xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 6b66a6f2)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/uaccess.h>
63 
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66 
67 union ib_gid {
68 	u8	raw[16];
69 	struct {
70 		__be64	subnet_prefix;
71 		__be64	interface_id;
72 	} global;
73 };
74 
75 extern union ib_gid zgid;
76 
77 enum ib_gid_type {
78 	/* If link layer is Ethernet, this is RoCE V1 */
79 	IB_GID_TYPE_IB        = 0,
80 	IB_GID_TYPE_ROCE      = 0,
81 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 	IB_GID_TYPE_SIZE
83 };
84 
85 #define ROCE_V2_UDP_DPORT      4791
86 struct ib_gid_attr {
87 	enum ib_gid_type	gid_type;
88 	struct net_device	*ndev;
89 };
90 
91 enum rdma_node_type {
92 	/* IB values map to NodeInfo:NodeType. */
93 	RDMA_NODE_IB_CA 	= 1,
94 	RDMA_NODE_IB_SWITCH,
95 	RDMA_NODE_IB_ROUTER,
96 	RDMA_NODE_RNIC,
97 	RDMA_NODE_USNIC,
98 	RDMA_NODE_USNIC_UDP,
99 };
100 
101 enum {
102 	/* set the local administered indication */
103 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
104 };
105 
106 enum rdma_transport_type {
107 	RDMA_TRANSPORT_IB,
108 	RDMA_TRANSPORT_IWARP,
109 	RDMA_TRANSPORT_USNIC,
110 	RDMA_TRANSPORT_USNIC_UDP
111 };
112 
113 enum rdma_protocol_type {
114 	RDMA_PROTOCOL_IB,
115 	RDMA_PROTOCOL_IBOE,
116 	RDMA_PROTOCOL_IWARP,
117 	RDMA_PROTOCOL_USNIC_UDP
118 };
119 
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122 
123 enum rdma_network_type {
124 	RDMA_NETWORK_IB,
125 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 	RDMA_NETWORK_IPV4,
127 	RDMA_NETWORK_IPV6
128 };
129 
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 	if (network_type == RDMA_NETWORK_IPV4 ||
133 	    network_type == RDMA_NETWORK_IPV6)
134 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
135 
136 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 	return IB_GID_TYPE_IB;
138 }
139 
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 							    union ib_gid *gid)
142 {
143 	if (gid_type == IB_GID_TYPE_IB)
144 		return RDMA_NETWORK_IB;
145 
146 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 		return RDMA_NETWORK_IPV4;
148 	else
149 		return RDMA_NETWORK_IPV6;
150 }
151 
152 enum rdma_link_layer {
153 	IB_LINK_LAYER_UNSPECIFIED,
154 	IB_LINK_LAYER_INFINIBAND,
155 	IB_LINK_LAYER_ETHERNET,
156 };
157 
158 enum ib_device_cap_flags {
159 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
160 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
161 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
162 	IB_DEVICE_RAW_MULTI			= (1 << 3),
163 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
164 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
165 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
166 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
167 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
168 	IB_DEVICE_INIT_TYPE			= (1 << 9),
169 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
170 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
171 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
172 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
173 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
174 
175 	/*
176 	 * This device supports a per-device lkey or stag that can be
177 	 * used without performing a memory registration for the local
178 	 * memory.  Note that ULPs should never check this flag, but
179 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 	 * which will always contain a usable lkey.
181 	 */
182 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
183 	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
184 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
185 	/*
186 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 	 * messages and can verify the validity of checksum for
189 	 * incoming messages.  Setting this flag implies that the
190 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 	 */
192 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
193 	IB_DEVICE_UD_TSO			= (1 << 19),
194 	IB_DEVICE_XRC				= (1 << 20),
195 
196 	/*
197 	 * This device supports the IB "base memory management extension",
198 	 * which includes support for fast registrations (IB_WR_REG_MR,
199 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
200 	 * also be set by any iWarp device which must support FRs to comply
201 	 * to the iWarp verbs spec.  iWarp devices also support the
202 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 	 * stag.
204 	 */
205 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
206 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
207 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
208 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
209 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
210 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
211 	/*
212 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 	 * support execution of WQEs that involve synchronization
214 	 * of I/O operations with single completion queue managed
215 	 * by hardware.
216 	 */
217 	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
218 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
219 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
220 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
221 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
222 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
223 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
224 };
225 
226 enum ib_signature_prot_cap {
227 	IB_PROT_T10DIF_TYPE_1 = 1,
228 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231 
232 enum ib_signature_guard_cap {
233 	IB_GUARD_T10DIF_CRC	= 1,
234 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
235 };
236 
237 enum ib_atomic_cap {
238 	IB_ATOMIC_NONE,
239 	IB_ATOMIC_HCA,
240 	IB_ATOMIC_GLOB
241 };
242 
243 enum ib_odp_general_cap_bits {
244 	IB_ODP_SUPPORT = 1 << 0,
245 };
246 
247 enum ib_odp_transport_cap_bits {
248 	IB_ODP_SUPPORT_SEND	= 1 << 0,
249 	IB_ODP_SUPPORT_RECV	= 1 << 1,
250 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
251 	IB_ODP_SUPPORT_READ	= 1 << 3,
252 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
253 };
254 
255 struct ib_odp_caps {
256 	uint64_t general_caps;
257 	struct {
258 		uint32_t  rc_odp_caps;
259 		uint32_t  uc_odp_caps;
260 		uint32_t  ud_odp_caps;
261 	} per_transport_caps;
262 };
263 
264 struct ib_rss_caps {
265 	/* Corresponding bit will be set if qp type from
266 	 * 'enum ib_qp_type' is supported, e.g.
267 	 * supported_qpts |= 1 << IB_QPT_UD
268 	 */
269 	u32 supported_qpts;
270 	u32 max_rwq_indirection_tables;
271 	u32 max_rwq_indirection_table_size;
272 };
273 
274 enum ib_cq_creation_flags {
275 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
276 	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
277 };
278 
279 struct ib_cq_init_attr {
280 	unsigned int	cqe;
281 	int		comp_vector;
282 	u32		flags;
283 };
284 
285 struct ib_device_attr {
286 	u64			fw_ver;
287 	__be64			sys_image_guid;
288 	u64			max_mr_size;
289 	u64			page_size_cap;
290 	u32			vendor_id;
291 	u32			vendor_part_id;
292 	u32			hw_ver;
293 	int			max_qp;
294 	int			max_qp_wr;
295 	u64			device_cap_flags;
296 	int			max_sge;
297 	int			max_sge_rd;
298 	int			max_cq;
299 	int			max_cqe;
300 	int			max_mr;
301 	int			max_pd;
302 	int			max_qp_rd_atom;
303 	int			max_ee_rd_atom;
304 	int			max_res_rd_atom;
305 	int			max_qp_init_rd_atom;
306 	int			max_ee_init_rd_atom;
307 	enum ib_atomic_cap	atomic_cap;
308 	enum ib_atomic_cap	masked_atomic_cap;
309 	int			max_ee;
310 	int			max_rdd;
311 	int			max_mw;
312 	int			max_raw_ipv6_qp;
313 	int			max_raw_ethy_qp;
314 	int			max_mcast_grp;
315 	int			max_mcast_qp_attach;
316 	int			max_total_mcast_qp_attach;
317 	int			max_ah;
318 	int			max_fmr;
319 	int			max_map_per_fmr;
320 	int			max_srq;
321 	int			max_srq_wr;
322 	int			max_srq_sge;
323 	unsigned int		max_fast_reg_page_list_len;
324 	u16			max_pkeys;
325 	u8			local_ca_ack_delay;
326 	int			sig_prot_cap;
327 	int			sig_guard_cap;
328 	struct ib_odp_caps	odp_caps;
329 	uint64_t		timestamp_mask;
330 	uint64_t		hca_core_clock; /* in KHZ */
331 	struct ib_rss_caps	rss_caps;
332 	u32			max_wq_type_rq;
333 };
334 
335 enum ib_mtu {
336 	IB_MTU_256  = 1,
337 	IB_MTU_512  = 2,
338 	IB_MTU_1024 = 3,
339 	IB_MTU_2048 = 4,
340 	IB_MTU_4096 = 5
341 };
342 
343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
344 {
345 	switch (mtu) {
346 	case IB_MTU_256:  return  256;
347 	case IB_MTU_512:  return  512;
348 	case IB_MTU_1024: return 1024;
349 	case IB_MTU_2048: return 2048;
350 	case IB_MTU_4096: return 4096;
351 	default: 	  return -1;
352 	}
353 }
354 
355 enum ib_port_state {
356 	IB_PORT_NOP		= 0,
357 	IB_PORT_DOWN		= 1,
358 	IB_PORT_INIT		= 2,
359 	IB_PORT_ARMED		= 3,
360 	IB_PORT_ACTIVE		= 4,
361 	IB_PORT_ACTIVE_DEFER	= 5
362 };
363 
364 enum ib_port_cap_flags {
365 	IB_PORT_SM				= 1 <<  1,
366 	IB_PORT_NOTICE_SUP			= 1 <<  2,
367 	IB_PORT_TRAP_SUP			= 1 <<  3,
368 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
369 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
370 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
371 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
372 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
373 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
374 	IB_PORT_SM_DISABLED			= 1 << 10,
375 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
376 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
377 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
378 	IB_PORT_CM_SUP				= 1 << 16,
379 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
380 	IB_PORT_REINIT_SUP			= 1 << 18,
381 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
382 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
383 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
384 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
385 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
386 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
387 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
388 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
389 };
390 
391 enum ib_port_width {
392 	IB_WIDTH_1X	= 1,
393 	IB_WIDTH_4X	= 2,
394 	IB_WIDTH_8X	= 4,
395 	IB_WIDTH_12X	= 8
396 };
397 
398 static inline int ib_width_enum_to_int(enum ib_port_width width)
399 {
400 	switch (width) {
401 	case IB_WIDTH_1X:  return  1;
402 	case IB_WIDTH_4X:  return  4;
403 	case IB_WIDTH_8X:  return  8;
404 	case IB_WIDTH_12X: return 12;
405 	default: 	  return -1;
406 	}
407 }
408 
409 enum ib_port_speed {
410 	IB_SPEED_SDR	= 1,
411 	IB_SPEED_DDR	= 2,
412 	IB_SPEED_QDR	= 4,
413 	IB_SPEED_FDR10	= 8,
414 	IB_SPEED_FDR	= 16,
415 	IB_SPEED_EDR	= 32
416 };
417 
418 /**
419  * struct rdma_hw_stats
420  * @timestamp - Used by the core code to track when the last update was
421  * @lifespan - Used by the core code to determine how old the counters
422  *   should be before being updated again.  Stored in jiffies, defaults
423  *   to 10 milliseconds, drivers can override the default be specifying
424  *   their own value during their allocation routine.
425  * @name - Array of pointers to static names used for the counters in
426  *   directory.
427  * @num_counters - How many hardware counters there are.  If name is
428  *   shorter than this number, a kernel oops will result.  Driver authors
429  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
430  *   in their code to prevent this.
431  * @value - Array of u64 counters that are accessed by the sysfs code and
432  *   filled in by the drivers get_stats routine
433  */
434 struct rdma_hw_stats {
435 	unsigned long	timestamp;
436 	unsigned long	lifespan;
437 	const char * const *names;
438 	int		num_counters;
439 	u64		value[];
440 };
441 
442 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
443 /**
444  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
445  *   for drivers.
446  * @names - Array of static const char *
447  * @num_counters - How many elements in array
448  * @lifespan - How many milliseconds between updates
449  */
450 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
451 		const char * const *names, int num_counters,
452 		unsigned long lifespan)
453 {
454 	struct rdma_hw_stats *stats;
455 
456 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
457 			GFP_KERNEL);
458 	if (!stats)
459 		return NULL;
460 	stats->names = names;
461 	stats->num_counters = num_counters;
462 	stats->lifespan = msecs_to_jiffies(lifespan);
463 
464 	return stats;
465 }
466 
467 
468 /* Define bits for the various functionality this port needs to be supported by
469  * the core.
