunnel; 2071 struct ib_flow_spec_esp esp; 2072 struct ib_flow_spec_gre gre; 2073 struct ib_flow_spec_mpls mpls; 2074 struct ib_flow_spec_action_tag flow_tag; 2075 struct ib_flow_spec_action_drop drop; 2076 struct ib_flow_spec_action_handle action; 2077 struct ib_flow_spec_action_count flow_count; 2078 }; 2079 2080 struct ib_flow_attr { 2081 enum ib_flow_attr_type type; 2082 u16 size; 2083 u16 priority; 2084 u32 flags; 2085 u8 num_of_specs; 2086 u8 port; 2087 union ib_flow_spec flows[]; 2088 }; 2089 2090 struct ib_flow { 2091 struct ib_qp *qp; 2092 struct ib_device *device; 2093 struct ib_uobject *uobject; 2094 }; 2095 2096 enum ib_flow_action_type { 2097 IB_FLOW_ACTION_UNSPECIFIED, 2098 IB_FLOW_ACTION_ESP = 1, 2099 }; 2100 2101 struct ib_flow_action_attrs_esp_keymats { 2102 enum ib_uverbs_flow_action_esp_keymat protocol; 2103 union { 2104 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2105 } keymat; 2106 }; 2107 2108 struct ib_flow_action_attrs_esp_replays { 2109 enum ib_uverbs_flow_action_esp_replay protocol; 2110 union { 2111 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2112 } replay; 2113 }; 2114 2115 enum ib_flow_action_attrs_esp_flags { 2116 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2117 * This is done in order to share the same flags between user-space and 2118 * kernel and spare an unnecessary translation. 2119 */ 2120 2121 /* Kernel flags */ 2122 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2123 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2124 }; 2125 2126 struct ib_flow_spec_list { 2127 struct ib_flow_spec_list *next; 2128 union ib_flow_spec spec; 2129 }; 2130 2131 struct ib_flow_action_attrs_esp { 2132 struct ib_flow_action_attrs_esp_keymats *keymat; 2133 struct ib_flow_action_attrs_esp_replays *replay; 2134 struct ib_flow_spec_list *encap; 2135 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2136 * Value of 0 is a valid value. 2137 */ 2138 u32 esn; 2139 u32 spi; 2140 u32 seq; 2141 u32 tfc_pad; 2142 /* Use enum ib_flow_action_attrs_esp_flags */ 2143 u64 flags; 2144 u64 hard_limit_pkts; 2145 }; 2146 2147 struct ib_flow_action { 2148 struct ib_device *device; 2149 struct ib_uobject *uobject; 2150 enum ib_flow_action_type type; 2151 atomic_t usecnt; 2152 }; 2153 2154 struct ib_mad_hdr; 2155 struct ib_grh; 2156 2157 enum ib_process_mad_flags { 2158 IB_MAD_IGNORE_MKEY = 1, 2159 IB_MAD_IGNORE_BKEY = 2, 2160 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2161 }; 2162 2163 enum ib_mad_result { 2164 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2165 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2166 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2167 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2168 }; 2169 2170 struct ib_port_cache { 2171 u64 subnet_prefix; 2172 struct ib_pkey_cache *pkey; 2173 struct ib_gid_table *gid; 2174 u8 lmc; 2175 enum ib_port_state port_state; 2176 }; 2177 2178 struct ib_cache { 2179 rwlock_t lock; 2180 struct ib_event_handler event_handler; 2181 struct ib_port_cache *ports; 2182 }; 2183 2184 struct iw_cm_verbs; 2185 2186 struct ib_port_immutable { 2187 int pkey_tbl_len; 2188 int gid_tbl_len; 2189 u32 core_cap_flags; 2190 u32 max_mad_size; 2191 }; 2192 2193 /* rdma netdev type - specifies protocol type */ 2194 enum rdma_netdev_t { 2195 RDMA_NETDEV_OPA_VNIC, 2196 RDMA_NETDEV_IPOIB, 2197 }; 2198 2199 /** 2200 * struct rdma_netdev - rdma netdev 2201 * For cases where netstack interfacing is required. 2202 */ 2203 struct rdma_netdev { 2204 void *clnt_priv; 2205 struct ib_device *hca; 2206 u8 port_num; 2207 2208 /* 2209 * cleanup function must be specified. 2210 * FIXME: This is only used for OPA_VNIC and that usage should be 2211 * removed too. 2212 */ 2213 void (*free_rdma_netdev)(struct net_device *netdev); 2214 2215 /* control functions */ 2216 void (*set_id)(struct net_device *netdev, int id); 2217 /* send packet */ 2218 int (*send)(struct net_device *dev, struct sk_buff *skb, 2219 struct ib_ah *address, u32 dqpn); 2220 /* multicast */ 2221 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2222 union ib_gid *gid, u16 mlid, 2223 int set_qkey, u32 qkey); 2224 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2225 union ib_gid *gid, u16 mlid); 2226 }; 2227 2228 struct rdma_netdev_alloc_params { 2229 size_t sizeof_priv; 2230 unsigned int txqs; 2231 unsigned int rxqs; 2232 void *param; 2233 2234 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2235 struct net_device *netdev, void *param); 2236 }; 2237 2238 struct ib_port_pkey_list { 2239 /* Lock to hold while modifying the list. */ 2240 spinlock_t list_lock; 2241 struct list_head pkey_list; 2242 }; 2243 2244 struct ib_counters { 2245 struct ib_device *device; 2246 struct ib_uobject *uobject; 2247 /* num of objects attached */ 2248 atomic_t usecnt; 2249 }; 2250 2251 struct ib_counters_read_attr { 2252 u64 *counters_buff; 2253 u32 ncounters; 2254 u32 flags; /* use enum ib_read_counters_flags */ 2255 }; 2256 2257 struct uverbs_attr_bundle; 2258 2259 struct ib_device { 2260 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2261 struct device *dma_device; 2262 2263 char name[IB_DEVICE_NAME_MAX]; 2264 2265 struct list_head event_handler_list; 2266 spinlock_t event_handler_lock; 2267 2268 rwlock_t client_data_lock; 2269 struct list_head core_list; 2270 /* Access to the client_data_list is protected by the client_data_lock 2271 * rwlock and the lists_rwsem read-write semaphore 2272 */ 2273 struct list_head client_data_list; 2274 2275 struct ib_cache cache; 2276 /** 2277 * port_immutable is indexed by port number 2278 */ 2279 struct ib_port_immutable *port_immutable; 2280 2281 int num_comp_vectors; 2282 2283 struct ib_port_pkey_list *port_pkey_list; 2284 2285 struct iw_cm_verbs *iwcm; 2286 2287 /** 2288 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2289 * driver initialized data. The struct is kfree()'ed by the sysfs 2290 * core when the device is removed. A lifespan of -1 in the return 2291 * struct tells the core to set a default lifespan. 2292 */ 2293 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2294 u8 port_num); 2295 /** 2296 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2297 * @index - The index in the value array we wish to have updated, or 2298 * num_counters if we want all stats updated 2299 * Return codes - 2300 * < 0 - Error, no counters updated 2301 * index - Updated the single counter pointed to by index 2302 * num_counters - Updated all counters (will reset the timestamp 2303 * and prevent further calls for lifespan milliseconds) 2304 * Drivers are allowed to update all counters in leiu of just the 2305 * one given in index at their option 2306 */ 2307 int (*get_hw_stats)(struct ib_device *device, 2308 struct rdma_hw_stats *stats, 2309 u8 port, int index); 2310 int (*query_device)(struct ib_device *device, 2311 struct ib_device_attr *device_attr, 2312 struct ib_udata *udata); 2313 int (*query_port)(struct ib_device *device, 2314 u8 port_num, 2315 struct ib_port_attr *port_attr); 2316 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2317 u8 port_num); 2318 /* When calling get_netdev, the HW vendor's driver should return the 2319 * net device of device @device at port @port_num or NULL if such 2320 * a net device doesn't exist. The vendor driver should call dev_hold 2321 * on this net device. The HW vendor's device driver must guarantee 2322 * that this function returns NULL before the net device has finished 2323 * NETDEV_UNREGISTER state. 2324 */ 2325 struct net_device *(*get_netdev)(struct ib_device *device, 2326 u8 port_num); 2327 /* query_gid should be return GID value for @device, when @port_num 2328 * link layer is either IB or iWarp. It is no-op if @port_num port 2329 * is RoCE link layer. 2330 */ 2331 int (*query_gid)(struct ib_device *device, 2332 u8 port_num, int index, 2333 union ib_gid *gid); 2334 /* When calling add_gid, the HW vendor's driver should add the gid 2335 * of device of port at gid index available at @attr. Meta-info of 2336 * that gid (for example, the network device related to this gid) is 2337 * available at @attr. @context allows the HW vendor driver to store 2338 * extra information together with a GID entry. The HW vendor driver may 2339 * allocate memory to contain this information and store it in @context 2340 * when a new GID entry is written to. Params are consistent until the 2341 * next call of add_gid or delete_gid. The function should return 0 on 2342 * success or error otherwise. The function could be called 2343 * concurrently for different ports. This function is only called when 2344 * roce_gid_table is used. 2345 */ 2346 int (*add_gid)(const struct ib_gid_attr *attr, 2347 void **context); 2348 /* When calling del_gid, the HW vendor's driver should delete the 2349 * gid of device @device at gid index gid_index of port port_num 2350 * available in @attr. 2351 * Upon the deletion of a GID entry, the HW vendor must free any 2352 * allocated memory. The caller will clear @context afterwards. 