xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 68198dca)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 
67 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
68 
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
71 
72 union ib_gid {
73 	u8	raw[16];
74 	struct {
75 		__be64	subnet_prefix;
76 		__be64	interface_id;
77 	} global;
78 };
79 
80 extern union ib_gid zgid;
81 
82 enum ib_gid_type {
83 	/* If link layer is Ethernet, this is RoCE V1 */
84 	IB_GID_TYPE_IB        = 0,
85 	IB_GID_TYPE_ROCE      = 0,
86 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
87 	IB_GID_TYPE_SIZE
88 };
89 
90 #define ROCE_V2_UDP_DPORT      4791
91 struct ib_gid_attr {
92 	enum ib_gid_type	gid_type;
93 	struct net_device	*ndev;
94 };
95 
96 enum rdma_node_type {
97 	/* IB values map to NodeInfo:NodeType. */
98 	RDMA_NODE_IB_CA 	= 1,
99 	RDMA_NODE_IB_SWITCH,
100 	RDMA_NODE_IB_ROUTER,
101 	RDMA_NODE_RNIC,
102 	RDMA_NODE_USNIC,
103 	RDMA_NODE_USNIC_UDP,
104 };
105 
106 enum {
107 	/* set the local administered indication */
108 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
109 };
110 
111 enum rdma_transport_type {
112 	RDMA_TRANSPORT_IB,
113 	RDMA_TRANSPORT_IWARP,
114 	RDMA_TRANSPORT_USNIC,
115 	RDMA_TRANSPORT_USNIC_UDP
116 };
117 
118 enum rdma_protocol_type {
119 	RDMA_PROTOCOL_IB,
120 	RDMA_PROTOCOL_IBOE,
121 	RDMA_PROTOCOL_IWARP,
122 	RDMA_PROTOCOL_USNIC_UDP
123 };
124 
125 __attribute_const__ enum rdma_transport_type
126 rdma_node_get_transport(enum rdma_node_type node_type);
127 
128 enum rdma_network_type {
129 	RDMA_NETWORK_IB,
130 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 	RDMA_NETWORK_IPV4,
132 	RDMA_NETWORK_IPV6
133 };
134 
135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136 {
137 	if (network_type == RDMA_NETWORK_IPV4 ||
138 	    network_type == RDMA_NETWORK_IPV6)
139 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
140 
141 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 	return IB_GID_TYPE_IB;
143 }
144 
145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 							    union ib_gid *gid)
147 {
148 	if (gid_type == IB_GID_TYPE_IB)
149 		return RDMA_NETWORK_IB;
150 
151 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 		return RDMA_NETWORK_IPV4;
153 	else
154 		return RDMA_NETWORK_IPV6;
155 }
156 
157 enum rdma_link_layer {
158 	IB_LINK_LAYER_UNSPECIFIED,
159 	IB_LINK_LAYER_INFINIBAND,
160 	IB_LINK_LAYER_ETHERNET,
161 };
162 
163 enum ib_device_cap_flags {
164 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
165 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
166 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
167 	IB_DEVICE_RAW_MULTI			= (1 << 3),
168 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
169 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
170 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
171 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
172 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
173 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
174 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
175 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
176 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
177 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
178 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
179 
180 	/*
181 	 * This device supports a per-device lkey or stag that can be
182 	 * used without performing a memory registration for the local
183 	 * memory.  Note that ULPs should never check this flag, but
184 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 	 * which will always contain a usable lkey.
186 	 */
187 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
188 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
189 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
190 	/*
191 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 	 * messages and can verify the validity of checksum for
194 	 * incoming messages.  Setting this flag implies that the
195 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196 	 */
197 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
198 	IB_DEVICE_UD_TSO			= (1 << 19),
199 	IB_DEVICE_XRC				= (1 << 20),
200 
201 	/*
202 	 * This device supports the IB "base memory management extension",
203 	 * which includes support for fast registrations (IB_WR_REG_MR,
204 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
205 	 * also be set by any iWarp device which must support FRs to comply
206 	 * to the iWarp verbs spec.  iWarp devices also support the
207 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 	 * stag.
209 	 */
210 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
211 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
212 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
213 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
214 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
215 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
216 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
217 	/*
218 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 	 * support execution of WQEs that involve synchronization
220 	 * of I/O operations with single completion queue managed
221 	 * by hardware.
222 	 */
223 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
224 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
225 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
226 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
227 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
228 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
229 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
230 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
231 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
232 	/* The device supports padding incoming writes to cacheline. */
233 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
234 };
235 
236 enum ib_signature_prot_cap {
237 	IB_PROT_T10DIF_TYPE_1 = 1,
238 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
239 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
240 };
241 
242 enum ib_signature_guard_cap {
243 	IB_GUARD_T10DIF_CRC	= 1,
244 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
245 };
246 
247 enum ib_atomic_cap {
248 	IB_ATOMIC_NONE,
249 	IB_ATOMIC_HCA,
250 	IB_ATOMIC_GLOB
251 };
252 
253 enum ib_odp_general_cap_bits {
254 	IB_ODP_SUPPORT		= 1 << 0,
255 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
256 };
257 
258 enum ib_odp_transport_cap_bits {
259 	IB_ODP_SUPPORT_SEND	= 1 << 0,
260 	IB_ODP_SUPPORT_RECV	= 1 << 1,
261 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
262 	IB_ODP_SUPPORT_READ	= 1 << 3,
263 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
264 };
265 
266 struct ib_odp_caps {
267 	uint64_t general_caps;
268 	struct {
269 		uint32_t  rc_odp_caps;
270 		uint32_t  uc_odp_caps;
271 		uint32_t  ud_odp_caps;
272 	} per_transport_caps;
273 };
274 
275 struct ib_rss_caps {
276 	/* Corresponding bit will be set if qp type from
277 	 * 'enum ib_qp_type' is supported, e.g.
278 	 * supported_qpts |= 1 << IB_QPT_UD
279 	 */
280 	u32 supported_qpts;
281 	u32 max_rwq_indirection_tables;
282 	u32 max_rwq_indirection_table_size;
283 };
284 
285 enum ib_tm_cap_flags {
286 	/*  Support tag matching on RC transport */
287 	IB_TM_CAP_RC		    = 1 << 0,
288 };
289 
290 struct ib_tm_caps {
291 	/* Max size of RNDV header */
292 	u32 max_rndv_hdr_size;
293 	/* Max number of entries in tag matching list */
294 	u32 max_num_tags;
295 	/* From enum ib_tm_cap_flags */
296 	u32 flags;
297 	/* Max number of outstanding list operations */
298 	u32 max_ops;
299 	/* Max number of SGE in tag matching entry */
300 	u32 max_sge;
301 };
302 
303 enum ib_cq_creation_flags {
304 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
305 	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
306 };
307 
308 struct ib_cq_init_attr {
309 	unsigned int	cqe;
310 	int		comp_vector;
311 	u32		flags;
312 };
313 
314 enum ib_cq_attr_mask {
315 	IB_CQ_MODERATE = 1 << 0,
316 };
317 
318 struct ib_cq_caps {
319 	u16     max_cq_moderation_count;
320 	u16     max_cq_moderation_period;
321 };
322 
323 struct ib_device_attr {
324 	u64			fw_ver;
325 	__be64			sys_image_guid;
326 	u64			max_mr_size;
327 	u64			page_size_cap;
328 	u32			vendor_id;
329 	u32			vendor_part_id;
330 	u32			hw_ver;
331 	int			max_qp;
332 	int			max_qp_wr;
333 	u64			device_cap_flags;
334 	int			max_sge;
335 	int			max_sge_rd;
336 	int			max_cq;
337 	int			max_cqe;
338 	int			max_mr;
339 	int			max_pd;
340 	int			max_qp_rd_atom;
341 	int			max_ee_rd_atom;
342 	int			max_res_rd_atom;
343 	int			max_qp_init_rd_atom;
344 	int			max_ee_init_rd_atom;
345 	enum ib_atomic_cap	atomic_cap;
346 	enum ib_atomic_cap	masked_atomic_cap;
347 	int			max_ee;
348 	int			max_rdd;
349 	int			max_mw;
350 	int			max_raw_ipv6_qp;
351 	int			max_raw_ethy_qp;
352 	int			max_mcast_grp;
353 	int			max_mcast_qp_attach;
354 	int			max_total_mcast_qp_attach;
355 	int			max_ah;
356 	int			max_fmr;
357 	int			max_map_per_fmr;
358 	int			max_srq;
359 	int			max_srq_wr;
360 	int			max_srq_sge;
361 	unsigned int		max_fast_reg_page_list_len;
362 	u16			max_pkeys;
363 	u8			local_ca_ack_delay;
364 	int			sig_prot_cap;
365 	int			sig_guard_cap;
366 	struct ib_odp_caps	odp_caps;
367 	uint64_t		timestamp_mask;
368 	uint64_t		hca_core_clock; /* in KHZ */
369 	struct ib_rss_caps	rss_caps;
370 	u32			max_wq_type_rq;
371 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
372 	struct ib_tm_caps	tm_caps;
373 	struct ib_cq_caps       cq_caps;
374 };
375 
376 enum ib_mtu {
377 	IB_MTU_256  = 1,
378 	IB_MTU_512  = 2,
379 	IB_MTU_1024 = 3,
380 	IB_MTU_2048 = 4,
381 	IB_MTU_4096 = 5
382 };
383 
384 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
385 {
386 	switch (mtu) {
387 	case IB_MTU_256:  return  256;
388 	case IB_MTU_512:  return  512;
389 	case IB_MTU_1024: return 1024;
390 	case IB_MTU_2048: return 2048;
391 	case IB_MTU_4096: return 4096;
392 	default: 	  return -1;
393 	}
394 }
395 
396 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
397 {
398 	if (mtu >= 4096)
399 		return IB_MTU_4096;
400 	else if (mtu >= 2048)
401 		return IB_MTU_2048;
402 	else if (mtu >= 1024)
403 		return IB_MTU_1024;
404 	else if (mtu >= 512)
405 		return IB_MTU_512;
406 	else
407 		return IB_MTU_256;
408 }
409 
410 enum ib_port_state {
411 	IB_PORT_NOP		= 0,
412 	IB_PORT_DOWN		= 1,
413 	IB_PORT_INIT		= 2,
414 	IB_PORT_ARMED		= 3,
415 	IB_PORT_ACTIVE		= 4,
416 	IB_PORT_ACTIVE_DEFER	= 5
417 };
418 
419 enum ib_port_cap_flags {
420 	IB_PORT_SM				= 1 <<  1,
421 	IB_PORT_NOTICE_SUP			= 1 <<  2,
422 	IB_PORT_TRAP_SUP			= 1 <<  3,
423 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
424 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
425 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
426 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
427 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
428 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
429 	IB_PORT_SM_DISABLED			= 1 << 10,
430 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
431 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
432 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
433 	IB_PORT_CM_SUP				= 1 << 16,
434 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
435 	IB_PORT_REINIT_SUP			= 1 << 18,
436 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
437 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
438 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
439 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
440 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
441 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
442 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
443 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
444 };
445 
446 enum ib_port_width {
447 	IB_WIDTH_1X	= 1,
448 	IB_WIDTH_4X	= 2,
449 	IB_WIDTH_8X	= 4,
450 	IB_WIDTH_12X	= 8
451 };
452 
453 static inline int ib_width_enum_to_int(enum ib_port_width width)
454 {
455 	switch (width) {
456 	case IB_WIDTH_1X:  return  1;
457 	case IB_WIDTH_4X:  return  4;
458 	case IB_WIDTH_8X:  return  8;
459 	case IB_WIDTH_12X: return 12;
460 	default: 	  return -1;
461 	}
462 }
463 
464 enum ib_port_speed {
465 	IB_SPEED_SDR	= 1,
466 	IB_SPEED_DDR	= 2,
467 	IB_SPEED_QDR	= 4,
468 	IB_SPEED_FDR10	= 8,
469 	IB_SPEED_FDR	= 16,
470 	IB_SPEED_EDR	= 32,
471 	IB_SPEED_HDR	= 64
472 };
473 
474 /**
475  * struct rdma_hw_stats
476  * @timestamp - Used by the core code to track when the last update was
477  * @lifespan - Used by the core code to determine how old the counters
478  *   should be before being updated again.  Stored in jiffies, defaults
479  *   to 10 milliseconds, drivers can override the default be specifying
480  *   their own value during their allocation routine.
481  * @name - Array of pointers to static names used for the counters in
482  *   directory.
483  * @num_counters - How many hardware counters there are.  If name is
484  *   shorter than this number, a kernel oops will result.  Driver authors
485  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
486  *   in their code to prevent this.
487  * @value - Array of u64 counters that are accessed by the sysfs code and
488  *   filled in by the drivers get_stats routine
489  */
490 struct rdma_hw_stats {
491 	unsigned long	timestamp;
492 	unsigned long	lifespan;
493 	const char * const *names;
494 	int		num_counters;
495 	u64		value[];
496 };
497 
498 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
499 /**
500  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
501  *   for drivers.
502  * @names - Array of static const char *
503  * @num_counters - How many elements in array
504  * @lifespan - How many milliseconds between updates
505  */
506 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
507 		const char * const *names, int num_counters,
508 		unsigned long lifespan)
509 {
510 	struct rdma_hw_stats *stats;
511 
512 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
513 			GFP_KERNEL);
514 	if (!stats)
515 		return NULL;
516 	stats->names = names;
517 	stats->num_counters = num_counters;
518 	stats->lifespan = msecs_to_jiffies(lifespan);
519 
520 	return stats;
521 }
522 
523 
524 /* Define bits for the various functionality this port needs to be supported by
525  * the core.