470  */
471 /* Management                           0x00000FFF */
472 #define RDMA_CORE_CAP_IB_MAD            0x00000001
473 #define RDMA_CORE_CAP_IB_SMI            0x00000002
474 #define RDMA_CORE_CAP_IB_CM             0x00000004
475 #define RDMA_CORE_CAP_IW_CM             0x00000008
476 #define RDMA_CORE_CAP_IB_SA             0x00000010
477 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
478 
479 /* Address format                       0x000FF000 */
480 #define RDMA_CORE_CAP_AF_IB             0x00001000
481 #define RDMA_CORE_CAP_ETH_AH            0x00002000
482 
483 /* Protocol                             0xFFF00000 */
484 #define RDMA_CORE_CAP_PROT_IB           0x00100000
485 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
486 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
487 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
488 
489 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
490 					| RDMA_CORE_CAP_IB_MAD \
491 					| RDMA_CORE_CAP_IB_SMI \
492 					| RDMA_CORE_CAP_IB_CM  \
493 					| RDMA_CORE_CAP_IB_SA  \
494 					| RDMA_CORE_CAP_AF_IB)
495 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
496 					| RDMA_CORE_CAP_IB_MAD  \
497 					| RDMA_CORE_CAP_IB_CM   \
498 					| RDMA_CORE_CAP_AF_IB   \
499 					| RDMA_CORE_CAP_ETH_AH)
500 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
501 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
502 					| RDMA_CORE_CAP_IB_MAD  \
503 					| RDMA_CORE_CAP_IB_CM   \
504 					| RDMA_CORE_CAP_AF_IB   \
505 					| RDMA_CORE_CAP_ETH_AH)
506 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
507 					| RDMA_CORE_CAP_IW_CM)
508 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
509 					| RDMA_CORE_CAP_OPA_MAD)
510 
511 struct ib_port_attr {
512 	u64			subnet_prefix;
513 	enum ib_port_state	state;
514 	enum ib_mtu		max_mtu;
515 	enum ib_mtu		active_mtu;
516 	int			gid_tbl_len;
517 	u32			port_cap_flags;
518 	u32			max_msg_sz;
519 	u32			bad_pkey_cntr;
520 	u32			qkey_viol_cntr;
521 	u16			pkey_tbl_len;
522 	u16			lid;
523 	u16			sm_lid;
524 	u8			lmc;
525 	u8			max_vl_num;
526 	u8			sm_sl;
527 	u8			subnet_timeout;
528 	u8			init_type_reply;
529 	u8			active_width;
530 	u8			active_speed;
531 	u8                      phys_state;
532 	bool			grh_required;
533 };
534 
535 enum ib_device_modify_flags {
536 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
537 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
538 };
539 
540 #define IB_DEVICE_NODE_DESC_MAX 64
541 
542 struct ib_device_modify {
543 	u64	sys_image_guid;
544 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
545 };
546 
547 enum ib_port_modify_flags {
548 	IB_PORT_SHUTDOWN		= 1,
549 	IB_PORT_INIT_TYPE		= (1<<2),
550 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
551 };
552 
553 struct ib_port_modify {
554 	u32	set_port_cap_mask;
555 	u32	clr_port_cap_mask;
556 	u8	init_type;
557 };
558 
559 enum ib_event_type {
560 	IB_EVENT_CQ_ERR,
561 	IB_EVENT_QP_FATAL,
562 	IB_EVENT_QP_REQ_ERR,
563 	IB_EVENT_QP_ACCESS_ERR,
564 	IB_EVENT_COMM_EST,
565 	IB_EVENT_SQ_DRAINED,
566 	IB_EVENT_PATH_MIG,
567 	IB_EVENT_PATH_MIG_ERR,
568 	IB_EVENT_DEVICE_FATAL,
569 	IB_EVENT_PORT_ACTIVE,
570 	IB_EVENT_PORT_ERR,
571 	IB_EVENT_LID_CHANGE,
572 	IB_EVENT_PKEY_CHANGE,
573 	IB_EVENT_SM_CHANGE,
574 	IB_EVENT_SRQ_ERR,
575 	IB_EVENT_SRQ_LIMIT_REACHED,
576 	IB_EVENT_QP_LAST_WQE_REACHED,
577 	IB_EVENT_CLIENT_REREGISTER,
578 	IB_EVENT_GID_CHANGE,
579 	IB_EVENT_WQ_FATAL,
580 };
581 
582 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
583 
584 struct ib_event {
585 	struct ib_device	*device;
586 	union {
587 		struct ib_cq	*cq;
588 		struct ib_qp	*qp;
589 		struct ib_srq	*srq;
590 		struct ib_wq	*wq;
591 		u8		port_num;
592 	} element;
593 	enum ib_event_type	event;
594 };
595 
596 struct ib_event_handler {
597 	struct ib_device *device;
598 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
599 	struct list_head  list;
600 };
601 
602 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
603 	do {							\
604 		(_ptr)->device  = _device;			\
605 		(_ptr)->handler = _handler;			\
606 		INIT_LIST_HEAD(&(_ptr)->list);			\
607 	} while (0)
608 
609 struct ib_global_route {
610 	union ib_gid	dgid;
611 	u32		flow_label;
612 	u8		sgid_index;
613 	u8		hop_limit;
614 	u8		traffic_class;
615 };
616 
617 struct ib_grh {
618 	__be32		version_tclass_flow;
619 	__be16		paylen;
620 	u8		next_hdr;
621 	u8		hop_limit;
622 	union ib_gid	sgid;
623 	union ib_gid	dgid;
624 };
625 
626 union rdma_network_hdr {
627 	struct ib_grh ibgrh;
628 	struct {
629 		/* The IB spec states that if it's IPv4, the header
630 		 * is located in the last 20 bytes of the header.
631 		 */
632 		u8		reserved[20];
633 		struct iphdr	roce4grh;
634 	};
635 };
636 
637 enum {
638 	IB_MULTICAST_QPN = 0xffffff
639 };
640 
641 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
642 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
643 
644 enum ib_ah_flags {
645 	IB_AH_GRH	= 1
646 };
647 
648 enum ib_rate {
649 	IB_RATE_PORT_CURRENT = 0,
650 	IB_RATE_2_5_GBPS = 2,
651 	IB_RATE_5_GBPS   = 5,
652 	IB_RATE_10_GBPS  = 3,
653 	IB_RATE_20_GBPS  = 6,
654 	IB_RATE_30_GBPS  = 4,
655 	IB_RATE_40_GBPS  = 7,
656 	IB_RATE_60_GBPS  = 8,
657 	IB_RATE_80_GBPS  = 9,
658 	IB_RATE_120_GBPS = 10,
659 	IB_RATE_14_GBPS  = 11,
660 	IB_RATE_56_GBPS  = 12,
661 	IB_RATE_112_GBPS = 13,
662 	IB_RATE_168_GBPS = 14,
663 	IB_RATE_25_GBPS  = 15,
664 	IB_RATE_100_GBPS = 16,
665 	IB_RATE_200_GBPS = 17,
666 	IB_RATE_300_GBPS = 18
667 };
668 
669 /**
670  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
671  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
672  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
673  * @rate: rate to convert.
674  */
675 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
676 
677 /**
678  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
679  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
680  * @rate: rate to convert.
681  */
682 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
683 
684 
685 /**
686  * enum ib_mr_type - memory region type
687  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
688  *                            normal registration
689  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
690  *                            signature operations (data-integrity
691  *                            capable regions)
692  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
693  *                            register any arbitrary sg lists (without
694  *                            the normal mr constraints - see
695  *                            ib_map_mr_sg)
696  */
697 enum ib_mr_type {
698 	IB_MR_TYPE_MEM_REG,
699 	IB_MR_TYPE_SIGNATURE,
700 	IB_MR_TYPE_SG_GAPS,
701 };
702 
703 /**
704  * Signature types
705  * IB_SIG_TYPE_NONE: Unprotected.
706  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
707  */
708 enum ib_signature_type {
709 	IB_SIG_TYPE_NONE,
710 	IB_SIG_TYPE_T10_DIF,
711 };
712 
713 /**
714  * Signature T10-DIF block-guard types
715  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
716  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
717  */
718 enum ib_t10_dif_bg_type {
719 	IB_T10DIF_CRC,
720 	IB_T10DIF_CSUM
721 };
722 
723 /**
724  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
725  *     domain.
726  * @bg_type: T10-DIF block guard type (CRC|CSUM)
727  * @pi_interval: protection information interval.
728  * @bg: seed of guard computation.
729  * @app_tag: application tag of guard block
730  * @ref_tag: initial guard block reference tag.
731  * @ref_remap: Indicate wethear the reftag increments each block
732  * @app_escape: Indicate to skip block check if apptag=0xffff
733  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
734  * @apptag_check_mask: check bitmask of application tag.
735  */
736 struct ib_t10_dif_domain {
737 	enum ib_t10_dif_bg_type bg_type;
738 	u16			pi_interval;
739 	u16			bg;
740 	u16			app_tag;
741 	u32			ref_tag;
742 	bool			ref_remap;
743 	bool			app_escape;
744 	bool			ref_escape;
745 	u16			apptag_check_mask;
746 };
747 
748 /**
749  * struct ib_sig_domain - Parameters for signature domain
750  * @sig_type: specific signauture type
751  * @sig: union of all signature domain attributes that may
752  *     be used to set domain layout.
753  */
754 struct ib_sig_domain {
755 	enum ib_signature_type sig_type;
756 	union {
757 		struct ib_t10_dif_domain dif;
758 	} sig;
759 };
760 
761 /**
762  * struct ib_sig_attrs - Parameters for signature handover operation
763  * @check_mask: bitmask for signature byte check (8 bytes)
764  * @mem: memory domain layout desciptor.
765  * @wire: wire domain layout desciptor.
766  */
767 struct ib_sig_attrs {
768 	u8			check_mask;
769 	struct ib_sig_domain	mem;
770 	struct ib_sig_domain	wire;
771 };
772 
773 enum ib_sig_err_type {
774 	IB_SIG_BAD_GUARD,
775 	IB_SIG_BAD_REFTAG,
776 	IB_SIG_BAD_APPTAG,
777 };
778 
779 /**
780  * struct ib_sig_err - signature error descriptor
781  */
782 struct ib_sig_err {
783 	enum ib_sig_err_type	err_type;
784 	u32			expected;
785 	u32			actual;
786 	u64			sig_err_offset;
787 	u32			key;
788 };
789 
790 enum ib_mr_status_check {
791 	IB_MR_CHECK_SIG_STATUS = 1,
792 };
793 
794 /**
795  * struct ib_mr_status - Memory region status container
796  *
797  * @fail_status: Bitmask of MR checks status. For each
798  *     failed check a corresponding status bit is set.
799  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
800  *     failure.
801  */
802 struct ib_mr_status {
803 	u32		    fail_status;
804 	struct ib_sig_err   sig_err;
805 };
806 
807 /**
808  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
809  * enum.
810  * @mult: multiple to convert.
811  */
812 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
813 
814 struct ib_ah_attr {
815 	struct ib_global_route	grh;
816 	u16			dlid;
817 	u8			sl;
818 	u8			src_path_bits;
819 	u8			static_rate;
820 	u8			ah_flags;
821 	u8			port_num;
822 	u8			dmac[ETH_ALEN];
823 };
824 
825 enum ib_wc_status {
826 	IB_WC_SUCCESS,
827 	IB_WC_LOC_LEN_ERR,
828 	IB_WC_LOC_QP_OP_ERR,
829 	IB_WC_LOC_EEC_OP_ERR,
830 	IB_WC_LOC_PROT_ERR,
831 	IB_WC_WR_FLUSH_ERR,
832 	IB_WC_MW_BIND_ERR,
833 	IB_WC_BAD_RESP_ERR,
834 	IB_WC_LOC_ACCESS_ERR,
835 	IB_WC_REM_INV_REQ_ERR,
836 	IB_WC_REM_ACCESS_ERR,
837 	IB_WC_REM_OP_ERR,
838 	IB_WC_RETRY_EXC_ERR,
839 	IB_WC_RNR_RETRY_EXC_ERR,
840 	IB_WC_LOC_RDD_VIOL_ERR,
841 	IB_WC_REM_INV_RD_REQ_ERR,
842 	IB_WC_REM_ABORT_ERR,
843 	IB_WC_INV_EECN_ERR,
844 	IB_WC_INV_EEC_STATE_ERR,
845 	IB_WC_FATAL_ERR,
846 	IB_WC_RESP_TIMEOUT_ERR,
847 	IB_WC_GENERAL_ERR
848 };
849 
850 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
851 
852 enum ib_wc_opcode {
853 	IB_WC_SEND,
854 	IB_WC_RDMA_WRITE,
855 	IB_WC_RDMA_READ,
856 	IB_WC_COMP_SWAP,
857 	IB_WC_FETCH_ADD,
858 	IB_WC_LSO,
859 	IB_WC_LOCAL_INV,
860 	IB_WC_REG_MR,
861 	IB_WC_MASKED_COMP_SWAP,
862 	IB_WC_MASKED_FETCH_ADD,
863 /*
864  * Set value of IB_WC_RECV so consumers can test if a completion is a
865  * receive by testing (opcode & IB_WC_RECV).
866  */
867 	IB_WC_RECV			= 1 << 7,
868 	IB_WC_RECV_RDMA_WITH_IMM
869 };
870 
871 enum ib_wc_flags {
872 	IB_WC_GRH		= 1,
873 	IB_WC_WITH_IMM		= (1<<1),
874 	IB_WC_WITH_INVALIDATE	= (1<<2),
875 	IB_WC_IP_CSUM_OK	= (1<<3),
876 	IB_WC_WITH_SMAC		= (1<<4),
877 	IB_WC_WITH_VLAN		= (1<<5),
878 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
879 };
880 
881 struct ib_wc {
882 	union {
883 		u64		wr_id;
884 		struct ib_cqe	*wr_cqe;
885 	};
886 	enum ib_wc_status	status;
887 	enum ib_wc_opcode	opcode;
888 	u32			vendor_err;
889 	u32			byte_len;
890 	struct ib_qp	       *qp;
891 	union {
892 		__be32		imm_data;
893 		u32		invalidate_rkey;
894 	} ex;
895 	u32			src_qp;
896 	int			wc_flags;
897 	u16			pkey_index;
898 	u16			slid;
899 	u8			sl;
900 	u8			dlid_path_bits;
901 	u8			port_num;	/* valid only for DR SMPs on switches */
902 	u8			smac[ETH_ALEN];
903 	u16			vlan_id;
904 	u8			network_hdr_type;
905 };
906 
907 enum ib_cq_notify_flags {
908 	IB_CQ_SOLICITED			= 1 << 0,
909 	IB_CQ_NEXT_COMP			= 1 << 1,
910 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
911 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
912 };
913 
914 enum ib_srq_type {
915 	IB_SRQT_BASIC,
916 	IB_SRQT_XRC
917 };
918 
919 enum ib_srq_attr_mask {
920 	IB_SRQ_MAX_WR	= 1 << 0,
921 	IB_SRQ_LIMIT	= 1 << 1,
922 };
923 
924 struct ib_srq_attr {
925 	u32	max_wr;
926 	u32	max_sge;
927 	u32	srq_limit;
928 };
929 
930 struct ib_srq_init_attr {
931 	void		      (*event_handler)(struct ib_event *, void *);
932 	void		       *srq_context;
933 	struct ib_srq_attr	attr;
934 	enum ib_srq_type	srq_type;
935 
936 	union {
937 		struct {
938 			struct ib_xrcd *xrcd;
939 			struct ib_cq   *cq;
940 		} xrc;
941 	} ext;
942 };
943 
944 struct ib_qp_cap {
945 	u32	max_send_wr;
946 	u32	max_recv_wr;
947 	u32	max_send_sge;
948 	u32	max_recv_sge;
949 	u32	max_inline_data;
950 
951 	/*
952 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
953 	 * ib_create_qp() will calculate the right amount of neededed WRs
954 	 * and MRs based on this.