2353 * This function is only called when roce_gid_table is used. 2354 */ 2355 int (*del_gid)(const struct ib_gid_attr *attr, 2356 void **context); 2357 int (*query_pkey)(struct ib_device *device, 2358 u8 port_num, u16 index, u16 *pkey); 2359 int (*modify_device)(struct ib_device *device, 2360 int device_modify_mask, 2361 struct ib_device_modify *device_modify); 2362 int (*modify_port)(struct ib_device *device, 2363 u8 port_num, int port_modify_mask, 2364 struct ib_port_modify *port_modify); 2365 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2366 struct ib_udata *udata); 2367 int (*dealloc_ucontext)(struct ib_ucontext *context); 2368 int (*mmap)(struct ib_ucontext *context, 2369 struct vm_area_struct *vma); 2370 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2371 struct ib_ucontext *context, 2372 struct ib_udata *udata); 2373 int (*dealloc_pd)(struct ib_pd *pd); 2374 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2375 struct rdma_ah_attr *ah_attr, 2376 struct ib_udata *udata); 2377 int (*modify_ah)(struct ib_ah *ah, 2378 struct rdma_ah_attr *ah_attr); 2379 int (*query_ah)(struct ib_ah *ah, 2380 struct rdma_ah_attr *ah_attr); 2381 int (*destroy_ah)(struct ib_ah *ah); 2382 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2383 struct ib_srq_init_attr *srq_init_attr, 2384 struct ib_udata *udata); 2385 int (*modify_srq)(struct ib_srq *srq, 2386 struct ib_srq_attr *srq_attr, 2387 enum ib_srq_attr_mask srq_attr_mask, 2388 struct ib_udata *udata); 2389 int (*query_srq)(struct ib_srq *srq, 2390 struct ib_srq_attr *srq_attr); 2391 int (*destroy_srq)(struct ib_srq *srq); 2392 int (*post_srq_recv)(struct ib_srq *srq, 2393 const struct ib_recv_wr *recv_wr, 2394 const struct ib_recv_wr **bad_recv_wr); 2395 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2396 struct ib_qp_init_attr *qp_init_attr, 2397 struct ib_udata *udata); 2398 int (*modify_qp)(struct ib_qp *qp, 2399 struct ib_qp_attr *qp_attr, 2400 int qp_attr_mask, 2401 struct ib_udata *udata); 2402 int (*query_qp)(struct ib_qp *qp, 2403 struct ib_qp_attr *qp_attr, 2404 int qp_attr_mask, 2405 struct ib_qp_init_attr *qp_init_attr); 2406 int (*destroy_qp)(struct ib_qp *qp); 2407 int (*post_send)(struct ib_qp *qp, 2408 const struct ib_send_wr *send_wr, 2409 const struct ib_send_wr **bad_send_wr); 2410 int (*post_recv)(struct ib_qp *qp, 2411 const struct ib_recv_wr *recv_wr, 2412 const struct ib_recv_wr **bad_recv_wr); 2413 struct ib_cq * (*create_cq)(struct ib_device *device, 2414 const struct ib_cq_init_attr *attr, 2415 struct ib_ucontext *context, 2416 struct ib_udata *udata); 2417 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2418 u16 cq_period); 2419 int (*destroy_cq)(struct ib_cq *cq); 2420 int (*resize_cq)(struct ib_cq *cq, int cqe, 2421 struct ib_udata *udata); 2422 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2423 struct ib_wc *wc); 2424 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2425 int (*req_notify_cq)(struct ib_cq *cq, 2426 enum ib_cq_notify_flags flags); 2427 int (*req_ncomp_notif)(struct ib_cq *cq, 2428 int wc_cnt); 2429 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2430 int mr_access_flags); 2431 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2432 u64 start, u64 length, 2433 u64 virt_addr, 2434 int mr_access_flags, 2435 struct ib_udata *udata); 2436 int (*rereg_user_mr)(struct ib_mr *mr, 2437 int flags, 2438 u64 start, u64 length, 2439 u64 virt_addr, 2440 int mr_access_flags, 2441 struct ib_pd *pd, 2442 struct ib_udata *udata); 2443 int (*dereg_mr)(struct ib_mr *mr); 2444 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2445 enum ib_mr_type mr_type, 2446 u32 max_num_sg); 2447 int (*map_mr_sg)(struct ib_mr *mr, 2448 struct scatterlist *sg, 2449 int sg_nents, 2450 unsigned int *sg_offset); 2451 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2452 enum ib_mw_type type, 2453 struct ib_udata *udata); 2454 int (*dealloc_mw)(struct ib_mw *mw); 2455 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2456 int mr_access_flags, 2457 struct ib_fmr_attr *fmr_attr); 2458 int (*map_phys_fmr)(struct ib_fmr *fmr, 2459 u64 *page_list, int list_len, 2460 u64 iova); 2461 int (*unmap_fmr)(struct list_head *fmr_list); 2462 int (*dealloc_fmr)(struct ib_fmr *fmr); 2463 int (*attach_mcast)(struct ib_qp *qp, 2464 union ib_gid *gid, 2465 u16 lid); 2466 int (*detach_mcast)(struct ib_qp *qp, 2467 union ib_gid *gid, 2468 u16 lid); 2469 int (*process_mad)(struct ib_device *device, 2470 int process_mad_flags, 2471 u8 port_num, 2472 const struct ib_wc *in_wc, 2473 const struct ib_grh *in_grh, 2474 const struct ib_mad_hdr *in_mad, 2475 size_t in_mad_size, 2476 struct ib_mad_hdr *out_mad, 2477 size_t *out_mad_size, 2478 u16 *out_mad_pkey_index); 2479 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2480 struct ib_ucontext *ucontext, 2481 struct ib_udata *udata); 2482 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2483 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2484 struct ib_flow_attr 2485 *flow_attr, 2486 int domain, 2487 struct ib_udata *udata); 2488 int (*destroy_flow)(struct ib_flow *flow_id); 2489 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2490 struct ib_mr_status *mr_status); 2491 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2492 void (*drain_rq)(struct ib_qp *qp); 2493 void (*drain_sq)(struct ib_qp *qp); 2494 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2495 int state); 2496 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2497 struct ifla_vf_info *ivf); 2498 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2499 struct ifla_vf_stats *stats); 2500 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2501 int type); 2502 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2503 struct ib_wq_init_attr *init_attr, 2504 struct ib_udata *udata); 2505 int (*destroy_wq)(struct ib_wq *wq); 2506 int (*modify_wq)(struct ib_wq *wq, 2507 struct ib_wq_attr *attr, 2508 u32 wq_attr_mask, 2509 struct ib_udata *udata); 2510 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2511 struct ib_rwq_ind_table_init_attr *init_attr, 2512 struct ib_udata *udata); 2513 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2514 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device, 2515 const struct ib_flow_action_attrs_esp *attr, 2516 struct uverbs_attr_bundle *attrs); 2517 int (*destroy_flow_action)(struct ib_flow_action *action); 2518 int (*modify_flow_action_esp)(struct ib_flow_action *action, 2519 const struct ib_flow_action_attrs_esp *attr, 2520 struct uverbs_attr_bundle *attrs); 2521 struct ib_dm * (*alloc_dm)(struct ib_device *device, 2522 struct ib_ucontext *context, 2523 struct ib_dm_alloc_attr *attr, 2524 struct uverbs_attr_bundle *attrs); 2525 int (*dealloc_dm)(struct ib_dm *dm); 2526 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2527 struct ib_dm_mr_attr *attr, 2528 struct uverbs_attr_bundle *attrs); 2529 struct ib_counters * (*create_counters)(struct ib_device *device, 2530 struct uverbs_attr_bundle *attrs); 2531 int (*destroy_counters)(struct ib_counters *counters); 2532 int (*read_counters)(struct ib_counters *counters, 2533 struct ib_counters_read_attr *counters_read_attr, 2534 struct uverbs_attr_bundle *attrs); 2535 2536 /** 2537 * rdma netdev operation 2538 * 2539 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2540 * must return -EOPNOTSUPP if it doesn't support the specified type. 2541 */ 2542 struct net_device *(*alloc_rdma_netdev)( 2543 struct ib_device *device, 2544 u8 port_num, 2545 enum rdma_netdev_t type, 2546 const char *name, 2547 unsigned char name_assign_type, 2548 void (*setup)(struct net_device *)); 2549 2550 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2551 enum rdma_netdev_t type, 2552 struct rdma_netdev_alloc_params *params); 2553 2554 struct module *owner; 2555 struct device dev; 2556 /* First group for device attributes, 2557 * Second group for driver provided attributes (optional). 2558 * It is NULL terminated array. 2559 */ 2560 const struct attribute_group *groups[3]; 2561 2562 struct kobject *ports_kobj; 2563 struct list_head port_list; 2564 2565 enum { 2566 IB_DEV_UNINITIALIZED, 2567 IB_DEV_REGISTERED, 2568 IB_DEV_UNREGISTERED 2569 } reg_state; 2570 2571 int uverbs_abi_ver; 2572 u64 uverbs_cmd_mask; 2573 u64 uverbs_ex_cmd_mask; 2574 2575 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2576 __be64 node_guid; 2577 u32 local_dma_lkey; 2578 u16 is_switch:1; 2579 u8 node_type; 2580 u8 phys_port_cnt; 2581 struct ib_device_attr attrs; 2582 struct attribute_group *hw_stats_ag; 2583 struct rdma_hw_stats *hw_stats; 2584 2585 #ifdef CONFIG_CGROUP_RDMA 2586 struct rdmacg_device cg_device; 2587 #endif 2588 2589 u32 index; 2590 /* 2591 * Implementation details of the RDMA core, don't use in drivers 2592 */ 2593 struct rdma_restrack_root res; 2594 2595 /** 2596 * The following mandatory functions are used only at device 2597 * registration. Keep functions such as these at the end of this 2598 * structure to avoid cache line misses when accessing struct ib_device 2599 * in fast paths. 2600 */ 2601 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2602 void (*get_dev_fw_str)(struct ib_device *, char *str); 2603 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2604 int comp_vector); 2605 2606 const struct uverbs_object_tree_def *const *driver_specs; 2607 enum rdma_driver_id driver_id; 2608 }; 2609 2610 struct ib_client { 2611 char *name; 2612 void (*add) (struct ib_device *); 2613 void (*remove)(struct ib_device *, void *client_data); 2614 2615 /* Returns the net_dev belonging to this ib_client and matching the 2616 * given parameters. 2617 * @dev: An RDMA device that the net_dev use for communication. 2618 * @port: A physical port number on the RDMA device. 