526  */
527 /* Management                           0x00000FFF */
528 #define RDMA_CORE_CAP_IB_MAD            0x00000001
529 #define RDMA_CORE_CAP_IB_SMI            0x00000002
530 #define RDMA_CORE_CAP_IB_CM             0x00000004
531 #define RDMA_CORE_CAP_IW_CM             0x00000008
532 #define RDMA_CORE_CAP_IB_SA             0x00000010
533 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
534 
535 /* Address format                       0x000FF000 */
536 #define RDMA_CORE_CAP_AF_IB             0x00001000
537 #define RDMA_CORE_CAP_ETH_AH            0x00002000
538 #define RDMA_CORE_CAP_OPA_AH            0x00004000
539 
540 /* Protocol                             0xFFF00000 */
541 #define RDMA_CORE_CAP_PROT_IB           0x00100000
542 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
543 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
544 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
545 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
546 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
547 
548 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
549 					| RDMA_CORE_CAP_IB_MAD \
550 					| RDMA_CORE_CAP_IB_SMI \
551 					| RDMA_CORE_CAP_IB_CM  \
552 					| RDMA_CORE_CAP_IB_SA  \
553 					| RDMA_CORE_CAP_AF_IB)
554 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
555 					| RDMA_CORE_CAP_IB_MAD  \
556 					| RDMA_CORE_CAP_IB_CM   \
557 					| RDMA_CORE_CAP_AF_IB   \
558 					| RDMA_CORE_CAP_ETH_AH)
559 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
560 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
561 					| RDMA_CORE_CAP_IB_MAD  \
562 					| RDMA_CORE_CAP_IB_CM   \
563 					| RDMA_CORE_CAP_AF_IB   \
564 					| RDMA_CORE_CAP_ETH_AH)
565 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
566 					| RDMA_CORE_CAP_IW_CM)
567 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
568 					| RDMA_CORE_CAP_OPA_MAD)
569 
570 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
571 
572 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
573 
574 struct ib_port_attr {
575 	u64			subnet_prefix;
576 	enum ib_port_state	state;
577 	enum ib_mtu		max_mtu;
578 	enum ib_mtu		active_mtu;
579 	int			gid_tbl_len;
580 	u32			port_cap_flags;
581 	u32			max_msg_sz;
582 	u32			bad_pkey_cntr;
583 	u32			qkey_viol_cntr;
584 	u16			pkey_tbl_len;
585 	u32			sm_lid;
586 	u32			lid;
587 	u8			lmc;
588 	u8			max_vl_num;
589 	u8			sm_sl;
590 	u8			subnet_timeout;
591 	u8			init_type_reply;
592 	u8			active_width;
593 	u8			active_speed;
594 	u8                      phys_state;
595 	bool			grh_required;
596 };
597 
598 enum ib_device_modify_flags {
599 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
600 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
601 };
602 
603 #define IB_DEVICE_NODE_DESC_MAX 64
604 
605 struct ib_device_modify {
606 	u64	sys_image_guid;
607 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
608 };
609 
610 enum ib_port_modify_flags {
611 	IB_PORT_SHUTDOWN		= 1,
612 	IB_PORT_INIT_TYPE		= (1<<2),
613 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
614 	IB_PORT_OPA_MASK_CHG		= (1<<4)
615 };
616 
617 struct ib_port_modify {
618 	u32	set_port_cap_mask;
619 	u32	clr_port_cap_mask;
620 	u8	init_type;
621 };
622 
623 enum ib_event_type {
624 	IB_EVENT_CQ_ERR,
625 	IB_EVENT_QP_FATAL,
626 	IB_EVENT_QP_REQ_ERR,
627 	IB_EVENT_QP_ACCESS_ERR,
628 	IB_EVENT_COMM_EST,
629 	IB_EVENT_SQ_DRAINED,
630 	IB_EVENT_PATH_MIG,
631 	IB_EVENT_PATH_MIG_ERR,
632 	IB_EVENT_DEVICE_FATAL,
633 	IB_EVENT_PORT_ACTIVE,
634 	IB_EVENT_PORT_ERR,
635 	IB_EVENT_LID_CHANGE,
636 	IB_EVENT_PKEY_CHANGE,
637 	IB_EVENT_SM_CHANGE,
638 	IB_EVENT_SRQ_ERR,
639 	IB_EVENT_SRQ_LIMIT_REACHED,
640 	IB_EVENT_QP_LAST_WQE_REACHED,
641 	IB_EVENT_CLIENT_REREGISTER,
642 	IB_EVENT_GID_CHANGE,
643 	IB_EVENT_WQ_FATAL,
644 };
645 
646 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
647 
648 struct ib_event {
649 	struct ib_device	*device;
650 	union {
651 		struct ib_cq	*cq;
652 		struct ib_qp	*qp;
653 		struct ib_srq	*srq;
654 		struct ib_wq	*wq;
655 		u8		port_num;
656 	} element;
657 	enum ib_event_type	event;
658 };
659 
660 struct ib_event_handler {
661 	struct ib_device *device;
662 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
663 	struct list_head  list;
664 };
665 
666 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
667 	do {							\
668 		(_ptr)->device  = _device;			\
669 		(_ptr)->handler = _handler;			\
670 		INIT_LIST_HEAD(&(_ptr)->list);			\
671 	} while (0)
672 
673 struct ib_global_route {
674 	union ib_gid	dgid;
675 	u32		flow_label;
676 	u8		sgid_index;
677 	u8		hop_limit;
678 	u8		traffic_class;
679 };
680 
681 struct ib_grh {
682 	__be32		version_tclass_flow;
683 	__be16		paylen;
684 	u8		next_hdr;
685 	u8		hop_limit;
686 	union ib_gid	sgid;
687 	union ib_gid	dgid;
688 };
689 
690 union rdma_network_hdr {
691 	struct ib_grh ibgrh;
692 	struct {
693 		/* The IB spec states that if it's IPv4, the header
694 		 * is located in the last 20 bytes of the header.
695 		 */
696 		u8		reserved[20];
697 		struct iphdr	roce4grh;
698 	};
699 };
700 
701 #define IB_QPN_MASK		0xFFFFFF
702 
703 enum {
704 	IB_MULTICAST_QPN = 0xffffff
705 };
706 
707 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
708 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
709 
710 enum ib_ah_flags {
711 	IB_AH_GRH	= 1
712 };
713 
714 enum ib_rate {
715 	IB_RATE_PORT_CURRENT = 0,
716 	IB_RATE_2_5_GBPS = 2,
717 	IB_RATE_5_GBPS   = 5,
718 	IB_RATE_10_GBPS  = 3,
719 	IB_RATE_20_GBPS  = 6,
720 	IB_RATE_30_GBPS  = 4,
721 	IB_RATE_40_GBPS  = 7,
722 	IB_RATE_60_GBPS  = 8,
723 	IB_RATE_80_GBPS  = 9,
724 	IB_RATE_120_GBPS = 10,
725 	IB_RATE_14_GBPS  = 11,
726 	IB_RATE_56_GBPS  = 12,
727 	IB_RATE_112_GBPS = 13,
728 	IB_RATE_168_GBPS = 14,
729 	IB_RATE_25_GBPS  = 15,
730 	IB_RATE_100_GBPS = 16,
731 	IB_RATE_200_GBPS = 17,
732 	IB_RATE_300_GBPS = 18
733 };
734 
735 /**
736  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
738  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739  * @rate: rate to convert.
740  */
741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
742 
743 /**
744  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746  * @rate: rate to convert.
747  */
748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
749 
750 
751 /**
752  * enum ib_mr_type - memory region type
753  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
754  *                            normal registration
755  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
756  *                            signature operations (data-integrity
757  *                            capable regions)
758  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
759  *                            register any arbitrary sg lists (without
760  *                            the normal mr constraints - see
761  *                            ib_map_mr_sg)
762  */
763 enum ib_mr_type {
764 	IB_MR_TYPE_MEM_REG,
765 	IB_MR_TYPE_SIGNATURE,
766 	IB_MR_TYPE_SG_GAPS,
767 };
768 
769 /**
770  * Signature types
771  * IB_SIG_TYPE_NONE: Unprotected.
772  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
773  */
774 enum ib_signature_type {
775 	IB_SIG_TYPE_NONE,
776 	IB_SIG_TYPE_T10_DIF,
777 };
778 
779 /**
780  * Signature T10-DIF block-guard types
781  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783  */
784 enum ib_t10_dif_bg_type {
785 	IB_T10DIF_CRC,
786 	IB_T10DIF_CSUM
787 };
788 
789 /**
790  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791  *     domain.
792  * @bg_type: T10-DIF block guard type (CRC|CSUM)
793  * @pi_interval: protection information interval.
794  * @bg: seed of guard computation.
795  * @app_tag: application tag of guard block
796  * @ref_tag: initial guard block reference tag.
797  * @ref_remap: Indicate wethear the reftag increments each block
798  * @app_escape: Indicate to skip block check if apptag=0xffff
799  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800  * @apptag_check_mask: check bitmask of application tag.
801  */
802 struct ib_t10_dif_domain {
803 	enum ib_t10_dif_bg_type bg_type;
804 	u16			pi_interval;
805 	u16			bg;
806 	u16			app_tag;
807 	u32			ref_tag;
808 	bool			ref_remap;
809 	bool			app_escape;
810 	bool			ref_escape;
811 	u16			apptag_check_mask;
812 };
813 
814 /**
815  * struct ib_sig_domain - Parameters for signature domain
816  * @sig_type: specific signauture type
817  * @sig: union of all signature domain attributes that may
818  *     be used to set domain layout.
819  */
820 struct ib_sig_domain {
821 	enum ib_signature_type sig_type;
822 	union {
823 		struct ib_t10_dif_domain dif;
824 	} sig;
825 };
826 
827 /**
828  * struct ib_sig_attrs - Parameters for signature handover operation
829  * @check_mask: bitmask for signature byte check (8 bytes)
830  * @mem: memory domain layout desciptor.
831  * @wire: wire domain layout desciptor.
832  */
833 struct ib_sig_attrs {
834 	u8			check_mask;
835 	struct ib_sig_domain	mem;
836 	struct ib_sig_domain	wire;
837 };
838 
839 enum ib_sig_err_type {
840 	IB_SIG_BAD_GUARD,
841 	IB_SIG_BAD_REFTAG,
842 	IB_SIG_BAD_APPTAG,
843 };
844 
845 /**
846  * struct ib_sig_err - signature error descriptor
847  */
848 struct ib_sig_err {
849 	enum ib_sig_err_type	err_type;
850 	u32			expected;
851 	u32			actual;
852 	u64			sig_err_offset;
853 	u32			key;
854 };
855 
856 enum ib_mr_status_check {
857 	IB_MR_CHECK_SIG_STATUS = 1,
858 };
859 
860 /**
861  * struct ib_mr_status - Memory region status container
862  *
863  * @fail_status: Bitmask of MR checks status. For each
864  *     failed check a corresponding status bit is set.
865  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
866  *     failure.
867  */
868 struct ib_mr_status {
869 	u32		    fail_status;
870 	struct ib_sig_err   sig_err;
871 };
872 
873 /**
874  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
875  * enum.
876  * @mult: multiple to convert.
877  */
878 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
879 
880 enum rdma_ah_attr_type {
881 	RDMA_AH_ATTR_TYPE_IB,
882 	RDMA_AH_ATTR_TYPE_ROCE,
883 	RDMA_AH_ATTR_TYPE_OPA,
884 };
885 
886 struct ib_ah_attr {
887 	u16			dlid;
888 	u8			src_path_bits;
889 };
890 
891 struct roce_ah_attr {
892 	u8			dmac[ETH_ALEN];
893 };
894 
895 struct opa_ah_attr {
896 	u32			dlid;
897 	u8			src_path_bits;
898 	bool			make_grd;
899 };
900 
901 struct rdma_ah_attr {
902 	struct ib_global_route	grh;
903 	u8			sl;
904 	u8			static_rate;
905 	u8			port_num;
906 	u8			ah_flags;
907 	enum rdma_ah_attr_type type;
908 	union {
909 		struct ib_ah_attr ib;
910 		struct roce_ah_attr roce;
911 		struct opa_ah_attr opa;
912 	};
913 };
914 
915 enum ib_wc_status {
916 	IB_WC_SUCCESS,
917 	IB_WC_LOC_LEN_ERR,
918 	IB_WC_LOC_QP_OP_ERR,
919 	IB_WC_LOC_EEC_OP_ERR,
920 	IB_WC_LOC_PROT_ERR,
921 	IB_WC_WR_FLUSH_ERR,
922 	IB_WC_MW_BIND_ERR,
923 	IB_WC_BAD_RESP_ERR,
924 	IB_WC_LOC_ACCESS_ERR,
925 	IB_WC_REM_INV_REQ_ERR,
926 	IB_WC_REM_ACCESS_ERR,
927 	IB_WC_REM_OP_ERR,
928 	IB_WC_RETRY_EXC_ERR,
929 	IB_WC_RNR_RETRY_EXC_ERR,
930 	IB_WC_LOC_RDD_VIOL_ERR,
931 	IB_WC_REM_INV_RD_REQ_ERR,
932 	IB_WC_REM_ABORT_ERR,
933 	IB_WC_INV_EECN_ERR,
934 	IB_WC_INV_EEC_STATE_ERR,
935 	IB_WC_FATAL_ERR,
936 	IB_WC_RESP_TIMEOUT_ERR,
937 	IB_WC_GENERAL_ERR
938 };
939 
940 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
941 
942 enum ib_wc_opcode {
943 	IB_WC_SEND,
944 	IB_WC_RDMA_WRITE,
945 	IB_WC_RDMA_READ,
946 	IB_WC_COMP_SWAP,
947 	IB_WC_FETCH_ADD,
948 	IB_WC_LSO,
949 	IB_WC_LOCAL_INV,
950 	IB_WC_REG_MR,
951 	IB_WC_MASKED_COMP_SWAP,
952 	IB_WC_MASKED_FETCH_ADD,
953 /*
954  * Set value of IB_WC_RECV so consumers can test if a completion is a
955  * receive by testing (opcode & IB_WC_RECV).
956  */
957 	IB_WC_RECV			= 1 << 7,
958 	IB_WC_RECV_RDMA_WITH_IMM
959 };
960 
961 enum ib_wc_flags {
962 	IB_WC_GRH		= 1,
963 	IB_WC_WITH_IMM		= (1<<1),
964 	IB_WC_WITH_INVALIDATE	= (1<<2),
965 	IB_WC_IP_CSUM_OK	= (1<<3),
966 	IB_WC_WITH_SMAC		= (1<<4),
967 	IB_WC_WITH_VLAN		= (1<<5),
968 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
969 };
970 
971 struct ib_wc {
972 	union {
973 		u64		wr_id;
974 		struct ib_cqe	*wr_cqe;
975 	};
976 	enum ib_wc_status	status;
977 	enum ib_wc_opcode	opcode;
978 	u32			vendor_err;
979 	u32			byte_len;
980 	struct ib_qp	       *qp;
981 	union {
982 		__be32		imm_data;
983 		u32		invalidate_rkey;
984 	} ex;
985 	u32			src_qp;
986 	int			wc_flags;
987 	u16			pkey_index;
988 	u32			slid;
989 	u8			sl;
990 	u8			dlid_path_bits;
991 	u8			port_num;	/* valid only for DR SMPs on switches */
992 	u8			smac[ETH_ALEN];
993 	u16			vlan_id;
994 	u8			network_hdr_type;
995 };
996 
997 enum ib_cq_notify_flags {
998 	IB_CQ_SOLICITED			= 1 << 0,
999 	IB_CQ_NEXT_COMP			= 1 << 1,
1000 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1001 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1002 };
1003 
1004 enum ib_srq_type {
1005 	IB_SRQT_BASIC,
1006 	IB_SRQT_XRC,
1007 	IB_SRQT_TM,
1008 };
1009 
1010 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1011 {
1012 	return srq_type == IB_SRQT_XRC ||
1013 	       srq_type == IB_SRQT_TM;
1014 }
1015 
1016 enum ib_srq_attr_mask {
1017 	IB_SRQ_MAX_WR	= 1 << 0,
1018 	IB_SRQ_LIMIT	= 1 << 1,
1019 };
1020 
1021 struct ib_srq_attr {
1022 	u32	max_wr;
1023 	u32	max_sge;
1024 	u32	srq_limit;
1025 };
1026 
1027 struct ib_srq_init_attr {
1028 	void		      (*event_handler)(struct ib_event *, void *);
1029 	void		       *srq_context;
1030 	struct ib_srq_attr	attr;
1031 	enum ib_srq_type	srq_type;
1032 
1033 	struct {
1034 		struct ib_cq   *cq;
1035 		union {
1036 			struct {
1037 				struct ib_xrcd *xrcd;
1038 			} xrc;
1039 
1040 			struct {
1041 				u32		max_num_tags;
1042 			} tag_matching;
1043 		};
1044 	} ext;
1045 };
1046 
1047 struct ib_qp_cap {
1048 	u32	max_send_wr;
1049 	u32	max_recv_wr;
1050 	u32	max_send_sge;
1051 	u32	max_recv_sge;
1052 	u32	max_inline_data;
1053 
1054 	/*
1055 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1056 	 * ib_create_qp() will calculate the right amount of neededed WRs
1057 	 * and MRs based on this.
