1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 238 239 /* Reserved, old SEND_W_INV = 1 << 16,*/ 240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 241 /* 242 * Devices should set IB_DEVICE_UD_IP_SUM if they support 243 * insertion of UDP and TCP checksum on outgoing UD IPoIB 244 * messages and can verify the validity of checksum for 245 * incoming messages. Setting this flag implies that the 246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 247 */ 248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 250 251 /* 252 * This device supports the IB "base memory management extension", 253 * which includes support for fast registrations (IB_WR_REG_MR, 254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 255 * also be set by any iWarp device which must support FRs to comply 256 * to the iWarp verbs spec. iWarp devices also support the 257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 258 * stag. 259 */ 260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 266 IB_DEVICE_MANAGED_FLOW_STEERING = 267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 270 /* The device supports padding incoming writes to cacheline. */ 271 IB_DEVICE_PCI_WRITE_END_PADDING = 272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 273 /* Placement type attributes */ 274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 277 }; 278 279 enum ib_kernel_cap_flags { 280 /* 281 * This device supports a per-device lkey or stag that can be 282 * used without performing a memory registration for the local 283 * memory. Note that ULPs should never check this flag, but 284 * instead of use the local_dma_lkey flag in the ib_pd structure, 285 * which will always contain a usable lkey. 286 */ 287 IBK_LOCAL_DMA_LKEY = 1 << 0, 288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 289 IBK_INTEGRITY_HANDOVER = 1 << 1, 290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 291 IBK_ON_DEMAND_PAGING = 1 << 2, 292 /* IB_MR_TYPE_SG_GAPS is supported */ 293 IBK_SG_GAPS_REG = 1 << 3, 294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 295 IBK_ALLOW_USER_UNREG = 1 << 4, 296 297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 300 IBK_UD_TSO = 1 << 6, 301 /* iopib will use the device ops: 302 * get_vf_config 303 * get_vf_guid 304 * get_vf_stats 305 * set_vf_guid 306 * set_vf_link_state 307 */ 308 IBK_VIRTUAL_FUNCTION = 1 << 7, 309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 310 IBK_RDMA_NETDEV_OPA = 1 << 8, 311 }; 312 313 enum ib_atomic_cap { 314 IB_ATOMIC_NONE, 315 IB_ATOMIC_HCA, 316 IB_ATOMIC_GLOB 317 }; 318 319 enum ib_odp_general_cap_bits { 320 IB_ODP_SUPPORT = 1 << 0, 321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 322 }; 323 324 enum ib_odp_transport_cap_bits { 325 IB_ODP_SUPPORT_SEND = 1 << 0, 326 IB_ODP_SUPPORT_RECV = 1 << 1, 327 IB_ODP_SUPPORT_WRITE = 1 << 2, 328 IB_ODP_SUPPORT_READ = 1 << 3, 329 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 331 }; 332 333 struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341 }; 342 343 struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351 }; 352 353 enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356 }; 357 358 struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369 }; 370 371 struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375 }; 376 377 enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379 }; 380 381 struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384 }; 385 386 struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390 }; 391 392 struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396 }; 397 398 struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453 }; 454 455 enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461 }; 462 463 enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466 }; 467 468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469 { 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478 } 479 480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481 { 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492 } 493 494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495 { 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504 } 505 506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507 { 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514 } 515 516 enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523 }; 524 525 enum ib_port_phys_state { 526 IB_PORT_PHYS_STATE_SLEEP = 1, 527 IB_PORT_PHYS_STATE_POLLING = 2, 528 IB_PORT_PHYS_STATE_DISABLED = 3, 529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 530 IB_PORT_PHYS_STATE_LINK_UP = 5, 531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 532 IB_PORT_PHYS_STATE_PHY_TEST = 7, 533 }; 534 535 enum ib_port_width { 536 IB_WIDTH_1X = 1, 537 IB_WIDTH_2X = 16, 538 IB_WIDTH_4X = 2, 539 IB_WIDTH_8X = 4, 540 IB_WIDTH_12X = 8 541 }; 542 543 static inline int ib_width_enum_to_int(enum ib_port_width width) 544 { 545 switch (width) { 546 case IB_WIDTH_1X: return 1; 547 case IB_WIDTH_2X: return 2; 548 case IB_WIDTH_4X: return 4; 549 case IB_WIDTH_8X: return 8; 550 case IB_WIDTH_12X: return 12; 551 default: return -1; 552 } 553 } 554 555 enum ib_port_speed { 556 IB_SPEED_SDR = 1, 557 IB_SPEED_DDR = 2, 558 IB_SPEED_QDR = 4, 559 IB_SPEED_FDR10 = 8, 560 IB_SPEED_FDR = 16, 561 IB_SPEED_EDR = 32, 562 IB_SPEED_HDR = 64, 563 IB_SPEED_NDR = 128, 564 }; 565 566 enum ib_stat_flag { 567 IB_STAT_FLAG_OPTIONAL = 1 << 0, 568 }; 569 570 /** 571 * struct rdma_stat_desc 572 * @name - The name of the counter 573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 574 * @priv - Driver private information; Core code should not use 575 */ 576 struct rdma_stat_desc { 577 const char *name; 578 unsigned int flags; 579 const void *priv; 580 }; 581 582 /** 583 * struct rdma_hw_stats 584 * @lock - Mutex to protect parallel write access to lifespan and values 585 * of counters, which are 64bits and not guaranteed to be written 586 * atomicaly on 32bits systems. 587 * @timestamp - Used by the core code to track when the last update was 588 * @lifespan - Used by the core code to determine how old the counters 589 * should be before being updated again. Stored in jiffies, defaults 590 * to 10 milliseconds, drivers can override the default be specifying 591 * their own value during their allocation routine. 592 * @descs - Array of pointers to static descriptors used for the counters 593 * in directory. 594 * @is_disabled - A bitmap to indicate each counter is currently disabled 595 * or not. 596 * @num_counters - How many hardware counters there are. If name is 597 * shorter than this number, a kernel oops will result. Driver authors 598 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 599 * in their code to prevent this. 600 * @value - Array of u64 counters that are accessed by the sysfs code and 601 * filled in by the drivers get_stats routine 602 */ 603 struct rdma_hw_stats { 604 struct mutex lock; /* Protect lifespan and values[] */ 605 unsigned long timestamp; 606 unsigned long lifespan; 607 const struct rdma_stat_desc *descs; 608 unsigned long *is_disabled; 609 int num_counters; 610 u64 value[]; 611 }; 612 613 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 614 615 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 616 const struct rdma_stat_desc *descs, int num_counters, 617 unsigned long lifespan); 618 619 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 620 621 /* Define bits for the various functionality this port needs to be supported by 622 * the core. 623 */ 624 /* Management 0x00000FFF */ 625 #define RDMA_CORE_CAP_IB_MAD 0x00000001 626 #define RDMA_CORE_CAP_IB_SMI 0x00000002 627 #define RDMA_CORE_CAP_IB_CM 0x00000004 628 #define RDMA_CORE_CAP_IW_CM 0x00000008 629 #define RDMA_CORE_CAP_IB_SA 0x00000010 630 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 631 632 /* Address format 0x000FF000 */ 633 #define RDMA_CORE_CAP_AF_IB 0x00001000 634 #define RDMA_CORE_CAP_ETH_AH 0x00002000 635 #define RDMA_CORE_CAP_OPA_AH 0x00004000 636 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 637 638 /* Protocol 0xFFF00000 */ 639 #define RDMA_CORE_CAP_PROT_IB 0x00100000 640 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 641 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 642 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 643 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 644 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 645 646 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 647 | RDMA_CORE_CAP_PROT_ROCE \ 648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 649 650 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 651 | RDMA_CORE_CAP_IB_MAD \ 652 | RDMA_CORE_CAP_IB_SMI \ 653 | RDMA_CORE_CAP_IB_CM \ 654 | RDMA_CORE_CAP_IB_SA \ 655 | RDMA_CORE_CAP_AF_IB) 656 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 657 | RDMA_CORE_CAP_IB_MAD \ 658 | RDMA_CORE_CAP_IB_CM \ 659 | RDMA_CORE_CAP_AF_IB \ 660 | RDMA_CORE_CAP_ETH_AH) 661 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 663 | RDMA_CORE_CAP_IB_MAD \ 664 | RDMA_CORE_CAP_IB_CM \ 665 | RDMA_CORE_CAP_AF_IB \ 666 | RDMA_CORE_CAP_ETH_AH) 667 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 668 | RDMA_CORE_CAP_IW_CM) 669 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 670 | RDMA_CORE_CAP_OPA_MAD) 671 672 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 673 674 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 675 676 struct ib_port_attr { 677 u64 subnet_prefix; 678 enum ib_port_state state; 679 enum ib_mtu max_mtu; 680 enum ib_mtu active_mtu; 681 u32 phys_mtu; 682 int gid_tbl_len; 683 unsigned int ip_gids:1; 684 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 685 u32 port_cap_flags; 686 u32 max_msg_sz; 687 u32 bad_pkey_cntr; 688 u32 qkey_viol_cntr; 689 u16 pkey_tbl_len; 690 u32 sm_lid; 691 u32 lid; 692 u8 lmc; 693 u8 max_vl_num; 694 u8 sm_sl; 695 u8 subnet_timeout; 696 u8 init_type_reply; 697 u8 active_width; 698 u16 active_speed; 699 u8 phys_state; 700 u16 port_cap_flags2; 701 }; 702 703 enum ib_device_modify_flags { 704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 706 }; 707 708 #define IB_DEVICE_NODE_DESC_MAX 64 709 710 struct ib_device_modify { 711 u64 sys_image_guid; 712 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 713 }; 714 715 enum ib_port_modify_flags { 716 IB_PORT_SHUTDOWN = 1, 717 IB_PORT_INIT_TYPE = (1<<2), 718 IB_PORT_RESET_QKEY_CNTR = (1<<3), 719 IB_PORT_OPA_MASK_CHG = (1<<4) 720 }; 721 722 struct ib_port_modify { 723 u32 set_port_cap_mask; 724 u32 clr_port_cap_mask; 725 u8 init_type; 726 }; 727 728 enum ib_event_type { 729 IB_EVENT_CQ_ERR, 730 IB_EVENT_QP_FATAL, 731 IB_EVENT_QP_REQ_ERR, 732 IB_EVENT_QP_ACCESS_ERR, 733 IB_EVENT_COMM_EST, 734 IB_EVENT_SQ_DRAINED, 735 IB_EVENT_PATH_MIG, 736 IB_EVENT_PATH_MIG_ERR, 737 IB_EVENT_DEVICE_FATAL, 738 IB_EVENT_PORT_ACTIVE, 739 IB_EVENT_PORT_ERR, 740 IB_EVENT_LID_CHANGE, 741 IB_EVENT_PKEY_CHANGE, 742 IB_EVENT_SM_CHANGE, 743 IB_EVENT_SRQ_ERR, 744 IB_EVENT_SRQ_LIMIT_REACHED, 745 IB_EVENT_QP_LAST_WQE_REACHED, 746 IB_EVENT_CLIENT_REREGISTER, 747 IB_EVENT_GID_CHANGE, 748 IB_EVENT_WQ_FATAL, 749 }; 750 751 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 752 753 struct ib_event { 754 struct ib_device *device; 755 union { 756 struct ib_cq *cq; 757 struct ib_qp *qp; 758 struct ib_srq *srq; 759 struct ib_wq *wq; 760 u32 port_num; 761 } element; 762 enum ib_event_type event; 763 }; 764 765 struct ib_event_handler { 766 struct ib_device *device; 767 void (*handler)(struct ib_event_handler *, struct ib_event *); 768 struct list_head list; 769 }; 770 771 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 772 do { \ 773 (_ptr)->device = _device; \ 774 (_ptr)->handler = _handler; \ 775 INIT_LIST_HEAD(&(_ptr)->list); \ 776 } while (0) 777 778 struct ib_global_route { 779 const struct ib_gid_attr *sgid_attr; 780 union ib_gid dgid; 781 u32 flow_label; 782 u8 sgid_index; 783 u8 hop_limit; 784 u8 traffic_class; 785 }; 786 787 struct ib_grh { 788 __be32 version_tclass_flow; 789 __be16 paylen; 790 u8 next_hdr; 791 u8 hop_limit; 792 union ib_gid sgid; 793 union ib_gid dgid; 794 }; 795 796 union rdma_network_hdr { 797 struct ib_grh ibgrh; 798 struct { 799 /* The IB spec states that if it's IPv4, the header 800 * is located in the last 20 bytes of the header. 