2619 * @pkey: P_Key that the net_dev uses if applicable. 2620 * @gid: A GID that the net_dev uses to communicate. 2621 * @addr: An IP address the net_dev is configured with. 2622 * @client_data: The device's client data set by ib_set_client_data(). 2623 * 2624 * An ib_client that implements a net_dev on top of RDMA devices 2625 * (such as IP over IB) should implement this callback, allowing the 2626 * rdma_cm module to find the right net_dev for a given request. 2627 * 2628 * The caller is responsible for calling dev_put on the returned 2629 * netdev. */ 2630 struct net_device *(*get_net_dev_by_params)( 2631 struct ib_device *dev, 2632 u8 port, 2633 u16 pkey, 2634 const union ib_gid *gid, 2635 const struct sockaddr *addr, 2636 void *client_data); 2637 struct list_head list; 2638 }; 2639 2640 struct ib_device *ib_alloc_device(size_t size); 2641 void ib_dealloc_device(struct ib_device *device); 2642 2643 void ib_get_device_fw_str(struct ib_device *device, char *str); 2644 2645 int ib_register_device(struct ib_device *device, const char *name, 2646 int (*port_callback)(struct ib_device *, u8, 2647 struct kobject *)); 2648 void ib_unregister_device(struct ib_device *device); 2649 2650 int ib_register_client (struct ib_client *client); 2651 void ib_unregister_client(struct ib_client *client); 2652 2653 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2654 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2655 void *data); 2656 2657 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2658 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2659 unsigned long pfn, unsigned long size, pgprot_t prot); 2660 int rdma_user_mmap_page(struct ib_ucontext *ucontext, 2661 struct vm_area_struct *vma, struct page *page, 2662 unsigned long size); 2663 #else 2664 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, 2665 struct vm_area_struct *vma, 2666 unsigned long pfn, unsigned long size, 2667 pgprot_t prot) 2668 { 2669 return -EINVAL; 2670 } 2671 static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext, 2672 struct vm_area_struct *vma, struct page *page, 2673 unsigned long size) 2674 { 2675 return -EINVAL; 2676 } 2677 #endif 2678 2679 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2680 { 2681 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2682 } 2683 2684 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2685 { 2686 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2687 } 2688 2689 static inline bool ib_is_buffer_cleared(const void __user *p, 2690 size_t len) 2691 { 2692 bool ret; 2693 u8 *buf; 2694 2695 if (len > USHRT_MAX) 2696 return false; 2697 2698 buf = memdup_user(p, len); 2699 if (IS_ERR(buf)) 2700 return false; 2701 2702 ret = !memchr_inv(buf, 0, len); 2703 kfree(buf); 2704 return ret; 2705 } 2706 2707 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2708 size_t offset, 2709 size_t len) 2710 { 2711 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2712 } 2713 2714 /** 2715 * ib_is_destroy_retryable - Check whether the uobject destruction 2716 * is retryable. 2717 * @ret: The initial destruction return code 2718 * @why: remove reason 2719 * @uobj: The uobject that is destroyed 2720 * 2721 * This function is a helper function that IB layer and low-level drivers 2722 * can use to consider whether the destruction of the given uobject is 2723 * retry-able. 2724 * It checks the original return code, if it wasn't success the destruction 2725 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2726 * the remove reason. (i.e. why). 2727 * Must be called with the object locked for destroy. 2728 */ 2729 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2730 struct ib_uobject *uobj) 2731 { 2732 return ret && (why == RDMA_REMOVE_DESTROY || 2733 uobj->context->cleanup_retryable); 2734 } 2735 2736 /** 2737 * ib_destroy_usecnt - Called during destruction to check the usecnt 2738 * @usecnt: The usecnt atomic 2739 * @why: remove reason 2740 * @uobj: The uobject that is destroyed 2741 * 2742 * Non-zero usecnts will block destruction unless destruction was triggered by 2743 * a ucontext cleanup. 2744 */ 2745 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2746 enum rdma_remove_reason why, 2747 struct ib_uobject *uobj) 2748 { 2749 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2750 return -EBUSY; 2751 return 0; 2752 } 2753 2754 /** 2755 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2756 * contains all required attributes and no attributes not allowed for 2757 * the given QP state transition. 2758 * @cur_state: Current QP state 2759 * @next_state: Next QP state 2760 * @type: QP type 2761 * @mask: Mask of supplied QP attributes 2762 * 2763 * This function is a helper function that a low-level driver's 2764 * modify_qp method can use to validate the consumer's input. It 2765 * checks that cur_state and next_state are valid QP states, that a 2766 * transition from cur_state to next_state is allowed by the IB spec, 2767 * and that the attribute mask supplied is allowed for the transition. 2768 */ 2769 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2770 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2771 2772 void ib_register_event_handler(struct ib_event_handler *event_handler); 2773 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2774 void ib_dispatch_event(struct ib_event *event); 2775 2776 int ib_query_port(struct ib_device *device, 2777 u8 port_num, struct ib_port_attr *port_attr); 2778 2779 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2780 u8 port_num); 2781 2782 /** 2783 * rdma_cap_ib_switch - Check if the device is IB switch 2784 * @device: Device to check 2785 * 2786 * Device driver is responsible for setting is_switch bit on 2787 * in ib_device structure at init time. 2788 * 2789 * Return: true if the device is IB switch. 2790 */ 2791 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2792 { 2793 return device->is_switch; 2794 } 2795 2796 /** 2797 * rdma_start_port - Return the first valid port number for the device 2798 * specified 2799 * 2800 * @device: Device to be checked 2801 * 2802 * Return start port number 2803 */ 2804 static inline u8 rdma_start_port(const struct ib_device *device) 2805 { 2806 return rdma_cap_ib_switch(device) ? 0 : 1; 2807 } 2808 2809 /** 2810 * rdma_end_port - Return the last valid port number for the device 2811 * specified 2812 * 2813 * @device: Device to be checked 2814 * 2815 * Return last port number 2816 */ 2817 static inline u8 rdma_end_port(const struct ib_device *device) 2818 { 2819 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2820 } 2821 2822 static inline int rdma_is_port_valid(const struct ib_device *device, 2823 unsigned int port) 2824 { 2825 return (port >= rdma_start_port(device) && 2826 port <= rdma_end_port(device)); 2827 } 2828 2829 static inline bool rdma_is_grh_required(const struct ib_device *device, 2830 u8 port_num) 2831 { 2832 return device->port_immutable[port_num].core_cap_flags & 2833 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2834 } 2835 2836 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2837 { 2838 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2839 } 2840 2841 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2842 { 2843 return device->port_immutable[port_num].core_cap_flags & 2844 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2845 } 2846 2847 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2848 { 2849 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2850 } 2851 2852 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2853 { 2854 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2855 } 2856 2857 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2858 { 2859 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2860 } 2861 2862 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2863 { 2864 return rdma_protocol_ib(device, port_num) || 2865 rdma_protocol_roce(device, port_num); 2866 } 2867 2868 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2869 { 2870 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2871 } 2872 2873 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2874 { 2875 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2876 } 2877 2878 /** 2879 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2880 * Management Datagrams. 2881 * @device: Device to check 2882 * @port_num: Port number to check 2883 * 2884 * Management Datagrams (MAD) are a required part of the InfiniBand 2885 * specification and are supported on all InfiniBand devices. A slightly 2886 * extended version are also supported on OPA interfaces. 2887 * 2888 * Return: true if the port supports sending/receiving of MAD packets. 2889 */ 2890 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2891 { 2892 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2893 } 2894 2895 /** 2896 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2897 * Management Datagrams. 2898 * @device: Device to check 2899 * @port_num: Port number to check 2900 * 2901 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2902 * datagrams with their own versions. These OPA MADs share many but not all of 2903 * the characteristics of InfiniBand MADs. 2904 * 2905 * OPA MADs differ in the following ways: 2906 * 2907 * 1) MADs are variable size up to 2K 2908 * IBTA defined MADs remain fixed at 256 bytes 2909 * 2) OPA SMPs must carry valid PKeys 2910 * 3) OPA SMP packets are a different format 2911 * 2912 * Return: true if the port supports OPA MAD packet formats. 