1058 	 */
1059 	u32	max_rdma_ctxs;
1060 };
1061 
1062 enum ib_sig_type {
1063 	IB_SIGNAL_ALL_WR,
1064 	IB_SIGNAL_REQ_WR
1065 };
1066 
1067 enum ib_qp_type {
1068 	/*
1069 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1070 	 * here (and in that order) since the MAD layer uses them as
1071 	 * indices into a 2-entry table.
1072 	 */
1073 	IB_QPT_SMI,
1074 	IB_QPT_GSI,
1075 
1076 	IB_QPT_RC,
1077 	IB_QPT_UC,
1078 	IB_QPT_UD,
1079 	IB_QPT_RAW_IPV6,
1080 	IB_QPT_RAW_ETHERTYPE,
1081 	IB_QPT_RAW_PACKET = 8,
1082 	IB_QPT_XRC_INI = 9,
1083 	IB_QPT_XRC_TGT,
1084 	IB_QPT_MAX,
1085 	/* Reserve a range for qp types internal to the low level driver.
1086 	 * These qp types will not be visible at the IB core layer, so the
1087 	 * IB_QPT_MAX usages should not be affected in the core layer
1088 	 */
1089 	IB_QPT_RESERVED1 = 0x1000,
1090 	IB_QPT_RESERVED2,
1091 	IB_QPT_RESERVED3,
1092 	IB_QPT_RESERVED4,
1093 	IB_QPT_RESERVED5,
1094 	IB_QPT_RESERVED6,
1095 	IB_QPT_RESERVED7,
1096 	IB_QPT_RESERVED8,
1097 	IB_QPT_RESERVED9,
1098 	IB_QPT_RESERVED10,
1099 };
1100 
1101 enum ib_qp_create_flags {
1102 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1103 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1104 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1105 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1106 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1107 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1108 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1109 	/* FREE					= 1 << 7, */
1110 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1111 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1112 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1113 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1114 	/* reserve bits 26-31 for low level drivers' internal use */
1115 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1116 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1117 };
1118 
1119 /*
1120  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1121  * callback to destroy the passed in QP.
1122  */
1123 
1124 struct ib_qp_init_attr {
1125 	void                  (*event_handler)(struct ib_event *, void *);
1126 	void		       *qp_context;
1127 	struct ib_cq	       *send_cq;
1128 	struct ib_cq	       *recv_cq;
1129 	struct ib_srq	       *srq;
1130 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1131 	struct ib_qp_cap	cap;
1132 	enum ib_sig_type	sq_sig_type;
1133 	enum ib_qp_type		qp_type;
1134 	enum ib_qp_create_flags	create_flags;
1135 
1136 	/*
1137 	 * Only needed for special QP types, or when using the RW API.
1138 	 */
1139 	u8			port_num;
1140 	struct ib_rwq_ind_table *rwq_ind_tbl;
1141 	u32			source_qpn;
1142 };
1143 
1144 struct ib_qp_open_attr {
1145 	void                  (*event_handler)(struct ib_event *, void *);
1146 	void		       *qp_context;
1147 	u32			qp_num;
1148 	enum ib_qp_type		qp_type;
1149 };
1150 
1151 enum ib_rnr_timeout {
1152 	IB_RNR_TIMER_655_36 =  0,
1153 	IB_RNR_TIMER_000_01 =  1,
1154 	IB_RNR_TIMER_000_02 =  2,
1155 	IB_RNR_TIMER_000_03 =  3,
1156 	IB_RNR_TIMER_000_04 =  4,
1157 	IB_RNR_TIMER_000_06 =  5,
1158 	IB_RNR_TIMER_000_08 =  6,
1159 	IB_RNR_TIMER_000_12 =  7,
1160 	IB_RNR_TIMER_000_16 =  8,
1161 	IB_RNR_TIMER_000_24 =  9,
1162 	IB_RNR_TIMER_000_32 = 10,
1163 	IB_RNR_TIMER_000_48 = 11,
1164 	IB_RNR_TIMER_000_64 = 12,
1165 	IB_RNR_TIMER_000_96 = 13,
1166 	IB_RNR_TIMER_001_28 = 14,
1167 	IB_RNR_TIMER_001_92 = 15,
1168 	IB_RNR_TIMER_002_56 = 16,
1169 	IB_RNR_TIMER_003_84 = 17,
1170 	IB_RNR_TIMER_005_12 = 18,
1171 	IB_RNR_TIMER_007_68 = 19,
1172 	IB_RNR_TIMER_010_24 = 20,
1173 	IB_RNR_TIMER_015_36 = 21,
1174 	IB_RNR_TIMER_020_48 = 22,
1175 	IB_RNR_TIMER_030_72 = 23,
1176 	IB_RNR_TIMER_040_96 = 24,
1177 	IB_RNR_TIMER_061_44 = 25,
1178 	IB_RNR_TIMER_081_92 = 26,
1179 	IB_RNR_TIMER_122_88 = 27,
1180 	IB_RNR_TIMER_163_84 = 28,
1181 	IB_RNR_TIMER_245_76 = 29,
1182 	IB_RNR_TIMER_327_68 = 30,
1183 	IB_RNR_TIMER_491_52 = 31
1184 };
1185 
1186 enum ib_qp_attr_mask {
1187 	IB_QP_STATE			= 1,
1188 	IB_QP_CUR_STATE			= (1<<1),
1189 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1190 	IB_QP_ACCESS_FLAGS		= (1<<3),
1191 	IB_QP_PKEY_INDEX		= (1<<4),
1192 	IB_QP_PORT			= (1<<5),
1193 	IB_QP_QKEY			= (1<<6),
1194 	IB_QP_AV			= (1<<7),
1195 	IB_QP_PATH_MTU			= (1<<8),
1196 	IB_QP_TIMEOUT			= (1<<9),
1197 	IB_QP_RETRY_CNT			= (1<<10),
1198 	IB_QP_RNR_RETRY			= (1<<11),
1199 	IB_QP_RQ_PSN			= (1<<12),
1200 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1201 	IB_QP_ALT_PATH			= (1<<14),
1202 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1203 	IB_QP_SQ_PSN			= (1<<16),
1204 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1205 	IB_QP_PATH_MIG_STATE		= (1<<18),
1206 	IB_QP_CAP			= (1<<19),
1207 	IB_QP_DEST_QPN			= (1<<20),
1208 	IB_QP_RESERVED1			= (1<<21),
1209 	IB_QP_RESERVED2			= (1<<22),
1210 	IB_QP_RESERVED3			= (1<<23),
1211 	IB_QP_RESERVED4			= (1<<24),
1212 	IB_QP_RATE_LIMIT		= (1<<25),
1213 };
1214 
1215 enum ib_qp_state {
1216 	IB_QPS_RESET,
1217 	IB_QPS_INIT,
1218 	IB_QPS_RTR,
1219 	IB_QPS_RTS,
1220 	IB_QPS_SQD,
1221 	IB_QPS_SQE,
1222 	IB_QPS_ERR
1223 };
1224 
1225 enum ib_mig_state {
1226 	IB_MIG_MIGRATED,
1227 	IB_MIG_REARM,
1228 	IB_MIG_ARMED
1229 };
1230 
1231 enum ib_mw_type {
1232 	IB_MW_TYPE_1 = 1,
1233 	IB_MW_TYPE_2 = 2
1234 };
1235 
1236 struct ib_qp_attr {
1237 	enum ib_qp_state	qp_state;
1238 	enum ib_qp_state	cur_qp_state;
1239 	enum ib_mtu		path_mtu;
1240 	enum ib_mig_state	path_mig_state;
1241 	u32			qkey;
1242 	u32			rq_psn;
1243 	u32			sq_psn;
1244 	u32			dest_qp_num;
1245 	int			qp_access_flags;
1246 	struct ib_qp_cap	cap;
1247 	struct rdma_ah_attr	ah_attr;
1248 	struct rdma_ah_attr	alt_ah_attr;
1249 	u16			pkey_index;
1250 	u16			alt_pkey_index;
1251 	u8			en_sqd_async_notify;
1252 	u8			sq_draining;
1253 	u8			max_rd_atomic;
1254 	u8			max_dest_rd_atomic;
1255 	u8			min_rnr_timer;
1256 	u8			port_num;
1257 	u8			timeout;
1258 	u8			retry_cnt;
1259 	u8			rnr_retry;
1260 	u8			alt_port_num;
1261 	u8			alt_timeout;
1262 	u32			rate_limit;
1263 };
1264 
1265 enum ib_wr_opcode {
1266 	IB_WR_RDMA_WRITE,
1267 	IB_WR_RDMA_WRITE_WITH_IMM,
1268 	IB_WR_SEND,
1269 	IB_WR_SEND_WITH_IMM,
1270 	IB_WR_RDMA_READ,
1271 	IB_WR_ATOMIC_CMP_AND_SWP,
1272 	IB_WR_ATOMIC_FETCH_AND_ADD,
1273 	IB_WR_LSO,
1274 	IB_WR_SEND_WITH_INV,
1275 	IB_WR_RDMA_READ_WITH_INV,
1276 	IB_WR_LOCAL_INV,
1277 	IB_WR_REG_MR,
1278 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1279 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1280 	IB_WR_REG_SIG_MR,
1281 	/* reserve values for low level drivers' internal use.
1282 	 * These values will not be used at all in the ib core layer.
1283 	 */
1284 	IB_WR_RESERVED1 = 0xf0,
1285 	IB_WR_RESERVED2,
1286 	IB_WR_RESERVED3,
1287 	IB_WR_RESERVED4,
1288 	IB_WR_RESERVED5,
1289 	IB_WR_RESERVED6,
1290 	IB_WR_RESERVED7,
1291 	IB_WR_RESERVED8,
1292 	IB_WR_RESERVED9,
1293 	IB_WR_RESERVED10,
1294 };
1295 
1296 enum ib_send_flags {
1297 	IB_SEND_FENCE		= 1,
1298 	IB_SEND_SIGNALED	= (1<<1),
1299 	IB_SEND_SOLICITED	= (1<<2),
1300 	IB_SEND_INLINE		= (1<<3),
1301 	IB_SEND_IP_CSUM		= (1<<4),
1302 
1303 	/* reserve bits 26-31 for low level drivers' internal use */
1304 	IB_SEND_RESERVED_START	= (1 << 26),
1305 	IB_SEND_RESERVED_END	= (1 << 31),
1306 };
1307 
1308 struct ib_sge {
1309 	u64	addr;
1310 	u32	length;
1311 	u32	lkey;
1312 };
1313 
1314 struct ib_cqe {
1315 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1316 };
1317 
1318 struct ib_send_wr {
1319 	struct ib_send_wr      *next;
1320 	union {
1321 		u64		wr_id;
1322 		struct ib_cqe	*wr_cqe;
1323 	};
1324 	struct ib_sge	       *sg_list;
1325 	int			num_sge;
1326 	enum ib_wr_opcode	opcode;
1327 	int			send_flags;
1328 	union {
1329 		__be32		imm_data;
1330 		u32		invalidate_rkey;
1331 	} ex;
1332 };
1333 
1334 struct ib_rdma_wr {
1335 	struct ib_send_wr	wr;
1336 	u64			remote_addr;
1337 	u32			rkey;
1338 };
1339 
1340 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1341 {
1342 	return container_of(wr, struct ib_rdma_wr, wr);
1343 }
1344 
1345 struct ib_atomic_wr {
1346 	struct ib_send_wr	wr;
1347 	u64			remote_addr;
1348 	u64			compare_add;
1349 	u64			swap;
1350 	u64			compare_add_mask;
1351 	u64			swap_mask;
1352 	u32			rkey;
1353 };
1354 
1355 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1356 {
1357 	return container_of(wr, struct ib_atomic_wr, wr);
1358 }
1359 
1360 struct ib_ud_wr {
1361 	struct ib_send_wr	wr;
1362 	struct ib_ah		*ah;
1363 	void			*header;
1364 	int			hlen;
1365 	int			mss;
1366 	u32			remote_qpn;
1367 	u32			remote_qkey;
1368 	u16			pkey_index; /* valid for GSI only */
1369 	u8			port_num;   /* valid for DR SMPs on switch only */
1370 };
1371 
1372 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1373 {
1374 	return container_of(wr, struct ib_ud_wr, wr);
1375 }
1376 
1377 struct ib_reg_wr {
1378 	struct ib_send_wr	wr;
1379 	struct ib_mr		*mr;
1380 	u32			key;
1381 	int			access;
1382 };
1383 
1384 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1385 {
1386 	return container_of(wr, struct ib_reg_wr, wr);
1387 }
1388 
1389 struct ib_sig_handover_wr {
1390 	struct ib_send_wr	wr;
1391 	struct ib_sig_attrs    *sig_attrs;
1392 	struct ib_mr	       *sig_mr;
1393 	int			access_flags;
1394 	struct ib_sge	       *prot;
1395 };
1396 
1397 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1398 {
1399 	return container_of(wr, struct ib_sig_handover_wr, wr);
1400 }
1401 
1402 struct ib_recv_wr {
1403 	struct ib_recv_wr      *next;
1404 	union {
1405 		u64		wr_id;
1406 		struct ib_cqe	*wr_cqe;
1407 	};
1408 	struct ib_sge	       *sg_list;
1409 	int			num_sge;
1410 };
1411 
1412 enum ib_access_flags {
1413 	IB_ACCESS_LOCAL_WRITE	= 1,
1414 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1415 	IB_ACCESS_REMOTE_READ	= (1<<2),
1416 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1417 	IB_ACCESS_MW_BIND	= (1<<4),
1418 	IB_ZERO_BASED		= (1<<5),
1419 	IB_ACCESS_ON_DEMAND     = (1<<6),
1420 	IB_ACCESS_HUGETLB	= (1<<7),
1421 };
1422 
1423 /*
1424  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1425  * are hidden here instead of a uapi header!
1426  */
1427 enum ib_mr_rereg_flags {
1428 	IB_MR_REREG_TRANS	= 1,
1429 	IB_MR_REREG_PD		= (1<<1),
1430 	IB_MR_REREG_ACCESS	= (1<<2),
1431 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1432 };
1433 
1434 struct ib_fmr_attr {
1435 	int	max_pages;
1436 	int	max_maps;
1437 	u8	page_shift;
1438 };
1439 
1440 struct ib_umem;
1441 
1442 enum rdma_remove_reason {
1443 	/* Userspace requested uobject deletion. Call could fail */
1444 	RDMA_REMOVE_DESTROY,
1445 	/* Context deletion. This call should delete the actual object itself */
1446 	RDMA_REMOVE_CLOSE,
1447 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1448 	RDMA_REMOVE_DRIVER_REMOVE,
1449 	/* Context is being cleaned-up, but commit was just completed */
1450 	RDMA_REMOVE_DURING_CLEANUP,
1451 };
1452 
1453 struct ib_rdmacg_object {
1454 #ifdef CONFIG_CGROUP_RDMA
1455 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1456 #endif
1457 };
1458 
1459 struct ib_ucontext {
1460 	struct ib_device       *device;
1461 	struct ib_uverbs_file  *ufile;
1462 	int			closing;
1463 
1464 	/* locking the uobjects_list */
1465 	struct mutex		uobjects_lock;
1466 	struct list_head	uobjects;
1467 	/* protects cleanup process from other actions */
1468 	struct rw_semaphore	cleanup_rwsem;
1469 	enum rdma_remove_reason cleanup_reason;
1470 
1471 	struct pid             *tgid;
1472 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1473 	struct rb_root_cached   umem_tree;
1474 	/*
1475 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1476 	 * mmu notifiers registration.