801 */ 802 u8 reserved[20]; 803 struct iphdr roce4grh; 804 }; 805 }; 806 807 #define IB_QPN_MASK 0xFFFFFF 808 809 enum { 810 IB_MULTICAST_QPN = 0xffffff 811 }; 812 813 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 814 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 815 816 enum ib_ah_flags { 817 IB_AH_GRH = 1 818 }; 819 820 enum ib_rate { 821 IB_RATE_PORT_CURRENT = 0, 822 IB_RATE_2_5_GBPS = 2, 823 IB_RATE_5_GBPS = 5, 824 IB_RATE_10_GBPS = 3, 825 IB_RATE_20_GBPS = 6, 826 IB_RATE_30_GBPS = 4, 827 IB_RATE_40_GBPS = 7, 828 IB_RATE_60_GBPS = 8, 829 IB_RATE_80_GBPS = 9, 830 IB_RATE_120_GBPS = 10, 831 IB_RATE_14_GBPS = 11, 832 IB_RATE_56_GBPS = 12, 833 IB_RATE_112_GBPS = 13, 834 IB_RATE_168_GBPS = 14, 835 IB_RATE_25_GBPS = 15, 836 IB_RATE_100_GBPS = 16, 837 IB_RATE_200_GBPS = 17, 838 IB_RATE_300_GBPS = 18, 839 IB_RATE_28_GBPS = 19, 840 IB_RATE_50_GBPS = 20, 841 IB_RATE_400_GBPS = 21, 842 IB_RATE_600_GBPS = 22, 843 }; 844 845 /** 846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 849 * @rate: rate to convert. 850 */ 851 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 852 853 /** 854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 855 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 856 * @rate: rate to convert. 857 */ 858 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 859 860 861 /** 862 * enum ib_mr_type - memory region type 863 * @IB_MR_TYPE_MEM_REG: memory region that is used for 864 * normal registration 865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 866 * register any arbitrary sg lists (without 867 * the normal mr constraints - see 868 * ib_map_mr_sg) 869 * @IB_MR_TYPE_DM: memory region that is used for device 870 * memory registration 871 * @IB_MR_TYPE_USER: memory region that is used for the user-space 872 * application 873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 874 * without address translations (VA=PA) 875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 876 * data integrity operations 877 */ 878 enum ib_mr_type { 879 IB_MR_TYPE_MEM_REG, 880 IB_MR_TYPE_SG_GAPS, 881 IB_MR_TYPE_DM, 882 IB_MR_TYPE_USER, 883 IB_MR_TYPE_DMA, 884 IB_MR_TYPE_INTEGRITY, 885 }; 886 887 enum ib_mr_status_check { 888 IB_MR_CHECK_SIG_STATUS = 1, 889 }; 890 891 /** 892 * struct ib_mr_status - Memory region status container 893 * 894 * @fail_status: Bitmask of MR checks status. For each 895 * failed check a corresponding status bit is set. 896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 897 * failure. 898 */ 899 struct ib_mr_status { 900 u32 fail_status; 901 struct ib_sig_err sig_err; 902 }; 903 904 /** 905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 906 * enum. 907 * @mult: multiple to convert. 908 */ 909 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 910 911 struct rdma_ah_init_attr { 912 struct rdma_ah_attr *ah_attr; 913 u32 flags; 914 struct net_device *xmit_slave; 915 }; 916 917 enum rdma_ah_attr_type { 918 RDMA_AH_ATTR_TYPE_UNDEFINED, 919 RDMA_AH_ATTR_TYPE_IB, 920 RDMA_AH_ATTR_TYPE_ROCE, 921 RDMA_AH_ATTR_TYPE_OPA, 922 }; 923 924 struct ib_ah_attr { 925 u16 dlid; 926 u8 src_path_bits; 927 }; 928 929 struct roce_ah_attr { 930 u8 dmac[ETH_ALEN]; 931 }; 932 933 struct opa_ah_attr { 934 u32 dlid; 935 u8 src_path_bits; 936 bool make_grd; 937 }; 938 939 struct rdma_ah_attr { 940 struct ib_global_route grh; 941 u8 sl; 942 u8 static_rate; 943 u32 port_num; 944 u8 ah_flags; 945 enum rdma_ah_attr_type type; 946 union { 947 struct ib_ah_attr ib; 948 struct roce_ah_attr roce; 949 struct opa_ah_attr opa; 950 }; 951 }; 952 953 enum ib_wc_status { 954 IB_WC_SUCCESS, 955 IB_WC_LOC_LEN_ERR, 956 IB_WC_LOC_QP_OP_ERR, 957 IB_WC_LOC_EEC_OP_ERR, 958 IB_WC_LOC_PROT_ERR, 959 IB_WC_WR_FLUSH_ERR, 960 IB_WC_MW_BIND_ERR, 961 IB_WC_BAD_RESP_ERR, 962 IB_WC_LOC_ACCESS_ERR, 963 IB_WC_REM_INV_REQ_ERR, 964 IB_WC_REM_ACCESS_ERR, 965 IB_WC_REM_OP_ERR, 966 IB_WC_RETRY_EXC_ERR, 967 IB_WC_RNR_RETRY_EXC_ERR, 968 IB_WC_LOC_RDD_VIOL_ERR, 969 IB_WC_REM_INV_RD_REQ_ERR, 970 IB_WC_REM_ABORT_ERR, 971 IB_WC_INV_EECN_ERR, 972 IB_WC_INV_EEC_STATE_ERR, 973 IB_WC_FATAL_ERR, 974 IB_WC_RESP_TIMEOUT_ERR, 975 IB_WC_GENERAL_ERR 976 }; 977 978 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 979 980 enum ib_wc_opcode { 981 IB_WC_SEND = IB_UVERBS_WC_SEND, 982 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 983 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 984 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 985 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 986 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 987 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 988 IB_WC_LSO = IB_UVERBS_WC_TSO, 989 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 990 IB_WC_REG_MR, 991 IB_WC_MASKED_COMP_SWAP, 992 IB_WC_MASKED_FETCH_ADD, 993 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 994 /* 995 * Set value of IB_WC_RECV so consumers can test if a completion is a 996 * receive by testing (opcode & IB_WC_RECV). 997 */ 998 IB_WC_RECV = 1 << 7, 999 IB_WC_RECV_RDMA_WITH_IMM 1000 }; 1001 1002 enum ib_wc_flags { 1003 IB_WC_GRH = 1, 1004 IB_WC_WITH_IMM = (1<<1), 1005 IB_WC_WITH_INVALIDATE = (1<<2), 1006 IB_WC_IP_CSUM_OK = (1<<3), 1007 IB_WC_WITH_SMAC = (1<<4), 1008 IB_WC_WITH_VLAN = (1<<5), 1009 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1010 }; 1011 1012 struct ib_wc { 1013 union { 1014 u64 wr_id; 1015 struct ib_cqe *wr_cqe; 1016 }; 1017 enum ib_wc_status status; 1018 enum ib_wc_opcode opcode; 1019 u32 vendor_err; 1020 u32 byte_len; 1021 struct ib_qp *qp; 1022 union { 1023 __be32 imm_data; 1024 u32 invalidate_rkey; 1025 } ex; 1026 u32 src_qp; 1027 u32 slid; 1028 int wc_flags; 1029 u16 pkey_index; 1030 u8 sl; 1031 u8 dlid_path_bits; 1032 u32 port_num; /* valid only for DR SMPs on switches */ 1033 u8 smac[ETH_ALEN]; 1034 u16 vlan_id; 1035 u8 network_hdr_type; 1036 }; 1037 1038 enum ib_cq_notify_flags { 1039 IB_CQ_SOLICITED = 1 << 0, 1040 IB_CQ_NEXT_COMP = 1 << 1, 1041 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1042 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1043 }; 1044 1045 enum ib_srq_type { 1046 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1047 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1048 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1049 }; 1050 1051 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1052 { 1053 return srq_type == IB_SRQT_XRC || 1054 srq_type == IB_SRQT_TM; 1055 } 1056 1057 enum ib_srq_attr_mask { 1058 IB_SRQ_MAX_WR = 1 << 0, 1059 IB_SRQ_LIMIT = 1 << 1, 1060 }; 1061 1062 struct ib_srq_attr { 1063 u32 max_wr; 1064 u32 max_sge; 1065 u32 srq_limit; 1066 }; 1067 1068 struct ib_srq_init_attr { 1069 void (*event_handler)(struct ib_event *, void *); 1070 void *srq_context; 1071 struct ib_srq_attr attr; 1072 enum ib_srq_type srq_type; 1073 1074 struct { 1075 struct ib_cq *cq; 1076 union { 1077 struct { 1078 struct ib_xrcd *xrcd; 1079 } xrc; 1080 1081 struct { 1082 u32 max_num_tags; 1083 } tag_matching; 1084 }; 1085 } ext; 1086 }; 1087 1088 struct ib_qp_cap { 1089 u32 max_send_wr; 1090 u32 max_recv_wr; 1091 u32 max_send_sge; 1092 u32 max_recv_sge; 1093 u32 max_inline_data; 1094 1095 /* 1096 * Maximum number of rdma_rw_ctx structures in flight at a time. 1097 * ib_create_qp() will calculate the right amount of neededed WRs 1098 * and MRs based on this. 1099 */ 1100 u32 max_rdma_ctxs; 1101 }; 1102 1103 enum ib_sig_type { 1104 IB_SIGNAL_ALL_WR, 1105 IB_SIGNAL_REQ_WR 1106 }; 1107 1108 enum ib_qp_type { 1109 /* 1110 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1111 * here (and in that order) since the MAD layer uses them as 1112 * indices into a 2-entry table. 1113 */ 1114 IB_QPT_SMI, 1115 IB_QPT_GSI, 1116 1117 IB_QPT_RC = IB_UVERBS_QPT_RC, 1118 IB_QPT_UC = IB_UVERBS_QPT_UC, 1119 IB_QPT_UD = IB_UVERBS_QPT_UD, 1120 IB_QPT_RAW_IPV6, 1121 IB_QPT_RAW_ETHERTYPE, 1122 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1123 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1124 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1125 IB_QPT_MAX, 1126 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1127 /* Reserve a range for qp types internal to the low level driver. 1128 * These qp types will not be visible at the IB core layer, so the 1129 * IB_QPT_MAX usages should not be affected in the core layer 1130 */ 1131 IB_QPT_RESERVED1 = 0x1000, 1132 IB_QPT_RESERVED2, 1133 IB_QPT_RESERVED3, 1134 IB_QPT_RESERVED4, 1135 IB_QPT_RESERVED5, 1136 IB_QPT_RESERVED6, 1137 IB_QPT_RESERVED7, 1138 IB_QPT_RESERVED8, 1139 IB_QPT_RESERVED9, 1140 IB_QPT_RESERVED10, 1141 }; 1142 1143 enum ib_qp_create_flags { 1144 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1145 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1146 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1147 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1148 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1149 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1150 IB_QP_CREATE_NETIF_QP = 1 << 5, 1151 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1152 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1153 IB_QP_CREATE_SCATTER_FCS = 1154 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1155 IB_QP_CREATE_CVLAN_STRIPPING = 1156 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1157 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1158 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1159 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1160 /* reserve bits 26-31 for low level drivers' internal use */ 1161 IB_QP_CREATE_RESERVED_START = 1 << 26, 1162 IB_QP_CREATE_RESERVED_END = 1 << 31, 1163 }; 1164 1165 /* 1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1167 * callback to destroy the passed in QP. 1168 */ 1169 1170 struct ib_qp_init_attr { 1171 /* This callback occurs in workqueue context */ 1172 void (*event_handler)(struct ib_event *, void *); 1173 1174 void *qp_context; 1175 struct ib_cq *send_cq; 1176 struct ib_cq *recv_cq; 1177 struct ib_srq *srq; 1178 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1179 struct ib_qp_cap cap; 1180 enum ib_sig_type sq_sig_type; 1181 enum ib_qp_type qp_type; 1182 u32 create_flags; 1183 1184 /* 1185 * Only needed for special QP types, or when using the RW API. 1186 */ 1187 u32 port_num; 1188 struct ib_rwq_ind_table *rwq_ind_tbl; 1189 u32 source_qpn; 1190 }; 1191 1192 struct ib_qp_open_attr { 1193 void (*event_handler)(struct ib_event *, void *); 1194 void *qp_context; 1195 u32 qp_num; 1196 enum ib_qp_type qp_type; 1197 }; 1198 1199 enum ib_rnr_timeout { 1200 IB_RNR_TIMER_655_36 = 0, 1201 IB_RNR_TIMER_000_01 = 1, 1202 IB_RNR_TIMER_000_02 = 2, 1203 IB_RNR_TIMER_000_03 = 3, 1204 IB_RNR_TIMER_000_04 = 4, 1205 IB_RNR_TIMER_000_06 = 5, 1206 IB_RNR_TIMER_000_08 = 6, 1207 IB_RNR_TIMER_000_12 = 7, 1208 IB_RNR_TIMER_000_16 = 8, 1209 IB_RNR_TIMER_000_24 = 9, 1210 IB_RNR_TIMER_000_32 = 10, 1211 IB_RNR_TIMER_000_48 = 11, 1212 IB_RNR_TIMER_000_64 = 12, 1213 IB_RNR_TIMER_000_96 = 13, 1214 IB_RNR_TIMER_001_28 = 14, 1215 IB_RNR_TIMER_001_92 = 15, 1216 IB_RNR_TIMER_002_56 = 16, 1217 IB_RNR_TIMER_003_84 = 17, 1218 IB_RNR_TIMER_005_12 = 18, 1219 IB_RNR_TIMER_007_68 = 19, 1220 IB_RNR_TIMER_010_24 = 20, 1221 IB_RNR_TIMER_015_36 = 21, 1222 IB_RNR_TIMER_020_48 = 22, 1223 IB_RNR_TIMER_030_72 = 23, 1224 IB_RNR_TIMER_040_96 = 24, 1225 IB_RNR_TIMER_061_44 = 25, 1226 IB_RNR_TIMER_081_92 = 26, 1227 IB_RNR_TIMER_122_88 = 27, 1228 IB_RNR_TIMER_163_84 = 28, 1229 IB_RNR_TIMER_245_76 = 29, 1230 IB_RNR_TIMER_327_68 = 30, 1231 IB_RNR_TIMER_491_52 = 31 1232 }; 1233 1234 enum ib_qp_attr_mask { 1235 IB_QP_STATE = 1, 1236 IB_QP_CUR_STATE = (1<<1), 1237 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1238 IB_QP_ACCESS_FLAGS = (1<<3), 1239 IB_QP_PKEY_INDEX = (1<<4), 1240 IB_QP_PORT = (1<<5), 1241 IB_QP_QKEY = (1<<6), 1242 IB_QP_AV = (1<<7), 1243 IB_QP_PATH_MTU = (1<<8), 1244 IB_QP_TIMEOUT = (1<<9), 1245 IB_QP_RETRY_CNT = (1<<10), 1246 IB_QP_RNR_RETRY = (1<<11), 1247 IB_QP_RQ_PSN = (1<<12), 1248 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1249 IB_QP_ALT_PATH = (1<<14), 1250 IB_QP_MIN_RNR_TIMER = (1<<15), 1251 IB_QP_SQ_PSN = (1<<16), 1252 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1253 IB_QP_PATH_MIG_STATE = (1<<18), 1254 IB_QP_CAP = (1<<19), 1255 IB_QP_DEST_QPN = (1<<20), 1256 IB_QP_RESERVED1 = (1<<21), 1257 IB_QP_RESERVED2 = (1<<22), 1258 IB_QP_RESERVED3 = (1<<23), 1259 IB_QP_RESERVED4 = (1<<24), 1260 IB_QP_RATE_LIMIT = (1<<25), 1261 1262 