2913 */ 2914 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2915 { 2916 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2917 == RDMA_CORE_CAP_OPA_MAD; 2918 } 2919 2920 /** 2921 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2922 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2923 * @device: Device to check 2924 * @port_num: Port number to check 2925 * 2926 * Each InfiniBand node is required to provide a Subnet Management Agent 2927 * that the subnet manager can access. Prior to the fabric being fully 2928 * configured by the subnet manager, the SMA is accessed via a well known 2929 * interface called the Subnet Management Interface (SMI). This interface 2930 * uses directed route packets to communicate with the SM to get around the 2931 * chicken and egg problem of the SM needing to know what's on the fabric 2932 * in order to configure the fabric, and needing to configure the fabric in 2933 * order to send packets to the devices on the fabric. These directed 2934 * route packets do not need the fabric fully configured in order to reach 2935 * their destination. The SMI is the only method allowed to send 2936 * directed route packets on an InfiniBand fabric. 2937 * 2938 * Return: true if the port provides an SMI. 2939 */ 2940 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2941 { 2942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2943 } 2944 2945 /** 2946 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2947 * Communication Manager. 2948 * @device: Device to check 2949 * @port_num: Port number to check 2950 * 2951 * The InfiniBand Communication Manager is one of many pre-defined General 2952 * Service Agents (GSA) that are accessed via the General Service 2953 * Interface (GSI). It's role is to facilitate establishment of connections 2954 * between nodes as well as other management related tasks for established 2955 * connections. 2956 * 2957 * Return: true if the port supports an IB CM (this does not guarantee that 2958 * a CM is actually running however). 2959 */ 2960 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2961 { 2962 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2963 } 2964 2965 /** 2966 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2967 * Communication Manager. 2968 * @device: Device to check 2969 * @port_num: Port number to check 2970 * 2971 * Similar to above, but specific to iWARP connections which have a different 2972 * managment protocol than InfiniBand. 2973 * 2974 * Return: true if the port supports an iWARP CM (this does not guarantee that 2975 * a CM is actually running however). 2976 */ 2977 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2978 { 2979 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2980 } 2981 2982 /** 2983 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2984 * Subnet Administration. 2985 * @device: Device to check 2986 * @port_num: Port number to check 2987 * 2988 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2989 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2990 * fabrics, devices should resolve routes to other hosts by contacting the 2991 * SA to query the proper route. 2992 * 2993 * Return: true if the port should act as a client to the fabric Subnet 2994 * Administration interface. This does not imply that the SA service is 2995 * running locally. 2996 */ 2997 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2998 { 2999 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 3000 } 3001 3002 /** 3003 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3004 * Multicast. 3005 * @device: Device to check 3006 * @port_num: Port number to check 3007 * 3008 * InfiniBand multicast registration is more complex than normal IPv4 or 3009 * IPv6 multicast registration. Each Host Channel Adapter must register 3010 * with the Subnet Manager when it wishes to join a multicast group. It 3011 * should do so only once regardless of how many queue pairs it subscribes 3012 * to this group. And it should leave the group only after all queue pairs 3013 * attached to the group have been detached. 3014 * 3015 * Return: true if the port must undertake the additional adminstrative 3016 * overhead of registering/unregistering with the SM and tracking of the 3017 * total number of queue pairs attached to the multicast group. 3018 */ 3019 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3020 { 3021 return rdma_cap_ib_sa(device, port_num); 3022 } 3023 3024 /** 3025 * rdma_cap_af_ib - Check if the port of device has the capability 3026 * Native Infiniband Address. 3027 * @device: Device to check 3028 * @port_num: Port number to check 3029 * 3030 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3031 * GID. RoCE uses a different mechanism, but still generates a GID via 3032 * a prescribed mechanism and port specific data. 3033 * 3034 * Return: true if the port uses a GID address to identify devices on the 3035 * network. 3036 */ 3037 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3038 { 3039 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 3040 } 3041 3042 /** 3043 * rdma_cap_eth_ah - Check if the port of device has the capability 3044 * Ethernet Address Handle. 3045 * @device: Device to check 3046 * @port_num: Port number to check 3047 * 3048 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3049 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3050 * port. Normally, packet headers are generated by the sending host 3051 * adapter, but when sending connectionless datagrams, we must manually 3052 * inject the proper headers for the fabric we are communicating over. 3053 * 3054 * Return: true if we are running as a RoCE port and must force the 3055 * addition of a Global Route Header built from our Ethernet Address 3056 * Handle into our header list for connectionless packets. 3057 */ 3058 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3059 { 3060 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 3061 } 3062 3063 /** 3064 * rdma_cap_opa_ah - Check if the port of device supports 3065 * OPA Address handles 3066 * @device: Device to check 3067 * @port_num: Port number to check 3068 * 3069 * Return: true if we are running on an OPA device which supports 3070 * the extended OPA addressing. 3071 */ 3072 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3073 { 3074 return (device->port_immutable[port_num].core_cap_flags & 3075 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3076 } 3077 3078 /** 3079 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3080 * 3081 * @device: Device 3082 * @port_num: Port number 3083 * 3084 * This MAD size includes the MAD headers and MAD payload. No other headers 3085 * are included. 3086 * 3087 * Return the max MAD size required by the Port. Will return 0 if the port 3088 * does not support MADs 3089 */ 3090 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3091 { 3092 return device->port_immutable[port_num].max_mad_size; 3093 } 3094 3095 /** 3096 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3097 * @device: Device to check 3098 * @port_num: Port number to check 3099 * 3100 * RoCE GID table mechanism manages the various GIDs for a device. 3101 * 3102 * NOTE: if allocating the port's GID table has failed, this call will still 3103 * return true, but any RoCE GID table API will fail. 3104 * 3105 * Return: true if the port uses RoCE GID table mechanism in order to manage 3106 * its GIDs. 3107 */ 3108 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3109 u8 port_num) 3110 { 3111 return rdma_protocol_roce(device, port_num) && 3112 device->add_gid && device->del_gid; 3113 } 3114 3115 /* 3116 * Check if the device supports READ W/ INVALIDATE. 3117 */ 3118 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3119 { 3120 /* 3121 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3122 * has support for it yet. 3123 */ 3124 return rdma_protocol_iwarp(dev, port_num); 3125 } 3126 3127 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3128 int state); 3129 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3130 struct ifla_vf_info *info); 3131 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3132 struct ifla_vf_stats *stats); 3133 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3134 int type); 3135 3136 int ib_query_pkey(struct ib_device *device, 3137 u8 port_num, u16 index, u16 *pkey); 3138 3139 int ib_modify_device(struct ib_device *device, 3140 int device_modify_mask, 3141 struct ib_device_modify *device_modify); 3142 3143 int ib_modify_port(struct ib_device *device, 3144 u8 port_num, int port_modify_mask, 3145 struct ib_port_modify *port_modify); 3146 3147 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3148 u8 *port_num, u16 *index); 3149 3150 int ib_find_pkey(struct ib_device *device, 3151 u8 port_num, u16 pkey, u16 *index); 3152 3153 enum ib_pd_flags { 3154 /* 3155 * Create a memory registration for all memory in the system and place 3156 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3157 * ULPs to avoid the overhead of dynamic MRs. 3158 * 3159 * This flag is generally considered unsafe and must only be used in 3160 * extremly trusted environments. Every use of it will log a warning 3161 * in the kernel log. 3162 */ 3163 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3164 }; 3165 3166 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3167 const char *caller); 3168 #define ib_alloc_pd(device, flags) \ 3169 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3170 void ib_dealloc_pd(struct ib_pd *pd); 3171 3172 /** 3173 * rdma_create_ah - Creates an address handle for the given address vector. 