955 	 */
956 	u32	max_rdma_ctxs;
957 };
958 
959 enum ib_sig_type {
960 	IB_SIGNAL_ALL_WR,
961 	IB_SIGNAL_REQ_WR
962 };
963 
964 enum ib_qp_type {
965 	/*
966 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
967 	 * here (and in that order) since the MAD layer uses them as
968 	 * indices into a 2-entry table.
969 	 */
970 	IB_QPT_SMI,
971 	IB_QPT_GSI,
972 
973 	IB_QPT_RC,
974 	IB_QPT_UC,
975 	IB_QPT_UD,
976 	IB_QPT_RAW_IPV6,
977 	IB_QPT_RAW_ETHERTYPE,
978 	IB_QPT_RAW_PACKET = 8,
979 	IB_QPT_XRC_INI = 9,
980 	IB_QPT_XRC_TGT,
981 	IB_QPT_MAX,
982 	/* Reserve a range for qp types internal to the low level driver.
983 	 * These qp types will not be visible at the IB core layer, so the
984 	 * IB_QPT_MAX usages should not be affected in the core layer
985 	 */
986 	IB_QPT_RESERVED1 = 0x1000,
987 	IB_QPT_RESERVED2,
988 	IB_QPT_RESERVED3,
989 	IB_QPT_RESERVED4,
990 	IB_QPT_RESERVED5,
991 	IB_QPT_RESERVED6,
992 	IB_QPT_RESERVED7,
993 	IB_QPT_RESERVED8,
994 	IB_QPT_RESERVED9,
995 	IB_QPT_RESERVED10,
996 };
997 
998 enum ib_qp_create_flags {
999 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1000 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1001 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1002 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1003 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1004 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1005 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1006 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1007 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1008 	/* reserve bits 26-31 for low level drivers' internal use */
1009 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1010 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1011 };
1012 
1013 /*
1014  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1015  * callback to destroy the passed in QP.
1016  */
1017 
1018 struct ib_qp_init_attr {
1019 	void                  (*event_handler)(struct ib_event *, void *);
1020 	void		       *qp_context;
1021 	struct ib_cq	       *send_cq;
1022 	struct ib_cq	       *recv_cq;
1023 	struct ib_srq	       *srq;
1024 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1025 	struct ib_qp_cap	cap;
1026 	enum ib_sig_type	sq_sig_type;
1027 	enum ib_qp_type		qp_type;
1028 	enum ib_qp_create_flags	create_flags;
1029 
1030 	/*
1031 	 * Only needed for special QP types, or when using the RW API.
1032 	 */
1033 	u8			port_num;
1034 	struct ib_rwq_ind_table *rwq_ind_tbl;
1035 };
1036 
1037 struct ib_qp_open_attr {
1038 	void                  (*event_handler)(struct ib_event *, void *);
1039 	void		       *qp_context;
1040 	u32			qp_num;
1041 	enum ib_qp_type		qp_type;
1042 };
1043 
1044 enum ib_rnr_timeout {
1045 	IB_RNR_TIMER_655_36 =  0,
1046 	IB_RNR_TIMER_000_01 =  1,
1047 	IB_RNR_TIMER_000_02 =  2,
1048 	IB_RNR_TIMER_000_03 =  3,
1049 	IB_RNR_TIMER_000_04 =  4,
1050 	IB_RNR_TIMER_000_06 =  5,
1051 	IB_RNR_TIMER_000_08 =  6,
1052 	IB_RNR_TIMER_000_12 =  7,
1053 	IB_RNR_TIMER_000_16 =  8,
1054 	IB_RNR_TIMER_000_24 =  9,
1055 	IB_RNR_TIMER_000_32 = 10,
1056 	IB_RNR_TIMER_000_48 = 11,
1057 	IB_RNR_TIMER_000_64 = 12,
1058 	IB_RNR_TIMER_000_96 = 13,
1059 	IB_RNR_TIMER_001_28 = 14,
1060 	IB_RNR_TIMER_001_92 = 15,
1061 	IB_RNR_TIMER_002_56 = 16,
1062 	IB_RNR_TIMER_003_84 = 17,
1063 	IB_RNR_TIMER_005_12 = 18,
1064 	IB_RNR_TIMER_007_68 = 19,
1065 	IB_RNR_TIMER_010_24 = 20,
1066 	IB_RNR_TIMER_015_36 = 21,
1067 	IB_RNR_TIMER_020_48 = 22,
1068 	IB_RNR_TIMER_030_72 = 23,
1069 	IB_RNR_TIMER_040_96 = 24,
1070 	IB_RNR_TIMER_061_44 = 25,
1071 	IB_RNR_TIMER_081_92 = 26,
1072 	IB_RNR_TIMER_122_88 = 27,
1073 	IB_RNR_TIMER_163_84 = 28,
1074 	IB_RNR_TIMER_245_76 = 29,
1075 	IB_RNR_TIMER_327_68 = 30,
1076 	IB_RNR_TIMER_491_52 = 31
1077 };
1078 
1079 enum ib_qp_attr_mask {
1080 	IB_QP_STATE			= 1,
1081 	IB_QP_CUR_STATE			= (1<<1),
1082 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1083 	IB_QP_ACCESS_FLAGS		= (1<<3),
1084 	IB_QP_PKEY_INDEX		= (1<<4),
1085 	IB_QP_PORT			= (1<<5),
1086 	IB_QP_QKEY			= (1<<6),
1087 	IB_QP_AV			= (1<<7),
1088 	IB_QP_PATH_MTU			= (1<<8),
1089 	IB_QP_TIMEOUT			= (1<<9),
1090 	IB_QP_RETRY_CNT			= (1<<10),
1091 	IB_QP_RNR_RETRY			= (1<<11),
1092 	IB_QP_RQ_PSN			= (1<<12),
1093 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1094 	IB_QP_ALT_PATH			= (1<<14),
1095 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1096 	IB_QP_SQ_PSN			= (1<<16),
1097 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1098 	IB_QP_PATH_MIG_STATE		= (1<<18),
1099 	IB_QP_CAP			= (1<<19),
1100 	IB_QP_DEST_QPN			= (1<<20),
1101 	IB_QP_RESERVED1			= (1<<21),
1102 	IB_QP_RESERVED2			= (1<<22),
1103 	IB_QP_RESERVED3			= (1<<23),
1104 	IB_QP_RESERVED4			= (1<<24),
1105 	IB_QP_RATE_LIMIT		= (1<<25),
1106 };
1107 
1108 enum ib_qp_state {
1109 	IB_QPS_RESET,
1110 	IB_QPS_INIT,
1111 	IB_QPS_RTR,
1112 	IB_QPS_RTS,
1113 	IB_QPS_SQD,
1114 	IB_QPS_SQE,
1115 	IB_QPS_ERR
1116 };
1117 
1118 enum ib_mig_state {
1119 	IB_MIG_MIGRATED,
1120 	IB_MIG_REARM,
1121 	IB_MIG_ARMED
1122 };
1123 
1124 enum ib_mw_type {
1125 	IB_MW_TYPE_1 = 1,
1126 	IB_MW_TYPE_2 = 2
1127 };
1128 
1129 struct ib_qp_attr {
1130 	enum ib_qp_state	qp_state;
1131 	enum ib_qp_state	cur_qp_state;
1132 	enum ib_mtu		path_mtu;
1133 	enum ib_mig_state	path_mig_state;
1134 	u32			qkey;
1135 	u32			rq_psn;
1136 	u32			sq_psn;
1137 	u32			dest_qp_num;
1138 	int			qp_access_flags;
1139 	struct ib_qp_cap	cap;
1140 	struct ib_ah_attr	ah_attr;
1141 	struct ib_ah_attr	alt_ah_attr;
1142 	u16			pkey_index;
1143 	u16			alt_pkey_index;
1144 	u8			en_sqd_async_notify;
1145 	u8			sq_draining;
1146 	u8			max_rd_atomic;
1147 	u8			max_dest_rd_atomic;
1148 	u8			min_rnr_timer;
1149 	u8			port_num;
1150 	u8			timeout;
1151 	u8			retry_cnt;
1152 	u8			rnr_retry;
1153 	u8			alt_port_num;
1154 	u8			alt_timeout;
1155 	u32			rate_limit;
1156 };
1157 
1158 enum ib_wr_opcode {
1159 	IB_WR_RDMA_WRITE,
1160 	IB_WR_RDMA_WRITE_WITH_IMM,
1161 	IB_WR_SEND,
1162 	IB_WR_SEND_WITH_IMM,
1163 	IB_WR_RDMA_READ,
1164 	IB_WR_ATOMIC_CMP_AND_SWP,
1165 	IB_WR_ATOMIC_FETCH_AND_ADD,
1166 	IB_WR_LSO,
1167 	IB_WR_SEND_WITH_INV,
1168 	IB_WR_RDMA_READ_WITH_INV,
1169 	IB_WR_LOCAL_INV,
1170 	IB_WR_REG_MR,
1171 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1172 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1173 	IB_WR_REG_SIG_MR,
1174 	/* reserve values for low level drivers' internal use.
1175 	 * These values will not be used at all in the ib core layer.
1176 	 */
1177 	IB_WR_RESERVED1 = 0xf0,
1178 	IB_WR_RESERVED2,
1179 	IB_WR_RESERVED3,
1180 	IB_WR_RESERVED4,
1181 	IB_WR_RESERVED5,
1182 	IB_WR_RESERVED6,
1183 	IB_WR_RESERVED7,
1184 	IB_WR_RESERVED8,
1185 	IB_WR_RESERVED9,
1186 	IB_WR_RESERVED10,
1187 };
1188 
1189 enum ib_send_flags {
1190 	IB_SEND_FENCE		= 1,
1191 	IB_SEND_SIGNALED	= (1<<1),
1192 	IB_SEND_SOLICITED	= (1<<2),
1193 	IB_SEND_INLINE		= (1<<3),
1194 	IB_SEND_IP_CSUM		= (1<<4),
1195 
1196 	/* reserve bits 26-31 for low level drivers' internal use */
1197 	IB_SEND_RESERVED_START	= (1 << 26),
1198 	IB_SEND_RESERVED_END	= (1 << 31),
1199 };
1200 
1201 struct ib_sge {
1202 	u64	addr;
1203 	u32	length;
1204 	u32	lkey;
1205 };
1206 
1207 struct ib_cqe {
1208 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1209 };
1210 
1211 struct ib_send_wr {
1212 	struct ib_send_wr      *next;
1213 	union {
1214 		u64		wr_id;
1215 		struct ib_cqe	*wr_cqe;
1216 	};
1217 	struct ib_sge	       *sg_list;
1218 	int			num_sge;
1219 	enum ib_wr_opcode	opcode;
1220 	int			send_flags;
1221 	union {
1222 		__be32		imm_data;
1223 		u32		invalidate_rkey;
1224 	} ex;
1225 };
1226 
1227 struct ib_rdma_wr {
1228 	struct ib_send_wr	wr;
1229 	u64			remote_addr;
1230 	u32			rkey;
1231 };
1232 
1233 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1234 {
1235 	return container_of(wr, struct ib_rdma_wr, wr);
1236 }
1237 
1238 struct ib_atomic_wr {
1239 	struct ib_send_wr	wr;
1240 	u64			remote_addr;
1241 	u64			compare_add;
1242 	u64			swap;
1243 	u64			compare_add_mask;
1244 	u64			swap_mask;
1245 	u32			rkey;
1246 };
1247 
1248 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1249 {
1250 	return container_of(wr, struct ib_atomic_wr, wr);
1251 }
1252 
1253 struct ib_ud_wr {
1254 	struct ib_send_wr	wr;
1255 	struct ib_ah		*ah;
1256 	void			*header;
1257 	int			hlen;
1258 	int			mss;
1259 	u32			remote_qpn;
1260 	u32			remote_qkey;
1261 	u16			pkey_index; /* valid for GSI only */
1262 	u8			port_num;   /* valid for DR SMPs on switch only */
1263 };
1264 
1265 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1266 {
1267 	return container_of(wr, struct ib_ud_wr, wr);
1268 }
1269 
1270 struct ib_reg_wr {
1271 	struct ib_send_wr	wr;
1272 	struct ib_mr		*mr;
1273 	u32			key;
1274 	int			access;
1275 };
1276 
1277 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1278 {
1279 	return container_of(wr, struct ib_reg_wr, wr);
1280 }
1281 
1282 struct ib_sig_handover_wr {
1283 	struct ib_send_wr	wr;
1284 	struct ib_sig_attrs    *sig_attrs;
1285 	struct ib_mr	       *sig_mr;
1286 	int			access_flags;
1287 	struct ib_sge	       *prot;
1288 };
1289 
1290 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1291 {
1292 	return container_of(wr, struct ib_sig_handover_wr, wr);
1293 }
1294 
1295 struct ib_recv_wr {
1296 	struct ib_recv_wr      *next;
1297 	union {
1298 		u64		wr_id;
1299 		struct ib_cqe	*wr_cqe;
1300 	};
1301 	struct ib_sge	       *sg_list;
1302 	int			num_sge;
1303 };
1304 
1305 enum ib_access_flags {
1306 	IB_ACCESS_LOCAL_WRITE	= 1,
1307 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1308 	IB_ACCESS_REMOTE_READ	= (1<<2),
1309 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1310 	IB_ACCESS_MW_BIND	= (1<<4),
1311 	IB_ZERO_BASED		= (1<<5),
1312 	IB_ACCESS_ON_DEMAND     = (1<<6),
1313 };
1314 
1315 /*
1316  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1317  * are hidden here instead of a uapi header!