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1263 }; 1264 1265 enum ib_qp_state { 1266 IB_QPS_RESET, 1267 IB_QPS_INIT, 1268 IB_QPS_RTR, 1269 IB_QPS_RTS, 1270 IB_QPS_SQD, 1271 IB_QPS_SQE, 1272 IB_QPS_ERR 1273 }; 1274 1275 enum ib_mig_state { 1276 IB_MIG_MIGRATED, 1277 IB_MIG_REARM, 1278 IB_MIG_ARMED 1279 }; 1280 1281 enum ib_mw_type { 1282 IB_MW_TYPE_1 = 1, 1283 IB_MW_TYPE_2 = 2 1284 }; 1285 1286 struct ib_qp_attr { 1287 enum ib_qp_state qp_state; 1288 enum ib_qp_state cur_qp_state; 1289 enum ib_mtu path_mtu; 1290 enum ib_mig_state path_mig_state; 1291 u32 qkey; 1292 u32 rq_psn; 1293 u32 sq_psn; 1294 u32 dest_qp_num; 1295 int qp_access_flags; 1296 struct ib_qp_cap cap; 1297 struct rdma_ah_attr ah_attr; 1298 struct rdma_ah_attr alt_ah_attr; 1299 u16 pkey_index; 1300 u16 alt_pkey_index; 1301 u8 en_sqd_async_notify; 1302 u8 sq_draining; 1303 u8 max_rd_atomic; 1304 u8 max_dest_rd_atomic; 1305 u8 min_rnr_timer; 1306 u32 port_num; 1307 u8 timeout; 1308 u8 retry_cnt; 1309 u8 rnr_retry; 1310 u32 alt_port_num; 1311 u8 alt_timeout; 1312 u32 rate_limit; 1313 struct net_device *xmit_slave; 1314 }; 1315 1316 enum ib_wr_opcode { 1317 /* These are shared with userspace */ 1318 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1319 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1320 IB_WR_SEND = IB_UVERBS_WR_SEND, 1321 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1322 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1323 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1324 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1325 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1326 IB_WR_LSO = IB_UVERBS_WR_TSO, 1327 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1328 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1329 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1330 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1331 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1332 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1333 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1334 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1335 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1336 1337 /* These are kernel only and can not be issued by userspace */ 1338 IB_WR_REG_MR = 0x20, 1339 IB_WR_REG_MR_INTEGRITY, 1340 1341 /* reserve values for low level drivers' internal use. 1342 * These values will not be used at all in the ib core layer. 1343 */ 1344 IB_WR_RESERVED1 = 0xf0, 1345 IB_WR_RESERVED2, 1346 IB_WR_RESERVED3, 1347 IB_WR_RESERVED4, 1348 IB_WR_RESERVED5, 1349 IB_WR_RESERVED6, 1350 IB_WR_RESERVED7, 1351 IB_WR_RESERVED8, 1352 IB_WR_RESERVED9, 1353 IB_WR_RESERVED10, 1354 }; 1355 1356 enum ib_send_flags { 1357 IB_SEND_FENCE = 1, 1358 IB_SEND_SIGNALED = (1<<1), 1359 IB_SEND_SOLICITED = (1<<2), 1360 IB_SEND_INLINE = (1<<3), 1361 IB_SEND_IP_CSUM = (1<<4), 1362 1363 /* reserve bits 26-31 for low level drivers' internal use */ 1364 IB_SEND_RESERVED_START = (1 << 26), 1365 IB_SEND_RESERVED_END = (1 << 31), 1366 }; 1367 1368 struct ib_sge { 1369 u64 addr; 1370 u32 length; 1371 u32 lkey; 1372 }; 1373 1374 struct ib_cqe { 1375 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1376 }; 1377 1378 struct ib_send_wr { 1379 struct ib_send_wr *next; 1380 union { 1381 u64 wr_id; 1382 struct ib_cqe *wr_cqe; 1383 }; 1384 struct ib_sge *sg_list; 1385 int num_sge; 1386 enum ib_wr_opcode opcode; 1387 int send_flags; 1388 union { 1389 __be32 imm_data; 1390 u32 invalidate_rkey; 1391 } ex; 1392 }; 1393 1394 struct ib_rdma_wr { 1395 struct ib_send_wr wr; 1396 u64 remote_addr; 1397 u32 rkey; 1398 }; 1399 1400 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1401 { 1402 return container_of(wr, struct ib_rdma_wr, wr); 1403 } 1404 1405 struct ib_atomic_wr { 1406 struct ib_send_wr wr; 1407 u64 remote_addr; 1408 u64 compare_add; 1409 u64 swap; 1410 u64 compare_add_mask; 1411 u64 swap_mask; 1412 u32 rkey; 1413 }; 1414 1415 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1416 { 1417 return container_of(wr, struct ib_atomic_wr, wr); 1418 } 1419 1420 struct ib_ud_wr { 1421 struct ib_send_wr wr; 1422 struct ib_ah *ah; 1423 void *header; 1424 int hlen; 1425 int mss; 1426 u32 remote_qpn; 1427 u32 remote_qkey; 1428 u16 pkey_index; /* valid for GSI only */ 1429 u32 port_num; /* valid for DR SMPs on switch only */ 1430 }; 1431 1432 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1433 { 1434 return container_of(wr, struct ib_ud_wr, wr); 1435 } 1436 1437 struct ib_reg_wr { 1438 struct ib_send_wr wr; 1439 struct ib_mr *mr; 1440 u32 key; 1441 int access; 1442 }; 1443 1444 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1445 { 1446 return container_of(wr, struct ib_reg_wr, wr); 1447 } 1448 1449 struct ib_recv_wr { 1450 struct ib_recv_wr *next; 1451 union { 1452 u64 wr_id; 1453 struct ib_cqe *wr_cqe; 1454 }; 1455 struct ib_sge *sg_list; 1456 int num_sge; 1457 }; 1458 1459 enum ib_access_flags { 1460 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1461 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1462 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1463 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1464 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1465 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1466 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1467 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1468 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1469 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1470 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1471 1472 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1473 IB_ACCESS_SUPPORTED = 1474 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1475 }; 1476 1477 /* 1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1479 * are hidden here instead of a uapi header! 1480 */ 1481 enum ib_mr_rereg_flags { 1482 IB_MR_REREG_TRANS = 1, 1483 IB_MR_REREG_PD = (1<<1), 1484 IB_MR_REREG_ACCESS = (1<<2), 1485 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1486 }; 1487 1488 struct ib_umem; 1489 1490 enum rdma_remove_reason { 1491 /* 1492 * Userspace requested uobject deletion or initial try 1493 * to remove uobject via cleanup. Call could fail 1494 */ 1495 RDMA_REMOVE_DESTROY, 1496 /* Context deletion. This call should delete the actual object itself */ 1497 RDMA_REMOVE_CLOSE, 1498 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1499 RDMA_REMOVE_DRIVER_REMOVE, 1500 /* uobj is being cleaned-up before being committed */ 1501 RDMA_REMOVE_ABORT, 1502 /* The driver failed to destroy the uobject and is being disconnected */ 1503 RDMA_REMOVE_DRIVER_FAILURE, 1504 }; 1505 1506 struct ib_rdmacg_object { 1507 #ifdef CONFIG_CGROUP_RDMA 1508 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1509 #endif 1510 }; 1511 1512 struct ib_ucontext { 1513 struct ib_device *device; 1514 struct ib_uverbs_file *ufile; 1515 1516 struct ib_rdmacg_object cg_obj; 1517 /* 1518 * Implementation details of the RDMA core, don't use in drivers: 1519 */ 1520 struct rdma_restrack_entry res; 1521 struct xarray mmap_xa; 1522 }; 1523 1524 struct ib_uobject { 1525 u64 user_handle; /* handle given to us by userspace */ 1526 /* ufile & ucontext owning this object */ 1527 struct ib_uverbs_file *ufile; 1528 /* FIXME, save memory: ufile->context == context */ 1529 struct ib_ucontext *context; /* associated user context */ 1530 void *object; /* containing object */ 1531 struct list_head list; /* link to context's list */ 1532 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1533 int id; /* index into kernel idr */ 1534 struct kref ref; 1535 atomic_t usecnt; /* protects exclusive access */ 1536 struct rcu_head rcu; /* kfree_rcu() overhead */ 1537 1538 const struct uverbs_api_object *uapi_object; 1539 }; 1540 1541 struct ib_udata { 1542 const void __user *inbuf; 1543 void __user *outbuf; 1544 size_t inlen; 1545 size_t outlen; 1546 }; 1547 1548 struct ib_pd { 1549 u32 local_dma_lkey; 1550 u32 flags; 1551 struct ib_device *device; 1552 struct ib_uobject *uobject; 1553 atomic_t usecnt; /* count all resources */ 1554 1555 u32 unsafe_global_rkey; 1556 1557 /* 1558 * Implementation details of the RDMA core, don't use in drivers: 1559 */ 1560 struct ib_mr *__internal_mr; 1561 struct rdma_restrack_entry res; 1562 }; 1563 1564 struct ib_xrcd { 1565 struct ib_device *device; 1566 atomic_t usecnt; /* count all exposed resources */ 1567 struct inode *inode; 1568 struct rw_semaphore tgt_qps_rwsem; 1569 struct xarray tgt_qps; 1570 }; 1571 1572 struct ib_ah { 1573 struct ib_device *device; 1574 struct ib_pd *pd; 1575 struct ib_uobject *uobject; 1576 const struct ib_gid_attr *sgid_attr; 1577 enum rdma_ah_attr_type type; 1578 }; 1579 1580 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1581 1582 enum ib_poll_context { 1583 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1584 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1585 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1586 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1587 1588 IB_POLL_DIRECT, /* caller context, no hw completions */ 1589 }; 1590 1591 struct ib_cq { 1592 struct ib_device *device; 1593 struct ib_ucq_object *uobject; 1594 ib_comp_handler comp_handler; 1595 void (*event_handler)(struct ib_event *, void *); 1596 void *cq_context; 1597 int cqe; 1598 unsigned int cqe_used; 1599 atomic_t usecnt; /* count number of work queues */ 1600 enum ib_poll_context poll_ctx; 1601 struct ib_wc *wc; 1602 struct list_head pool_entry; 1603 union { 1604 struct irq_poll iop; 1605 struct work_struct work; 1606 }; 1607 struct workqueue_struct *comp_wq; 1608 struct dim *dim; 1609 1610 /* updated only by trace points */ 1611 ktime_t timestamp; 1612 u8 interrupt:1; 1613 u8 shared:1; 1614 unsigned int comp_vector; 1615 1616 /* 1617 * Implementation details of the RDMA core, don't use in drivers: 1618 */ 1619 struct rdma_restrack_entry res; 1620 }; 1621 1622 struct ib_srq { 1623 struct ib_device *device; 1624 struct ib_pd *pd; 1625 struct ib_usrq_object *uobject; 1626 void (*event_handler)(struct ib_event *, void *); 1627 void *srq_context; 1628 enum ib_srq_type srq_type; 1629 atomic_t usecnt; 1630 1631 struct { 1632 struct ib_cq *cq; 1633 union { 1634 struct { 1635 struct ib_xrcd *xrcd; 1636 u32 srq_num; 1637 } xrc; 1638 }; 1639 } ext; 1640 1641 /* 1642 * Implementation details of the RDMA core, don't use in drivers: 1643 */ 1644 struct rdma_restrack_entry res; 1645 }; 1646 1647 enum ib_raw_packet_caps { 1648 /* 1649 * Strip cvlan from incoming packet and report it in the matching work 1650 * completion is supported. 1651 */ 1652 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1653 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1654 /* 1655 * Scatter FCS field of an incoming packet to host memory is supported. 1656 */ 1657 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1658 /* Checksum offloads are supported (for both send and receive). */ 1659 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1660 /* 1661 * When a packet is received for an RQ with no receive WQEs, the 1662 * packet processing is delayed. 