3174 * @pd: The protection domain associated with the address handle. 3175 * @ah_attr: The attributes of the address vector. 3176 * 3177 * The address handle is used to reference a local or global destination 3178 * in all UD QP post sends. 3179 */ 3180 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 3181 3182 /** 3183 * rdma_create_user_ah - Creates an address handle for the given address vector. 3184 * It resolves destination mac address for ah attribute of RoCE type. 3185 * @pd: The protection domain associated with the address handle. 3186 * @ah_attr: The attributes of the address vector. 3187 * @udata: pointer to user's input output buffer information need by 3188 * provider driver. 3189 * 3190 * It returns 0 on success and returns appropriate error code on error. 3191 * The address handle is used to reference a local or global destination 3192 * in all UD QP post sends. 3193 */ 3194 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3195 struct rdma_ah_attr *ah_attr, 3196 struct ib_udata *udata); 3197 /** 3198 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3199 * work completion. 3200 * @hdr: the L3 header to parse 3201 * @net_type: type of header to parse 3202 * @sgid: place to store source gid 3203 * @dgid: place to store destination gid 3204 */ 3205 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3206 enum rdma_network_type net_type, 3207 union ib_gid *sgid, union ib_gid *dgid); 3208 3209 /** 3210 * ib_get_rdma_header_version - Get the header version 3211 * @hdr: the L3 header to parse 3212 */ 3213 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3214 3215 /** 3216 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3217 * work completion. 3218 * @device: Device on which the received message arrived. 3219 * @port_num: Port on which the received message arrived. 3220 * @wc: Work completion associated with the received message. 3221 * @grh: References the received global route header. This parameter is 3222 * ignored unless the work completion indicates that the GRH is valid. 3223 * @ah_attr: Returned attributes that can be used when creating an address 3224 * handle for replying to the message. 3225 * When ib_init_ah_attr_from_wc() returns success, 3226 * (a) for IB link layer it optionally contains a reference to SGID attribute 3227 * when GRH is present for IB link layer. 3228 * (b) for RoCE link layer it contains a reference to SGID attribute. 3229 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3230 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3231 * 3232 */ 3233 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3234 const struct ib_wc *wc, const struct ib_grh *grh, 3235 struct rdma_ah_attr *ah_attr); 3236 3237 /** 3238 * ib_create_ah_from_wc - Creates an address handle associated with the 3239 * sender of the specified work completion. 3240 * @pd: The protection domain associated with the address handle. 3241 * @wc: Work completion information associated with a received message. 3242 * @grh: References the received global route header. This parameter is 3243 * ignored unless the work completion indicates that the GRH is valid. 3244 * @port_num: The outbound port number to associate with the address. 3245 * 3246 * The address handle is used to reference a local or global destination 3247 * in all UD QP post sends. 3248 */ 3249 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3250 const struct ib_grh *grh, u8 port_num); 3251 3252 /** 3253 * rdma_modify_ah - Modifies the address vector associated with an address 3254 * handle. 3255 * @ah: The address handle to modify. 3256 * @ah_attr: The new address vector attributes to associate with the 3257 * address handle. 3258 */ 3259 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3260 3261 /** 3262 * rdma_query_ah - Queries the address vector associated with an address 3263 * handle. 3264 * @ah: The address handle to query. 3265 * @ah_attr: The address vector attributes associated with the address 3266 * handle. 3267 */ 3268 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3269 3270 /** 3271 * rdma_destroy_ah - Destroys an address handle. 3272 * @ah: The address handle to destroy. 3273 */ 3274 int rdma_destroy_ah(struct ib_ah *ah); 3275 3276 /** 3277 * ib_create_srq - Creates a SRQ associated with the specified protection 3278 * domain. 3279 * @pd: The protection domain associated with the SRQ. 3280 * @srq_init_attr: A list of initial attributes required to create the 3281 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3282 * the actual capabilities of the created SRQ. 3283 * 3284 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3285 * requested size of the SRQ, and set to the actual values allocated 3286 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3287 * will always be at least as large as the requested values. 3288 */ 3289 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3290 struct ib_srq_init_attr *srq_init_attr); 3291 3292 /** 3293 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3294 * @srq: The SRQ to modify. 3295 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3296 * the current values of selected SRQ attributes are returned. 3297 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3298 * are being modified. 3299 * 3300 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3301 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3302 * the number of receives queued drops below the limit. 3303 */ 3304 int ib_modify_srq(struct ib_srq *srq, 3305 struct ib_srq_attr *srq_attr, 3306 enum ib_srq_attr_mask srq_attr_mask); 3307 3308 /** 3309 * ib_query_srq - Returns the attribute list and current values for the 3310 * specified SRQ. 3311 * @srq: The SRQ to query. 3312 * @srq_attr: The attributes of the specified SRQ. 3313 */ 3314 int ib_query_srq(struct ib_srq *srq, 3315 struct ib_srq_attr *srq_attr); 3316 3317 /** 3318 * ib_destroy_srq - Destroys the specified SRQ. 3319 * @srq: The SRQ to destroy. 3320 */ 3321 int ib_destroy_srq(struct ib_srq *srq); 3322 3323 /** 3324 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3325 * @srq: The SRQ to post the work request on. 3326 * @recv_wr: A list of work requests to post on the receive queue. 3327 * @bad_recv_wr: On an immediate failure, this parameter will reference 3328 * the work request that failed to be posted on the QP. 3329 */ 3330 static inline int ib_post_srq_recv(struct ib_srq *srq, 3331 const struct ib_recv_wr *recv_wr, 3332 const struct ib_recv_wr **bad_recv_wr) 3333 { 3334 const struct ib_recv_wr *dummy; 3335 3336 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy); 3337 } 3338 3339 /** 3340 * ib_create_qp - Creates a QP associated with the specified protection 3341 * domain. 3342 * @pd: The protection domain associated with the QP. 3343 * @qp_init_attr: A list of initial attributes required to create the 3344 * QP. If QP creation succeeds, then the attributes are updated to 3345 * the actual capabilities of the created QP. 3346 */ 3347 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3348 struct ib_qp_init_attr *qp_init_attr); 3349 3350 /** 3351 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3352 * @qp: The QP to modify. 3353 * @attr: On input, specifies the QP attributes to modify. On output, 3354 * the current values of selected QP attributes are returned. 3355 * @attr_mask: A bit-mask used to specify which attributes of the QP 3356 * are being modified. 3357 * @udata: pointer to user's input output buffer information 3358 * are being modified. 3359 * It returns 0 on success and returns appropriate error code on error. 3360 */ 3361 int ib_modify_qp_with_udata(struct ib_qp *qp, 3362 struct ib_qp_attr *attr, 3363 int attr_mask, 3364 struct ib_udata *udata); 3365 3366 /** 3367 * ib_modify_qp - Modifies the attributes for the specified QP and then 3368 * transitions the QP to the given state. 3369 * @qp: The QP to modify. 3370 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3371 * the current values of selected QP attributes are returned. 3372 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3373 * are being modified. 3374 */ 3375 int ib_modify_qp(struct ib_qp *qp, 3376 struct ib_qp_attr *qp_attr, 3377 int qp_attr_mask); 3378 3379 /** 3380 * ib_query_qp - Returns the attribute list and current values for the 3381 * specified QP. 3382 * @qp: The QP to query. 3383 * @qp_attr: The attributes of the specified QP. 3384 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3385 * @qp_init_attr: Additional attributes of the selected QP. 3386 * 3387 * The qp_attr_mask may be used to limit the query to gathering only the 3388 * selected attributes. 3389 */ 3390 int ib_query_qp(struct ib_qp *qp, 3391 struct ib_qp_attr *qp_attr, 3392 int qp_attr_mask, 3393 struct ib_qp_init_attr *qp_init_attr); 3394 3395 /** 3396 * ib_destroy_qp - Destroys the specified QP. 3397 * @qp: The QP to destroy. 