1318  */
1319 enum ib_mr_rereg_flags {
1320 	IB_MR_REREG_TRANS	= 1,
1321 	IB_MR_REREG_PD		= (1<<1),
1322 	IB_MR_REREG_ACCESS	= (1<<2),
1323 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1324 };
1325 
1326 struct ib_fmr_attr {
1327 	int	max_pages;
1328 	int	max_maps;
1329 	u8	page_shift;
1330 };
1331 
1332 struct ib_umem;
1333 
1334 struct ib_ucontext {
1335 	struct ib_device       *device;
1336 	struct list_head	pd_list;
1337 	struct list_head	mr_list;
1338 	struct list_head	mw_list;
1339 	struct list_head	cq_list;
1340 	struct list_head	qp_list;
1341 	struct list_head	srq_list;
1342 	struct list_head	ah_list;
1343 	struct list_head	xrcd_list;
1344 	struct list_head	rule_list;
1345 	struct list_head	wq_list;
1346 	struct list_head	rwq_ind_tbl_list;
1347 	int			closing;
1348 
1349 	struct pid             *tgid;
1350 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1351 	struct rb_root      umem_tree;
1352 	/*
1353 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1354 	 * mmu notifiers registration.
1355 	 */
1356 	struct rw_semaphore	umem_rwsem;
1357 	void (*invalidate_range)(struct ib_umem *umem,
1358 				 unsigned long start, unsigned long end);
1359 
1360 	struct mmu_notifier	mn;
1361 	atomic_t		notifier_count;
1362 	/* A list of umems that don't have private mmu notifier counters yet. */
1363 	struct list_head	no_private_counters;
1364 	int                     odp_mrs_count;
1365 #endif
1366 };
1367 
1368 struct ib_uobject {
1369 	u64			user_handle;	/* handle given to us by userspace */
1370 	struct ib_ucontext     *context;	/* associated user context */
1371 	void		       *object;		/* containing object */
1372 	struct list_head	list;		/* link to context's list */
1373 	int			id;		/* index into kernel idr */
1374 	struct kref		ref;
1375 	struct rw_semaphore	mutex;		/* protects .live */
1376 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1377 	int			live;
1378 };
1379 
1380 struct ib_udata {
1381 	const void __user *inbuf;
1382 	void __user *outbuf;
1383 	size_t       inlen;
1384 	size_t       outlen;
1385 };
1386 
1387 struct ib_pd {
1388 	u32			local_dma_lkey;
1389 	u32			flags;
1390 	struct ib_device       *device;
1391 	struct ib_uobject      *uobject;
1392 	atomic_t          	usecnt; /* count all resources */
1393 
1394 	u32			unsafe_global_rkey;
1395 
1396 	/*
1397 	 * Implementation details of the RDMA core, don't use in drivers:
1398 	 */
1399 	struct ib_mr	       *__internal_mr;
1400 };
1401 
1402 struct ib_xrcd {
1403 	struct ib_device       *device;
1404 	atomic_t		usecnt; /* count all exposed resources */
1405 	struct inode	       *inode;
1406 
1407 	struct mutex		tgt_qp_mutex;
1408 	struct list_head	tgt_qp_list;
1409 };
1410 
1411 struct ib_ah {
1412 	struct ib_device	*device;
1413 	struct ib_pd		*pd;
1414 	struct ib_uobject	*uobject;
1415 };
1416 
1417 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1418 
1419 enum ib_poll_context {
1420 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1421 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1422 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1423 };
1424 
1425 struct ib_cq {
1426 	struct ib_device       *device;
1427 	struct ib_uobject      *uobject;
1428 	ib_comp_handler   	comp_handler;
1429 	void                  (*event_handler)(struct ib_event *, void *);
1430 	void                   *cq_context;
1431 	int               	cqe;
1432 	atomic_t          	usecnt; /* count number of work queues */
1433 	enum ib_poll_context	poll_ctx;
1434 	struct ib_wc		*wc;
1435 	union {
1436 		struct irq_poll		iop;
1437 		struct work_struct	work;
1438 	};
1439 };
1440 
1441 struct ib_srq {
1442 	struct ib_device       *device;
1443 	struct ib_pd	       *pd;
1444 	struct ib_uobject      *uobject;
1445 	void		      (*event_handler)(struct ib_event *, void *);
1446 	void		       *srq_context;
1447 	enum ib_srq_type	srq_type;
1448 	atomic_t		usecnt;
1449 
1450 	union {
1451 		struct {
1452 			struct ib_xrcd *xrcd;
1453 			struct ib_cq   *cq;
1454 			u32		srq_num;
1455 		} xrc;
1456 	} ext;
1457 };
1458 
1459 enum ib_wq_type {
1460 	IB_WQT_RQ
1461 };
1462 
1463 enum ib_wq_state {
1464 	IB_WQS_RESET,
1465 	IB_WQS_RDY,
1466 	IB_WQS_ERR
1467 };
1468 
1469 struct ib_wq {
1470 	struct ib_device       *device;
1471 	struct ib_uobject      *uobject;
1472 	void		    *wq_context;
1473 	void		    (*event_handler)(struct ib_event *, void *);
1474 	struct ib_pd	       *pd;
1475 	struct ib_cq	       *cq;
1476 	u32		wq_num;
1477 	enum ib_wq_state       state;
1478 	enum ib_wq_type	wq_type;
1479 	atomic_t		usecnt;
1480 };
1481 
1482 struct ib_wq_init_attr {
1483 	void		       *wq_context;
1484 	enum ib_wq_type	wq_type;
1485 	u32		max_wr;
1486 	u32		max_sge;
1487 	struct	ib_cq	       *cq;
1488 	void		    (*event_handler)(struct ib_event *, void *);
1489 };
1490 
1491 enum ib_wq_attr_mask {
1492 	IB_WQ_STATE	= 1 << 0,
1493 	IB_WQ_CUR_STATE	= 1 << 1,
1494 };
1495 
1496 struct ib_wq_attr {
1497 	enum	ib_wq_state	wq_state;
1498 	enum	ib_wq_state	curr_wq_state;
1499 };
1500 
1501 struct ib_rwq_ind_table {
1502 	struct ib_device	*device;
1503 	struct ib_uobject      *uobject;
1504 	atomic_t		usecnt;
1505 	u32		ind_tbl_num;
1506 	u32		log_ind_tbl_size;
1507 	struct ib_wq	**ind_tbl;
1508 };
1509 
1510 struct ib_rwq_ind_table_init_attr {
1511 	u32		log_ind_tbl_size;
1512 	/* Each entry is a pointer to Receive Work Queue */
1513 	struct ib_wq	**ind_tbl;
1514 };
1515 
1516 /*
1517  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1518  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1519  */
1520 struct ib_qp {
1521 	struct ib_device       *device;
1522 	struct ib_pd	       *pd;
1523 	struct ib_cq	       *send_cq;
1524 	struct ib_cq	       *recv_cq;
1525 	spinlock_t		mr_lock;
1526 	int			mrs_used;
1527 	struct list_head	rdma_mrs;
1528 	struct list_head	sig_mrs;
1529 	struct ib_srq	       *srq;
1530 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1531 	struct list_head	xrcd_list;
1532 
1533 	/* count times opened, mcast attaches, flow attaches */
1534 	atomic_t		usecnt;
1535 	struct list_head	open_list;
1536 	struct ib_qp           *real_qp;
1537 	struct ib_uobject      *uobject;
1538 	void                  (*event_handler)(struct ib_event *, void *);
1539 	void		       *qp_context;
1540 	u32			qp_num;
1541 	u32			max_write_sge;
1542 	u32			max_read_sge;
1543 	enum ib_qp_type		qp_type;
1544 	struct ib_rwq_ind_table *rwq_ind_tbl;
1545 };
1546 
1547 struct ib_mr {
1548 	struct ib_device  *device;
1549 	struct ib_pd	  *pd;
1550 	u32		   lkey;
1551 	u32		   rkey;
1552 	u64		   iova;
1553 	u32		   length;
1554 	unsigned int	   page_size;
1555 	bool		   need_inval;
1556 	union {
1557 		struct ib_uobject	*uobject;	/* user */
1558 		struct list_head	qp_entry;	/* FR */
1559 	};
1560 };
1561 
1562 struct ib_mw {
1563 	struct ib_device	*device;
1564 	struct ib_pd		*pd;
1565 	struct ib_uobject	*uobject;
1566 	u32			rkey;
1567 	enum ib_mw_type         type;
1568 };
1569 
1570 struct ib_fmr {
1571 	struct ib_device	*device;
1572 	struct ib_pd		*pd;
1573 	struct list_head	list;
1574 	u32			lkey;
1575 	u32			rkey;
1576 };
1577 
1578 /* Supported steering options */
1579 enum ib_flow_attr_type {
1580 	/* steering according to rule specifications */
1581 	IB_FLOW_ATTR_NORMAL		= 0x0,
1582 	/* default unicast and multicast rule -
1583 	 * receive all Eth traffic which isn't steered to any QP
1584 	 */
1585 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1586 	/* default multicast rule -
1587 	 * receive all Eth multicast traffic which isn't steered to any QP
1588 	 */
1589 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1590 	/* sniffer rule - receive all port traffic */
1591 	IB_FLOW_ATTR_SNIFFER		= 0x3
1592 };
1593 
1594 /* Supported steering header types */
1595 enum ib_flow_spec_type {
1596 	/* L2 headers*/
1597 	IB_FLOW_SPEC_ETH		= 0x20,
1598 	IB_FLOW_SPEC_IB			= 0x22,
1599 	/* L3 header*/
1600 	IB_FLOW_SPEC_IPV4		= 0x30,
1601 	IB_FLOW_SPEC_IPV6		= 0x31,
1602 	/* L4 headers*/
1603 	IB_FLOW_SPEC_TCP		= 0x40,
1604 	IB_FLOW_SPEC_UDP		= 0x41,
1605 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1606 	IB_FLOW_SPEC_INNER		= 0x100,
1607 };
1608 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1609 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1610 
1611 /* Flow steering rule priority is set according to it's domain.
1612  * Lower domain value means higher priority.