1663 */ 1664 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1665 }; 1666 1667 enum ib_wq_type { 1668 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1669 }; 1670 1671 enum ib_wq_state { 1672 IB_WQS_RESET, 1673 IB_WQS_RDY, 1674 IB_WQS_ERR 1675 }; 1676 1677 struct ib_wq { 1678 struct ib_device *device; 1679 struct ib_uwq_object *uobject; 1680 void *wq_context; 1681 void (*event_handler)(struct ib_event *, void *); 1682 struct ib_pd *pd; 1683 struct ib_cq *cq; 1684 u32 wq_num; 1685 enum ib_wq_state state; 1686 enum ib_wq_type wq_type; 1687 atomic_t usecnt; 1688 }; 1689 1690 enum ib_wq_flags { 1691 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1692 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1693 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1694 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1695 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1696 }; 1697 1698 struct ib_wq_init_attr { 1699 void *wq_context; 1700 enum ib_wq_type wq_type; 1701 u32 max_wr; 1702 u32 max_sge; 1703 struct ib_cq *cq; 1704 void (*event_handler)(struct ib_event *, void *); 1705 u32 create_flags; /* Use enum ib_wq_flags */ 1706 }; 1707 1708 enum ib_wq_attr_mask { 1709 IB_WQ_STATE = 1 << 0, 1710 IB_WQ_CUR_STATE = 1 << 1, 1711 IB_WQ_FLAGS = 1 << 2, 1712 }; 1713 1714 struct ib_wq_attr { 1715 enum ib_wq_state wq_state; 1716 enum ib_wq_state curr_wq_state; 1717 u32 flags; /* Use enum ib_wq_flags */ 1718 u32 flags_mask; /* Use enum ib_wq_flags */ 1719 }; 1720 1721 struct ib_rwq_ind_table { 1722 struct ib_device *device; 1723 struct ib_uobject *uobject; 1724 atomic_t usecnt; 1725 u32 ind_tbl_num; 1726 u32 log_ind_tbl_size; 1727 struct ib_wq **ind_tbl; 1728 }; 1729 1730 struct ib_rwq_ind_table_init_attr { 1731 u32 log_ind_tbl_size; 1732 /* Each entry is a pointer to Receive Work Queue */ 1733 struct ib_wq **ind_tbl; 1734 }; 1735 1736 enum port_pkey_state { 1737 IB_PORT_PKEY_NOT_VALID = 0, 1738 IB_PORT_PKEY_VALID = 1, 1739 IB_PORT_PKEY_LISTED = 2, 1740 }; 1741 1742 struct ib_qp_security; 1743 1744 struct ib_port_pkey { 1745 enum port_pkey_state state; 1746 u16 pkey_index; 1747 u32 port_num; 1748 struct list_head qp_list; 1749 struct list_head to_error_list; 1750 struct ib_qp_security *sec; 1751 }; 1752 1753 struct ib_ports_pkeys { 1754 struct ib_port_pkey main; 1755 struct ib_port_pkey alt; 1756 }; 1757 1758 struct ib_qp_security { 1759 struct ib_qp *qp; 1760 struct ib_device *dev; 1761 /* Hold this mutex when changing port and pkey settings. */ 1762 struct mutex mutex; 1763 struct ib_ports_pkeys *ports_pkeys; 1764 /* A list of all open shared QP handles. Required to enforce security 1765 * properly for all users of a shared QP. 1766 */ 1767 struct list_head shared_qp_list; 1768 void *security; 1769 bool destroying; 1770 atomic_t error_list_count; 1771 struct completion error_complete; 1772 int error_comps_pending; 1773 }; 1774 1775 /* 1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1777 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1778 */ 1779 struct ib_qp { 1780 struct ib_device *device; 1781 struct ib_pd *pd; 1782 struct ib_cq *send_cq; 1783 struct ib_cq *recv_cq; 1784 spinlock_t mr_lock; 1785 int mrs_used; 1786 struct list_head rdma_mrs; 1787 struct list_head sig_mrs; 1788 struct ib_srq *srq; 1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1790 struct list_head xrcd_list; 1791 1792 /* count times opened, mcast attaches, flow attaches */ 1793 atomic_t usecnt; 1794 struct list_head open_list; 1795 struct ib_qp *real_qp; 1796 struct ib_uqp_object *uobject; 1797 void (*event_handler)(struct ib_event *, void *); 1798 void *qp_context; 1799 /* sgid_attrs associated with the AV's */ 1800 const struct ib_gid_attr *av_sgid_attr; 1801 const struct ib_gid_attr *alt_path_sgid_attr; 1802 u32 qp_num; 1803 u32 max_write_sge; 1804 u32 max_read_sge; 1805 enum ib_qp_type qp_type; 1806 struct ib_rwq_ind_table *rwq_ind_tbl; 1807 struct ib_qp_security *qp_sec; 1808 u32 port; 1809 1810 bool integrity_en; 1811 /* 1812 * Implementation details of the RDMA core, don't use in drivers: 1813 */ 1814 struct rdma_restrack_entry res; 1815 1816 /* The counter the qp is bind to */ 1817 struct rdma_counter *counter; 1818 }; 1819 1820 struct ib_dm { 1821 struct ib_device *device; 1822 u32 length; 1823 u32 flags; 1824 struct ib_uobject *uobject; 1825 atomic_t usecnt; 1826 }; 1827 1828 struct ib_mr { 1829 struct ib_device *device; 1830 struct ib_pd *pd; 1831 u32 lkey; 1832 u32 rkey; 1833 u64 iova; 1834 u64 length; 1835 unsigned int page_size; 1836 enum ib_mr_type type; 1837 bool need_inval; 1838 union { 1839 struct ib_uobject *uobject; /* user */ 1840 struct list_head qp_entry; /* FR */ 1841 }; 1842 1843 struct ib_dm *dm; 1844 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1845 /* 1846 * Implementation details of the RDMA core, don't use in drivers: 1847 */ 1848 struct rdma_restrack_entry res; 1849 }; 1850 1851 struct ib_mw { 1852 struct ib_device *device; 1853 struct ib_pd *pd; 1854 struct ib_uobject *uobject; 1855 u32 rkey; 1856 enum ib_mw_type type; 1857 }; 1858 1859 /* Supported steering options */ 1860 enum ib_flow_attr_type { 1861 /* steering according to rule specifications */ 1862 IB_FLOW_ATTR_NORMAL = 0x0, 1863 /* default unicast and multicast rule - 1864 * receive all Eth traffic which isn't steered to any QP 1865 */ 1866 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1867 /* default multicast rule - 1868 * receive all Eth multicast traffic which isn't steered to any QP 1869 */ 1870 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1871 /* sniffer rule - receive all port traffic */ 1872 IB_FLOW_ATTR_SNIFFER = 0x3 1873 }; 1874 1875 /* Supported steering header types */ 1876 enum ib_flow_spec_type { 1877 /* L2 headers*/ 1878 IB_FLOW_SPEC_ETH = 0x20, 1879 IB_FLOW_SPEC_IB = 0x22, 1880 /* L3 header*/ 1881 IB_FLOW_SPEC_IPV4 = 0x30, 1882 IB_FLOW_SPEC_IPV6 = 0x31, 1883 IB_FLOW_SPEC_ESP = 0x34, 1884 /* L4 headers*/ 1885 IB_FLOW_SPEC_TCP = 0x40, 1886 IB_FLOW_SPEC_UDP = 0x41, 1887 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1888 IB_FLOW_SPEC_GRE = 0x51, 1889 IB_FLOW_SPEC_MPLS = 0x60, 1890 IB_FLOW_SPEC_INNER = 0x100, 1891 /* Actions */ 1892 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1893 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1894 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1895 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1896 }; 1897 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1898 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1899 1900 enum ib_flow_flags { 1901 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1902 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1903 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1904 }; 1905 1906 struct ib_flow_eth_filter { 1907 u8 dst_mac[6]; 1908 u8 src_mac[6]; 1909 __be16 ether_type; 1910 __be16 vlan_tag; 1911 /* Must be last */ 1912 u8 real_sz[]; 1913 }; 1914 1915 struct ib_flow_spec_eth { 1916 u32 type; 1917 u16 size; 1918 struct ib_flow_eth_filter val; 1919 struct ib_flow_eth_filter mask; 1920 }; 1921 1922 struct ib_flow_ib_filter { 1923 __be16 dlid; 1924 __u8 sl; 1925 /* Must be last */ 1926 u8 real_sz[]; 1927 }; 1928 1929 struct ib_flow_spec_ib { 1930 u32 type; 1931 u16 size; 1932 struct ib_flow_ib_filter val; 1933 struct ib_flow_ib_filter mask; 1934 }; 1935 1936 /* IPv4 header flags */ 1937 enum ib_ipv4_flags { 1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1940 last have this flag set */ 1941 }; 1942 1943 struct ib_flow_ipv4_filter { 1944 __be32 src_ip; 1945 __be32 dst_ip; 1946 u8 proto; 1947 u8 tos; 1948 u8 ttl; 1949 u8 flags; 1950 /* Must be last */ 1951 u8 real_sz[]; 1952 }; 1953 1954 struct ib_flow_spec_ipv4 { 1955 u32 type; 1956 u16 size; 1957 struct ib_flow_ipv4_filter val; 1958 struct ib_flow_ipv4_filter mask; 1959 }; 1960 1961 struct ib_flow_ipv6_filter { 1962 u8 src_ip[16]; 1963 u8 dst_ip[16]; 1964 __be32 flow_label; 1965 u8 next_hdr; 1966 u8 traffic_class; 1967 u8 hop_limit; 1968 /* Must be last */ 1969 u8 real_sz[]; 1970 }; 1971 1972 struct ib_flow_spec_ipv6 { 1973 u32 type; 1974 u16 size; 1975 struct ib_flow_ipv6_filter val; 1976 struct ib_flow_ipv6_filter mask; 1977 }; 1978 1979 struct ib_flow_tcp_udp_filter { 1980 __be16 dst_port; 1981 __be16 src_port; 1982 /* Must be last */ 1983 u8 real_sz[]; 1984 }; 1985 1986 struct ib_flow_spec_tcp_udp { 1987 u32 type; 1988 u16 size; 1989 struct ib_flow_tcp_udp_filter val; 1990 struct ib_flow_tcp_udp_filter mask; 1991 }; 1992 1993 struct ib_flow_tunnel_filter { 1994 __be32 tunnel_id; 1995 u8 real_sz[]; 1996 }; 1997 1998 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1999 * the tunnel_id from val has the vni value 2000 */ 2001 struct ib_flow_spec_tunnel { 2002 u32 type; 2003 u16 size; 2004 struct ib_flow_tunnel_filter val; 2005 struct ib_flow_tunnel_filter mask; 2006 }; 2007 2008 struct ib_flow_esp_filter { 2009 __be32 spi; 2010 __be32 seq; 2011 /* Must be last */ 2012 u8 real_sz[]; 2013 }; 2014 2015 struct ib_flow_spec_esp { 2016 u32 type; 2017 u16 size; 2018 struct ib_flow_esp_filter val; 2019 struct ib_flow_esp_filter mask; 2020 }; 2021 2022 struct ib_flow_gre_filter { 2023 __be16 c_ks_res0_ver; 2024 __be16 protocol; 2025 __be32 key; 2026 /* Must be last */ 2027 u8 real_sz[]; 2028 }; 2029 2030 struct ib_flow_spec_gre { 2031 u32 type; 2032 u16 size; 2033 struct ib_flow_gre_filter val; 2034 struct ib_flow_gre_filter mask; 2035 }; 2036 2037 struct ib_flow_mpls_filter { 2038 __be32 tag; 2039 /* Must be last */ 2040 u8 real_sz[]; 2041 }; 2042 2043 struct ib_flow_spec_mpls { 2044 u32 type; 2045 u16 size; 2046 struct ib_flow_mpls_filter val; 2047 struct ib_flow_mpls_filter mask; 2048 }; 2049 2050 struct ib_flow_spec_action_tag { 2051 enum ib_flow_spec_type type; 2052 u16 size; 2053 u32 tag_id; 2054 }; 2055 2056 struct ib_flow_spec_action_drop { 2057 enum ib_flow_spec_type type; 2058 u16 size; 2059 }; 2060 2061 struct ib_flow_spec_action_handle { 2062 enum ib_flow_spec_type type; 2063 u16 size; 2064 struct ib_flow_action *act; 2065 }; 2066 2067 enum ib_counters_description { 2068 IB_COUNTER_PACKETS, 2069 IB_COUNTER_BYTES, 2070 }; 2071 2072 struct ib_flow_spec_action_count { 2073 enum ib_flow_spec_type type; 2074 u16 size; 2075 struct ib_counters *counters; 2076 }; 2077 2078 union ib_flow_spec { 2079 struct { 2080 u32 type; 2081 u16 size; 2082 }; 2083 struct ib_flow_spec_eth eth; 2084 struct ib_flow_spec_ib ib; 2085 struct ib_flow_spec_ipv4 ipv4; 2086 struct ib_flow_spec_tcp_udp tcp_udp; 2087 struct ib_flow_spec_ipv6 ipv6; 2088 struct ib_flow_spec_tunnel tunnel; 2089 struct ib_flow_spec_esp esp; 2090 struct ib_flow_spec_gre gre; 2091 struct ib_flow_spec_mpls mpls; 2092 struct ib_flow_spec_action_tag flow_tag; 2093 struct ib_flow_spec_action_drop drop; 2094 struct ib_flow_spec_action_handle action; 2095 struct ib_flow_spec_action_count flow_count; 2096 }; 2097 2098 struct ib_flow_attr { 2099 enum ib_flow_attr_type type; 2100 u16 size; 2101 u16 priority; 2102 u32 flags; 2103 u8 num_of_specs; 2104 u32 port; 2105 union ib_flow_spec flows[]; 2106 }; 2107 2108 struct ib_flow { 2109 struct ib_qp *qp; 2110 struct ib_device *device; 2111 struct ib_uobject *uobject; 2112 }; 2113 2114 enum ib_flow_action_type { 2115 IB_FLOW_ACTION_UNSPECIFIED, 2116 IB_FLOW_ACTION_ESP = 1, 2117 }; 2118 2119 struct ib_flow_action_attrs_esp_keymats { 2120 enum ib_uverbs_flow_action_esp_keymat protocol; 2121 union { 2122 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2123 } keymat; 2124 }; 2125 2126 struct ib_flow_action_attrs_esp_replays { 2127 enum ib_uverbs_flow_action_esp_replay protocol; 2128 union { 2129 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2130 } replay; 2131 }; 2132 2133 enum ib_flow_action_attrs_esp_flags { 2134 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2135 * This is done in order to share the same flags between user-space and 2136 * kernel and spare an unnecessary translation. 2137 */ 2138 2139 /* Kernel flags */ 2140 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2141 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2142 }; 2143 2144 struct ib_flow_spec_list { 2145 struct ib_flow_spec_list *next; 2146 union ib_flow_spec spec; 2147 }; 2148 2149 struct ib_flow_action_attrs_esp { 2150 struct ib_flow_action_attrs_esp_keymats *keymat; 2151 struct ib_flow_action_attrs_esp_replays *replay; 2152 struct ib_flow_spec_list *encap; 2153 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2154 * Value of 0 is a valid value. 2155 */ 2156 u32 esn; 2157 u32 spi; 2158 u32 seq; 2159 u32 tfc_pad; 2160 /* Use enum ib_flow_action_attrs_esp_flags */ 2161 u64 flags; 2162 u64 hard_limit_pkts; 2163 }; 2164 2165 struct ib_flow_action { 2166 struct ib_device *device; 2167 struct ib_uobject *uobject; 2168 enum ib_flow_action_type type; 2169 atomic_t usecnt; 2170 }; 2171 2172 struct ib_mad; 2173 2174 enum ib_process_mad_flags { 2175 IB_MAD_IGNORE_MKEY = 1, 2176 IB_MAD_IGNORE_BKEY = 2, 2177 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2178 }; 2179 2180 enum ib_mad_result { 2181 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2182 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2183 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2184 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2185 }; 2186 2187 struct ib_port_cache { 2188 u64 subnet_prefix; 2189 struct ib_pkey_cache *pkey; 2190 struct ib_gid_table *gid; 2191 u8 lmc; 2192 enum ib_port_state port_state; 2193 }; 2194 2195 struct ib_port_immutable { 2196 int pkey_tbl_len; 2197 int gid_tbl_len; 2198 u32 core_cap_flags; 2199 u32 max_mad_size; 2200 }; 2201 2202 struct ib_port_data { 2203 struct ib_device *ib_dev; 2204 2205 struct ib_port_immutable immutable; 2206 2207 spinlock_t pkey_list_lock; 2208 2209 spinlock_t netdev_lock; 2210 2211 struct list_head pkey_list; 2212 2213 struct ib_port_cache cache; 2214 2215 struct net_device __rcu *netdev; 2216 netdevice_tracker netdev_tracker; 2217 struct hlist_node ndev_hash_link; 2218 struct rdma_port_counter port_counter; 2219 struct ib_port *sysfs; 2220 }; 2221 2222 /* rdma netdev type - specifies protocol type */ 2223 enum rdma_netdev_t { 2224 RDMA_NETDEV_OPA_VNIC, 2225 RDMA_NETDEV_IPOIB, 2226 }; 2227 2228 /** 2229 * struct rdma_netdev - rdma netdev 2230 * For cases where netstack interfacing is required. 