1477 	 */
1478 	struct rw_semaphore	umem_rwsem;
1479 	void (*invalidate_range)(struct ib_umem *umem,
1480 				 unsigned long start, unsigned long end);
1481 
1482 	struct mmu_notifier	mn;
1483 	atomic_t		notifier_count;
1484 	/* A list of umems that don't have private mmu notifier counters yet. */
1485 	struct list_head	no_private_counters;
1486 	int                     odp_mrs_count;
1487 #endif
1488 
1489 	struct ib_rdmacg_object	cg_obj;
1490 };
1491 
1492 struct ib_uobject {
1493 	u64			user_handle;	/* handle given to us by userspace */
1494 	struct ib_ucontext     *context;	/* associated user context */
1495 	void		       *object;		/* containing object */
1496 	struct list_head	list;		/* link to context's list */
1497 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1498 	int			id;		/* index into kernel idr */
1499 	struct kref		ref;
1500 	atomic_t		usecnt;		/* protects exclusive access */
1501 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1502 
1503 	const struct uverbs_obj_type *type;
1504 };
1505 
1506 struct ib_uobject_file {
1507 	struct ib_uobject	uobj;
1508 	/* ufile contains the lock between context release and file close */
1509 	struct ib_uverbs_file	*ufile;
1510 };
1511 
1512 struct ib_udata {
1513 	const void __user *inbuf;
1514 	void __user *outbuf;
1515 	size_t       inlen;
1516 	size_t       outlen;
1517 };
1518 
1519 struct ib_pd {
1520 	u32			local_dma_lkey;
1521 	u32			flags;
1522 	struct ib_device       *device;
1523 	struct ib_uobject      *uobject;
1524 	atomic_t          	usecnt; /* count all resources */
1525 
1526 	u32			unsafe_global_rkey;
1527 
1528 	/*
1529 	 * Implementation details of the RDMA core, don't use in drivers:
1530 	 */
1531 	struct ib_mr	       *__internal_mr;
1532 };
1533 
1534 struct ib_xrcd {
1535 	struct ib_device       *device;
1536 	atomic_t		usecnt; /* count all exposed resources */
1537 	struct inode	       *inode;
1538 
1539 	struct mutex		tgt_qp_mutex;
1540 	struct list_head	tgt_qp_list;
1541 };
1542 
1543 struct ib_ah {
1544 	struct ib_device	*device;
1545 	struct ib_pd		*pd;
1546 	struct ib_uobject	*uobject;
1547 	enum rdma_ah_attr_type	type;
1548 };
1549 
1550 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1551 
1552 enum ib_poll_context {
1553 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1554 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1555 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1556 };
1557 
1558 struct ib_cq {
1559 	struct ib_device       *device;
1560 	struct ib_uobject      *uobject;
1561 	ib_comp_handler   	comp_handler;
1562 	void                  (*event_handler)(struct ib_event *, void *);
1563 	void                   *cq_context;
1564 	int               	cqe;
1565 	atomic_t          	usecnt; /* count number of work queues */
1566 	enum ib_poll_context	poll_ctx;
1567 	struct ib_wc		*wc;
1568 	union {
1569 		struct irq_poll		iop;
1570 		struct work_struct	work;
1571 	};
1572 };
1573 
1574 struct ib_srq {
1575 	struct ib_device       *device;
1576 	struct ib_pd	       *pd;
1577 	struct ib_uobject      *uobject;
1578 	void		      (*event_handler)(struct ib_event *, void *);
1579 	void		       *srq_context;
1580 	enum ib_srq_type	srq_type;
1581 	atomic_t		usecnt;
1582 
1583 	struct {
1584 		struct ib_cq   *cq;
1585 		union {
1586 			struct {
1587 				struct ib_xrcd *xrcd;
1588 				u32		srq_num;
1589 			} xrc;
1590 		};
1591 	} ext;
1592 };
1593 
1594 enum ib_raw_packet_caps {
1595 	/* Strip cvlan from incoming packet and report it in the matching work
1596 	 * completion is supported.
1597 	 */
1598 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1599 	/* Scatter FCS field of an incoming packet to host memory is supported.
1600 	 */
1601 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1602 	/* Checksum offloads are supported (for both send and receive). */
1603 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1604 	/* When a packet is received for an RQ with no receive WQEs, the
1605 	 * packet processing is delayed.
1606 	 */
1607 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1608 };
1609 
1610 enum ib_wq_type {
1611 	IB_WQT_RQ
1612 };
1613 
1614 enum ib_wq_state {
1615 	IB_WQS_RESET,
1616 	IB_WQS_RDY,
1617 	IB_WQS_ERR
1618 };
1619 
1620 struct ib_wq {
1621 	struct ib_device       *device;
1622 	struct ib_uobject      *uobject;
1623 	void		    *wq_context;
1624 	void		    (*event_handler)(struct ib_event *, void *);
1625 	struct ib_pd	       *pd;
1626 	struct ib_cq	       *cq;
1627 	u32		wq_num;
1628 	enum ib_wq_state       state;
1629 	enum ib_wq_type	wq_type;
1630 	atomic_t		usecnt;
1631 };
1632 
1633 enum ib_wq_flags {
1634 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1635 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1636 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1637 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1638 };
1639 
1640 struct ib_wq_init_attr {
1641 	void		       *wq_context;
1642 	enum ib_wq_type	wq_type;
1643 	u32		max_wr;
1644 	u32		max_sge;
1645 	struct	ib_cq	       *cq;
1646 	void		    (*event_handler)(struct ib_event *, void *);
1647 	u32		create_flags; /* Use enum ib_wq_flags */
1648 };
1649 
1650 enum ib_wq_attr_mask {
1651 	IB_WQ_STATE		= 1 << 0,
1652 	IB_WQ_CUR_STATE		= 1 << 1,
1653 	IB_WQ_FLAGS		= 1 << 2,
1654 };
1655 
1656 struct ib_wq_attr {
1657 	enum	ib_wq_state	wq_state;
1658 	enum	ib_wq_state	curr_wq_state;
1659 	u32			flags; /* Use enum ib_wq_flags */
1660 	u32			flags_mask; /* Use enum ib_wq_flags */
1661 };
1662 
1663 struct ib_rwq_ind_table {
1664 	struct ib_device	*device;
1665 	struct ib_uobject      *uobject;
1666 	atomic_t		usecnt;
1667 	u32		ind_tbl_num;
1668 	u32		log_ind_tbl_size;
1669 	struct ib_wq	**ind_tbl;
1670 };
1671 
1672 struct ib_rwq_ind_table_init_attr {
1673 	u32		log_ind_tbl_size;
1674 	/* Each entry is a pointer to Receive Work Queue */
1675 	struct ib_wq	**ind_tbl;
1676 };
1677 
1678 enum port_pkey_state {
1679 	IB_PORT_PKEY_NOT_VALID = 0,
1680 	IB_PORT_PKEY_VALID = 1,
1681 	IB_PORT_PKEY_LISTED = 2,
1682 };
1683 
1684 struct ib_qp_security;
1685 
1686 struct ib_port_pkey {
1687 	enum port_pkey_state	state;
1688 	u16			pkey_index;
1689 	u8			port_num;
1690 	struct list_head	qp_list;
1691 	struct list_head	to_error_list;
1692 	struct ib_qp_security  *sec;
1693 };
1694 
1695 struct ib_ports_pkeys {
1696 	struct ib_port_pkey	main;
1697 	struct ib_port_pkey	alt;
1698 };
1699 
1700 struct ib_qp_security {
1701 	struct ib_qp	       *qp;
1702 	struct ib_device       *dev;
1703 	/* Hold this mutex when changing port and pkey settings. */
1704 	struct mutex		mutex;
1705 	struct ib_ports_pkeys  *ports_pkeys;
1706 	/* A list of all open shared QP handles.  Required to enforce security
1707 	 * properly for all users of a shared QP.
1708 	 */
1709 	struct list_head        shared_qp_list;
1710 	void                   *security;
1711 	bool			destroying;
1712 	atomic_t		error_list_count;
1713 	struct completion	error_complete;
1714 	int			error_comps_pending;
1715 };
1716 
1717 /*
1718  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1719  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1720  */
1721 struct ib_qp {
1722 	struct ib_device       *device;
1723 	struct ib_pd	       *pd;
1724 	struct ib_cq	       *send_cq;
1725 	struct ib_cq	       *recv_cq;
1726 	spinlock_t		mr_lock;
1727 	int			mrs_used;
1728 	struct list_head	rdma_mrs;
1729 	struct list_head	sig_mrs;
1730 	struct ib_srq	       *srq;
1731 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1732 	struct list_head	xrcd_list;
1733 
1734 	/* count times opened, mcast attaches, flow attaches */
1735 	atomic_t		usecnt;
1736 	struct list_head	open_list;
1737 	struct ib_qp           *real_qp;
1738 	struct ib_uobject      *uobject;
1739 	void                  (*event_handler)(struct ib_event *, void *);
1740 	void		       *qp_context;
1741 	u32			qp_num;
1742 	u32			max_write_sge;
1743 	u32			max_read_sge;
1744 	enum ib_qp_type		qp_type;
1745 	struct ib_rwq_ind_table *rwq_ind_tbl;
1746 	struct ib_qp_security  *qp_sec;
1747 	u8			port;
1748 };
1749 
1750 struct ib_mr {
1751 	struct ib_device  *device;
1752 	struct ib_pd	  *pd;
1753 	u32		   lkey;
1754 	u32		   rkey;
1755 	u64		   iova;
1756 	u64		   length;
1757 	unsigned int	   page_size;
1758 	bool		   need_inval;
1759 	union {
1760 		struct ib_uobject	*uobject;	/* user */
1761 		struct list_head	qp_entry;	/* FR */
1762 	};
1763 };
1764 
1765 struct ib_mw {
1766 	struct ib_device	*device;
1767 	struct ib_pd		*pd;
1768 	struct ib_uobject	*uobject;
1769 	u32			rkey;
1770 	enum ib_mw_type         type;
1771 };
1772 
1773 struct ib_fmr {
1774 	struct ib_device	*device;
1775 	struct ib_pd		*pd;
1776 	struct list_head	list;
1777 	u32			lkey;
1778 	u32			rkey;
1779 };
1780 
1781 /* Supported steering options */
1782 enum ib_flow_attr_type {
1783 	/* steering according to rule specifications */
1784 	IB_FLOW_ATTR_NORMAL		= 0x0,
1785 	/* default unicast and multicast rule -
1786 	 * receive all Eth traffic which isn't steered to any QP
1787 	 */
1788 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1789 	/* default multicast rule -
1790 	 * receive all Eth multicast traffic which isn't steered to any QP
1791 	 */
1792 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1793 	/* sniffer rule - receive all port traffic */
1794 	IB_FLOW_ATTR_SNIFFER		= 0x3
1795 };
1796 
1797 /* Supported steering header types */
1798 enum ib_flow_spec_type {
1799 	/* L2 headers*/
1800 	IB_FLOW_SPEC_ETH		= 0x20,
1801 	IB_FLOW_SPEC_IB			= 0x22,
1802 	/* L3 header*/
1803 	IB_FLOW_SPEC_IPV4		= 0x30,
1804 	IB_FLOW_SPEC_IPV6		= 0x31,
1805 	/* L4 headers*/
1806 	IB_FLOW_SPEC_TCP		= 0x40,
1807 	IB_FLOW_SPEC_UDP		= 0x41,
1808 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1809 	IB_FLOW_SPEC_INNER		= 0x100,
1810 	/* Actions */
1811 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1812 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1813 };
1814 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1815 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1816 
1817 /* Flow steering rule priority is set according to it's domain.
1818  * Lower domain value means higher priority.
1819  */
1820 enum ib_flow_domain {
1821 	IB_FLOW_DOMAIN_USER,
1822 	IB_FLOW_DOMAIN_ETHTOOL,
1823 	IB_FLOW_DOMAIN_RFS,
1824 	IB_FLOW_DOMAIN_NIC,
1825 	IB_FLOW_DOMAIN_NUM /* Must be last */
1826 };
1827 
1828 enum ib_flow_flags {
1829 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1830 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1831 };
1832 
1833 struct ib_flow_eth_filter {
1834 	u8	dst_mac[6];
1835 	u8	src_mac[6];
1836 	__be16	ether_type;
1837 	__be16	vlan_tag;
1838 	/* Must be last */
1839 	u8	real_sz[0];
1840 };
1841 
1842 struct ib_flow_spec_eth {
1843 	u32			  type;
1844 	u16			  size;
1845 	struct ib_flow_eth_filter val;
1846 	struct ib_flow_eth_filter mask;
1847 };
1848 
1849 struct ib_flow_ib_filter {
1850 	__be16 dlid;
1851 	__u8   sl;
1852 	/* Must be last */
1853 	u8	real_sz[0];
1854 };
1855 
1856 struct ib_flow_spec_ib {
1857 	u32			 type;
1858 	u16			 size;
1859 	struct ib_flow_ib_filter val;
1860 	struct ib_flow_ib_filter mask;
1861 };
1862 
1863 /* IPv4 header flags */
1864 enum ib_ipv4_flags {
1865 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1866 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1867 				    last have this flag set */
1868 };
1869 
1870 struct ib_flow_ipv4_filter {
1871 	__be32	src_ip;
1872 	__be32	dst_ip;
1873 	u8	proto;
1874 	u8	tos;
1875 	u8	ttl;
1876 	u8	flags;
1877 	/* Must be last */
1878 	u8	real_sz[0];
1879 };
1880 
1881 struct ib_flow_spec_ipv4 {
1882 	u32			   type;
1883 	u16			   size;
1884 	struct ib_flow_ipv4_filter val;
1885 	struct ib_flow_ipv4_filter mask;
1886 };
1887 
1888 struct ib_flow_ipv6_filter {
1889 	u8	src_ip[16];
1890 	u8	dst_ip[16];
1891 	__be32	flow_label;
1892 	u8	next_hdr;
1893 	u8	traffic_class;
1894 	u8	hop_limit;
1895 	/* Must be last */
1896 	u8	real_sz[0];
1897 };
1898 
1899 struct ib_flow_spec_ipv6 {
1900 	u32			   type;
1901 	u16			   size;
1902 	struct ib_flow_ipv6_filter val;
1903 	struct ib_flow_ipv6_filter mask;
1904 };
1905 
1906 struct ib_flow_tcp_udp_filter {
1907 	__be16	dst_port;
1908 	__be16	src_port;
1909 	/* Must be last */
1910 	u8	real_sz[0];
1911 };
1912 
1913 struct ib_flow_spec_tcp_udp {
1914 	u32			      type;
1915 	u16			      size;
1916 	struct ib_flow_tcp_udp_filter val;
1917 	struct ib_flow_tcp_udp_filter mask;
1918 };
1919 
1920 struct ib_flow_tunnel_filter {
1921 	__be32	tunnel_id;
1922 	u8	real_sz[0];
1923 };
1924 
1925 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1926  * the tunnel_id from val has the vni value
1927  */
1928 struct ib_flow_spec_tunnel {
1929 	u32			      type;
1930 	u16			      size;
1931 	struct ib_flow_tunnel_filter  val;
1932 	struct ib_flow_tunnel_filter  mask;
1933 };
1934 
1935 struct ib_flow_spec_action_tag {
1936 	enum ib_flow_spec_type	      type;
1937 	u16			      size;
1938 	u32                           tag_id;
1939 };
1940 
1941 struct ib_flow_spec_action_drop {
1942 	enum ib_flow_spec_type	      type;
1943 	u16			      size;
1944 };
1945 
1946 union ib_flow_spec {
1947 	struct {
1948 		u32			type;
1949 		u16			size;
1950 	};
1951 	struct ib_flow_spec_eth		eth;
1952 	struct ib_flow_spec_ib		ib;
1953 	struct ib_flow_spec_ipv4        ipv4;
1954 	struct ib_flow_spec_tcp_udp	tcp_udp;
1955 	struct ib_flow_spec_ipv6        ipv6;
1956 	struct ib_flow_spec_tunnel      tunnel;
1957 	struct ib_flow_spec_action_tag  flow_tag;
1958 	struct ib_flow_spec_action_drop drop;
1959 };
1960 
1961 struct ib_flow_attr {
1962 	enum ib_flow_attr_type type;
1963 	u16	     size;
1964 	u16	     priority;
1965 	u32	     flags;
1966 	u8	     num_of_specs;
1967 	u8	     port;
1968 	/* Following are the optional layers according to user request
1969 	 * struct ib_flow_spec_xxx
1970 	 * struct ib_flow_spec_yyy
1971 	 */
1972 };
1973 
1974 struct ib_flow {
1975 	struct ib_qp		*qp;
1976 	struct ib_uobject	*uobject;
1977 };
1978 
1979 struct ib_mad_hdr;
1980 struct ib_grh;
1981 
1982 enum ib_process_mad_flags {
1983 	IB_MAD_IGNORE_MKEY	= 1,
1984 	IB_MAD_IGNORE_BKEY	= 2,
1985 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1986 };
1987 
1988 enum ib_mad_result {
1989 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1990 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1991 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1992 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1993 };
1994 
1995 struct ib_port_cache {
1996 	u64		      subnet_prefix;
1997 	struct ib_pkey_cache  *pkey;
1998 	struct ib_gid_table   *gid;
1999 	u8                     lmc;
2000 	enum ib_port_state     port_state;
2001 };
2002 
2003 struct ib_cache {
2004 	rwlock_t                lock;
2005 	struct ib_event_handler event_handler;
2006 	struct ib_port_cache   *ports;
2007 };
2008 
2009 struct iw_cm_verbs;
2010 
2011 struct ib_port_immutable {
2012 	int                           pkey_tbl_len;
2013 	int                           gid_tbl_len;
2014 	u32                           core_cap_flags;
2015 	u32                           max_mad_size;
2016 };
2017 
2018 /* rdma netdev type - specifies protocol type */
2019 enum rdma_netdev_t {
2020 	RDMA_NETDEV_OPA_VNIC,
2021 	RDMA_NETDEV_IPOIB,
2022 };
2023 
2024 /**
2025  * struct rdma_netdev - rdma netdev
2026  * For cases where netstack interfacing is required.