3398 */ 3399 int ib_destroy_qp(struct ib_qp *qp); 3400 3401 /** 3402 * ib_open_qp - Obtain a reference to an existing sharable QP. 3403 * @xrcd - XRC domain 3404 * @qp_open_attr: Attributes identifying the QP to open. 3405 * 3406 * Returns a reference to a sharable QP. 3407 */ 3408 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3409 struct ib_qp_open_attr *qp_open_attr); 3410 3411 /** 3412 * ib_close_qp - Release an external reference to a QP. 3413 * @qp: The QP handle to release 3414 * 3415 * The opened QP handle is released by the caller. The underlying 3416 * shared QP is not destroyed until all internal references are released. 3417 */ 3418 int ib_close_qp(struct ib_qp *qp); 3419 3420 /** 3421 * ib_post_send - Posts a list of work requests to the send queue of 3422 * the specified QP. 3423 * @qp: The QP to post the work request on. 3424 * @send_wr: A list of work requests to post on the send queue. 3425 * @bad_send_wr: On an immediate failure, this parameter will reference 3426 * the work request that failed to be posted on the QP. 3427 * 3428 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3429 * error is returned, the QP state shall not be affected, 3430 * ib_post_send() will return an immediate error after queueing any 3431 * earlier work requests in the list. 3432 */ 3433 static inline int ib_post_send(struct ib_qp *qp, 3434 const struct ib_send_wr *send_wr, 3435 const struct ib_send_wr **bad_send_wr) 3436 { 3437 const struct ib_send_wr *dummy; 3438 3439 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy); 3440 } 3441 3442 /** 3443 * ib_post_recv - Posts a list of work requests to the receive queue of 3444 * the specified QP. 3445 * @qp: The QP to post the work request on. 3446 * @recv_wr: A list of work requests to post on the receive queue. 3447 * @bad_recv_wr: On an immediate failure, this parameter will reference 3448 * the work request that failed to be posted on the QP. 3449 */ 3450 static inline int ib_post_recv(struct ib_qp *qp, 3451 const struct ib_recv_wr *recv_wr, 3452 const struct ib_recv_wr **bad_recv_wr) 3453 { 3454 const struct ib_recv_wr *dummy; 3455 3456 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3457 } 3458 3459 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3460 int nr_cqe, int comp_vector, 3461 enum ib_poll_context poll_ctx, const char *caller); 3462 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3463 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3464 3465 void ib_free_cq(struct ib_cq *cq); 3466 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3467 3468 /** 3469 * ib_create_cq - Creates a CQ on the specified device. 3470 * @device: The device on which to create the CQ. 3471 * @comp_handler: A user-specified callback that is invoked when a 3472 * completion event occurs on the CQ. 3473 * @event_handler: A user-specified callback that is invoked when an 3474 * asynchronous event not associated with a completion occurs on the CQ. 3475 * @cq_context: Context associated with the CQ returned to the user via 3476 * the associated completion and event handlers. 3477 * @cq_attr: The attributes the CQ should be created upon. 3478 * 3479 * Users can examine the cq structure to determine the actual CQ size. 3480 */ 3481 struct ib_cq *__ib_create_cq(struct ib_device *device, 3482 ib_comp_handler comp_handler, 3483 void (*event_handler)(struct ib_event *, void *), 3484 void *cq_context, 3485 const struct ib_cq_init_attr *cq_attr, 3486 const char *caller); 3487 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3488 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3489 3490 /** 3491 * ib_resize_cq - Modifies the capacity of the CQ. 3492 * @cq: The CQ to resize. 3493 * @cqe: The minimum size of the CQ. 3494 * 3495 * Users can examine the cq structure to determine the actual CQ size. 3496 */ 3497 int ib_resize_cq(struct ib_cq *cq, int cqe); 3498 3499 /** 3500 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3501 * @cq: The CQ to modify. 3502 * @cq_count: number of CQEs that will trigger an event 3503 * @cq_period: max period of time in usec before triggering an event 3504 * 3505 */ 3506 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3507 3508 /** 3509 * ib_destroy_cq - Destroys the specified CQ. 3510 * @cq: The CQ to destroy. 3511 */ 3512 int ib_destroy_cq(struct ib_cq *cq); 3513 3514 /** 3515 * ib_poll_cq - poll a CQ for completion(s) 3516 * @cq:the CQ being polled 3517 * @num_entries:maximum number of completions to return 3518 * @wc:array of at least @num_entries &struct ib_wc where completions 3519 * will be returned 3520 * 3521 * Poll a CQ for (possibly multiple) completions. If the return value 3522 * is < 0, an error occurred. If the return value is >= 0, it is the 3523 * number of completions returned. If the return value is 3524 * non-negative and < num_entries, then the CQ was emptied. 3525 */ 3526 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3527 struct ib_wc *wc) 3528 { 3529 return cq->device->poll_cq(cq, num_entries, wc); 3530 } 3531 3532 /** 3533 * ib_req_notify_cq - Request completion notification on a CQ. 3534 * @cq: The CQ to generate an event for. 3535 * @flags: 3536 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3537 * to request an event on the next solicited event or next work 3538 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3539 * may also be |ed in to request a hint about missed events, as 3540 * described below. 3541 * 3542 * Return Value: 3543 * < 0 means an error occurred while requesting notification 3544 * == 0 means notification was requested successfully, and if 3545 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3546 * were missed and it is safe to wait for another event. In 3547 * this case is it guaranteed that any work completions added 3548 * to the CQ since the last CQ poll will trigger a completion 3549 * notification event. 3550 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3551 * in. It means that the consumer must poll the CQ again to 3552 * make sure it is empty to avoid missing an event because of a 3553 * race between requesting notification and an entry being 3554 * added to the CQ. This return value means it is possible 3555 * (but not guaranteed) that a work completion has been added 3556 * to the CQ since the last poll without triggering a 3557 * completion notification event. 3558 */ 3559 static inline int ib_req_notify_cq(struct ib_cq *cq, 3560 enum ib_cq_notify_flags flags) 3561 { 3562 return cq->device->req_notify_cq(cq, flags); 3563 } 3564 3565 /** 3566 * ib_req_ncomp_notif - Request completion notification when there are 3567 * at least the specified number of unreaped completions on the CQ. 3568 * @cq: The CQ to generate an event for. 3569 * @wc_cnt: The number of unreaped completions that should be on the 3570 * CQ before an event is generated. 3571 */ 3572 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3573 { 3574 return cq->device->req_ncomp_notif ? 3575 cq->device->req_ncomp_notif(cq, wc_cnt) : 3576 -ENOSYS; 3577 } 3578 3579 /** 3580 * ib_dma_mapping_error - check a DMA addr for error 3581 * @dev: The device for which the dma_addr was created 3582 * @dma_addr: The DMA address to check 3583 */ 3584 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3585 { 3586 return dma_mapping_error(dev->dma_device, dma_addr); 3587 } 3588 3589 /** 3590 * ib_dma_map_single - Map a kernel virtual address to DMA address 3591 * @dev: The device for which the dma_addr is to be created 3592 * @cpu_addr: The kernel virtual address 3593 * @size: The size of the region in bytes 3594 * @direction: The direction of the DMA 3595 */ 3596 static inline u64 ib_dma_map_single(struct ib_device *dev, 3597 void *cpu_addr, size_t size, 3598 enum dma_data_direction direction) 3599 { 3600 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3601 } 3602 3603 /** 3604 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3605 * @dev: The device for which the DMA address was created 3606 * @addr: The DMA address 3607 * @size: The size of the region in bytes 3608 * @direction: The direction of the DMA 3609 */ 3610 static inline void ib_dma_unmap_single(struct ib_device *dev, 3611 u64 addr, size_t size, 3612 enum dma_data_direction direction) 3613 { 3614 dma_unmap_single(dev->dma_device, addr, size, direction); 3615 } 3616 3617 /** 3618 * ib_dma_map_page - Map a physical page to DMA address 3619 * @dev: The device for which the dma_addr is to be created 3620 * @page: The page to be mapped 3621 * @offset: The offset within the page 3622 * @size: The size of the region in bytes 3623 * @direction: The direction of the DMA 3624 */ 3625 static inline u64 ib_dma_map_page(struct ib_device *dev, 3626 struct page *page, 3627 unsigned long offset, 3628 size_t size, 3629 enum dma_data_direction direction) 3630 { 3631 return dma_map_page(dev->dma_device, page, offset, size, direction); 3632 } 3633 3634 /** 3635 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3636 * @dev: The device for which the DMA address was created 3637 * @addr: The DMA address 3638 * @size: The size of the region in bytes 3639 * @direction: The direction of the DMA 3640 */ 3641 static inline void ib_dma_unmap_page(struct ib_device *dev, 3642 u64 addr, size_t size, 3643 enum dma_data_direction direction) 3644 { 3645 dma_unmap_page(dev->dma_device, addr, size, direction); 3646 } 3647 3648 /** 3649 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3650 * @dev: The device for which the DMA addresses are to be created 3651 * @sg: The array of scatter/gather entries 3652 * @nents: The number of scatter/gather