2231 */ 2232 struct rdma_netdev { 2233 void *clnt_priv; 2234 struct ib_device *hca; 2235 u32 port_num; 2236 int mtu; 2237 2238 /* 2239 * cleanup function must be specified. 2240 * FIXME: This is only used for OPA_VNIC and that usage should be 2241 * removed too. 2242 */ 2243 void (*free_rdma_netdev)(struct net_device *netdev); 2244 2245 /* control functions */ 2246 void (*set_id)(struct net_device *netdev, int id); 2247 /* send packet */ 2248 int (*send)(struct net_device *dev, struct sk_buff *skb, 2249 struct ib_ah *address, u32 dqpn); 2250 /* multicast */ 2251 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2252 union ib_gid *gid, u16 mlid, 2253 int set_qkey, u32 qkey); 2254 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2255 union ib_gid *gid, u16 mlid); 2256 /* timeout */ 2257 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2258 }; 2259 2260 struct rdma_netdev_alloc_params { 2261 size_t sizeof_priv; 2262 unsigned int txqs; 2263 unsigned int rxqs; 2264 void *param; 2265 2266 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2267 struct net_device *netdev, void *param); 2268 }; 2269 2270 struct ib_odp_counters { 2271 atomic64_t faults; 2272 atomic64_t invalidations; 2273 atomic64_t prefetch; 2274 }; 2275 2276 struct ib_counters { 2277 struct ib_device *device; 2278 struct ib_uobject *uobject; 2279 /* num of objects attached */ 2280 atomic_t usecnt; 2281 }; 2282 2283 struct ib_counters_read_attr { 2284 u64 *counters_buff; 2285 u32 ncounters; 2286 u32 flags; /* use enum ib_read_counters_flags */ 2287 }; 2288 2289 struct uverbs_attr_bundle; 2290 struct iw_cm_id; 2291 struct iw_cm_conn_param; 2292 2293 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2294 .size_##ib_struct = \ 2295 (sizeof(struct drv_struct) + \ 2296 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2297 BUILD_BUG_ON_ZERO( \ 2298 !__same_type(((struct drv_struct *)NULL)->member, \ 2299 struct ib_struct))) 2300 2301 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2302 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2303 gfp, false)) 2304 2305 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2306 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2307 GFP_KERNEL, true)) 2308 2309 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2310 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2311 2312 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2313 2314 struct rdma_user_mmap_entry { 2315 struct kref ref; 2316 struct ib_ucontext *ucontext; 2317 unsigned long start_pgoff; 2318 size_t npages; 2319 bool driver_removed; 2320 }; 2321 2322 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2323 static inline u64 2324 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2325 { 2326 return (u64)entry->start_pgoff << PAGE_SHIFT; 2327 } 2328 2329 /** 2330 * struct ib_device_ops - InfiniBand device operations 2331 * This structure defines all the InfiniBand device operations, providers will 2332 * need to define the supported operations, otherwise they will be set to null. 2333 */ 2334 struct ib_device_ops { 2335 struct module *owner; 2336 enum rdma_driver_id driver_id; 2337 u32 uverbs_abi_ver; 2338 unsigned int uverbs_no_driver_id_binding:1; 2339 2340 /* 2341 * NOTE: New drivers should not make use of device_group; instead new 2342 * device parameter should be exposed via netlink command. This 2343 * mechanism exists only for existing drivers. 2344 */ 2345 const struct attribute_group *device_group; 2346 const struct attribute_group **port_groups; 2347 2348 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2349 const struct ib_send_wr **bad_send_wr); 2350 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2351 const struct ib_recv_wr **bad_recv_wr); 2352 void (*drain_rq)(struct ib_qp *qp); 2353 void (*drain_sq)(struct ib_qp *qp); 2354 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2355 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2356 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2357 int (*post_srq_recv)(struct ib_srq *srq, 2358 const struct ib_recv_wr *recv_wr, 2359 const struct ib_recv_wr **bad_recv_wr); 2360 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2361 u32 port_num, const struct ib_wc *in_wc, 2362 const struct ib_grh *in_grh, 2363 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2364 size_t *out_mad_size, u16 *out_mad_pkey_index); 2365 int (*query_device)(struct ib_device *device, 2366 struct ib_device_attr *device_attr, 2367 struct ib_udata *udata); 2368 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2369 struct ib_device_modify *device_modify); 2370 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2371 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2372 int comp_vector); 2373 int (*query_port)(struct ib_device *device, u32 port_num, 2374 struct ib_port_attr *port_attr); 2375 int (*modify_port)(struct ib_device *device, u32 port_num, 2376 int port_modify_mask, 2377 struct ib_port_modify *port_modify); 2378 /** 2379 * The following mandatory functions are used only at device 2380 * registration. Keep functions such as these at the end of this 2381 * structure to avoid cache line misses when accessing struct ib_device 2382 * in fast paths. 2383 */ 2384 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2385 struct ib_port_immutable *immutable); 2386 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2387 u32 port_num); 2388 /** 2389 * When calling get_netdev, the HW vendor's driver should return the 2390 * net device of device @device at port @port_num or NULL if such 2391 * a net device doesn't exist. The vendor driver should call dev_hold 2392 * on this net device. The HW vendor's device driver must guarantee 2393 * that this function returns NULL before the net device has finished 2394 * NETDEV_UNREGISTER state. 2395 */ 2396 struct net_device *(*get_netdev)(struct ib_device *device, 2397 u32 port_num); 2398 /** 2399 * rdma netdev operation 2400 * 2401 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2402 * must return -EOPNOTSUPP if it doesn't support the specified type. 2403 */ 2404 struct net_device *(*alloc_rdma_netdev)( 2405 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2406 const char *name, unsigned char name_assign_type, 2407 void (*setup)(struct net_device *)); 2408 2409 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2410 enum rdma_netdev_t type, 2411 struct rdma_netdev_alloc_params *params); 2412 /** 2413 * query_gid should be return GID value for @device, when @port_num 2414 * link layer is either IB or iWarp. It is no-op if @port_num port 2415 * is RoCE link layer. 2416 */ 2417 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2418 union ib_gid *gid); 2419 /** 2420 * When calling add_gid, the HW vendor's driver should add the gid 2421 * of device of port at gid index available at @attr. Meta-info of 2422 * that gid (for example, the network device related to this gid) is 2423 * available at @attr. @context allows the HW vendor driver to store 2424 * extra information together with a GID entry. The HW vendor driver may 2425 * allocate memory to contain this information and store it in @context 2426 * when a new GID entry is written to. Params are consistent until the 2427 * next call of add_gid or delete_gid. The function should return 0 on 2428 * success or error otherwise. The function could be called 2429 * concurrently for different ports. This function is only called when 2430 * roce_gid_table is used. 2431 */ 2432 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2433 /** 2434 * When calling del_gid, the HW vendor's driver should delete the 2435 * gid of device @device at gid index gid_index of port port_num 2436 * available in @attr. 2437 * Upon the deletion of a GID entry, the HW vendor must free any 2438 * allocated memory. The caller will clear @context afterwards. 2439 * This function is only called when roce_gid_table is used. 2440 */ 2441 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2442 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2443 u16 *pkey); 2444 int (*alloc_ucontext)(struct ib_ucontext *context, 2445 struct ib_udata *udata); 2446 void (*dealloc_ucontext)(struct ib_ucontext *context); 2447 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2448 /** 2449 * This will be called once refcount of an entry in mmap_xa reaches 2450 * zero. The type of the memory that was mapped may differ between 2451 * entries and is opaque to the rdma_user_mmap interface. 2452 * Therefore needs to be implemented by the driver in mmap_free. 2453 */ 2454 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2455 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2456 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2457 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2458 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2459 struct ib_udata *udata); 2460 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2461 struct ib_udata *udata); 2462 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2463 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2464 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2465 int (*create_srq)(struct ib_srq *srq, 2466 struct ib_srq_init_attr *srq_init_attr, 2467 struct ib_udata *udata); 2468 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2469 enum ib_srq_attr_mask srq_attr_mask, 2470 struct ib_udata *udata); 2471 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2472 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2473 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2474 struct ib_udata *udata); 2475 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2476 int qp_attr_mask, struct ib_udata *udata); 2477 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2478 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2479 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2480 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2481 struct ib_udata *udata); 2482 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2483 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2484 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2485 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2486 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2487 u64 virt_addr, int mr_access_flags, 2488 struct ib_udata *udata); 2489 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2490 u64 length, u64 virt_addr, int fd, 2491 int mr_access_flags, 2492 struct ib_udata *udata); 2493 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2494 u64 length, u64 virt_addr, 2495 int mr_access_flags, struct ib_pd *pd, 2496 struct ib_udata *udata); 2497 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2498 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2499 u32 max_num_sg); 2500 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2501 u32 max_num_data_sg, 2502 u32 max_num_meta_sg); 2503 int (*advise_mr)(struct ib_pd *pd, 2504 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2505 struct ib_sge *sg_list, u32 num_sge, 2506 struct uverbs_attr_bundle *attrs); 2507 2508 /* 2509 * Kernel users should universally support relaxed ordering (RO), as 2510 * they are designed to read data only after observing the CQE and use 2511 * the DMA API correctly. 