2027  */
2028 struct rdma_netdev {
2029 	void              *clnt_priv;
2030 	struct ib_device  *hca;
2031 	u8                 port_num;
2032 
2033 	/* cleanup function must be specified */
2034 	void (*free_rdma_netdev)(struct net_device *netdev);
2035 
2036 	/* control functions */
2037 	void (*set_id)(struct net_device *netdev, int id);
2038 	/* send packet */
2039 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2040 		    struct ib_ah *address, u32 dqpn);
2041 	/* multicast */
2042 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2043 			    union ib_gid *gid, u16 mlid,
2044 			    int set_qkey, u32 qkey);
2045 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2046 			    union ib_gid *gid, u16 mlid);
2047 };
2048 
2049 struct ib_port_pkey_list {
2050 	/* Lock to hold while modifying the list. */
2051 	spinlock_t                    list_lock;
2052 	struct list_head              pkey_list;
2053 };
2054 
2055 struct ib_device {
2056 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2057 	struct device                *dma_device;
2058 
2059 	char                          name[IB_DEVICE_NAME_MAX];
2060 
2061 	struct list_head              event_handler_list;
2062 	spinlock_t                    event_handler_lock;
2063 
2064 	spinlock_t                    client_data_lock;
2065 	struct list_head              core_list;
2066 	/* Access to the client_data_list is protected by the client_data_lock
2067 	 * spinlock and the lists_rwsem read-write semaphore */
2068 	struct list_head              client_data_list;
2069 
2070 	struct ib_cache               cache;
2071 	/**
2072 	 * port_immutable is indexed by port number
2073 	 */
2074 	struct ib_port_immutable     *port_immutable;
2075 
2076 	int			      num_comp_vectors;
2077 
2078 	struct ib_port_pkey_list     *port_pkey_list;
2079 
2080 	struct iw_cm_verbs	     *iwcm;
2081 
2082 	/**
2083 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2084 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2085 	 *   core when the device is removed.  A lifespan of -1 in the return
2086 	 *   struct tells the core to set a default lifespan.
2087 	 */
2088 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2089 						     u8 port_num);
2090 	/**
2091 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2092 	 * @index - The index in the value array we wish to have updated, or
2093 	 *   num_counters if we want all stats updated
2094 	 * Return codes -
2095 	 *   < 0 - Error, no counters updated
2096 	 *   index - Updated the single counter pointed to by index
2097 	 *   num_counters - Updated all counters (will reset the timestamp
2098 	 *     and prevent further calls for lifespan milliseconds)
2099 	 * Drivers are allowed to update all counters in leiu of just the
2100 	 *   one given in index at their option
2101 	 */
2102 	int		           (*get_hw_stats)(struct ib_device *device,
2103 						   struct rdma_hw_stats *stats,
2104 						   u8 port, int index);
2105 	int		           (*query_device)(struct ib_device *device,
2106 						   struct ib_device_attr *device_attr,
2107 						   struct ib_udata *udata);
2108 	int		           (*query_port)(struct ib_device *device,
2109 						 u8 port_num,
2110 						 struct ib_port_attr *port_attr);
2111 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2112 						     u8 port_num);
2113 	/* When calling get_netdev, the HW vendor's driver should return the
2114 	 * net device of device @device at port @port_num or NULL if such
2115 	 * a net device doesn't exist. The vendor driver should call dev_hold
2116 	 * on this net device. The HW vendor's device driver must guarantee
2117 	 * that this function returns NULL before the net device reaches
2118 	 * NETDEV_UNREGISTER_FINAL state.
2119 	 */
2120 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2121 						 u8 port_num);
2122 	int		           (*query_gid)(struct ib_device *device,
2123 						u8 port_num, int index,
2124 						union ib_gid *gid);
2125 	/* When calling add_gid, the HW vendor's driver should
2126 	 * add the gid of device @device at gid index @index of
2127 	 * port @port_num to be @gid. Meta-info of that gid (for example,
2128 	 * the network device related to this gid is available
2129 	 * at @attr. @context allows the HW vendor driver to store extra
2130 	 * information together with a GID entry. The HW vendor may allocate
2131 	 * memory to contain this information and store it in @context when a
2132 	 * new GID entry is written to. Params are consistent until the next
2133 	 * call of add_gid or delete_gid. The function should return 0 on
2134 	 * success or error otherwise. The function could be called
2135 	 * concurrently for different ports. This function is only called
2136 	 * when roce_gid_table is used.
2137 	 */
2138 	int		           (*add_gid)(struct ib_device *device,
2139 					      u8 port_num,
2140 					      unsigned int index,
2141 					      const union ib_gid *gid,
2142 					      const struct ib_gid_attr *attr,
2143 					      void **context);
2144 	/* When calling del_gid, the HW vendor's driver should delete the
2145 	 * gid of device @device at gid index @index of port @port_num.
2146 	 * Upon the deletion of a GID entry, the HW vendor must free any
2147 	 * allocated memory. The caller will clear @context afterwards.
2148 	 * This function is only called when roce_gid_table is used.
2149 	 */
2150 	int		           (*del_gid)(struct ib_device *device,
2151 					      u8 port_num,
2152 					      unsigned int index,
2153 					      void **context);
2154 	int		           (*query_pkey)(struct ib_device *device,
2155 						 u8 port_num, u16 index, u16 *pkey);
2156 	int		           (*modify_device)(struct ib_device *device,
2157 						    int device_modify_mask,
2158 						    struct ib_device_modify *device_modify);
2159 	int		           (*modify_port)(struct ib_device *device,
2160 						  u8 port_num, int port_modify_mask,
2161 						  struct ib_port_modify *port_modify);
2162 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2163 						     struct ib_udata *udata);
2164 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2165 	int                        (*mmap)(struct ib_ucontext *context,
2166 					   struct vm_area_struct *vma);
2167 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2168 					       struct ib_ucontext *context,
2169 					       struct ib_udata *udata);
2170 	int                        (*dealloc_pd)(struct ib_pd *pd);
2171 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2172 						struct rdma_ah_attr *ah_attr,
2173 						struct ib_udata *udata);
2174 	int                        (*modify_ah)(struct ib_ah *ah,
2175 						struct rdma_ah_attr *ah_attr);
2176 	int                        (*query_ah)(struct ib_ah *ah,
2177 					       struct rdma_ah_attr *ah_attr);
2178 	int                        (*destroy_ah)(struct ib_ah *ah);
2179 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2180 						 struct ib_srq_init_attr *srq_init_attr,
2181 						 struct ib_udata *udata);
2182 	int                        (*modify_srq)(struct ib_srq *srq,
2183 						 struct ib_srq_attr *srq_attr,
2184 						 enum ib_srq_attr_mask srq_attr_mask,
2185 						 struct ib_udata *udata);
2186 	int                        (*query_srq)(struct ib_srq *srq,
2187 						struct ib_srq_attr *srq_attr);
2188 	int                        (*destroy_srq)(struct ib_srq *srq);
2189 	int                        (*post_srq_recv)(struct ib_srq *srq,
2190 						    struct ib_recv_wr *recv_wr,
2191 						    struct ib_recv_wr **bad_recv_wr);
2192 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2193 						struct ib_qp_init_attr *qp_init_attr,
2194 						struct ib_udata *udata);
2195 	int                        (*modify_qp)(struct ib_qp *qp,
2196 						struct ib_qp_attr *qp_attr,
2197 						int qp_attr_mask,
2198 						struct ib_udata *udata);
2199 	int                        (*query_qp)(struct ib_qp *qp,
2200 					       struct ib_qp_attr *qp_attr,
2201 					       int qp_attr_mask,
2202 					       struct ib_qp_init_attr *qp_init_attr);
2203 	int                        (*destroy_qp)(struct ib_qp *qp);
2204 	int                        (*post_send)(struct ib_qp *qp,
2205 						struct ib_send_wr *send_wr,
2206 						struct ib_send_wr **bad_send_wr);
2207 	int                        (*post_recv)(struct ib_qp *qp,
2208 						struct ib_recv_wr *recv_wr,
2209 						struct ib_recv_wr **bad_recv_wr);
2210 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2211 						const struct ib_cq_init_attr *attr,
2212 						struct ib_ucontext *context,
2213 						struct ib_udata *udata);
2214 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2215 						u16 cq_period);
2216 	int                        (*destroy_cq)(struct ib_cq *cq);
2217 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2218 						struct ib_udata *udata);
2219 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2220 					      struct ib_wc *wc);
2221 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2222 	int                        (*req_notify_cq)(struct ib_cq *cq,
2223 						    enum ib_cq_notify_flags flags);
2224 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2225 						      int wc_cnt);
2226 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2227 						 int mr_access_flags);
2228 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2229 						  u64 start, u64 length,
2230 						  u64 virt_addr,
2231 						  int mr_access_flags,
2232 						  struct ib_udata *udata);
2233 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2234 						    int flags,
2235 						    u64 start, u64 length,
2236 						    u64 virt_addr,
2237 						    int mr_access_flags,
2238 						    struct ib_pd *pd,
2239 						    struct ib_udata *udata);
2240 	int                        (*dereg_mr)(struct ib_mr *mr);
2241 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2242 					       enum ib_mr_type mr_type,
2243 					       u32 max_num_sg);
2244 	int                        (*map_mr_sg)(struct ib_mr *mr,
2245 						struct scatterlist *sg,
2246 						int sg_nents,
2247 						unsigned int *sg_offset);
2248 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2249 					       enum ib_mw_type type,
2250 					       struct ib_udata *udata);
2251 	int                        (*dealloc_mw)(struct ib_mw *mw);
2252 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2253 						int mr_access_flags,
2254 						struct ib_fmr_attr *fmr_attr);
2255 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2256 						   u64 *page_list, int list_len,
2257 						   u64 iova);
2258 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2259 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2260 	int                        (*attach_mcast)(struct ib_qp *qp,
2261 						   union ib_gid *gid,
2262 						   u16 lid);
2263 	int                        (*detach_mcast)(struct ib_qp *qp,
2264 						   union ib_gid *gid,
2265 						   u16 lid);
2266 	int                        (*process_mad)(struct ib_device *device,
2267 						  int process_mad_flags,
2268 						  u8 port_num,
2269 						  const struct ib_wc *in_wc,
2270 						  const struct ib_grh *in_grh,
2271 						  const struct ib_mad_hdr *in_mad,
2272 						  size_t in_mad_size,
2273 						  struct ib_mad_hdr *out_mad,
2274 						  size_t *out_mad_size,
2275 						  u16 *out_mad_pkey_index);
2276 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2277 						 struct ib_ucontext *ucontext,
2278 						 struct ib_udata *udata);
2279 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2280 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2281 						  struct ib_flow_attr
2282 						  *flow_attr,
2283 						  int domain);
2284 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2285 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2286 						      struct ib_mr_status *mr_status);
2287 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2288 	void			   (*drain_rq)(struct ib_qp *qp);
2289 	void			   (*drain_sq)(struct ib_qp *qp);
2290 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2291 							int state);
2292 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2293 						   struct ifla_vf_info *ivf);
2294 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2295 						   struct ifla_vf_stats *stats);
2296 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2297 						  int type);
2298 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2299 						struct ib_wq_init_attr *init_attr,
2300 						struct ib_udata *udata);
2301 	int			   (*destroy_wq)(struct ib_wq *wq);
2302 	int			   (*modify_wq)(struct ib_wq *wq,
2303 						struct ib_wq_attr *attr,
2304 						u32 wq_attr_mask,
2305 						struct ib_udata *udata);
2306 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2307 							   struct ib_rwq_ind_table_init_attr *init_attr,
2308 							   struct ib_udata *udata);
2309 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2310 	/**
2311 	 * rdma netdev operation
2312 	 *
2313 	 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2314 	 * doesn't support the specified rdma netdev type.