entries 3653 * @direction: The direction of the DMA 3654 */ 3655 static inline int ib_dma_map_sg(struct ib_device *dev, 3656 struct scatterlist *sg, int nents, 3657 enum dma_data_direction direction) 3658 { 3659 return dma_map_sg(dev->dma_device, sg, nents, direction); 3660 } 3661 3662 /** 3663 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3664 * @dev: The device for which the DMA addresses were created 3665 * @sg: The array of scatter/gather entries 3666 * @nents: The number of scatter/gather entries 3667 * @direction: The direction of the DMA 3668 */ 3669 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3670 struct scatterlist *sg, int nents, 3671 enum dma_data_direction direction) 3672 { 3673 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3674 } 3675 3676 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3677 struct scatterlist *sg, int nents, 3678 enum dma_data_direction direction, 3679 unsigned long dma_attrs) 3680 { 3681 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3682 dma_attrs); 3683 } 3684 3685 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3686 struct scatterlist *sg, int nents, 3687 enum dma_data_direction direction, 3688 unsigned long dma_attrs) 3689 { 3690 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3691 } 3692 /** 3693 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3694 * @dev: The device for which the DMA addresses were created 3695 * @sg: The scatter/gather entry 3696 * 3697 * Note: this function is obsolete. To do: change all occurrences of 3698 * ib_sg_dma_address() into sg_dma_address(). 3699 */ 3700 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3701 struct scatterlist *sg) 3702 { 3703 return sg_dma_address(sg); 3704 } 3705 3706 /** 3707 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3708 * @dev: The device for which the DMA addresses were created 3709 * @sg: The scatter/gather entry 3710 * 3711 * Note: this function is obsolete. To do: change all occurrences of 3712 * ib_sg_dma_len() into sg_dma_len(). 3713 */ 3714 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3715 struct scatterlist *sg) 3716 { 3717 return sg_dma_len(sg); 3718 } 3719 3720 /** 3721 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3722 * @dev: The device for which the DMA address was created 3723 * @addr: The DMA address 3724 * @size: The size of the region in bytes 3725 * @dir: The direction of the DMA 3726 */ 3727 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3728 u64 addr, 3729 size_t size, 3730 enum dma_data_direction dir) 3731 { 3732 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3733 } 3734 3735 /** 3736 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3737 * @dev: The device for which the DMA address was created 3738 * @addr: The DMA address 3739 * @size: The size of the region in bytes 3740 * @dir: The direction of the DMA 3741 */ 3742 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3743 u64 addr, 3744 size_t size, 3745 enum dma_data_direction dir) 3746 { 3747 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3748 } 3749 3750 /** 3751 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3752 * @dev: The device for which the DMA address is requested 3753 * @size: The size of the region to allocate in bytes 3754 * @dma_handle: A pointer for returning the DMA address of the region 3755 * @flag: memory allocator flags 3756 */ 3757 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3758 size_t size, 3759 dma_addr_t *dma_handle, 3760 gfp_t flag) 3761 { 3762 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3763 } 3764 3765 /** 3766 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3767 * @dev: The device for which the DMA addresses were allocated 3768 * @size: The size of the region 3769 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3770 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3771 */ 3772 static inline void ib_dma_free_coherent(struct ib_device *dev, 3773 size_t size, void *cpu_addr, 3774 dma_addr_t dma_handle) 3775 { 3776 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3777 } 3778 3779 /** 3780 * ib_dereg_mr - Deregisters a memory region and removes it from the 3781 * HCA translation table. 3782 * @mr: The memory region to deregister. 3783 * 3784 * This function can fail, if the memory region has memory windows bound to it. 3785 */ 3786 int ib_dereg_mr(struct ib_mr *mr); 3787 3788 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3789 enum ib_mr_type mr_type, 3790 u32 max_num_sg); 3791 3792 /** 3793 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3794 * R_Key and L_Key. 3795 * @mr - struct ib_mr pointer to be updated. 3796 * @newkey - new key to be used. 3797 */ 3798 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3799 { 3800 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3801 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3802 } 3803 3804 /** 3805 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3806 * for calculating a new rkey for type 2 memory windows. 3807 * @rkey - the rkey to increment. 3808 */ 3809 static inline u32 ib_inc_rkey(u32 rkey) 3810 { 3811 const u32 mask = 0x000000ff; 3812 return ((rkey + 1) & mask) | (rkey & ~mask); 3813 } 3814 3815 /** 3816 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3817 * @pd: The protection domain associated with the unmapped region. 3818 * @mr_access_flags: Specifies the memory access rights. 3819 * @fmr_attr: Attributes of the unmapped region. 3820 * 3821 * A fast memory region must be mapped before it can be used as part of 3822 * a work request. 3823 */ 3824 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3825 int mr_access_flags, 3826 struct ib_fmr_attr *fmr_attr); 3827 3828 /** 3829 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3830 * @fmr: The fast memory region to associate with the pages. 3831 * @page_list: An array of physical pages to map to the fast memory region. 3832 * @list_len: The number of pages in page_list. 3833 * @iova: The I/O virtual address to use with the mapped region. 3834 */ 3835 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3836 u64 *page_list, int list_len, 3837 u64 iova) 3838 { 3839 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3840 } 3841 3842 /** 3843 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3844 * @fmr_list: A linked list of fast memory regions to unmap. 3845 */ 3846 int ib_unmap_fmr(struct list_head *fmr_list); 3847 3848 /** 3849 * ib_dealloc_fmr - Deallocates a fast memory region. 3850 * @fmr: The fast memory region to deallocate. 3851 */ 3852 int ib_dealloc_fmr(struct ib_fmr *fmr); 3853 3854 /** 3855 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3856 * @qp: QP to attach to the multicast group. The QP must be type 3857 * IB_QPT_UD. 3858 * @gid: Multicast group GID. 3859 * @lid: Multicast group LID in host byte order. 3860 * 3861 * In order to send and receive multicast packets, subnet 3862 * administration must have created the multicast group and configured 3863 * the fabric appropriately. The port associated with the specified 3864 * QP must also be a member of the multicast group. 3865 */ 3866 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3867 3868 /** 3869 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3870 * @qp: QP to detach from the multicast group. 3871 * @gid: Multicast group GID. 3872 * @lid: Multicast group LID in host byte order. 3873 */ 3874 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3875 3876 /** 3877 * ib_alloc_xrcd - Allocates an XRC domain. 3878 * @device: The device on which to allocate the XRC domain. 3879 * @caller: Module name for kernel consumers 3880 */ 3881 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3882 #define ib_alloc_xrcd(device) \ 3883 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3884 3885 /** 3886 * ib_dealloc_xrcd - Deallocates an XRC domain. 3887 * @xrcd: The XRC domain to deallocate. 3888 */ 3889 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3890 3891 static inline int ib_check_mr_access(int flags) 3892 { 3893 /* 3894 * Local write permission is required if remote write or 3895 * remote atomic permission is also requested. 3896 */ 3897 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3898 !(flags & IB_ACCESS_LOCAL_WRITE)) 3899 return -EINVAL; 3900 3901 return 0; 3902 } 3903 3904 static inline bool ib_access_writable(int access_flags) 3905 { 3906 /* 3907 * We have writable memory backing the MR if any of the following 3908 * access flags are set. "Local write" and "remote write" obviously 3909 * require write access. "Remote atomic" can do things like fetch and 3910 * add, which will modify memory, and "MW bind" can change permissions 3911 * by binding a window. 3912 */ 3913 return access_flags & 3914 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3915 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3916 } 3917 3918 /** 3919 * ib_check_mr_status: lightweight check of MR status. 3920 * This routine may provide status checks on a selected 3921 * ib_mr. first use is for signature status check. 3922 * 3923 * @mr: A memory region. 3924 * @check_mask: Bitmask of which checks to perform from 3925 * ib_mr_status_check enumeration. 3926 * @mr_status: The container of relevant status checks. 