1613  */
1614 enum ib_flow_domain {
1615 	IB_FLOW_DOMAIN_USER,
1616 	IB_FLOW_DOMAIN_ETHTOOL,
1617 	IB_FLOW_DOMAIN_RFS,
1618 	IB_FLOW_DOMAIN_NIC,
1619 	IB_FLOW_DOMAIN_NUM /* Must be last */
1620 };
1621 
1622 enum ib_flow_flags {
1623 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1624 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1625 };
1626 
1627 struct ib_flow_eth_filter {
1628 	u8	dst_mac[6];
1629 	u8	src_mac[6];
1630 	__be16	ether_type;
1631 	__be16	vlan_tag;
1632 	/* Must be last */
1633 	u8	real_sz[0];
1634 };
1635 
1636 struct ib_flow_spec_eth {
1637 	u32			  type;
1638 	u16			  size;
1639 	struct ib_flow_eth_filter val;
1640 	struct ib_flow_eth_filter mask;
1641 };
1642 
1643 struct ib_flow_ib_filter {
1644 	__be16 dlid;
1645 	__u8   sl;
1646 	/* Must be last */
1647 	u8	real_sz[0];
1648 };
1649 
1650 struct ib_flow_spec_ib {
1651 	u32			 type;
1652 	u16			 size;
1653 	struct ib_flow_ib_filter val;
1654 	struct ib_flow_ib_filter mask;
1655 };
1656 
1657 /* IPv4 header flags */
1658 enum ib_ipv4_flags {
1659 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1660 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1661 				    last have this flag set */
1662 };
1663 
1664 struct ib_flow_ipv4_filter {
1665 	__be32	src_ip;
1666 	__be32	dst_ip;
1667 	u8	proto;
1668 	u8	tos;
1669 	u8	ttl;
1670 	u8	flags;
1671 	/* Must be last */
1672 	u8	real_sz[0];
1673 };
1674 
1675 struct ib_flow_spec_ipv4 {
1676 	u32			   type;
1677 	u16			   size;
1678 	struct ib_flow_ipv4_filter val;
1679 	struct ib_flow_ipv4_filter mask;
1680 };
1681 
1682 struct ib_flow_ipv6_filter {
1683 	u8	src_ip[16];
1684 	u8	dst_ip[16];
1685 	__be32	flow_label;
1686 	u8	next_hdr;
1687 	u8	traffic_class;
1688 	u8	hop_limit;
1689 	/* Must be last */
1690 	u8	real_sz[0];
1691 };
1692 
1693 struct ib_flow_spec_ipv6 {
1694 	u32			   type;
1695 	u16			   size;
1696 	struct ib_flow_ipv6_filter val;
1697 	struct ib_flow_ipv6_filter mask;
1698 };
1699 
1700 struct ib_flow_tcp_udp_filter {
1701 	__be16	dst_port;
1702 	__be16	src_port;
1703 	/* Must be last */
1704 	u8	real_sz[0];
1705 };
1706 
1707 struct ib_flow_spec_tcp_udp {
1708 	u32			      type;
1709 	u16			      size;
1710 	struct ib_flow_tcp_udp_filter val;
1711 	struct ib_flow_tcp_udp_filter mask;
1712 };
1713 
1714 struct ib_flow_tunnel_filter {
1715 	__be32	tunnel_id;
1716 	u8	real_sz[0];
1717 };
1718 
1719 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1720  * the tunnel_id from val has the vni value
1721  */
1722 struct ib_flow_spec_tunnel {
1723 	u32			      type;
1724 	u16			      size;
1725 	struct ib_flow_tunnel_filter  val;
1726 	struct ib_flow_tunnel_filter  mask;
1727 };
1728 
1729 union ib_flow_spec {
1730 	struct {
1731 		u32			type;
1732 		u16			size;
1733 	};
1734 	struct ib_flow_spec_eth		eth;
1735 	struct ib_flow_spec_ib		ib;
1736 	struct ib_flow_spec_ipv4        ipv4;
1737 	struct ib_flow_spec_tcp_udp	tcp_udp;
1738 	struct ib_flow_spec_ipv6        ipv6;
1739 	struct ib_flow_spec_tunnel      tunnel;
1740 };
1741 
1742 struct ib_flow_attr {
1743 	enum ib_flow_attr_type type;
1744 	u16	     size;
1745 	u16	     priority;
1746 	u32	     flags;
1747 	u8	     num_of_specs;
1748 	u8	     port;
1749 	/* Following are the optional layers according to user request
1750 	 * struct ib_flow_spec_xxx
1751 	 * struct ib_flow_spec_yyy
1752 	 */
1753 };
1754 
1755 struct ib_flow {
1756 	struct ib_qp		*qp;
1757 	struct ib_uobject	*uobject;
1758 };
1759 
1760 struct ib_mad_hdr;
1761 struct ib_grh;
1762 
1763 enum ib_process_mad_flags {
1764 	IB_MAD_IGNORE_MKEY	= 1,
1765 	IB_MAD_IGNORE_BKEY	= 2,
1766 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1767 };
1768 
1769 enum ib_mad_result {
1770 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1771 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1772 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1773 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1774 };
1775 
1776 #define IB_DEVICE_NAME_MAX 64
1777 
1778 struct ib_cache {
1779 	rwlock_t                lock;
1780 	struct ib_event_handler event_handler;
1781 	struct ib_pkey_cache  **pkey_cache;
1782 	struct ib_gid_table   **gid_cache;
1783 	u8                     *lmc_cache;
1784 };
1785 
1786 struct ib_dma_mapping_ops {
1787 	int		(*mapping_error)(struct ib_device *dev,
1788 					 u64 dma_addr);
1789 	u64		(*map_single)(struct ib_device *dev,
1790 				      void *ptr, size_t size,
1791 				      enum dma_data_direction direction);
1792 	void		(*unmap_single)(struct ib_device *dev,
1793 					u64 addr, size_t size,
1794 					enum dma_data_direction direction);
1795 	u64		(*map_page)(struct ib_device *dev,
1796 				    struct page *page, unsigned long offset,
1797 				    size_t size,
1798 				    enum dma_data_direction direction);
1799 	void		(*unmap_page)(struct ib_device *dev,
1800 				      u64 addr, size_t size,
1801 				      enum dma_data_direction direction);
1802 	int		(*map_sg)(struct ib_device *dev,
1803 				  struct scatterlist *sg, int nents,
1804 				  enum dma_data_direction direction);
1805 	void		(*unmap_sg)(struct ib_device *dev,
1806 				    struct scatterlist *sg, int nents,
1807 				    enum dma_data_direction direction);
1808 	int		(*map_sg_attrs)(struct ib_device *dev,
1809 					struct scatterlist *sg, int nents,
1810 					enum dma_data_direction direction,
1811 					unsigned long attrs);
1812 	void		(*unmap_sg_attrs)(struct ib_device *dev,
1813 					  struct scatterlist *sg, int nents,
1814 					  enum dma_data_direction direction,
1815 					  unsigned long attrs);
1816 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1817 					       u64 dma_handle,
1818 					       size_t size,
1819 					       enum dma_data_direction dir);
1820 	void		(*sync_single_for_device)(struct ib_device *dev,
1821 						  u64 dma_handle,
1822 						  size_t size,
1823 						  enum dma_data_direction dir);
1824 	void		*(*alloc_coherent)(struct ib_device *dev,
1825 					   size_t size,
1826 					   u64 *dma_handle,
1827 					   gfp_t flag);
1828 	void		(*free_coherent)(struct ib_device *dev,
1829 					 size_t size, void *cpu_addr,
1830 					 u64 dma_handle);
1831 };
1832 
1833 struct iw_cm_verbs;
1834 
1835 struct ib_port_immutable {
1836 	int                           pkey_tbl_len;
1837 	int                           gid_tbl_len;
1838 	u32                           core_cap_flags;
1839 	u32                           max_mad_size;
1840 };
1841 
1842 struct ib_device {
1843 	struct device                *dma_device;
1844 
1845 	char                          name[IB_DEVICE_NAME_MAX];
1846 
1847 	struct list_head              event_handler_list;
1848 	spinlock_t                    event_handler_lock;
1849 
1850 	spinlock_t                    client_data_lock;
1851 	struct list_head              core_list;
1852 	/* Access to the client_data_list is protected by the client_data_lock
1853 	 * spinlock and the lists_rwsem read-write semaphore */
1854 	struct list_head              client_data_list;
1855 
1856 	struct ib_cache               cache;
1857 	/**
1858 	 * port_immutable is indexed by port number
1859 	 */
1860 	struct ib_port_immutable     *port_immutable;
1861 
1862 	int			      num_comp_vectors;
1863 
1864 	struct iw_cm_verbs	     *iwcm;
1865 
1866 	/**
1867 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1868 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
1869 	 *   core when the device is removed.  A lifespan of -1 in the return
1870 	 *   struct tells the core to set a default lifespan.
1871 	 */
1872 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
1873 						     u8 port_num);
1874 	/**
1875 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1876 	 * @index - The index in the value array we wish to have updated, or
1877 	 *   num_counters if we want all stats updated
1878 	 * Return codes -
1879 	 *   < 0 - Error, no counters updated
1880 	 *   index - Updated the single counter pointed to by index
1881 	 *   num_counters - Updated all counters (will reset the timestamp
1882 	 *     and prevent further calls for lifespan milliseconds)
1883 	 * Drivers are allowed to update all counters in leiu of just the
1884 	 *   one given in index at their option
1885 	 */
1886 	int		           (*get_hw_stats)(struct ib_device *device,
1887 						   struct rdma_hw_stats *stats,
1888 						   u8 port, int index);
1889 	int		           (*query_device)(struct ib_device *device,
1890 						   struct ib_device_attr *device_attr,
1891 						   struct ib_udata *udata);
1892 	int		           (*query_port)(struct ib_device *device,
1893 						 u8 port_num,
1894 						 struct ib_port_attr *port_attr);
1895 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1896 						     u8 port_num);
1897 	/* When calling get_netdev, the HW vendor's driver should return the
1898 	 * net device of device @device at port @port_num or NULL if such
1899 	 * a net device doesn't exist. The vendor driver should call dev_hold
1900 	 * on this net device. The HW vendor's device driver must guarantee
1901 	 * that this function returns NULL before the net device reaches
1902 	 * NETDEV_UNREGISTER_FINAL state.
1903 	 */
1904 	struct net_device	  *(*get_netdev)(struct ib_device *device,
1905 						 u8 port_num);
1906 	int		           (*query_gid)(struct ib_device *device,
1907 						u8 port_num, int index,
1908 						union ib_gid *gid);
1909 	/* When calling add_gid, the HW vendor's driver should
1910 	 * add the gid of device @device at gid index @index of
1911 	 * port @port_num to be @gid. Meta-info of that gid (for example,
1912 	 * the network device related to this gid is available
1913 	 * at @attr. @context allows the HW vendor driver to store extra
1914 	 * information together with a GID entry. The HW vendor may allocate
1915 	 * memory to contain this information and store it in @context when a
1916 	 * new GID entry is written to. Params are consistent until the next
1917 	 * call of add_gid or delete_gid. The function should return 0 on
1918 	 * success or error otherwise. The function could be called
1919 	 * concurrently for different ports. This function is only called
1920 	 * when roce_gid_table is used.
1921 	 */
1922 	int		           (*add_gid)(struct ib_device *device,
1923 					      u8 port_num,
1924 					      unsigned int index,
1925 					      const union ib_gid *gid,
1926 					      const struct ib_gid_attr *attr,
1927 					      void **context);
1928 	/* When calling del_gid, the HW vendor's driver should delete the
1929 	 * gid of device @device at gid index @index of port @port_num.
1930 	 * Upon the deletion of a GID entry, the HW vendor must free any
1931 	 * allocated memory. The caller will clear @context afterwards.
1932 	 * This function is only called when roce_gid_table is used.
1933 	 */
1934 	int		           (*del_gid)(struct ib_device *device,
1935 					      u8 port_num,
1936 					      unsigned int index,
1937 					      void **context);
1938 	int		           (*query_pkey)(struct ib_device *device,
1939 						 u8 port_num, u16 index, u16 *pkey);
1940 	int		           (*modify_device)(struct ib_device *device,
1941 						    int device_modify_mask,
1942 						    struct ib_device_modify *device_modify);
1943 	int		           (*modify_port)(struct ib_device *device,
1944 						  u8 port_num, int port_modify_mask,
1945 						  struct ib_port_modify *port_modify);
1946 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1947 						     struct ib_udata *udata);
1948 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1949 	int                        (*mmap)(struct ib_ucontext *context,
1950 					   struct vm_area_struct *vma);
1951 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1952 					       struct ib_ucontext *context,
1953 					       struct ib_udata *udata);
1954 	int                        (*dealloc_pd)(struct ib_pd *pd);
1955 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1956 						struct ib_ah_attr *ah_attr,
1957 						struct ib_udata *udata);
1958 	int                        (*modify_ah)(struct ib_ah *ah,
1959 						struct ib_ah_attr *ah_attr);
1960 	int                        (*query_ah)(struct ib_ah *ah,
1961 					       struct ib_ah_attr *ah_attr);
1962 	int                        (*destroy_ah)(struct ib_ah *ah);
1963 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1964 						 struct ib_srq_init_attr *srq_init_attr,
1965 						 struct ib_udata *udata);
1966 	int                        (*modify_srq)(struct ib_srq *srq,
1967 						 struct ib_srq_attr *srq_attr,
1968 						 enum ib_srq_attr_mask srq_attr_mask,
1969 						 struct ib_udata *udata);
1970 	int                        (*query_srq)(struct ib_srq *srq,
1971 						struct ib_srq_attr *srq_attr);
1972 	int                        (*destroy_srq)(struct ib_srq *srq);
1973 	int                        (*post_srq_recv)(struct ib_srq *srq,
1974 						    struct ib_recv_wr *recv_wr,
1975 						    struct ib_recv_wr **bad_recv_wr);
1976 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1977 						struct ib_qp_init_attr *qp_init_attr,
1978 						struct ib_udata *udata);
1979 	int                        (*modify_qp)(struct ib_qp *qp,
1980 						struct ib_qp_attr *qp_attr,
1981 						int qp_attr_mask,
1982 						struct ib_udata *udata);
1983 	int                        (*query_qp)(struct ib_qp *qp,
1984 					       struct ib_qp_attr *qp_attr,
1985 					       int qp_attr_mask,
1986 					       struct ib_qp_init_attr *qp_init_attr);
1987 	int                        (*destroy_qp)(struct ib_qp *qp);
1988 	int                        (*post_send)(struct ib_qp *qp,
1989 						struct ib_send_wr *send_wr,
1990 						struct ib_send_wr **bad_send_wr);
1991 	int                        (*post_recv)(struct ib_qp *qp,
1992 						struct ib_recv_wr *recv_wr,
1993 						struct ib_recv_wr **bad_recv_wr);
1994 	struct ib_cq *             (*create_cq)(struct ib_device *device,
1995 						const struct ib_cq_init_attr *attr,
1996 						struct ib_ucontext *context,
1997 						struct ib_udata *udata);
1998 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1999 						u16 cq_period);
2000 	int                        (*destroy_cq)(struct ib_cq *cq);
2001 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2002 						struct ib_udata *udata);
2003 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2004 					      struct ib_wc *wc);
2005 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2006 	int                        (*req_notify_cq)(struct ib_cq *cq,
2007 						    enum ib_cq_notify_flags flags);
2008 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2009 						      int wc_cnt);
2010 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2011 						 int mr_access_flags);
2012 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2013 						  u64 start, u64 length,
2014 						  u64 virt_addr,
2015 						  int mr_access_flags,
2016 						  struct ib_udata *udata);
2017 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2018 						    int flags,
2019 						    u64 start, u64 length,
2020 						    u64 virt_addr,
2021 						    int mr_access_flags,
2022 						    struct ib_pd *pd,
2023 						    struct ib_udata *udata);
2024 	int                        (*dereg_mr)(struct ib_mr *mr);
2025 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2026 					       enum ib_mr_type mr_type,
2027 					       u32 max_num_sg);
2028 	int                        (*map_mr_sg)(struct ib_mr *mr,
2029 						struct scatterlist *sg,
2030 						int sg_nents,
2031 						unsigned int *sg_offset);
2032 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2033 					       enum ib_mw_type type,
2034 					       struct ib_udata *udata);
2035 	int                        (*dealloc_mw)(struct ib_mw *mw);
2036 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2037 						int mr_access_flags,
2038 						struct ib_fmr_attr *fmr_attr);
2039 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2040 						   u64 *page_list, int list_len,
2041 						   u64 iova);
2042 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2043 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2044 	int                        (*attach_mcast)(struct ib_qp *qp,
2045 						   union ib_gid *gid,
2046 						   u16 lid);
2047 	int                        (*detach_mcast)(struct ib_qp *qp,
2048 						   union ib_gid *gid,
2049 						   u16 lid);
2050 	int                        (*process_mad)(struct ib_device *device,
2051 						  int process_mad_flags,
2052 						  u8 port_num,
2053 						  const struct ib_wc *in_wc,
2054 						  const struct ib_grh *in_grh,
2055 						  const struct ib_mad_hdr *in_mad,
2056 						  size_t in_mad_size,
2057 						  struct ib_mad_hdr *out_mad,
2058 						  size_t *out_mad_size,
2059 						  u16 *out_mad_pkey_index);
2060 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2061 						 struct ib_ucontext *ucontext,
2062 						 struct ib_udata *udata);
2063 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2064 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2065 						  struct ib_flow_attr
2066 						  *flow_attr,
2067 						  int domain);
2068 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2069 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2070 						      struct ib_mr_status *mr_status);
2071 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2072 	void			   (*drain_rq)(struct ib_qp *qp);
2073 	void			   (*drain_sq)(struct ib_qp *qp);
2074 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2075 							int state);
2076 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2077 						   struct ifla_vf_info *ivf);
2078 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2079 						   struct ifla_vf_stats *stats);
2080 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2081 						  int type);
2082 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2083 						struct ib_wq_init_attr *init_attr,
2084 						struct ib_udata *udata);
2085 	int			   (*destroy_wq)(struct ib_wq *wq);
2086 	int			   (*modify_wq)(struct ib_wq *wq,
2087 						struct ib_wq_attr *attr,
2088 						u32 wq_attr_mask,
2089 						struct ib_udata *udata);
2090 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2091 							   struct ib_rwq_ind_table_init_attr *init_attr,
2092 							   struct ib_udata *udata);
2093 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2094 	struct ib_dma_mapping_ops   *dma_ops;
2095 
2096 	struct module               *owner;
2097 	struct device                dev;
2098 	struct kobject               *ports_parent;
2099 	struct list_head             port_list;
2100 
2101 	enum {
2102 		IB_DEV_UNINITIALIZED,
2103 		IB_DEV_REGISTERED,
2104 		IB_DEV_UNREGISTERED
2105 	}                            reg_state;
2106 
2107 	int			     uverbs_abi_ver;
2108 	u64			     uverbs_cmd_mask;
2109 	u64			     uverbs_ex_cmd_mask;
2110 
2111 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2112 	__be64			     node_guid;
2113 	u32			     local_dma_lkey;
2114 	u16                          is_switch:1;
2115 	u8                           node_type;
2116 	u8                           phys_port_cnt;
2117 	struct ib_device_attr        attrs;
2118 	struct attribute_group	     *hw_stats_ag;
2119 	struct rdma_hw_stats         *hw_stats;
2120 
2121 	/**
2122 	 * The following mandatory functions are used only at device
2123 	 * registration.  Keep functions such as these at the end of this
2124 	 * structure to avoid cache line misses when accessing struct ib_device
2125 	 * in fast paths.