2512 * 2513 * Some drivers implicitly enable RO if platform supports it. 2514 */ 2515 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2516 unsigned int *sg_offset); 2517 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2518 struct ib_mr_status *mr_status); 2519 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2520 int (*dealloc_mw)(struct ib_mw *mw); 2521 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2522 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2523 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2524 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2525 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2526 struct ib_flow_attr *flow_attr, 2527 struct ib_udata *udata); 2528 int (*destroy_flow)(struct ib_flow *flow_id); 2529 int (*destroy_flow_action)(struct ib_flow_action *action); 2530 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2531 int state); 2532 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2533 struct ifla_vf_info *ivf); 2534 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2535 struct ifla_vf_stats *stats); 2536 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2537 struct ifla_vf_guid *node_guid, 2538 struct ifla_vf_guid *port_guid); 2539 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2540 int type); 2541 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2542 struct ib_wq_init_attr *init_attr, 2543 struct ib_udata *udata); 2544 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2545 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2546 u32 wq_attr_mask, struct ib_udata *udata); 2547 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2548 struct ib_rwq_ind_table_init_attr *init_attr, 2549 struct ib_udata *udata); 2550 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2551 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2552 struct ib_ucontext *context, 2553 struct ib_dm_alloc_attr *attr, 2554 struct uverbs_attr_bundle *attrs); 2555 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2556 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2557 struct ib_dm_mr_attr *attr, 2558 struct uverbs_attr_bundle *attrs); 2559 int (*create_counters)(struct ib_counters *counters, 2560 struct uverbs_attr_bundle *attrs); 2561 int (*destroy_counters)(struct ib_counters *counters); 2562 int (*read_counters)(struct ib_counters *counters, 2563 struct ib_counters_read_attr *counters_read_attr, 2564 struct uverbs_attr_bundle *attrs); 2565 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2566 int data_sg_nents, unsigned int *data_sg_offset, 2567 struct scatterlist *meta_sg, int meta_sg_nents, 2568 unsigned int *meta_sg_offset); 2569 2570 /** 2571 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2572 * fill in the driver initialized data. The struct is kfree()'ed by 2573 * the sysfs core when the device is removed. A lifespan of -1 in the 2574 * return struct tells the core to set a default lifespan. 2575 */ 2576 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2577 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2578 u32 port_num); 2579 /** 2580 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2581 * @index - The index in the value array we wish to have updated, or 2582 * num_counters if we want all stats updated 2583 * Return codes - 2584 * < 0 - Error, no counters updated 2585 * index - Updated the single counter pointed to by index 2586 * num_counters - Updated all counters (will reset the timestamp 2587 * and prevent further calls for lifespan milliseconds) 2588 * Drivers are allowed to update all counters in leiu of just the 2589 * one given in index at their option 2590 */ 2591 int (*get_hw_stats)(struct ib_device *device, 2592 struct rdma_hw_stats *stats, u32 port, int index); 2593 2594 /** 2595 * modify_hw_stat - Modify the counter configuration 2596 * @enable: true/false when enable/disable a counter 2597 * Return codes - 0 on success or error code otherwise. 2598 */ 2599 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2600 unsigned int counter_index, bool enable); 2601 /** 2602 * Allows rdma drivers to add their own restrack attributes. 2603 */ 2604 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2605 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2606 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2607 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2608 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2609 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2610 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2611 2612 /* Device lifecycle callbacks */ 2613 /* 2614 * Called after the device becomes registered, before clients are 2615 * attached 2616 */ 2617 int (*enable_driver)(struct ib_device *dev); 2618 /* 2619 * This is called as part of ib_dealloc_device(). 2620 */ 2621 void (*dealloc_driver)(struct ib_device *dev); 2622 2623 /* iWarp CM callbacks */ 2624 void (*iw_add_ref)(struct ib_qp *qp); 2625 void (*iw_rem_ref)(struct ib_qp *qp); 2626 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2627 int (*iw_connect)(struct iw_cm_id *cm_id, 2628 struct iw_cm_conn_param *conn_param); 2629 int (*iw_accept)(struct iw_cm_id *cm_id, 2630 struct iw_cm_conn_param *conn_param); 2631 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2632 u8 pdata_len); 2633 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2634 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2635 /** 2636 * counter_bind_qp - Bind a QP to a counter. 2637 * @counter - The counter to be bound. If counter->id is zero then 2638 * the driver needs to allocate a new counter and set counter->id 2639 */ 2640 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2641 /** 2642 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2643 * counter and bind it onto the default one 2644 */ 2645 int (*counter_unbind_qp)(struct ib_qp *qp); 2646 /** 2647 * counter_dealloc -De-allocate the hw counter 2648 */ 2649 int (*counter_dealloc)(struct rdma_counter *counter); 2650 /** 2651 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2652 * the driver initialized data. 2653 */ 2654 struct rdma_hw_stats *(*counter_alloc_stats)( 2655 struct rdma_counter *counter); 2656 /** 2657 * counter_update_stats - Query the stats value of this counter 2658 */ 2659 int (*counter_update_stats)(struct rdma_counter *counter); 2660 2661 /** 2662 * Allows rdma drivers to add their own restrack attributes 2663 * dumped via 'rdma stat' iproute2 command. 2664 */ 2665 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2666 2667 /* query driver for its ucontext properties */ 2668 int (*query_ucontext)(struct ib_ucontext *context, 2669 struct uverbs_attr_bundle *attrs); 2670 2671 /* 2672 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2673 * Everyone else relies on Linux memory management model. 2674 */ 2675 int (*get_numa_node)(struct ib_device *dev); 2676 2677 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2678 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2679 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2680 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2681 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2682 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2683 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2684 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2685 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2686 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2687 }; 2688 2689 struct ib_core_device { 2690 /* device must be the first element in structure until, 2691 * union of ib_core_device and device exists in ib_device. 2692 */ 2693 struct device dev; 2694 possible_net_t rdma_net; 2695 struct kobject *ports_kobj; 2696 struct list_head port_list; 2697 struct ib_device *owner; /* reach back to owner ib_device */ 2698 }; 2699 2700 struct rdma_restrack_root; 2701 struct ib_device { 2702 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2703 struct device *dma_device; 2704 struct ib_device_ops ops; 2705 char name[IB_DEVICE_NAME_MAX]; 2706 struct rcu_head rcu_head; 2707 2708 struct list_head event_handler_list; 2709 /* Protects event_handler_list */ 2710 struct rw_semaphore event_handler_rwsem; 2711 2712 /* Protects QP's event_handler calls and open_qp list */ 2713 spinlock_t qp_open_list_lock; 2714 2715 struct rw_semaphore client_data_rwsem; 2716 struct xarray client_data; 2717 struct mutex unregistration_lock; 2718 2719 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2720 rwlock_t cache_lock; 2721 /** 2722 * port_data is indexed by port number 2723 */ 2724 struct ib_port_data *port_data; 2725 2726 int num_comp_vectors; 2727 2728 union { 2729 struct device dev; 2730 struct ib_core_device coredev; 2731 }; 2732 2733 /* First group is for device attributes, 2734 * Second group is for driver provided attributes (optional). 2735 * Third group is for the hw_stats 2736 * It is a NULL terminated array. 2737 */ 2738 const struct attribute_group *groups[4]; 2739 2740 u64 uverbs_cmd_mask; 2741 2742 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2743 __be64 node_guid; 2744 u32 local_dma_lkey; 2745 u16 is_switch:1; 2746 /* Indicates kernel verbs support, should not be used in drivers */ 2747 u16 kverbs_provider:1; 2748 /* CQ adaptive moderation (RDMA DIM) */ 2749 u16 use_cq_dim:1; 2750 u8 node_type; 2751 u32 phys_port_cnt; 2752 struct ib_device_attr attrs; 2753 struct hw_stats_device_data *hw_stats_data; 2754 2755 #ifdef CONFIG_CGROUP_RDMA 2756 struct rdmacg_device cg_device; 2757 #endif 2758 2759 u32 index; 2760 2761 spinlock_t cq_pools_lock; 2762 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2763 2764 struct rdma_restrack_root *res; 2765 2766 const struct uapi_definition *driver_def; 2767 2768 /* 2769 * Positive refcount indicates that the device is currently 2770 * registered and cannot be unregistered. 2771 */ 2772 refcount_t refcount; 2773 struct completion unreg_completion; 2774 struct work_struct unregistration_work; 2775 2776 const struct rdma_link_ops *link_ops; 2777 2778 /* Protects compat_devs xarray modifications */ 2779 struct mutex compat_devs_mutex; 2780 /* Maintains compat devices for each net namespace */ 2781 struct xarray compat_devs; 2782 2783 /* Used by iWarp CM */ 2784 char iw_ifname[IFNAMSIZ]; 2785 u32 iw_driver_flags; 2786 u32 lag_flags; 2787 }; 2788 2789 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2790 gfp_t gfp, bool is_numa_aware) 2791 { 2792 if (is_numa_aware && dev->ops.get_numa_node) 2793 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2794 2795 return kzalloc(size, gfp); 2796 } 2797 2798 struct ib_client_nl_info; 2799 struct ib_client { 2800 const char *name; 2801 int (*add)(struct ib_device *ibdev); 2802 void (*remove)(struct ib_device *, void *client_data); 2803 void (*rename)(struct ib_device *dev, void *client_data); 2804 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2805 struct ib_client_nl_info *res); 2806 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2807 2808 /* Returns the net_dev belonging to this ib_client and matching the 2809 * given parameters. 2810 * @dev: An RDMA device that the net_dev use for communication. 2811 * @port: A physical port number on the RDMA device. 2812 * @pkey: P_Key that the net_dev uses if applicable. 2813 * @gid: A GID that the net_dev uses to communicate. 2814 * @addr: An IP address the net_dev is configured with. 2815 * @client_data: The device's client data set by ib_set_client_data(). 2816 * 2817 * An ib_client that implements a net_dev on top of RDMA devices 2818 * (such as IP over IB) should implement this callback, allowing the 2819 * rdma_cm module to find the right net_dev for a given request. 2820 * 2821 * The caller is responsible for calling dev_put on the returned 2822 * netdev. */ 2823 struct net_device *(*get_net_dev_by_params)( 2824 struct ib_device *dev, 2825 u32 port, 2826 u16 pkey, 2827 const union ib_gid *gid, 2828 const struct sockaddr *addr, 2829 void *client_data); 2830 2831 refcount_t uses; 2832 struct completion uses_zero; 2833 u32 client_id; 2834 2835 /* kverbs are not required by the client */ 2836 u8 no_kverbs_req:1; 2837 }; 2838 2839 /* 2840 * IB block DMA iterator 2841 * 2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2843 * to a HW supported page size. 2844 */ 2845 struct ib_block_iter { 2846 /* internal states */ 2847 struct scatterlist *__sg; /* sg holding the current aligned block */ 2848 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2849 unsigned int __sg_nents; /* number of SG entries */ 2850 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2851 unsigned int __pg_bit; /* alignment of current block */ 2852 }; 2853 2854 struct ib_device *_ib_alloc_device(size_t size); 2855 #define ib_alloc_device(drv_struct, member) \ 2856 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2857 BUILD_BUG_ON_ZERO(offsetof( \ 2858 struct drv_struct, member))), \ 2859 struct drv_struct, member) 2860 2861 void ib_dealloc_device(struct ib_device *device); 2862 2863 void ib_get_device_fw_str(struct ib_device *device, char *str); 2864 2865 int ib_register_device(struct ib_device *device, const char *name, 2866 struct device *dma_device); 2867 void ib_unregister_device(struct ib_device *device); 2868 void ib_unregister_driver(enum rdma_driver_id driver_id); 2869 void ib_unregister_device_and_put(struct ib_device *device); 2870 void ib_unregister_device_queued(struct ib_device *ib_dev); 2871 2872 int ib_register_client (struct ib_client *client); 2873 void ib_unregister_client(struct ib_client *client); 2874 2875 void __rdma_block_iter_start(struct ib_block_iter *biter, 2876 struct scatterlist *sglist, 2877 unsigned int nents, 2878 unsigned long pgsz); 2879 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2880 2881 /** 2882 * rdma_block_iter_dma_address - get the aligned dma address of the current 2883 * block held by the block iterator. 