2315 	 */
2316 	struct net_device *(*alloc_rdma_netdev)(
2317 					struct ib_device *device,
2318 					u8 port_num,
2319 					enum rdma_netdev_t type,
2320 					const char *name,
2321 					unsigned char name_assign_type,
2322 					void (*setup)(struct net_device *));
2323 
2324 	struct module               *owner;
2325 	struct device                dev;
2326 	struct kobject               *ports_parent;
2327 	struct list_head             port_list;
2328 
2329 	enum {
2330 		IB_DEV_UNINITIALIZED,
2331 		IB_DEV_REGISTERED,
2332 		IB_DEV_UNREGISTERED
2333 	}                            reg_state;
2334 
2335 	int			     uverbs_abi_ver;
2336 	u64			     uverbs_cmd_mask;
2337 	u64			     uverbs_ex_cmd_mask;
2338 
2339 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2340 	__be64			     node_guid;
2341 	u32			     local_dma_lkey;
2342 	u16                          is_switch:1;
2343 	u8                           node_type;
2344 	u8                           phys_port_cnt;
2345 	struct ib_device_attr        attrs;
2346 	struct attribute_group	     *hw_stats_ag;
2347 	struct rdma_hw_stats         *hw_stats;
2348 
2349 #ifdef CONFIG_CGROUP_RDMA
2350 	struct rdmacg_device         cg_device;
2351 #endif
2352 
2353 	u32                          index;
2354 
2355 	/**
2356 	 * The following mandatory functions are used only at device
2357 	 * registration.  Keep functions such as these at the end of this
2358 	 * structure to avoid cache line misses when accessing struct ib_device
2359 	 * in fast paths.
2360 	 */
2361 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2362 	void (*get_dev_fw_str)(struct ib_device *, char *str);
2363 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2364 						     int comp_vector);
2365 
2366 	struct uverbs_root_spec		*specs_root;
2367 };
2368 
2369 struct ib_client {
2370 	char  *name;
2371 	void (*add)   (struct ib_device *);
2372 	void (*remove)(struct ib_device *, void *client_data);
2373 
2374 	/* Returns the net_dev belonging to this ib_client and matching the
2375 	 * given parameters.
2376 	 * @dev:	 An RDMA device that the net_dev use for communication.
2377 	 * @port:	 A physical port number on the RDMA device.
2378 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2379 	 * @gid:	 A GID that the net_dev uses to communicate.
2380 	 * @addr:	 An IP address the net_dev is configured with.
2381 	 * @client_data: The device's client data set by ib_set_client_data().
2382 	 *
2383 	 * An ib_client that implements a net_dev on top of RDMA devices
2384 	 * (such as IP over IB) should implement this callback, allowing the
2385 	 * rdma_cm module to find the right net_dev for a given request.
2386 	 *
2387 	 * The caller is responsible for calling dev_put on the returned
2388 	 * netdev. */
2389 	struct net_device *(*get_net_dev_by_params)(
2390 			struct ib_device *dev,
2391 			u8 port,
2392 			u16 pkey,
2393 			const union ib_gid *gid,
2394 			const struct sockaddr *addr,
2395 			void *client_data);
2396 	struct list_head list;
2397 };
2398 
2399 struct ib_device *ib_alloc_device(size_t size);
2400 void ib_dealloc_device(struct ib_device *device);
2401 
2402 void ib_get_device_fw_str(struct ib_device *device, char *str);
2403 
2404 int ib_register_device(struct ib_device *device,
2405 		       int (*port_callback)(struct ib_device *,
2406 					    u8, struct kobject *));
2407 void ib_unregister_device(struct ib_device *device);
2408 
2409 int ib_register_client   (struct ib_client *client);
2410 void ib_unregister_client(struct ib_client *client);
2411 
2412 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2413 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2414 			 void *data);
2415 
2416 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2417 {
2418 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2419 }
2420 
2421 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2422 {
2423 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2424 }
2425 
2426 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2427 				       size_t offset,
2428 				       size_t len)
2429 {
2430 	const void __user *p = udata->inbuf + offset;
2431 	bool ret;
2432 	u8 *buf;
2433 
2434 	if (len > USHRT_MAX)
2435 		return false;
2436 
2437 	buf = memdup_user(p, len);
2438 	if (IS_ERR(buf))
2439 		return false;
2440 
2441 	ret = !memchr_inv(buf, 0, len);
2442 	kfree(buf);
2443 	return ret;
2444 }
2445 
2446 /**
2447  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2448  * contains all required attributes and no attributes not allowed for
2449  * the given QP state transition.
2450  * @cur_state: Current QP state
2451  * @next_state: Next QP state
2452  * @type: QP type
2453  * @mask: Mask of supplied QP attributes
2454  * @ll : link layer of port
2455  *
2456  * This function is a helper function that a low-level driver's
2457  * modify_qp method can use to validate the consumer's input.  It
2458  * checks that cur_state and next_state are valid QP states, that a
2459  * transition from cur_state to next_state is allowed by the IB spec,
2460  * and that the attribute mask supplied is allowed for the transition.
2461  */
2462 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2463 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2464 		       enum rdma_link_layer ll);
2465 
2466 void ib_register_event_handler(struct ib_event_handler *event_handler);
2467 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2468 void ib_dispatch_event(struct ib_event *event);
2469 
2470 int ib_query_port(struct ib_device *device,
2471 		  u8 port_num, struct ib_port_attr *port_attr);
2472 
2473 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2474 					       u8 port_num);
2475 
2476 /**
2477  * rdma_cap_ib_switch - Check if the device is IB switch
2478  * @device: Device to check
2479  *
2480  * Device driver is responsible for setting is_switch bit on
2481  * in ib_device structure at init time.
2482  *
2483  * Return: true if the device is IB switch.
2484  */
2485 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2486 {
2487 	return device->is_switch;
2488 }
2489 
2490 /**
2491  * rdma_start_port - Return the first valid port number for the device
2492  * specified
2493  *
2494  * @device: Device to be checked
2495  *
2496  * Return start port number
2497  */
2498 static inline u8 rdma_start_port(const struct ib_device *device)
2499 {
2500 	return rdma_cap_ib_switch(device) ? 0 : 1;
2501 }
2502 
2503 /**
2504  * rdma_end_port - Return the last valid port number for the device
2505  * specified
2506  *
2507  * @device: Device to be checked
2508  *
2509  * Return last port number
2510  */
2511 static inline u8 rdma_end_port(const struct ib_device *device)
2512 {
2513 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2514 }
2515 
2516 static inline int rdma_is_port_valid(const struct ib_device *device,
2517 				     unsigned int port)
2518 {
2519 	return (port >= rdma_start_port(device) &&
2520 		port <= rdma_end_port(device));
2521 }
2522 
2523 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2524 {
2525 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2526 }
2527 
2528 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2529 {
2530 	return device->port_immutable[port_num].core_cap_flags &
2531 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2532 }
2533 
2534 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2535 {
2536 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2537 }
2538 
2539 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2540 {
2541 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2542 }
2543 
2544 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2545 {
2546 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2547 }
2548 
2549 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2550 {
2551 	return rdma_protocol_ib(device, port_num) ||
2552 		rdma_protocol_roce(device, port_num);
2553 }
2554 
2555 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2556 {
2557 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2558 }
2559 
2560 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2561 {
2562 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2563 }
2564 
2565 /**
2566  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2567  * Management Datagrams.
2568  * @device: Device to check
2569  * @port_num: Port number to check
2570  *
2571  * Management Datagrams (MAD) are a required part of the InfiniBand
2572  * specification and are supported on all InfiniBand devices.  A slightly
2573  * extended version are also supported on OPA interfaces.
2574  *
2575  * Return: true if the port supports sending/receiving of MAD packets.
2576  */
2577 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2578 {
2579 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2580 }
2581 
2582 /**
2583  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2584  * Management Datagrams.
2585  * @device: Device to check
2586  * @port_num: Port number to check
2587  *
2588  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2589  * datagrams with their own versions.  These OPA MADs share many but not all of
2590  * the characteristics of InfiniBand MADs.
2591  *
2592  * OPA MADs differ in the following ways:
2593  *
2594  *    1) MADs are variable size up to 2K
2595  *       IBTA defined MADs remain fixed at 256 bytes
2596  *    2) OPA SMPs must carry valid PKeys
2597  *    3) OPA SMP packets are a different format
2598  *
2599  * Return: true if the port supports OPA MAD packet formats.
2600  */
2601 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2602 {
2603 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2604 		== RDMA_CORE_CAP_OPA_MAD;
2605 }
2606 
2607 /**
2608  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2609  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2610  * @device: Device to check
2611  * @port_num: Port number to check
2612  *
2613  * Each InfiniBand node is required to provide a Subnet Management Agent
2614  * that the subnet manager can access.  Prior to the fabric being fully
2615  * configured by the subnet manager, the SMA is accessed via a well known
2616  * interface called the Subnet Management Interface (SMI).  This interface
2617  * uses directed route packets to communicate with the SM to get around the
2618  * chicken and egg problem of the SM needing to know what's on the fabric
2619  * in order to configure the fabric, and needing to configure the fabric in
2620  * order to send packets to the devices on the fabric.  These directed
2621  * route packets do not need the fabric fully configured in order to reach
2622  * their destination.  The SMI is the only method allowed to send
2623  * directed route packets on an InfiniBand fabric.
2624  *
2625  * Return: true if the port provides an SMI.
2626  */
2627 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2628 {
2629 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2630 }
2631 
2632 /**
2633  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2634  * Communication Manager.
2635  * @device: Device to check
2636  * @port_num: Port number to check
2637  *
2638  * The InfiniBand Communication Manager is one of many pre-defined General
2639  * Service Agents (GSA) that are accessed via the General Service
2640  * Interface (GSI).  It's role is to facilitate establishment of connections
2641  * between nodes as well as other management related tasks for established
2642  * connections.
2643  *
2644  * Return: true if the port supports an IB CM (this does not guarantee that
2645  * a CM is actually running however).
2646  */
2647 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2648 {
2649 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2650 }
2651 
2652 /**
2653  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2654  * Communication Manager.
2655  * @device: Device to check
2656  * @port_num: Port number to check
2657  *
2658  * Similar to above, but specific to iWARP connections which have a different
2659  * managment protocol than InfiniBand.
2660  *
2661  * Return: true if the port supports an iWARP CM (this does not guarantee that
2662  * a CM is actually running however).
2663  */
2664 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2665 {
2666 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2667 }
2668 
2669 /**
2670  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2671  * Subnet Administration.
2672  * @device: Device to check
2673  * @port_num: Port number to check
2674  *
2675  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2676  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2677  * fabrics, devices should resolve routes to other hosts by contacting the
2678  * SA to query the proper route.
2679  *
2680  * Return: true if the port should act as a client to the fabric Subnet
2681  * Administration interface.  This does not imply that the SA service is
2682  * running locally.
2683  */
2684 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2685 {
2686 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2687 }
2688 
2689 /**
2690  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2691  * Multicast.
2692  * @device: Device to check
2693  * @port_num: Port number to check
2694  *
2695  * InfiniBand multicast registration is more complex than normal IPv4 or
2696  * IPv6 multicast registration.  Each Host Channel Adapter must register
2697  * with the Subnet Manager when it wishes to join a multicast group.  It
2698  * should do so only once regardless of how many queue pairs it subscribes
2699  * to this group.  And it should leave the group only after all queue pairs
2700  * attached to the group have been detached.
2701  *
2702  * Return: true if the port must undertake the additional adminstrative
2703  * overhead of registering/unregistering with the SM and tracking of the
2704  * total number of queue pairs attached to the multicast group.
2705  */
2706 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2707 {
2708 	return rdma_cap_ib_sa(device, port_num);
2709 }
2710 
2711 /**
2712  * rdma_cap_af_ib - Check if the port of device has the capability
2713  * Native Infiniband Address.
2714  * @device: Device to check
2715  * @port_num: Port number to check
2716  *
2717  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2718  * GID.  RoCE uses a different mechanism, but still generates a GID via
2719  * a prescribed mechanism and port specific data.
2720  *
2721  * Return: true if the port uses a GID address to identify devices on the
2722  * network.
2723  */
2724 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2725 {
2726 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2727 }
2728 
2729 /**
2730  * rdma_cap_eth_ah - Check if the port of device has the capability
2731  * Ethernet Address Handle.
2732  * @device: Device to check
2733  * @port_num: Port number to check
2734  *
2735  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2736  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2737  * port.  Normally, packet headers are generated by the sending host
2738  * adapter, but when sending connectionless datagrams, we must manually
2739  * inject the proper headers for the fabric we are communicating over.
2740  *
2741  * Return: true if we are running as a RoCE port and must force the
2742  * addition of a Global Route Header built from our Ethernet Address
2743  * Handle into our header list for connectionless packets.
2744  */
2745 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2746 {
2747 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2748 }
2749 
2750 /**
2751  * rdma_cap_opa_ah - Check if the port of device supports
2752  * OPA Address handles
2753  * @device: Device to check
2754  * @port_num: Port number to check
2755  *
2756  * Return: true if we are running on an OPA device which supports
2757  * the extended OPA addressing.
2758  */
2759 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2760 {
2761 	return (device->port_immutable[port_num].core_cap_flags &
2762 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2763 }
2764 
2765 /**
2766  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2767  *
2768  * @device: Device
2769  * @port_num: Port number
2770  *
2771  * This MAD size includes the MAD headers and MAD payload.  No other headers
2772  * are included.
2773  *
2774  * Return the max MAD size required by the Port.  Will return 0 if the port
2775  * does not support MADs
2776  */
2777 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2778 {
2779 	return device->port_immutable[port_num].max_mad_size;
2780 }
2781 
2782 /**
2783  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2784  * @device: Device to check
2785  * @port_num: Port number to check
2786  *
2787  * RoCE GID table mechanism manages the various GIDs for a device.
2788  *
2789  * NOTE: if allocating the port's GID table has failed, this call will still
2790  * return true, but any RoCE GID table API will fail.
2791  *
2792  * Return: true if the port uses RoCE GID table mechanism in order to manage
2793  * its GIDs.
2794  */
2795 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2796 					   u8 port_num)
2797 {
2798 	return rdma_protocol_roce(device, port_num) &&
2799 		device->add_gid && device->del_gid;
2800 }
2801 
2802 /*
2803  * Check if the device supports READ W/ INVALIDATE.
2804  */
2805 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2806 {
2807 	/*
2808 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2809 	 * has support for it yet.
2810 	 */
2811 	return rdma_protocol_iwarp(dev, port_num);
2812 }
2813 
2814 int ib_query_gid(struct ib_device *device,
2815 		 u8 port_num, int index, union ib_gid *gid,
2816 		 struct ib_gid_attr *attr);
2817 
2818 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2819 			 int state);
2820 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2821 		     struct ifla_vf_info *info);
2822 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2823 		    struct ifla_vf_stats *stats);
2824 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2825 		   int type);
2826 
2827 int ib_query_pkey(struct ib_device *device,
2828 		  u8 port_num, u16 index, u16 *pkey);
2829 
2830 int ib_modify_device(struct ib_device *device,
2831 		     int device_modify_mask,
2832 		     struct ib_device_modify *device_modify);
2833 
2834 int ib_modify_port(struct ib_device *device,
2835 		   u8 port_num, int port_modify_mask,
2836 		   struct ib_port_modify *port_modify);
2837 
2838 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2839 		enum ib_gid_type gid_type, struct net_device *ndev,
2840 		u8 *port_num, u16 *index);
2841 
2842 int ib_find_pkey(struct ib_device *device,
2843 		 u8 port_num, u16 pkey, u16 *index);
2844 
2845 enum ib_pd_flags {
2846 	/*
2847 	 * Create a memory registration for all memory in the system and place
2848 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2849 	 * ULPs to avoid the overhead of dynamic MRs.
2850 	 *
2851 	 * This flag is generally considered unsafe and must only be used in
2852 	 * extremly trusted environments.  Every use of it will log a warning
2853 	 * in the kernel log.
2854 	 */
2855 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2856 };
2857 
2858 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2859 		const char *caller);
2860 #define ib_alloc_pd(device, flags) \
2861 	__ib_alloc_pd((device), (flags), __func__)
2862 void ib_dealloc_pd(struct ib_pd *pd);
2863 
2864 /**
2865  * rdma_create_ah - Creates an address handle for the given address vector.