2126 	 */
2127 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2128 	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2129 };
2130 
2131 struct ib_client {
2132 	char  *name;
2133 	void (*add)   (struct ib_device *);
2134 	void (*remove)(struct ib_device *, void *client_data);
2135 
2136 	/* Returns the net_dev belonging to this ib_client and matching the
2137 	 * given parameters.
2138 	 * @dev:	 An RDMA device that the net_dev use for communication.
2139 	 * @port:	 A physical port number on the RDMA device.
2140 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2141 	 * @gid:	 A GID that the net_dev uses to communicate.
2142 	 * @addr:	 An IP address the net_dev is configured with.
2143 	 * @client_data: The device's client data set by ib_set_client_data().
2144 	 *
2145 	 * An ib_client that implements a net_dev on top of RDMA devices
2146 	 * (such as IP over IB) should implement this callback, allowing the
2147 	 * rdma_cm module to find the right net_dev for a given request.
2148 	 *
2149 	 * The caller is responsible for calling dev_put on the returned
2150 	 * netdev. */
2151 	struct net_device *(*get_net_dev_by_params)(
2152 			struct ib_device *dev,
2153 			u8 port,
2154 			u16 pkey,
2155 			const union ib_gid *gid,
2156 			const struct sockaddr *addr,
2157 			void *client_data);
2158 	struct list_head list;
2159 };
2160 
2161 struct ib_device *ib_alloc_device(size_t size);
2162 void ib_dealloc_device(struct ib_device *device);
2163 
2164 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2165 
2166 int ib_register_device(struct ib_device *device,
2167 		       int (*port_callback)(struct ib_device *,
2168 					    u8, struct kobject *));
2169 void ib_unregister_device(struct ib_device *device);
2170 
2171 int ib_register_client   (struct ib_client *client);
2172 void ib_unregister_client(struct ib_client *client);
2173 
2174 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2175 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2176 			 void *data);
2177 
2178 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2179 {
2180 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2181 }
2182 
2183 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2184 {
2185 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2186 }
2187 
2188 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2189 				       size_t offset,
2190 				       size_t len)
2191 {
2192 	const void __user *p = udata->inbuf + offset;
2193 	bool ret;
2194 	u8 *buf;
2195 
2196 	if (len > USHRT_MAX)
2197 		return false;
2198 
2199 	buf = memdup_user(p, len);
2200 	if (IS_ERR(buf))
2201 		return false;
2202 
2203 	ret = !memchr_inv(buf, 0, len);
2204 	kfree(buf);
2205 	return ret;
2206 }
2207 
2208 /**
2209  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2210  * contains all required attributes and no attributes not allowed for
2211  * the given QP state transition.
2212  * @cur_state: Current QP state
2213  * @next_state: Next QP state
2214  * @type: QP type
2215  * @mask: Mask of supplied QP attributes
2216  * @ll : link layer of port
2217  *
2218  * This function is a helper function that a low-level driver's
2219  * modify_qp method can use to validate the consumer's input.  It
2220  * checks that cur_state and next_state are valid QP states, that a
2221  * transition from cur_state to next_state is allowed by the IB spec,
2222  * and that the attribute mask supplied is allowed for the transition.
2223  */
2224 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2225 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2226 		       enum rdma_link_layer ll);
2227 
2228 int ib_register_event_handler  (struct ib_event_handler *event_handler);
2229 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2230 void ib_dispatch_event(struct ib_event *event);
2231 
2232 int ib_query_port(struct ib_device *device,
2233 		  u8 port_num, struct ib_port_attr *port_attr);
2234 
2235 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2236 					       u8 port_num);
2237 
2238 /**
2239  * rdma_cap_ib_switch - Check if the device is IB switch
2240  * @device: Device to check
2241  *
2242  * Device driver is responsible for setting is_switch bit on
2243  * in ib_device structure at init time.
2244  *
2245  * Return: true if the device is IB switch.
2246  */
2247 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2248 {
2249 	return device->is_switch;
2250 }
2251 
2252 /**
2253  * rdma_start_port - Return the first valid port number for the device
2254  * specified
2255  *
2256  * @device: Device to be checked
2257  *
2258  * Return start port number
2259  */
2260 static inline u8 rdma_start_port(const struct ib_device *device)
2261 {
2262 	return rdma_cap_ib_switch(device) ? 0 : 1;
2263 }
2264 
2265 /**
2266  * rdma_end_port - Return the last valid port number for the device
2267  * specified
2268  *
2269  * @device: Device to be checked
2270  *
2271  * Return last port number
2272  */
2273 static inline u8 rdma_end_port(const struct ib_device *device)
2274 {
2275 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2276 }
2277 
2278 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2279 {
2280 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2281 }
2282 
2283 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2284 {
2285 	return device->port_immutable[port_num].core_cap_flags &
2286 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2287 }
2288 
2289 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2290 {
2291 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2292 }
2293 
2294 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2295 {
2296 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2297 }
2298 
2299 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2300 {
2301 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2302 }
2303 
2304 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2305 {
2306 	return rdma_protocol_ib(device, port_num) ||
2307 		rdma_protocol_roce(device, port_num);
2308 }
2309 
2310 /**
2311  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2312  * Management Datagrams.
2313  * @device: Device to check
2314  * @port_num: Port number to check
2315  *
2316  * Management Datagrams (MAD) are a required part of the InfiniBand
2317  * specification and are supported on all InfiniBand devices.  A slightly
2318  * extended version are also supported on OPA interfaces.
2319  *
2320  * Return: true if the port supports sending/receiving of MAD packets.
2321  */
2322 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2323 {
2324 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2325 }
2326 
2327 /**
2328  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2329  * Management Datagrams.
2330  * @device: Device to check
2331  * @port_num: Port number to check
2332  *
2333  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2334  * datagrams with their own versions.  These OPA MADs share many but not all of
2335  * the characteristics of InfiniBand MADs.
2336  *
2337  * OPA MADs differ in the following ways:
2338  *
2339  *    1) MADs are variable size up to 2K
2340  *       IBTA defined MADs remain fixed at 256 bytes
2341  *    2) OPA SMPs must carry valid PKeys
2342  *    3) OPA SMP packets are a different format
2343  *
2344  * Return: true if the port supports OPA MAD packet formats.
2345  */
2346 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2347 {
2348 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2349 		== RDMA_CORE_CAP_OPA_MAD;
2350 }
2351 
2352 /**
2353  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2354  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2355  * @device: Device to check
2356  * @port_num: Port number to check
2357  *
2358  * Each InfiniBand node is required to provide a Subnet Management Agent
2359  * that the subnet manager can access.  Prior to the fabric being fully
2360  * configured by the subnet manager, the SMA is accessed via a well known
2361  * interface called the Subnet Management Interface (SMI).  This interface
2362  * uses directed route packets to communicate with the SM to get around the
2363  * chicken and egg problem of the SM needing to know what's on the fabric
2364  * in order to configure the fabric, and needing to configure the fabric in
2365  * order to send packets to the devices on the fabric.  These directed
2366  * route packets do not need the fabric fully configured in order to reach
2367  * their destination.  The SMI is the only method allowed to send
2368  * directed route packets on an InfiniBand fabric.
2369  *
2370  * Return: true if the port provides an SMI.
2371  */
2372 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2373 {
2374 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2375 }
2376 
2377 /**
2378  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2379  * Communication Manager.
2380  * @device: Device to check
2381  * @port_num: Port number to check
2382  *
2383  * The InfiniBand Communication Manager is one of many pre-defined General
2384  * Service Agents (GSA) that are accessed via the General Service
2385  * Interface (GSI).  It's role is to facilitate establishment of connections
2386  * between nodes as well as other management related tasks for established
2387  * connections.
2388  *
2389  * Return: true if the port supports an IB CM (this does not guarantee that
2390  * a CM is actually running however).
2391  */
2392 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2393 {
2394 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2395 }
2396 
2397 /**
2398  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2399  * Communication Manager.
2400  * @device: Device to check
2401  * @port_num: Port number to check
2402  *
2403  * Similar to above, but specific to iWARP connections which have a different
2404  * managment protocol than InfiniBand.
2405  *
2406  * Return: true if the port supports an iWARP CM (this does not guarantee that
2407  * a CM is actually running however).
2408  */
2409 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2410 {
2411 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2412 }
2413 
2414 /**
2415  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2416  * Subnet Administration.
2417  * @device: Device to check
2418  * @port_num: Port number to check
2419  *
2420  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2421  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2422  * fabrics, devices should resolve routes to other hosts by contacting the
2423  * SA to query the proper route.
2424  *
2425  * Return: true if the port should act as a client to the fabric Subnet
2426  * Administration interface.  This does not imply that the SA service is
2427  * running locally.
2428  */
2429 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2430 {
2431 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2432 }
2433 
2434 /**
2435  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2436  * Multicast.
2437  * @device: Device to check
2438  * @port_num: Port number to check
2439  *
2440  * InfiniBand multicast registration is more complex than normal IPv4 or
2441  * IPv6 multicast registration.  Each Host Channel Adapter must register
2442  * with the Subnet Manager when it wishes to join a multicast group.  It
2443  * should do so only once regardless of how many queue pairs it subscribes
2444  * to this group.  And it should leave the group only after all queue pairs
2445  * attached to the group have been detached.
2446  *
2447  * Return: true if the port must undertake the additional adminstrative
2448  * overhead of registering/unregistering with the SM and tracking of the
2449  * total number of queue pairs attached to the multicast group.
2450  */
2451 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2452 {
2453 	return rdma_cap_ib_sa(device, port_num);
2454 }
2455 
2456 /**
2457  * rdma_cap_af_ib - Check if the port of device has the capability
2458  * Native Infiniband Address.
2459  * @device: Device to check
2460  * @port_num: Port number to check
2461  *
2462  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2463  * GID.  RoCE uses a different mechanism, but still generates a GID via
2464  * a prescribed mechanism and port specific data.
2465  *
2466  * Return: true if the port uses a GID address to identify devices on the
2467  * network.
2468  */
2469 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2470 {
2471 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2472 }
2473 
2474 /**
2475  * rdma_cap_eth_ah - Check if the port of device has the capability
2476  * Ethernet Address Handle.
2477  * @device: Device to check
2478  * @port_num: Port number to check
2479  *
2480  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2481  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2482  * port.  Normally, packet headers are generated by the sending host
2483  * adapter, but when sending connectionless datagrams, we must manually
2484  * inject the proper headers for the fabric we are communicating over.
2485  *
2486  * Return: true if we are running as a RoCE port and must force the
2487  * addition of a Global Route Header built from our Ethernet Address
2488  * Handle into our header list for connectionless packets.
2489  */
2490 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2491 {
2492 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2493 }
2494 
2495 /**
2496  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2497  *
2498  * @device: Device
2499  * @port_num: Port number
2500  *
2501  * This MAD size includes the MAD headers and MAD payload.  No other headers
2502  * are included.
2503  *
2504  * Return the max MAD size required by the Port.  Will return 0 if the port
2505  * does not support MADs
2506  */
2507 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2508 {
2509 	return device->port_immutable[port_num].max_mad_size;
2510 }
2511 
2512 /**
2513  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2514  * @device: Device to check
2515  * @port_num: Port number to check
2516  *
2517  * RoCE GID table mechanism manages the various GIDs for a device.
2518  *
2519  * NOTE: if allocating the port's GID table has failed, this call will still
2520  * return true, but any RoCE GID table API will fail.
2521  *
2522  * Return: true if the port uses RoCE GID table mechanism in order to manage
2523  * its GIDs.
2524  */
2525 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2526 					   u8 port_num)
2527 {
2528 	return rdma_protocol_roce(device, port_num) &&
2529 		device->add_gid && device->del_gid;
2530 }
2531 
2532 /*
2533  * Check if the device supports READ W/ INVALIDATE.
2534  */
2535 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2536 {
2537 	/*
2538 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2539 	 * has support for it yet.