2884 * @biter: block iterator holding the memory block 2885 */ 2886 static inline dma_addr_t 2887 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2888 { 2889 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2890 } 2891 2892 /** 2893 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2894 * @sglist: sglist to iterate over 2895 * @biter: block iterator holding the memory block 2896 * @nents: maximum number of sg entries to iterate over 2897 * @pgsz: best HW supported page size to use 2898 * 2899 * Callers may use rdma_block_iter_dma_address() to get each 2900 * blocks aligned DMA address. 2901 */ 2902 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2903 for (__rdma_block_iter_start(biter, sglist, nents, \ 2904 pgsz); \ 2905 __rdma_block_iter_next(biter);) 2906 2907 /** 2908 * ib_get_client_data - Get IB client context 2909 * @device:Device to get context for 2910 * @client:Client to get context for 2911 * 2912 * ib_get_client_data() returns the client context data set with 2913 * ib_set_client_data(). This can only be called while the client is 2914 * registered to the device, once the ib_client remove() callback returns this 2915 * cannot be called. 2916 */ 2917 static inline void *ib_get_client_data(struct ib_device *device, 2918 struct ib_client *client) 2919 { 2920 return xa_load(&device->client_data, client->client_id); 2921 } 2922 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2923 void *data); 2924 void ib_set_device_ops(struct ib_device *device, 2925 const struct ib_device_ops *ops); 2926 2927 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2928 unsigned long pfn, unsigned long size, pgprot_t prot, 2929 struct rdma_user_mmap_entry *entry); 2930 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2931 struct rdma_user_mmap_entry *entry, 2932 size_t length); 2933 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2934 struct rdma_user_mmap_entry *entry, 2935 size_t length, u32 min_pgoff, 2936 u32 max_pgoff); 2937 2938 static inline int 2939 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2940 struct rdma_user_mmap_entry *entry, 2941 size_t length, u32 pgoff) 2942 { 2943 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2944 pgoff); 2945 } 2946 2947 struct rdma_user_mmap_entry * 2948 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2949 unsigned long pgoff); 2950 struct rdma_user_mmap_entry * 2951 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2952 struct vm_area_struct *vma); 2953 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2954 2955 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2956 2957 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2958 { 2959 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2960 } 2961 2962 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2963 { 2964 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2965 } 2966 2967 static inline bool ib_is_buffer_cleared(const void __user *p, 2968 size_t len) 2969 { 2970 bool ret; 2971 u8 *buf; 2972 2973 if (len > USHRT_MAX) 2974 return false; 2975 2976 buf = memdup_user(p, len); 2977 if (IS_ERR(buf)) 2978 return false; 2979 2980 ret = !memchr_inv(buf, 0, len); 2981 kfree(buf); 2982 return ret; 2983 } 2984 2985 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2986 size_t offset, 2987 size_t len) 2988 { 2989 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2990 } 2991 2992 /** 2993 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2994 * contains all required attributes and no attributes not allowed for 2995 * the given QP state transition. 2996 * @cur_state: Current QP state 2997 * @next_state: Next QP state 2998 * @type: QP type 2999 * @mask: Mask of supplied QP attributes 3000 * 3001 * This function is a helper function that a low-level driver's 3002 * modify_qp method can use to validate the consumer's input. It 3003 * checks that cur_state and next_state are valid QP states, that a 3004 * transition from cur_state to next_state is allowed by the IB spec, 3005 * and that the attribute mask supplied is allowed for the transition. 3006 */ 3007 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3008 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3009 3010 void ib_register_event_handler(struct ib_event_handler *event_handler); 3011 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3012 void ib_dispatch_event(const struct ib_event *event); 3013 3014 int ib_query_port(struct ib_device *device, 3015 u32 port_num, struct ib_port_attr *port_attr); 3016 3017 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3018 u32 port_num); 3019 3020 /** 3021 * rdma_cap_ib_switch - Check if the device is IB switch 3022 * @device: Device to check 3023 * 3024 * Device driver is responsible for setting is_switch bit on 3025 * in ib_device structure at init time. 3026 * 3027 * Return: true if the device is IB switch. 3028 */ 3029 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3030 { 3031 return device->is_switch; 3032 } 3033 3034 /** 3035 * rdma_start_port - Return the first valid port number for the device 3036 * specified 3037 * 3038 * @device: Device to be checked 3039 * 3040 * Return start port number 3041 */ 3042 static inline u32 rdma_start_port(const struct ib_device *device) 3043 { 3044 return rdma_cap_ib_switch(device) ? 0 : 1; 3045 } 3046 3047 /** 3048 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3049 * @device - The struct ib_device * to iterate over 3050 * @iter - The unsigned int to store the port number 3051 */ 3052 #define rdma_for_each_port(device, iter) \ 3053 for (iter = rdma_start_port(device + \ 3054 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3055 iter))); \ 3056 iter <= rdma_end_port(device); iter++) 3057 3058 /** 3059 * rdma_end_port - Return the last valid port number for the device 3060 * specified 3061 * 3062 * @device: Device to be checked 3063 * 3064 * Return last port number 3065 */ 3066 static inline u32 rdma_end_port(const struct ib_device *device) 3067 { 3068 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3069 } 3070 3071 static inline int rdma_is_port_valid(const struct ib_device *device, 3072 unsigned int port) 3073 { 3074 return (port >= rdma_start_port(device) && 3075 port <= rdma_end_port(device)); 3076 } 3077 3078 static inline bool rdma_is_grh_required(const struct ib_device *device, 3079 u32 port_num) 3080 { 3081 return device->port_data[port_num].immutable.core_cap_flags & 3082 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3083 } 3084 3085 static inline bool rdma_protocol_ib(const struct ib_device *device, 3086 u32 port_num) 3087 { 3088 return device->port_data[port_num].immutable.core_cap_flags & 3089 RDMA_CORE_CAP_PROT_IB; 3090 } 3091 3092 static inline bool rdma_protocol_roce(const struct ib_device *device, 3093 u32 port_num) 3094 { 3095 return device->port_data[port_num].immutable.core_cap_flags & 3096 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3097 } 3098 3099 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3100 u32 port_num) 3101 { 3102 return device->port_data[port_num].immutable.core_cap_flags & 3103 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3104 } 3105 3106 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3107 u32 port_num) 3108 { 3109 return device->port_data[port_num].immutable.core_cap_flags & 3110 RDMA_CORE_CAP_PROT_ROCE; 3111 } 3112 3113 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3114 u32 port_num) 3115 { 3116 return device->port_data[port_num].immutable.core_cap_flags & 3117 RDMA_CORE_CAP_PROT_IWARP; 3118 } 3119 3120 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3121 u32 port_num) 3122 { 3123 return rdma_protocol_ib(device, port_num) || 3124 rdma_protocol_roce(device, port_num); 3125 } 3126 3127 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3128 u32 port_num) 3129 { 3130 return device->port_data[port_num].immutable.core_cap_flags & 3131 RDMA_CORE_CAP_PROT_RAW_PACKET; 3132 } 3133 3134 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3135 u32 port_num) 3136 { 3137 return device->port_data[port_num].immutable.core_cap_flags & 3138 RDMA_CORE_CAP_PROT_USNIC; 3139 } 3140 3141 /** 3142 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3143 * Management Datagrams. 3144 * @device: Device to check 3145 * @port_num: Port number to check 3146 * 3147 * Management Datagrams (MAD) are a required part of the InfiniBand 3148 * specification and are supported on all InfiniBand devices. A slightly 3149 * extended version are also supported on OPA interfaces. 3150 * 3151 * Return: true if the port supports sending/receiving of MAD packets. 3152 */ 3153 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3154 { 3155 return device->port_data[port_num].immutable.core_cap_flags & 3156 RDMA_CORE_CAP_IB_MAD; 3157 } 3158 3159 /** 3160 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3161 * Management Datagrams. 3162 * @device: Device to check 3163 * @port_num: Port number to check 3164 * 3165 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3166 * datagrams with their own versions. These OPA MADs share many but not all of 3167 * the characteristics of InfiniBand MADs. 3168 * 3169 * OPA MADs differ in the following ways: 3170 * 3171 * 1) MADs are variable size up to 2K 3172 * IBTA defined MADs remain fixed at 256 bytes 3173 * 2) OPA SMPs must carry valid PKeys 3174 * 3) OPA SMP packets are a different format 3175 * 3176 * Return: true if the port supports OPA MAD packet formats. 3177 */ 3178 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3179 { 3180 return device->port_data[port_num].immutable.core_cap_flags & 3181 RDMA_CORE_CAP_OPA_MAD; 3182 } 3183 3184 /** 3185 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3186 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3187 * @device: Device to check 3188 * @port_num: Port number to check 3189 * 3190 * Each InfiniBand node is required to provide a Subnet Management Agent 3191 * that the subnet manager can access. Prior to the fabric being fully 3192 * configured by the subnet manager, the SMA is accessed via a well known 3193 * interface called the Subnet Management Interface (SMI). This interface 3194 * uses directed route packets to communicate with the SM to get around the 3195 * chicken and egg problem of the SM needing to know what's on the fabric 3196 * in order to configure the fabric, and needing to configure the fabric in 3197 * order to send packets to the devices on the fabric. These directed 3198 * route packets do not need the fabric fully configured in order to reach 3199 * their destination. The SMI is the only method allowed to send 3200 * directed route packets on an InfiniBand fabric. 3201 * 3202 * Return: true if the port provides an SMI. 3203 */ 3204 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3205 { 3206 return device->port_data[port_num].immutable.core_cap_flags & 3207 RDMA_CORE_CAP_IB_SMI; 3208 } 3209 3210 /** 3211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3212 * Communication Manager. 3213 * @device: Device to check 3214 * @port_num: Port number to check 3215 * 3216 * The InfiniBand Communication Manager is one of many pre-defined General 3217 * Service Agents (GSA) that are accessed via the General Service 3218 * Interface (GSI). It's role is to facilitate establishment of connections 3219 * between nodes as well as other management related tasks for established 3220 * connections. 