3927 * failed checks will be indicated in the status bitmask 3928 * and the relevant info shall be in the error item. 3929 */ 3930 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3931 struct ib_mr_status *mr_status); 3932 3933 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3934 u16 pkey, const union ib_gid *gid, 3935 const struct sockaddr *addr); 3936 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3937 struct ib_wq_init_attr *init_attr); 3938 int ib_destroy_wq(struct ib_wq *wq); 3939 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3940 u32 wq_attr_mask); 3941 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3942 struct ib_rwq_ind_table_init_attr* 3943 wq_ind_table_init_attr); 3944 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3945 3946 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3947 unsigned int *sg_offset, unsigned int page_size); 3948 3949 static inline int 3950 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3951 unsigned int *sg_offset, unsigned int page_size) 3952 { 3953 int n; 3954 3955 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3956 mr->iova = 0; 3957 3958 return n; 3959 } 3960 3961 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3962 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3963 3964 void ib_drain_rq(struct ib_qp *qp); 3965 void ib_drain_sq(struct ib_qp *qp); 3966 void ib_drain_qp(struct ib_qp *qp); 3967 3968 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3969 3970 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3971 { 3972 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3973 return attr->roce.dmac; 3974 return NULL; 3975 } 3976 3977 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3978 { 3979 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3980 attr->ib.dlid = (u16)dlid; 3981 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3982 attr->opa.dlid = dlid; 3983 } 3984 3985 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3986 { 3987 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3988 return attr->ib.dlid; 3989 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3990 return attr->opa.dlid; 3991 return 0; 3992 } 3993 3994 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3995 { 3996 attr->sl = sl; 3997 } 3998 3999 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4000 { 4001 return attr->sl; 4002 } 4003 4004 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4005 u8 src_path_bits) 4006 { 4007 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4008 attr->ib.src_path_bits = src_path_bits; 4009 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4010 attr->opa.src_path_bits = src_path_bits; 4011 } 4012 4013 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4014 { 4015 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4016 return attr->ib.src_path_bits; 4017 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4018 return attr->opa.src_path_bits; 4019 return 0; 4020 } 4021 4022 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4023 bool make_grd) 4024 { 4025 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4026 attr->opa.make_grd = make_grd; 4027 } 4028 4029 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4030 { 4031 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4032 return attr->opa.make_grd; 4033 return false; 4034 } 4035 4036 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4037 { 4038 attr->port_num = port_num; 4039 } 4040 4041 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4042 { 4043 return attr->port_num; 4044 } 4045 4046 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4047 u8 static_rate) 4048 { 4049 attr->static_rate = static_rate; 4050 } 4051 4052 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4053 { 4054 return attr->static_rate; 4055 } 4056 4057 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4058 enum ib_ah_flags flag) 4059 { 4060 attr->ah_flags = flag; 4061 } 4062 4063 static inline enum ib_ah_flags 4064 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4065 { 4066 return attr->ah_flags; 4067 } 4068 4069 static inline const struct ib_global_route 4070 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4071 { 4072 return &attr->grh; 4073 } 4074 4075 /*To retrieve and modify the grh */ 4076 static inline struct ib_global_route 4077 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4078 { 4079 return &attr->grh; 4080 } 4081 4082 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4083 { 4084 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4085 4086 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4087 } 4088 4089 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4090 __be64 prefix) 4091 { 4092 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4093 4094 grh->dgid.global.subnet_prefix = prefix; 4095 } 4096 4097 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4098 __be64 if_id) 4099 { 4100 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4101 4102 grh->dgid.global.interface_id = if_id; 4103 } 4104 4105 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4106 union ib_gid *dgid, u32 flow_label, 4107 u8 sgid_index, u8 hop_limit, 4108 u8 traffic_class) 4109 { 4110 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4111 4112 attr->ah_flags = IB_AH_GRH; 4113 if (dgid) 4114 grh->dgid = *dgid; 4115 grh->flow_label = flow_label; 4116 grh->sgid_index = sgid_index; 4117 grh->hop_limit = hop_limit; 4118 grh->traffic_class = traffic_class; 4119 grh->sgid_attr = NULL; 4120 } 4121 4122 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4123 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4124 u32 flow_label, u8 hop_limit, u8 traffic_class, 4125 const struct ib_gid_attr *sgid_attr); 4126 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4127 const struct rdma_ah_attr *src); 4128 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4129 const struct rdma_ah_attr *new); 4130 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4131 4132 /** 4133 * rdma_ah_find_type - Return address handle type. 4134 * 4135 * @dev: Device to be checked 4136 * @port_num: Port number 4137 */ 4138 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4139 u8 port_num) 4140 { 4141 if (rdma_protocol_roce(dev, port_num)) 4142 return RDMA_AH_ATTR_TYPE_ROCE; 4143 if (rdma_protocol_ib(dev, port_num)) { 4144 if (rdma_cap_opa_ah(dev, port_num)) 4145 return RDMA_AH_ATTR_TYPE_OPA; 4146 return RDMA_AH_ATTR_TYPE_IB; 4147 } 4148 4149 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4150 } 4151 4152 /** 4153 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4154 * In the current implementation the only way to get 4155 * get the 32bit lid is from other sources for OPA. 4156 * For IB, lids will always be 16bits so cast the 4157 * value accordingly. 4158 * 4159 * @lid: A 32bit LID 4160 */ 4161 static inline u16 ib_lid_cpu16(u32 lid) 4162 { 4163 WARN_ON_ONCE(lid & 0xFFFF0000); 4164 return (u16)lid; 4165 } 4166 4167 /** 4168 * ib_lid_be16 - Return lid in 16bit BE encoding. 4169 * 4170 * @lid: A 32bit LID 4171 */ 4172 static inline __be16 ib_lid_be16(u32 lid) 4173 { 4174 WARN_ON_ONCE(lid & 0xFFFF0000); 4175 return cpu_to_be16((u16)lid); 4176 } 4177 4178 /** 4179 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4180 * vector 4181 * @device: the rdma device 4182 * @comp_vector: index of completion vector 4183 * 4184 * Returns NULL on failure, otherwise a corresponding cpu map of the 4185 * completion vector (returns all-cpus map if the device driver doesn't 4186 * implement get_vector_affinity). 4187 */ 4188 static inline const struct cpumask * 4189 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4190 { 4191 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4192 !device->get_vector_affinity) 4193 return NULL; 4194 4195 return device->get_vector_affinity(device, comp_vector); 4196 4197 } 4198 4199 /** 4200 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4201 * and add their gids, as needed, to the relevant RoCE devices. 4202 * 4203 * @device: the rdma device 4204 */ 4205 void rdma_roce_rescan_device(struct ib_device *ibdev); 4206 4207 struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile); 4208 4209 int uverbs_destroy_def_handler(struct ib_uverbs_file *file, 4210 struct uverbs_attr_bundle *attrs); 4211 4212 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4213 enum rdma_netdev_t type, const char *name, 4214 unsigned char name_assign_type, 4215 void (*setup)(struct net_device *)); 4216 4217 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4218 enum rdma_netdev_t type, const char *name, 4219 unsigned char name_assign_type, 4220 void (*setup)(struct net_device *), 4221 struct net_device *netdev); 4222 4223 /** 4224 * rdma_set_device_sysfs_group - Set device attributes group to have 4225 * driver specific sysfs entries at 4226 * for infiniband class. 4227 * 4228 * @device: device pointer for which attributes to be created 4229 * @group: Pointer to group which should be added when device 4230 * is registered with sysfs. 4231 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4232 * group per device to have sysfs attributes. 4233 * 4234 * NOTE: New drivers should not make use of this API; instead new device 4235 * parameter should be exposed via netlink command. This API and mechanism 4236 * exist only for existing drivers. 4237 */ 4238 static inline void 4239 rdma_set_device_sysfs_group(struct ib_device *dev, 4240 const struct attribute_group *group) 4241 { 4242 dev->groups[1] = group; 4243 } 4244 4245 #endif /* IB_VERBS_H */ 4246