2540 	 */
2541 	return rdma_protocol_iwarp(dev, port_num);
2542 }
2543 
2544 int ib_query_gid(struct ib_device *device,
2545 		 u8 port_num, int index, union ib_gid *gid,
2546 		 struct ib_gid_attr *attr);
2547 
2548 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2549 			 int state);
2550 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2551 		     struct ifla_vf_info *info);
2552 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2553 		    struct ifla_vf_stats *stats);
2554 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2555 		   int type);
2556 
2557 int ib_query_pkey(struct ib_device *device,
2558 		  u8 port_num, u16 index, u16 *pkey);
2559 
2560 int ib_modify_device(struct ib_device *device,
2561 		     int device_modify_mask,
2562 		     struct ib_device_modify *device_modify);
2563 
2564 int ib_modify_port(struct ib_device *device,
2565 		   u8 port_num, int port_modify_mask,
2566 		   struct ib_port_modify *port_modify);
2567 
2568 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2569 		enum ib_gid_type gid_type, struct net_device *ndev,
2570 		u8 *port_num, u16 *index);
2571 
2572 int ib_find_pkey(struct ib_device *device,
2573 		 u8 port_num, u16 pkey, u16 *index);
2574 
2575 enum ib_pd_flags {
2576 	/*
2577 	 * Create a memory registration for all memory in the system and place
2578 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2579 	 * ULPs to avoid the overhead of dynamic MRs.
2580 	 *
2581 	 * This flag is generally considered unsafe and must only be used in
2582 	 * extremly trusted environments.  Every use of it will log a warning
2583 	 * in the kernel log.
2584 	 */
2585 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2586 };
2587 
2588 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2589 		const char *caller);
2590 #define ib_alloc_pd(device, flags) \
2591 	__ib_alloc_pd((device), (flags), __func__)
2592 void ib_dealloc_pd(struct ib_pd *pd);
2593 
2594 /**
2595  * ib_create_ah - Creates an address handle for the given address vector.
2596  * @pd: The protection domain associated with the address handle.
2597  * @ah_attr: The attributes of the address vector.
2598  *
2599  * The address handle is used to reference a local or global destination
2600  * in all UD QP post sends.
2601  */
2602 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2603 
2604 /**
2605  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2606  *   work completion.
2607  * @hdr: the L3 header to parse
2608  * @net_type: type of header to parse
2609  * @sgid: place to store source gid
2610  * @dgid: place to store destination gid
2611  */
2612 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2613 			      enum rdma_network_type net_type,
2614 			      union ib_gid *sgid, union ib_gid *dgid);
2615 
2616 /**
2617  * ib_get_rdma_header_version - Get the header version
2618  * @hdr: the L3 header to parse
2619  */
2620 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2621 
2622 /**
2623  * ib_init_ah_from_wc - Initializes address handle attributes from a
2624  *   work completion.
2625  * @device: Device on which the received message arrived.
2626  * @port_num: Port on which the received message arrived.
2627  * @wc: Work completion associated with the received message.
2628  * @grh: References the received global route header.  This parameter is
2629  *   ignored unless the work completion indicates that the GRH is valid.
2630  * @ah_attr: Returned attributes that can be used when creating an address
2631  *   handle for replying to the message.
2632  */
2633 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2634 		       const struct ib_wc *wc, const struct ib_grh *grh,
2635 		       struct ib_ah_attr *ah_attr);
2636 
2637 /**
2638  * ib_create_ah_from_wc - Creates an address handle associated with the
2639  *   sender of the specified work completion.
2640  * @pd: The protection domain associated with the address handle.
2641  * @wc: Work completion information associated with a received message.
2642  * @grh: References the received global route header.  This parameter is
2643  *   ignored unless the work completion indicates that the GRH is valid.
2644  * @port_num: The outbound port number to associate with the address.
2645  *
2646  * The address handle is used to reference a local or global destination
2647  * in all UD QP post sends.
2648  */
2649 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2650 				   const struct ib_grh *grh, u8 port_num);
2651 
2652 /**
2653  * ib_modify_ah - Modifies the address vector associated with an address
2654  *   handle.
2655  * @ah: The address handle to modify.
2656  * @ah_attr: The new address vector attributes to associate with the
2657  *   address handle.
2658  */
2659 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2660 
2661 /**
2662  * ib_query_ah - Queries the address vector associated with an address
2663  *   handle.
2664  * @ah: The address handle to query.
2665  * @ah_attr: The address vector attributes associated with the address
2666  *   handle.
2667  */
2668 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2669 
2670 /**
2671  * ib_destroy_ah - Destroys an address handle.
2672  * @ah: The address handle to destroy.
2673  */
2674 int ib_destroy_ah(struct ib_ah *ah);
2675 
2676 /**
2677  * ib_create_srq - Creates a SRQ associated with the specified protection
2678  *   domain.
2679  * @pd: The protection domain associated with the SRQ.
2680  * @srq_init_attr: A list of initial attributes required to create the
2681  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2682  *   the actual capabilities of the created SRQ.
2683  *
2684  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2685  * requested size of the SRQ, and set to the actual values allocated
2686  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2687  * will always be at least as large as the requested values.
2688  */
2689 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2690 			     struct ib_srq_init_attr *srq_init_attr);
2691 
2692 /**
2693  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2694  * @srq: The SRQ to modify.
2695  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2696  *   the current values of selected SRQ attributes are returned.
2697  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2698  *   are being modified.
2699  *
2700  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2701  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2702  * the number of receives queued drops below the limit.
2703  */
2704 int ib_modify_srq(struct ib_srq *srq,
2705 		  struct ib_srq_attr *srq_attr,
2706 		  enum ib_srq_attr_mask srq_attr_mask);
2707 
2708 /**
2709  * ib_query_srq - Returns the attribute list and current values for the
2710  *   specified SRQ.
2711  * @srq: The SRQ to query.
2712  * @srq_attr: The attributes of the specified SRQ.
2713  */
2714 int ib_query_srq(struct ib_srq *srq,
2715 		 struct ib_srq_attr *srq_attr);
2716 
2717 /**
2718  * ib_destroy_srq - Destroys the specified SRQ.
2719  * @srq: The SRQ to destroy.
2720  */
2721 int ib_destroy_srq(struct ib_srq *srq);
2722 
2723 /**
2724  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2725  * @srq: The SRQ to post the work request on.
2726  * @recv_wr: A list of work requests to post on the receive queue.
2727  * @bad_recv_wr: On an immediate failure, this parameter will reference
2728  *   the work request that failed to be posted on the QP.
2729  */
2730 static inline int ib_post_srq_recv(struct ib_srq *srq,
2731 				   struct ib_recv_wr *recv_wr,
2732 				   struct ib_recv_wr **bad_recv_wr)
2733 {
2734 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2735 }
2736 
2737 /**
2738  * ib_create_qp - Creates a QP associated with the specified protection
2739  *   domain.
2740  * @pd: The protection domain associated with the QP.
2741  * @qp_init_attr: A list of initial attributes required to create the
2742  *   QP.  If QP creation succeeds, then the attributes are updated to
2743  *   the actual capabilities of the created QP.
2744  */
2745 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2746 			   struct ib_qp_init_attr *qp_init_attr);
2747 
2748 /**
2749  * ib_modify_qp - Modifies the attributes for the specified QP and then
2750  *   transitions the QP to the given state.
2751  * @qp: The QP to modify.
2752  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2753  *   the current values of selected QP attributes are returned.
2754  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2755  *   are being modified.
2756  */
2757 int ib_modify_qp(struct ib_qp *qp,
2758 		 struct ib_qp_attr *qp_attr,
2759 		 int qp_attr_mask);
2760 
2761 /**
2762  * ib_query_qp - Returns the attribute list and current values for the
2763  *   specified QP.
2764  * @qp: The QP to query.
2765  * @qp_attr: The attributes of the specified QP.
2766  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2767  * @qp_init_attr: Additional attributes of the selected QP.
2768  *
2769  * The qp_attr_mask may be used to limit the query to gathering only the
2770  * selected attributes.
2771  */
2772 int ib_query_qp(struct ib_qp *qp,
2773 		struct ib_qp_attr *qp_attr,
2774 		int qp_attr_mask,
2775 		struct ib_qp_init_attr *qp_init_attr);
2776 
2777 /**
2778  * ib_destroy_qp - Destroys the specified QP.
2779  * @qp: The QP to destroy.
2780  */
2781 int ib_destroy_qp(struct ib_qp *qp);
2782 
2783 /**
2784  * ib_open_qp - Obtain a reference to an existing sharable QP.
2785  * @xrcd - XRC domain
2786  * @qp_open_attr: Attributes identifying the QP to open.
2787  *
2788  * Returns a reference to a sharable QP.
2789  */
2790 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2791 			 struct ib_qp_open_attr *qp_open_attr);
2792 
2793 /**
2794  * ib_close_qp - Release an external reference to a QP.
2795  * @qp: The QP handle to release
2796  *
2797  * The opened QP handle is released by the caller.  The underlying
2798  * shared QP is not destroyed until all internal references are released.
2799  */
2800 int ib_close_qp(struct ib_qp *qp);
2801 
2802 /**
2803  * ib_post_send - Posts a list of work requests to the send queue of
2804  *   the specified QP.
2805  * @qp: The QP to post the work request on.
2806  * @send_wr: A list of work requests to post on the send queue.
2807  * @bad_send_wr: On an immediate failure, this parameter will reference
2808  *   the work request that failed to be posted on the QP.
2809  *
2810  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2811  * error is returned, the QP state shall not be affected,
2812  * ib_post_send() will return an immediate error after queueing any
2813  * earlier work requests in the list.
2814  */
2815 static inline int ib_post_send(struct ib_qp *qp,
2816 			       struct ib_send_wr *send_wr,
2817 			       struct ib_send_wr **bad_send_wr)
2818 {
2819 	return qp->device->post_send(qp, send_wr, bad_send_wr);
2820 }
2821 
2822 /**
2823  * ib_post_recv - Posts a list of work requests to the receive queue of
2824  *   the specified QP.
2825  * @qp: The QP to post the work request on.
2826  * @recv_wr: A list of work requests to post on the receive queue.
2827  * @bad_recv_wr: On an immediate failure, this parameter will reference
2828  *   the work request that failed to be posted on the QP.
2829  */
2830 static inline int ib_post_recv(struct ib_qp *qp,
2831 			       struct ib_recv_wr *recv_wr,
2832 			       struct ib_recv_wr **bad_recv_wr)
2833 {
2834 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2835 }
2836 
2837 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2838 		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2839 void ib_free_cq(struct ib_cq *cq);
2840 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2841 
2842 /**
2843  * ib_create_cq - Creates a CQ on the specified device.
2844  * @device: The device on which to create the CQ.
2845  * @comp_handler: A user-specified callback that is invoked when a
2846  *   completion event occurs on the CQ.
2847  * @event_handler: A user-specified callback that is invoked when an
2848  *   asynchronous event not associated with a completion occurs on the CQ.
2849  * @cq_context: Context associated with the CQ returned to the user via
2850  *   the associated completion and event handlers.
2851  * @cq_attr: The attributes the CQ should be created upon.
2852  *
2853  * Users can examine the cq structure to determine the actual CQ size.
2854  */
2855 struct ib_cq *ib_create_cq(struct ib_device *device,
2856 			   ib_comp_handler comp_handler,
2857 			   void (*event_handler)(struct ib_event *, void *),
2858 			   void *cq_context,
2859 			   const struct ib_cq_init_attr *cq_attr);
2860 
2861 /**
2862  * ib_resize_cq - Modifies the capacity of the CQ.
2863  * @cq: The CQ to resize.
2864  * @cqe: The minimum size of the CQ.
2865  *
2866  * Users can examine the cq structure to determine the actual CQ size.
2867  */
2868 int ib_resize_cq(struct ib_cq *cq, int cqe);
2869 
2870 /**
2871  * ib_modify_cq - Modifies moderation params of the CQ
2872  * @cq: The CQ to modify.
2873  * @cq_count: number of CQEs that will trigger an event
2874  * @cq_period: max period of time in usec before triggering an event
2875  *
2876  */
2877 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2878 
2879 /**
2880  * ib_destroy_cq - Destroys the specified CQ.
2881  * @cq: The CQ to destroy.
2882  */
2883 int ib_destroy_cq(struct ib_cq *cq);
2884 
2885 /**
2886  * ib_poll_cq - poll a CQ for completion(s)
2887  * @cq:the CQ being polled
2888  * @num_entries:maximum number of completions to return
2889  * @wc:array of at least @num_entries &struct ib_wc where completions
2890  *   will be returned
2891  *
2892  * Poll a CQ for (possibly multiple) completions.  If the return value
2893  * is < 0, an error occurred.  If the return value is >= 0, it is the
2894  * number of completions returned.  If the return value is
2895  * non-negative and < num_entries, then the CQ was emptied.
2896  */
2897 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2898 			     struct ib_wc *wc)
2899 {
2900 	return cq->device->poll_cq(cq, num_entries, wc);
2901 }
2902 
2903 /**
2904  * ib_peek_cq - Returns the number of unreaped completions currently
2905  *   on the specified CQ.
2906  * @cq: The CQ to peek.
2907  * @wc_cnt: A minimum number of unreaped completions to check for.
2908  *
2909  * If the number of unreaped completions is greater than or equal to wc_cnt,
2910  * this function returns wc_cnt, otherwise, it returns the actual number of
2911  * unreaped completions.
2912  */
2913 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2914 
2915 /**
2916  * ib_req_notify_cq - Request completion notification on a CQ.
2917  * @cq: The CQ to generate an event for.
2918  * @flags:
2919  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2920  *   to request an event on the next solicited event or next work
2921  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2922  *   may also be |ed in to request a hint about missed events, as
2923  *   described below.
2924  *
2925  * Return Value:
2926  *    < 0 means an error occurred while requesting notification
2927  *   == 0 means notification was requested successfully, and if
2928  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2929  *        were missed and it is safe to wait for another event.  In
2930  *        this case is it guaranteed that any work completions added
2931  *        to the CQ since the last CQ poll will trigger a completion
2932  *        notification event.