2866  * @pd: The protection domain associated with the address handle.
2867  * @ah_attr: The attributes of the address vector.
2868  *
2869  * The address handle is used to reference a local or global destination
2870  * in all UD QP post sends.
2871  */
2872 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2873 
2874 /**
2875  * rdma_create_user_ah - Creates an address handle for the given address vector.
2876  * It resolves destination mac address for ah attribute of RoCE type.
2877  * @pd: The protection domain associated with the address handle.
2878  * @ah_attr: The attributes of the address vector.
2879  * @udata: pointer to user's input output buffer information need by
2880  *         provider driver.
2881  *
2882  * It returns 0 on success and returns appropriate error code on error.
2883  * The address handle is used to reference a local or global destination
2884  * in all UD QP post sends.
2885  */
2886 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2887 				  struct rdma_ah_attr *ah_attr,
2888 				  struct ib_udata *udata);
2889 /**
2890  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2891  *   work completion.
2892  * @hdr: the L3 header to parse
2893  * @net_type: type of header to parse
2894  * @sgid: place to store source gid
2895  * @dgid: place to store destination gid
2896  */
2897 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2898 			      enum rdma_network_type net_type,
2899 			      union ib_gid *sgid, union ib_gid *dgid);
2900 
2901 /**
2902  * ib_get_rdma_header_version - Get the header version
2903  * @hdr: the L3 header to parse
2904  */
2905 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2906 
2907 /**
2908  * ib_init_ah_from_wc - Initializes address handle attributes from a
2909  *   work completion.
2910  * @device: Device on which the received message arrived.
2911  * @port_num: Port on which the received message arrived.
2912  * @wc: Work completion associated with the received message.
2913  * @grh: References the received global route header.  This parameter is
2914  *   ignored unless the work completion indicates that the GRH is valid.
2915  * @ah_attr: Returned attributes that can be used when creating an address
2916  *   handle for replying to the message.
2917  */
2918 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2919 		       const struct ib_wc *wc, const struct ib_grh *grh,
2920 		       struct rdma_ah_attr *ah_attr);
2921 
2922 /**
2923  * ib_create_ah_from_wc - Creates an address handle associated with the
2924  *   sender of the specified work completion.
2925  * @pd: The protection domain associated with the address handle.
2926  * @wc: Work completion information associated with a received message.
2927  * @grh: References the received global route header.  This parameter is
2928  *   ignored unless the work completion indicates that the GRH is valid.
2929  * @port_num: The outbound port number to associate with the address.
2930  *
2931  * The address handle is used to reference a local or global destination
2932  * in all UD QP post sends.
2933  */
2934 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2935 				   const struct ib_grh *grh, u8 port_num);
2936 
2937 /**
2938  * rdma_modify_ah - Modifies the address vector associated with an address
2939  *   handle.
2940  * @ah: The address handle to modify.
2941  * @ah_attr: The new address vector attributes to associate with the
2942  *   address handle.
2943  */
2944 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2945 
2946 /**
2947  * rdma_query_ah - Queries the address vector associated with an address
2948  *   handle.
2949  * @ah: The address handle to query.
2950  * @ah_attr: The address vector attributes associated with the address
2951  *   handle.
2952  */
2953 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2954 
2955 /**
2956  * rdma_destroy_ah - Destroys an address handle.
2957  * @ah: The address handle to destroy.
2958  */
2959 int rdma_destroy_ah(struct ib_ah *ah);
2960 
2961 /**
2962  * ib_create_srq - Creates a SRQ associated with the specified protection
2963  *   domain.
2964  * @pd: The protection domain associated with the SRQ.
2965  * @srq_init_attr: A list of initial attributes required to create the
2966  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2967  *   the actual capabilities of the created SRQ.
2968  *
2969  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2970  * requested size of the SRQ, and set to the actual values allocated
2971  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2972  * will always be at least as large as the requested values.
2973  */
2974 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2975 			     struct ib_srq_init_attr *srq_init_attr);
2976 
2977 /**
2978  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2979  * @srq: The SRQ to modify.
2980  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2981  *   the current values of selected SRQ attributes are returned.
2982  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2983  *   are being modified.
2984  *
2985  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2986  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2987  * the number of receives queued drops below the limit.
2988  */
2989 int ib_modify_srq(struct ib_srq *srq,
2990 		  struct ib_srq_attr *srq_attr,
2991 		  enum ib_srq_attr_mask srq_attr_mask);
2992 
2993 /**
2994  * ib_query_srq - Returns the attribute list and current values for the
2995  *   specified SRQ.
2996  * @srq: The SRQ to query.
2997  * @srq_attr: The attributes of the specified SRQ.
2998  */
2999 int ib_query_srq(struct ib_srq *srq,
3000 		 struct ib_srq_attr *srq_attr);
3001 
3002 /**
3003  * ib_destroy_srq - Destroys the specified SRQ.
3004  * @srq: The SRQ to destroy.
3005  */
3006 int ib_destroy_srq(struct ib_srq *srq);
3007 
3008 /**
3009  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3010  * @srq: The SRQ to post the work request on.
3011  * @recv_wr: A list of work requests to post on the receive queue.
3012  * @bad_recv_wr: On an immediate failure, this parameter will reference
3013  *   the work request that failed to be posted on the QP.
3014  */
3015 static inline int ib_post_srq_recv(struct ib_srq *srq,
3016 				   struct ib_recv_wr *recv_wr,
3017 				   struct ib_recv_wr **bad_recv_wr)
3018 {
3019 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3020 }
3021 
3022 /**
3023  * ib_create_qp - Creates a QP associated with the specified protection
3024  *   domain.
3025  * @pd: The protection domain associated with the QP.
3026  * @qp_init_attr: A list of initial attributes required to create the
3027  *   QP.  If QP creation succeeds, then the attributes are updated to
3028  *   the actual capabilities of the created QP.
3029  */
3030 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3031 			   struct ib_qp_init_attr *qp_init_attr);
3032 
3033 /**
3034  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3035  * @qp: The QP to modify.
3036  * @attr: On input, specifies the QP attributes to modify.  On output,
3037  *   the current values of selected QP attributes are returned.
3038  * @attr_mask: A bit-mask used to specify which attributes of the QP
3039  *   are being modified.
3040  * @udata: pointer to user's input output buffer information
3041  *   are being modified.
3042  * It returns 0 on success and returns appropriate error code on error.
3043  */
3044 int ib_modify_qp_with_udata(struct ib_qp *qp,
3045 			    struct ib_qp_attr *attr,
3046 			    int attr_mask,
3047 			    struct ib_udata *udata);
3048 
3049 /**
3050  * ib_modify_qp - Modifies the attributes for the specified QP and then
3051  *   transitions the QP to the given state.
3052  * @qp: The QP to modify.
3053  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3054  *   the current values of selected QP attributes are returned.
3055  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3056  *   are being modified.
3057  */
3058 int ib_modify_qp(struct ib_qp *qp,
3059 		 struct ib_qp_attr *qp_attr,
3060 		 int qp_attr_mask);
3061 
3062 /**
3063  * ib_query_qp - Returns the attribute list and current values for the
3064  *   specified QP.
3065  * @qp: The QP to query.
3066  * @qp_attr: The attributes of the specified QP.
3067  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3068  * @qp_init_attr: Additional attributes of the selected QP.
3069  *
3070  * The qp_attr_mask may be used to limit the query to gathering only the
3071  * selected attributes.
3072  */
3073 int ib_query_qp(struct ib_qp *qp,
3074 		struct ib_qp_attr *qp_attr,
3075 		int qp_attr_mask,
3076 		struct ib_qp_init_attr *qp_init_attr);
3077 
3078 /**
3079  * ib_destroy_qp - Destroys the specified QP.
3080  * @qp: The QP to destroy.
3081  */
3082 int ib_destroy_qp(struct ib_qp *qp);
3083 
3084 /**
3085  * ib_open_qp - Obtain a reference to an existing sharable QP.
3086  * @xrcd - XRC domain
3087  * @qp_open_attr: Attributes identifying the QP to open.
3088  *
3089  * Returns a reference to a sharable QP.
3090  */
3091 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3092 			 struct ib_qp_open_attr *qp_open_attr);
3093 
3094 /**
3095  * ib_close_qp - Release an external reference to a QP.
3096  * @qp: The QP handle to release
3097  *
3098  * The opened QP handle is released by the caller.  The underlying
3099  * shared QP is not destroyed until all internal references are released.
3100  */
3101 int ib_close_qp(struct ib_qp *qp);
3102 
3103 /**
3104  * ib_post_send - Posts a list of work requests to the send queue of
3105  *   the specified QP.
3106  * @qp: The QP to post the work request on.
3107  * @send_wr: A list of work requests to post on the send queue.
3108  * @bad_send_wr: On an immediate failure, this parameter will reference
3109  *   the work request that failed to be posted on the QP.
3110  *
3111  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3112  * error is returned, the QP state shall not be affected,
3113  * ib_post_send() will return an immediate error after queueing any
3114  * earlier work requests in the list.
3115  */
3116 static inline int ib_post_send(struct ib_qp *qp,
3117 			       struct ib_send_wr *send_wr,
3118 			       struct ib_send_wr **bad_send_wr)
3119 {
3120 	return qp->device->post_send(qp, send_wr, bad_send_wr);
3121 }
3122 
3123 /**
3124  * ib_post_recv - Posts a list of work requests to the receive queue of
3125  *   the specified QP.
3126  * @qp: The QP to post the work request on.
3127  * @recv_wr: A list of work requests to post on the receive queue.
3128  * @bad_recv_wr: On an immediate failure, this parameter will reference
3129  *   the work request that failed to be posted on the QP.
3130  */
3131 static inline int ib_post_recv(struct ib_qp *qp,
3132 			       struct ib_recv_wr *recv_wr,
3133 			       struct ib_recv_wr **bad_recv_wr)
3134 {
3135 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3136 }
3137 
3138 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3139 		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3140 void ib_free_cq(struct ib_cq *cq);
3141 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3142 
3143 /**
3144  * ib_create_cq - Creates a CQ on the specified device.
3145  * @device: The device on which to create the CQ.
3146  * @comp_handler: A user-specified callback that is invoked when a
3147  *   completion event occurs on the CQ.
3148  * @event_handler: A user-specified callback that is invoked when an
3149  *   asynchronous event not associated with a completion occurs on the CQ.
3150  * @cq_context: Context associated with the CQ returned to the user via
3151  *   the associated completion and event handlers.
3152  * @cq_attr: The attributes the CQ should be created upon.
3153  *
3154  * Users can examine the cq structure to determine the actual CQ size.
3155  */
3156 struct ib_cq *ib_create_cq(struct ib_device *device,
3157 			   ib_comp_handler comp_handler,
3158 			   void (*event_handler)(struct ib_event *, void *),
3159 			   void *cq_context,
3160 			   const struct ib_cq_init_attr *cq_attr);
3161 
3162 /**
3163  * ib_resize_cq - Modifies the capacity of the CQ.
3164  * @cq: The CQ to resize.
3165  * @cqe: The minimum size of the CQ.
3166  *
3167  * Users can examine the cq structure to determine the actual CQ size.
3168  */
3169 int ib_resize_cq(struct ib_cq *cq, int cqe);
3170 
3171 /**
3172  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3173  * @cq: The CQ to modify.
3174  * @cq_count: number of CQEs that will trigger an event
3175  * @cq_period: max period of time in usec before triggering an event
3176  *
3177  */
3178 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3179 
3180 /**
3181  * ib_destroy_cq - Destroys the specified CQ.
3182  * @cq: The CQ to destroy.
3183  */
3184 int ib_destroy_cq(struct ib_cq *cq);
3185 
3186 /**
3187  * ib_poll_cq - poll a CQ for completion(s)
3188  * @cq:the CQ being polled
3189  * @num_entries:maximum number of completions to return
3190  * @wc:array of at least @num_entries &struct ib_wc where completions
3191  *   will be returned
3192  *
3193  * Poll a CQ for (possibly multiple) completions.  If the return value
3194  * is < 0, an error occurred.  If the return value is >= 0, it is the
3195  * number of completions returned.  If the return value is
3196  * non-negative and < num_entries, then the CQ was emptied.
3197  */
3198 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3199 			     struct ib_wc *wc)
3200 {
3201 	return cq->device->poll_cq(cq, num_entries, wc);
3202 }
3203 
3204 /**
3205  * ib_peek_cq - Returns the number of unreaped completions currently
3206  *   on the specified CQ.
3207  * @cq: The CQ to peek.
3208  * @wc_cnt: A minimum number of unreaped completions to check for.
3209  *
3210  * If the number of unreaped completions is greater than or equal to wc_cnt,
3211  * this function returns wc_cnt, otherwise, it returns the actual number of
3212  * unreaped completions.
3213  */
3214 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3215 
3216 /**
3217  * ib_req_notify_cq - Request completion notification on a CQ.
3218  * @cq: The CQ to generate an event for.
3219  * @flags:
3220  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3221  *   to request an event on the next solicited event or next work
3222  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3223  *   may also be |ed in to request a hint about missed events, as
3224  *   described below.
3225  *
3226  * Return Value:
3227  *    < 0 means an error occurred while requesting notification
3228  *   == 0 means notification was requested successfully, and if
3229  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3230  *        were missed and it is safe to wait for another event.  In
3231  *        this case is it guaranteed that any work completions added
3232  *        to the CQ since the last CQ poll will trigger a completion
3233  *        notification event.
3234  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3235  *        in.  It means that the consumer must poll the CQ again to
3236  *        make sure it is empty to avoid missing an event because of a
3237  *        race between requesting notification and an entry being
3238  *        added to the CQ.  This return value means it is possible
3239  *        (but not guaranteed) that a work completion has been added
3240  *        to the CQ since the last poll without triggering a
3241  *        completion notification event.
3242  */
3243 static inline int ib_req_notify_cq(struct ib_cq *cq,
3244 				   enum ib_cq_notify_flags flags)
3245 {
3246 	return cq->device->req_notify_cq(cq, flags);
3247 }
3248 
3249 /**
3250  * ib_req_ncomp_notif - Request completion notification when there are
3251  *   at least the specified number of unreaped completions on the CQ.
3252  * @cq: The CQ to generate an event for.
3253  * @wc_cnt: The number of unreaped completions that should be on the
3254  *   CQ before an event is generated.
3255  */
3256 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3257 {
3258 	return cq->device->req_ncomp_notif ?