2933  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2934  *        in.  It means that the consumer must poll the CQ again to
2935  *        make sure it is empty to avoid missing an event because of a
2936  *        race between requesting notification and an entry being
2937  *        added to the CQ.  This return value means it is possible
2938  *        (but not guaranteed) that a work completion has been added
2939  *        to the CQ since the last poll without triggering a
2940  *        completion notification event.
2941  */
2942 static inline int ib_req_notify_cq(struct ib_cq *cq,
2943 				   enum ib_cq_notify_flags flags)
2944 {
2945 	return cq->device->req_notify_cq(cq, flags);
2946 }
2947 
2948 /**
2949  * ib_req_ncomp_notif - Request completion notification when there are
2950  *   at least the specified number of unreaped completions on the CQ.
2951  * @cq: The CQ to generate an event for.
2952  * @wc_cnt: The number of unreaped completions that should be on the
2953  *   CQ before an event is generated.
2954  */
2955 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2956 {
2957 	return cq->device->req_ncomp_notif ?
2958 		cq->device->req_ncomp_notif(cq, wc_cnt) :
2959 		-ENOSYS;
2960 }
2961 
2962 /**
2963  * ib_dma_mapping_error - check a DMA addr for error
2964  * @dev: The device for which the dma_addr was created
2965  * @dma_addr: The DMA address to check
2966  */
2967 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2968 {
2969 	if (dev->dma_ops)
2970 		return dev->dma_ops->mapping_error(dev, dma_addr);
2971 	return dma_mapping_error(dev->dma_device, dma_addr);
2972 }
2973 
2974 /**
2975  * ib_dma_map_single - Map a kernel virtual address to DMA address
2976  * @dev: The device for which the dma_addr is to be created
2977  * @cpu_addr: The kernel virtual address
2978  * @size: The size of the region in bytes
2979  * @direction: The direction of the DMA
2980  */
2981 static inline u64 ib_dma_map_single(struct ib_device *dev,
2982 				    void *cpu_addr, size_t size,
2983 				    enum dma_data_direction direction)
2984 {
2985 	if (dev->dma_ops)
2986 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2987 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2988 }
2989 
2990 /**
2991  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2992  * @dev: The device for which the DMA address was created
2993  * @addr: The DMA address
2994  * @size: The size of the region in bytes
2995  * @direction: The direction of the DMA
2996  */
2997 static inline void ib_dma_unmap_single(struct ib_device *dev,
2998 				       u64 addr, size_t size,
2999 				       enum dma_data_direction direction)
3000 {
3001 	if (dev->dma_ops)
3002 		dev->dma_ops->unmap_single(dev, addr, size, direction);
3003 	else
3004 		dma_unmap_single(dev->dma_device, addr, size, direction);
3005 }
3006 
3007 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3008 					  void *cpu_addr, size_t size,
3009 					  enum dma_data_direction direction,
3010 					  unsigned long dma_attrs)
3011 {
3012 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3013 				    direction, dma_attrs);
3014 }
3015 
3016 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3017 					     u64 addr, size_t size,
3018 					     enum dma_data_direction direction,
3019 					     unsigned long dma_attrs)
3020 {
3021 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
3022 				      direction, dma_attrs);
3023 }
3024 
3025 /**
3026  * ib_dma_map_page - Map a physical page to DMA address
3027  * @dev: The device for which the dma_addr is to be created
3028  * @page: The page to be mapped
3029  * @offset: The offset within the page
3030  * @size: The size of the region in bytes
3031  * @direction: The direction of the DMA
3032  */
3033 static inline u64 ib_dma_map_page(struct ib_device *dev,
3034 				  struct page *page,
3035 				  unsigned long offset,
3036 				  size_t size,
3037 					 enum dma_data_direction direction)
3038 {
3039 	if (dev->dma_ops)
3040 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
3041 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3042 }
3043 
3044 /**
3045  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3046  * @dev: The device for which the DMA address was created
3047  * @addr: The DMA address
3048  * @size: The size of the region in bytes
3049  * @direction: The direction of the DMA
3050  */
3051 static inline void ib_dma_unmap_page(struct ib_device *dev,
3052 				     u64 addr, size_t size,
3053 				     enum dma_data_direction direction)
3054 {
3055 	if (dev->dma_ops)
3056 		dev->dma_ops->unmap_page(dev, addr, size, direction);
3057 	else
3058 		dma_unmap_page(dev->dma_device, addr, size, direction);
3059 }
3060 
3061 /**
3062  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3063  * @dev: The device for which the DMA addresses are to be created
3064  * @sg: The array of scatter/gather entries
3065  * @nents: The number of scatter/gather entries
3066  * @direction: The direction of the DMA
3067  */
3068 static inline int ib_dma_map_sg(struct ib_device *dev,
3069 				struct scatterlist *sg, int nents,
3070 				enum dma_data_direction direction)
3071 {
3072 	if (dev->dma_ops)
3073 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
3074 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3075 }
3076 
3077 /**
3078  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3079  * @dev: The device for which the DMA addresses were created
3080  * @sg: The array of scatter/gather entries
3081  * @nents: The number of scatter/gather entries
3082  * @direction: The direction of the DMA
3083  */
3084 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3085 				   struct scatterlist *sg, int nents,
3086 				   enum dma_data_direction direction)
3087 {
3088 	if (dev->dma_ops)
3089 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3090 	else
3091 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
3092 }
3093 
3094 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3095 				      struct scatterlist *sg, int nents,
3096 				      enum dma_data_direction direction,
3097 				      unsigned long dma_attrs)
3098 {
3099 	if (dev->dma_ops)
3100 		return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3101 						  dma_attrs);
3102 	else
3103 		return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3104 					dma_attrs);
3105 }
3106 
3107 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3108 					 struct scatterlist *sg, int nents,
3109 					 enum dma_data_direction direction,
3110 					 unsigned long dma_attrs)
3111 {
3112 	if (dev->dma_ops)
3113 		return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3114 						  dma_attrs);
3115 	else
3116 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3117 				   dma_attrs);
3118 }
3119 /**
3120  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3121  * @dev: The device for which the DMA addresses were created
3122  * @sg: The scatter/gather entry
3123  *
3124  * Note: this function is obsolete. To do: change all occurrences of
3125  * ib_sg_dma_address() into sg_dma_address().
3126  */
3127 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3128 				    struct scatterlist *sg)
3129 {
3130 	return sg_dma_address(sg);
3131 }
3132 
3133 /**
3134  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3135  * @dev: The device for which the DMA addresses were created
3136  * @sg: The scatter/gather entry
3137  *
3138  * Note: this function is obsolete. To do: change all occurrences of
3139  * ib_sg_dma_len() into sg_dma_len().
3140  */
3141 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3142 					 struct scatterlist *sg)
3143 {
3144 	return sg_dma_len(sg);
3145 }
3146 
3147 /**
3148  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3149  * @dev: The device for which the DMA address was created
3150  * @addr: The DMA address
3151  * @size: The size of the region in bytes
3152  * @dir: The direction of the DMA
3153  */
3154 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3155 					      u64 addr,
3156 					      size_t size,
3157 					      enum dma_data_direction dir)
3158 {
3159 	if (dev->dma_ops)
3160 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3161 	else
3162 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3163 }
3164 
3165 /**
3166  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3167  * @dev: The device for which the DMA address was created
3168  * @addr: The DMA address
3169  * @size: The size of the region in bytes
3170  * @dir: The direction of the DMA
3171  */
3172 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3173 						 u64 addr,
3174 						 size_t size,
3175 						 enum dma_data_direction dir)
3176 {
3177 	if (dev->dma_ops)
3178 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3179 	else
3180 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3181 }
3182 
3183 /**
3184  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3185  * @dev: The device for which the DMA address is requested
3186  * @size: The size of the region to allocate in bytes
3187  * @dma_handle: A pointer for returning the DMA address of the region
3188  * @flag: memory allocator flags
3189  */
3190 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3191 					   size_t size,
3192 					   u64 *dma_handle,
3193 					   gfp_t flag)
3194 {
3195 	if (dev->dma_ops)
3196 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3197 	else {
3198 		dma_addr_t handle;
3199 		void *ret;
3200 
3201 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3202 		*dma_handle = handle;
3203 		return ret;
3204 	}
3205 }
3206 
3207 /**
3208  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3209  * @dev: The device for which the DMA addresses were allocated
3210  * @size: The size of the region
3211  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3212  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3213  */
3214 static inline void ib_dma_free_coherent(struct ib_device *dev,
3215 					size_t size, void *cpu_addr,
3216 					u64 dma_handle)
3217 {
3218 	if (dev->dma_ops)
3219 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3220 	else
3221 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3222 }
3223 
3224 /**
3225  * ib_dereg_mr - Deregisters a memory region and removes it from the
3226  *   HCA translation table.
3227  * @mr: The memory region to deregister.
3228  *
3229  * This function can fail, if the memory region has memory windows bound to it.
3230  */
3231 int ib_dereg_mr(struct ib_mr *mr);
3232 
3233 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3234 			  enum ib_mr_type mr_type,
3235 			  u32 max_num_sg);
3236 
3237 /**
3238  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3239  *   R_Key and L_Key.
3240  * @mr - struct ib_mr pointer to be updated.
3241  * @newkey - new key to be used.
3242  */
3243 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3244 {
3245 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3246 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3247 }
3248 
3249 /**
3250  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3251  * for calculating a new rkey for type 2 memory windows.
3252  * @rkey - the rkey to increment.
3253  */
3254 static inline u32 ib_inc_rkey(u32 rkey)
3255 {
3256 	const u32 mask = 0x000000ff;
3257 	return ((rkey + 1) & mask) | (rkey & ~mask);
3258 }
3259 
3260 /**
3261  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3262  * @pd: The protection domain associated with the unmapped region.
3263  * @mr_access_flags: Specifies the memory access rights.
3264  * @fmr_attr: Attributes of the unmapped region.
3265  *
3266  * A fast memory region must be mapped before it can be used as part of
3267  * a work request.
3268  */
3269 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3270 			    int mr_access_flags,
3271 			    struct ib_fmr_attr *fmr_attr);
3272 
3273 /**
3274  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3275  * @fmr: The fast memory region to associate with the pages.
3276  * @page_list: An array of physical pages to map to the fast memory region.
3277  * @list_len: The number of pages in page_list.
3278  * @iova: The I/O virtual address to use with the mapped region.
3279  */
3280 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3281 				  u64 *page_list, int list_len,
3282 				  u64 iova)
3283 {
3284 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3285 }
3286 
3287 /**
3288  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3289  * @fmr_list: A linked list of fast memory regions to unmap.
3290  */
3291 int ib_unmap_fmr(struct list_head *fmr_list);
3292 
3293 /**
3294  * ib_dealloc_fmr - Deallocates a fast memory region.
3295  * @fmr: The fast memory region to deallocate.
3296  */
3297 int ib_dealloc_fmr(struct ib_fmr *fmr);
3298 
3299 /**
3300  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3301  * @qp: QP to attach to the multicast group.  The QP must be type
3302  *   IB_QPT_UD.
3303  * @gid: Multicast group GID.
3304  * @lid: Multicast group LID in host byte order.
3305  *
3306  * In order to send and receive multicast packets, subnet
3307  * administration must have created the multicast group and configured
3308  * the fabric appropriately.  The port associated with the specified
3309  * QP must also be a member of the multicast group.
3310  */
3311 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3312 
3313 /**
3314  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3315  * @qp: QP to detach from the multicast group.
3316  * @gid: Multicast group GID.
3317  * @lid: Multicast group LID in host byte order.
3318  */
3319 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3320 
3321 /**
3322  * ib_alloc_xrcd - Allocates an XRC domain.
3323  * @device: The device on which to allocate the XRC domain.
3324  */
3325 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3326 
3327 /**
3328  * ib_dealloc_xrcd - Deallocates an XRC domain.
3329  * @xrcd: The XRC domain to deallocate.
3330  */
3331 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3332 
3333 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3334 			       struct ib_flow_attr *flow_attr, int domain);
3335 int ib_destroy_flow(struct ib_flow *flow_id);
3336 
3337 static inline int ib_check_mr_access(int flags)
3338 {
3339 	/*
3340 	 * Local write permission is required if remote write or
3341 	 * remote atomic permission is also requested.
3342 	 */
3343 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3344 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3345 		return -EINVAL;
3346 
3347 	return 0;
3348 }
3349 
3350 /**
3351  * ib_check_mr_status: lightweight check of MR status.
3352  *     This routine may provide status checks on a selected
3353  *     ib_mr. first use is for signature status check.
3354  *
3355  * @mr: A memory region.
3356  * @check_mask: Bitmask of which checks to perform from
3357  *     ib_mr_status_check enumeration.
3358  * @mr_status: The container of relevant status checks.
3359  *     failed checks will be indicated in the status bitmask
3360  *     and the relevant info shall be in the error item.
3361  */
3362 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3363 		       struct ib_mr_status *mr_status);
3364 
3365 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3366 					    u16 pkey, const union ib_gid *gid,
3367 					    const struct sockaddr *addr);
3368 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3369 			   struct ib_wq_init_attr *init_attr);
3370 int ib_destroy_wq(struct ib_wq *wq);
3371 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3372 		 u32 wq_attr_mask);
3373 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3374 						 struct ib_rwq_ind_table_init_attr*
3375 						 wq_ind_table_init_attr);
3376 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3377 
3378 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3379 		 unsigned int *sg_offset, unsigned int page_size);
3380 
3381 static inline int
3382 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3383 		  unsigned int *sg_offset, unsigned int page_size)
3384 {
3385 	int n;
3386 
3387 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3388 	mr->iova = 0;
3389 
3390 	return n;
3391 }
3392 
3393 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3394 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3395 
3396 void ib_drain_rq(struct ib_qp *qp);
3397 void ib_drain_sq(struct ib_qp *qp);
3398 void ib_drain_qp(struct ib_qp *qp);
3399 
3400 int ib_resolve_eth_dmac(struct ib_device *device,
3401 			struct ib_ah_attr *ah_attr);
3402 #endif /* IB_VERBS_H */
3403