3259 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3260 		-ENOSYS;
3261 }
3262 
3263 /**
3264  * ib_dma_mapping_error - check a DMA addr for error
3265  * @dev: The device for which the dma_addr was created
3266  * @dma_addr: The DMA address to check
3267  */
3268 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3269 {
3270 	return dma_mapping_error(dev->dma_device, dma_addr);
3271 }
3272 
3273 /**
3274  * ib_dma_map_single - Map a kernel virtual address to DMA address
3275  * @dev: The device for which the dma_addr is to be created
3276  * @cpu_addr: The kernel virtual address
3277  * @size: The size of the region in bytes
3278  * @direction: The direction of the DMA
3279  */
3280 static inline u64 ib_dma_map_single(struct ib_device *dev,
3281 				    void *cpu_addr, size_t size,
3282 				    enum dma_data_direction direction)
3283 {
3284 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3285 }
3286 
3287 /**
3288  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3289  * @dev: The device for which the DMA address was created
3290  * @addr: The DMA address
3291  * @size: The size of the region in bytes
3292  * @direction: The direction of the DMA
3293  */
3294 static inline void ib_dma_unmap_single(struct ib_device *dev,
3295 				       u64 addr, size_t size,
3296 				       enum dma_data_direction direction)
3297 {
3298 	dma_unmap_single(dev->dma_device, addr, size, direction);
3299 }
3300 
3301 /**
3302  * ib_dma_map_page - Map a physical page to DMA address
3303  * @dev: The device for which the dma_addr is to be created
3304  * @page: The page to be mapped
3305  * @offset: The offset within the page
3306  * @size: The size of the region in bytes
3307  * @direction: The direction of the DMA
3308  */
3309 static inline u64 ib_dma_map_page(struct ib_device *dev,
3310 				  struct page *page,
3311 				  unsigned long offset,
3312 				  size_t size,
3313 					 enum dma_data_direction direction)
3314 {
3315 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3316 }
3317 
3318 /**
3319  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3320  * @dev: The device for which the DMA address was created
3321  * @addr: The DMA address
3322  * @size: The size of the region in bytes
3323  * @direction: The direction of the DMA
3324  */
3325 static inline void ib_dma_unmap_page(struct ib_device *dev,
3326 				     u64 addr, size_t size,
3327 				     enum dma_data_direction direction)
3328 {
3329 	dma_unmap_page(dev->dma_device, addr, size, direction);
3330 }
3331 
3332 /**
3333  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3334  * @dev: The device for which the DMA addresses are to be created
3335  * @sg: The array of scatter/gather entries
3336  * @nents: The number of scatter/gather entries
3337  * @direction: The direction of the DMA
3338  */
3339 static inline int ib_dma_map_sg(struct ib_device *dev,
3340 				struct scatterlist *sg, int nents,
3341 				enum dma_data_direction direction)
3342 {
3343 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3344 }
3345 
3346 /**
3347  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3348  * @dev: The device for which the DMA addresses were created
3349  * @sg: The array of scatter/gather entries
3350  * @nents: The number of scatter/gather entries
3351  * @direction: The direction of the DMA
3352  */
3353 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3354 				   struct scatterlist *sg, int nents,
3355 				   enum dma_data_direction direction)
3356 {
3357 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3358 }
3359 
3360 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3361 				      struct scatterlist *sg, int nents,
3362 				      enum dma_data_direction direction,
3363 				      unsigned long dma_attrs)
3364 {
3365 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3366 				dma_attrs);
3367 }
3368 
3369 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3370 					 struct scatterlist *sg, int nents,
3371 					 enum dma_data_direction direction,
3372 					 unsigned long dma_attrs)
3373 {
3374 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3375 }
3376 /**
3377  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3378  * @dev: The device for which the DMA addresses were created
3379  * @sg: The scatter/gather entry
3380  *
3381  * Note: this function is obsolete. To do: change all occurrences of
3382  * ib_sg_dma_address() into sg_dma_address().
3383  */
3384 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3385 				    struct scatterlist *sg)
3386 {
3387 	return sg_dma_address(sg);
3388 }
3389 
3390 /**
3391  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3392  * @dev: The device for which the DMA addresses were created
3393  * @sg: The scatter/gather entry
3394  *
3395  * Note: this function is obsolete. To do: change all occurrences of
3396  * ib_sg_dma_len() into sg_dma_len().
3397  */
3398 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3399 					 struct scatterlist *sg)
3400 {
3401 	return sg_dma_len(sg);
3402 }
3403 
3404 /**
3405  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3406  * @dev: The device for which the DMA address was created
3407  * @addr: The DMA address
3408  * @size: The size of the region in bytes
3409  * @dir: The direction of the DMA
3410  */
3411 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3412 					      u64 addr,
3413 					      size_t size,
3414 					      enum dma_data_direction dir)
3415 {
3416 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3417 }
3418 
3419 /**
3420  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3421  * @dev: The device for which the DMA address was created
3422  * @addr: The DMA address
3423  * @size: The size of the region in bytes
3424  * @dir: The direction of the DMA
3425  */
3426 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3427 						 u64 addr,
3428 						 size_t size,
3429 						 enum dma_data_direction dir)
3430 {
3431 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3432 }
3433 
3434 /**
3435  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3436  * @dev: The device for which the DMA address is requested
3437  * @size: The size of the region to allocate in bytes
3438  * @dma_handle: A pointer for returning the DMA address of the region
3439  * @flag: memory allocator flags
3440  */
3441 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3442 					   size_t size,
3443 					   dma_addr_t *dma_handle,
3444 					   gfp_t flag)
3445 {
3446 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3447 }
3448 
3449 /**
3450  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3451  * @dev: The device for which the DMA addresses were allocated
3452  * @size: The size of the region
3453  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3454  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3455  */
3456 static inline void ib_dma_free_coherent(struct ib_device *dev,
3457 					size_t size, void *cpu_addr,
3458 					dma_addr_t dma_handle)
3459 {
3460 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3461 }
3462 
3463 /**
3464  * ib_dereg_mr - Deregisters a memory region and removes it from the
3465  *   HCA translation table.
3466  * @mr: The memory region to deregister.
3467  *
3468  * This function can fail, if the memory region has memory windows bound to it.
3469  */
3470 int ib_dereg_mr(struct ib_mr *mr);
3471 
3472 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3473 			  enum ib_mr_type mr_type,
3474 			  u32 max_num_sg);
3475 
3476 /**
3477  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3478  *   R_Key and L_Key.
3479  * @mr - struct ib_mr pointer to be updated.
3480  * @newkey - new key to be used.
3481  */
3482 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3483 {
3484 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3485 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3486 }
3487 
3488 /**
3489  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3490  * for calculating a new rkey for type 2 memory windows.
3491  * @rkey - the rkey to increment.
3492  */
3493 static inline u32 ib_inc_rkey(u32 rkey)
3494 {
3495 	const u32 mask = 0x000000ff;
3496 	return ((rkey + 1) & mask) | (rkey & ~mask);
3497 }
3498 
3499 /**
3500  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3501  * @pd: The protection domain associated with the unmapped region.
3502  * @mr_access_flags: Specifies the memory access rights.
3503  * @fmr_attr: Attributes of the unmapped region.
3504  *
3505  * A fast memory region must be mapped before it can be used as part of
3506  * a work request.
3507  */
3508 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3509 			    int mr_access_flags,
3510 			    struct ib_fmr_attr *fmr_attr);
3511 
3512 /**
3513  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3514  * @fmr: The fast memory region to associate with the pages.
3515  * @page_list: An array of physical pages to map to the fast memory region.
3516  * @list_len: The number of pages in page_list.
3517  * @iova: The I/O virtual address to use with the mapped region.
3518  */
3519 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3520 				  u64 *page_list, int list_len,
3521 				  u64 iova)
3522 {
3523 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3524 }
3525 
3526 /**
3527  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3528  * @fmr_list: A linked list of fast memory regions to unmap.
3529  */
3530 int ib_unmap_fmr(struct list_head *fmr_list);
3531 
3532 /**
3533  * ib_dealloc_fmr - Deallocates a fast memory region.
3534  * @fmr: The fast memory region to deallocate.
3535  */
3536 int ib_dealloc_fmr(struct ib_fmr *fmr);
3537 
3538 /**
3539  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3540  * @qp: QP to attach to the multicast group.  The QP must be type
3541  *   IB_QPT_UD.
3542  * @gid: Multicast group GID.
3543  * @lid: Multicast group LID in host byte order.
3544  *
3545  * In order to send and receive multicast packets, subnet
3546  * administration must have created the multicast group and configured
3547  * the fabric appropriately.  The port associated with the specified
3548  * QP must also be a member of the multicast group.
3549  */
3550 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3551 
3552 /**
3553  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3554  * @qp: QP to detach from the multicast group.
3555  * @gid: Multicast group GID.
3556  * @lid: Multicast group LID in host byte order.
3557  */
3558 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3559 
3560 /**
3561  * ib_alloc_xrcd - Allocates an XRC domain.
3562  * @device: The device on which to allocate the XRC domain.
3563  */
3564 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3565 
3566 /**
3567  * ib_dealloc_xrcd - Deallocates an XRC domain.
3568  * @xrcd: The XRC domain to deallocate.
3569  */
3570 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3571 
3572 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3573 			       struct ib_flow_attr *flow_attr, int domain);
3574 int ib_destroy_flow(struct ib_flow *flow_id);
3575 
3576 static inline int ib_check_mr_access(int flags)
3577 {
3578 	/*
3579 	 * Local write permission is required if remote write or
3580 	 * remote atomic permission is also requested.
3581 	 */
3582 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3583 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3584 		return -EINVAL;
3585 
3586 	return 0;
3587 }
3588 
3589 /**
3590  * ib_check_mr_status: lightweight check of MR status.
3591  *     This routine may provide status checks on a selected
3592  *     ib_mr. first use is for signature status check.
3593  *
3594  * @mr: A memory region.
3595  * @check_mask: Bitmask of which checks to perform from
3596  *     ib_mr_status_check enumeration.
3597  * @mr_status: The container of relevant status checks.
3598  *     failed checks will be indicated in the status bitmask
3599  *     and the relevant info shall be in the error item.
3600  */
3601 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3602 		       struct ib_mr_status *mr_status);
3603 
3604 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3605 					    u16 pkey, const union ib_gid *gid,
3606 					    const struct sockaddr *addr);
3607 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3608 			   struct ib_wq_init_attr *init_attr);
3609 int ib_destroy_wq(struct ib_wq *wq);
3610 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3611 		 u32 wq_attr_mask);
3612 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3613 						 struct ib_rwq_ind_table_init_attr*
3614 						 wq_ind_table_init_attr);
3615 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3616 
3617 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3618 		 unsigned int *sg_offset, unsigned int page_size);
3619 
3620 static inline int
3621 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3622 		  unsigned int *sg_offset, unsigned int page_size)
3623 {
3624 	int n;
3625 
3626 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3627 	mr->iova = 0;
3628 
3629 	return n;
3630 }
3631 
3632 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3633 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3634 
3635 void ib_drain_rq(struct ib_qp *qp);
3636 void ib_drain_sq(struct ib_qp *qp);
3637 void ib_drain_qp(struct ib_qp *qp);
3638 
3639 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3640 
3641 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3642 {
3643 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3644 		return attr->roce.dmac;
3645 	return NULL;
3646 }
3647 
3648 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3649 {
3650 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3651 		attr->ib.dlid = (u16)dlid;
3652 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3653 		attr->opa.dlid = dlid;
3654 }
3655 
3656 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3657 {
3658 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3659 		return attr->ib.dlid;
3660 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3661 		return attr->opa.dlid;
3662 	return 0;
3663 }
3664 
3665 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3666 {
3667 	attr->sl = sl;
3668 }
3669 
3670 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3671 {
3672 	return attr->sl;
3673 }
3674 
3675 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3676 					 u8 src_path_bits)
3677 {
3678 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3679 		attr->ib.src_path_bits = src_path_bits;
3680 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3681 		attr->opa.src_path_bits = src_path_bits;
3682 }
3683 
3684 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3685 {
3686 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3687 		return attr->ib.src_path_bits;
3688 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3689 		return attr->opa.src_path_bits;
3690 	return 0;
3691 }
3692 
3693 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3694 					bool make_grd)
3695 {
3696 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3697 		attr->opa.make_grd = make_grd;
3698 }
3699 
3700 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3701 {
3702 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3703 		return attr->opa.make_grd;
3704 	return false;
3705 }
3706 
3707 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3708 {
3709 	attr->port_num = port_num;
3710 }
3711 
3712 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3713 {
3714 	return attr->port_num;
3715 }
3716 
3717 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3718 					   u8 static_rate)
3719 {
3720 	attr->static_rate = static_rate;
3721 }
3722 
3723 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3724 {
3725 	return attr->static_rate;
3726 }
3727 
3728 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3729 					enum ib_ah_flags flag)
3730 {
3731 	attr->ah_flags = flag;
3732 }
3733 
3734 static inline enum ib_ah_flags
3735 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3736 {
3737 	return attr->ah_flags;
3738 }
3739 
3740 static inline const struct ib_global_route
3741 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3742 {
3743 	return &attr->grh;
3744 }
3745 
3746 /*To retrieve and modify the grh */
3747 static inline struct ib_global_route
3748 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3749 {
3750 	return &attr->grh;
3751 }
3752 
3753 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3754 {
3755 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3756 
3757 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3758 }
3759 
3760 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3761 					     __be64 prefix)
3762 {
3763 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3764 
3765 	grh->dgid.global.subnet_prefix = prefix;
3766 }
3767 
3768 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3769 					    __be64 if_id)
3770 {
3771 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3772 
3773 	grh->dgid.global.interface_id = if_id;
3774 }
3775 
3776 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3777 				   union ib_gid *dgid, u32 flow_label,
3778 				   u8 sgid_index, u8 hop_limit,
3779 				   u8 traffic_class)
3780 {
3781 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3782 
3783 	attr->ah_flags = IB_AH_GRH;
3784 	if (dgid)
3785 		grh->dgid = *dgid;
3786 	grh->flow_label = flow_label;
3787 	grh->sgid_index = sgid_index;
3788 	grh->hop_limit = hop_limit;
3789 	grh->traffic_class = traffic_class;
3790 }
3791 
3792 /*Get AH type */
3793 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3794 						       u32 port_num)
3795 {
3796 	if ((rdma_protocol_roce(dev, port_num)) ||
3797 	    (rdma_protocol_iwarp(dev, port_num)))
3798 		return RDMA_AH_ATTR_TYPE_ROCE;
3799 	else if ((rdma_protocol_ib(dev, port_num)) &&
3800 		 (rdma_cap_opa_ah(dev, port_num)))
3801 		return RDMA_AH_ATTR_TYPE_OPA;
3802 	else
3803 		return RDMA_AH_ATTR_TYPE_IB;
3804 }
3805 
3806 /**
3807  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3808  *     In the current implementation the only way to get
3809  *     get the 32bit lid is from other sources for OPA.
3810  *     For IB, lids will always be 16bits so cast the
3811  *     value accordingly.
3812  *
3813  * @lid: A 32bit LID
3814  */
3815 static inline u16 ib_lid_cpu16(u32 lid)
3816 {
3817 	WARN_ON_ONCE(lid & 0xFFFF0000);
3818 	return (u16)lid;
3819 }
3820 
3821 /**
3822  * ib_lid_be16 - Return lid in 16bit BE encoding.
3823  *
3824  * @lid: A 32bit LID
3825  */
3826 static inline __be16 ib_lid_be16(u32 lid)
3827 {
3828 	WARN_ON_ONCE(lid & 0xFFFF0000);
3829 	return cpu_to_be16((u16)lid);
3830 }
3831 
3832 /**
3833  * ib_get_vector_affinity - Get the affinity mappings of a given completion
3834  *   vector
3835  * @device:         the rdma device
3836  * @comp_vector:    index of completion vector
3837  *
3838  * Returns NULL on failure, otherwise a corresponding cpu map of the
3839  * completion vector (returns all-cpus map if the device driver doesn't
3840  * implement get_vector_affinity).
3841  */
3842 static inline const struct cpumask *
3843 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3844 {
3845 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3846 	    !device->get_vector_affinity)
3847 		return NULL;
3848 
3849 	return device->get_vector_affinity(device, comp_vector);
3850 
3851 }
3852 
3853 #endif /* IB_VERBS_H */
3854