3221 * 3222 * Return: true if the port supports an IB CM (this does not guarantee that 3223 * a CM is actually running however). 3224 */ 3225 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3226 { 3227 return device->port_data[port_num].immutable.core_cap_flags & 3228 RDMA_CORE_CAP_IB_CM; 3229 } 3230 3231 /** 3232 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3233 * Communication Manager. 3234 * @device: Device to check 3235 * @port_num: Port number to check 3236 * 3237 * Similar to above, but specific to iWARP connections which have a different 3238 * managment protocol than InfiniBand. 3239 * 3240 * Return: true if the port supports an iWARP CM (this does not guarantee that 3241 * a CM is actually running however). 3242 */ 3243 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3244 { 3245 return device->port_data[port_num].immutable.core_cap_flags & 3246 RDMA_CORE_CAP_IW_CM; 3247 } 3248 3249 /** 3250 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3251 * Subnet Administration. 3252 * @device: Device to check 3253 * @port_num: Port number to check 3254 * 3255 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3256 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3257 * fabrics, devices should resolve routes to other hosts by contacting the 3258 * SA to query the proper route. 3259 * 3260 * Return: true if the port should act as a client to the fabric Subnet 3261 * Administration interface. This does not imply that the SA service is 3262 * running locally. 3263 */ 3264 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3265 { 3266 return device->port_data[port_num].immutable.core_cap_flags & 3267 RDMA_CORE_CAP_IB_SA; 3268 } 3269 3270 /** 3271 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3272 * Multicast. 3273 * @device: Device to check 3274 * @port_num: Port number to check 3275 * 3276 * InfiniBand multicast registration is more complex than normal IPv4 or 3277 * IPv6 multicast registration. Each Host Channel Adapter must register 3278 * with the Subnet Manager when it wishes to join a multicast group. It 3279 * should do so only once regardless of how many queue pairs it subscribes 3280 * to this group. And it should leave the group only after all queue pairs 3281 * attached to the group have been detached. 3282 * 3283 * Return: true if the port must undertake the additional adminstrative 3284 * overhead of registering/unregistering with the SM and tracking of the 3285 * total number of queue pairs attached to the multicast group. 3286 */ 3287 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3288 u32 port_num) 3289 { 3290 return rdma_cap_ib_sa(device, port_num); 3291 } 3292 3293 /** 3294 * rdma_cap_af_ib - Check if the port of device has the capability 3295 * Native Infiniband Address. 3296 * @device: Device to check 3297 * @port_num: Port number to check 3298 * 3299 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3300 * GID. RoCE uses a different mechanism, but still generates a GID via 3301 * a prescribed mechanism and port specific data. 3302 * 3303 * Return: true if the port uses a GID address to identify devices on the 3304 * network. 3305 */ 3306 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3307 { 3308 return device->port_data[port_num].immutable.core_cap_flags & 3309 RDMA_CORE_CAP_AF_IB; 3310 } 3311 3312 /** 3313 * rdma_cap_eth_ah - Check if the port of device has the capability 3314 * Ethernet Address Handle. 3315 * @device: Device to check 3316 * @port_num: Port number to check 3317 * 3318 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3319 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3320 * port. Normally, packet headers are generated by the sending host 3321 * adapter, but when sending connectionless datagrams, we must manually 3322 * inject the proper headers for the fabric we are communicating over. 3323 * 3324 * Return: true if we are running as a RoCE port and must force the 3325 * addition of a Global Route Header built from our Ethernet Address 3326 * Handle into our header list for connectionless packets. 3327 */ 3328 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3329 { 3330 return device->port_data[port_num].immutable.core_cap_flags & 3331 RDMA_CORE_CAP_ETH_AH; 3332 } 3333 3334 /** 3335 * rdma_cap_opa_ah - Check if the port of device supports 3336 * OPA Address handles 3337 * @device: Device to check 3338 * @port_num: Port number to check 3339 * 3340 * Return: true if we are running on an OPA device which supports 3341 * the extended OPA addressing. 3342 */ 3343 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3344 { 3345 return (device->port_data[port_num].immutable.core_cap_flags & 3346 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3347 } 3348 3349 /** 3350 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3351 * 3352 * @device: Device 3353 * @port_num: Port number 3354 * 3355 * This MAD size includes the MAD headers and MAD payload. No other headers 3356 * are included. 3357 * 3358 * Return the max MAD size required by the Port. Will return 0 if the port 3359 * does not support MADs 3360 */ 3361 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3362 u32 port_num) 3363 { 3364 return device->port_data[port_num].immutable.max_mad_size; 3365 } 3366 3367 /** 3368 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3369 * @device: Device to check 3370 * @port_num: Port number to check 3371 * 3372 * RoCE GID table mechanism manages the various GIDs for a device. 3373 * 3374 * NOTE: if allocating the port's GID table has failed, this call will still 3375 * return true, but any RoCE GID table API will fail. 3376 * 3377 * Return: true if the port uses RoCE GID table mechanism in order to manage 3378 * its GIDs. 3379 */ 3380 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3381 u32 port_num) 3382 { 3383 return rdma_protocol_roce(device, port_num) && 3384 device->ops.add_gid && device->ops.del_gid; 3385 } 3386 3387 /* 3388 * Check if the device supports READ W/ INVALIDATE. 3389 */ 3390 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3391 { 3392 /* 3393 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3394 * has support for it yet. 3395 */ 3396 return rdma_protocol_iwarp(dev, port_num); 3397 } 3398 3399 /** 3400 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3401 * @device: Device 3402 * @port_num: 1 based Port number 3403 * 3404 * Return true if port is an Intel OPA port , false if not 3405 */ 3406 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3407 u32 port_num) 3408 { 3409 return (device->port_data[port_num].immutable.core_cap_flags & 3410 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3411 } 3412 3413 /** 3414 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3415 * @device: Device 3416 * @port_num: Port number 3417 * @mtu: enum value of MTU 3418 * 3419 * Return the MTU size supported by the port as an integer value. Will return 3420 * -1 if enum value of mtu is not supported. 3421 */ 3422 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3423 int mtu) 3424 { 3425 if (rdma_core_cap_opa_port(device, port)) 3426 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3427 else 3428 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3429 } 3430 3431 /** 3432 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3433 * @device: Device 3434 * @port_num: Port number 3435 * @attr: port attribute 3436 * 3437 * Return the MTU size supported by the port as an integer value. 3438 */ 3439 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3440 struct ib_port_attr *attr) 3441 { 3442 if (rdma_core_cap_opa_port(device, port)) 3443 return attr->phys_mtu; 3444 else 3445 return ib_mtu_enum_to_int(attr->max_mtu); 3446 } 3447 3448 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3449 int state); 3450 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3451 struct ifla_vf_info *info); 3452 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3453 struct ifla_vf_stats *stats); 3454 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3455 struct ifla_vf_guid *node_guid, 3456 struct ifla_vf_guid *port_guid); 3457 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3458 int type); 3459 3460 int ib_query_pkey(struct ib_device *device, 3461 u32 port_num, u16 index, u16 *pkey); 3462 3463 int ib_modify_device(struct ib_device *device, 3464 int device_modify_mask, 3465 struct ib_device_modify *device_modify); 3466 3467 int ib_modify_port(struct ib_device *device, 3468 u32 port_num, int port_modify_mask, 3469 struct ib_port_modify *port_modify); 3470 3471 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3472 u32 *port_num, u16 *index); 3473 3474 int ib_find_pkey(struct ib_device *device, 3475 u32 port_num, u16 pkey, u16 *index); 3476 3477 enum ib_pd_flags { 3478 /* 3479 * Create a memory registration for all memory in the system and place 3480 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3481 * ULPs to avoid the overhead of dynamic MRs. 3482 * 3483 * This flag is generally considered unsafe and must only be used in 3484 * extremly trusted environments. Every use of it will log a warning 3485 * in the kernel log. 3486 */ 3487 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3488 }; 3489 3490 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3491 const char *caller); 3492 3493 /** 3494 * ib_alloc_pd - Allocates an unused protection domain. 3495 * @device: The device on which to allocate the protection domain. 3496 * @flags: protection domain flags 3497 * 3498 * A protection domain object provides an association between QPs, shared 3499 * receive queues, address handles, memory regions, and memory windows. 3500 * 3501 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3502 * memory operations. 3503 */ 3504 #define ib_alloc_pd(device, flags) \ 3505 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3506 3507 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3508 3509 /** 3510 * ib_dealloc_pd - Deallocate kernel PD 3511 * @pd: The protection domain 3512 * 3513 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3514 */ 3515 static inline void ib_dealloc_pd(struct ib_pd *pd) 3516 { 3517 int ret = ib_dealloc_pd_user(pd, NULL); 3518 3519 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3520 } 3521 3522 enum rdma_create_ah_flags { 3523 /* In a sleepable context */ 3524 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3525 }; 3526 3527 /** 3528 * rdma_create_ah - Creates an address handle for the given address vector. 3529 * @pd: The protection domain associated with the address handle. 3530 * @ah_attr: The attributes of the address vector. 3531 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3532 * 3533 * The address handle is used to reference a local or global destination 3534 * in all UD QP post sends. 3535 */ 3536 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3537 u32 flags); 3538 3539 /** 3540 * rdma_create_user_ah - Creates an address handle for the given address vector. 3541 * It resolves destination mac address for ah attribute of RoCE type. 3542 * @pd: The protection domain associated with the address handle. 3543 * @ah_attr: The attributes of the address vector. 3544 * @udata: pointer to user's input output buffer information need by 3545 * provider driver. 3546 * 3547 * It returns 0 on success and returns appropriate error code on error. 3548 * The address handle is used to reference a local or global destination 3549 * in all UD QP post sends. 3550 */ 3551 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3552 struct rdma_ah_attr *ah_attr, 3553 struct ib_udata *udata); 3554 /** 3555 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3556 * work completion. 3557 * @hdr: the L3 header to parse 3558 * @net_type: type of header to parse 3559 * @sgid: place to store source gid 3560 * @dgid: place to store destination gid 3561 */ 3562 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3563 enum rdma_network_type net_type, 3564 union ib_gid *sgid, union ib_gid *dgid); 3565 3566 /** 3567 * ib_get_rdma_header_version - Get the header version 3568 * @hdr: the L3 header to parse 3569 */ 3570 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3571 3572 /** 3573 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3574 * work completion. 3575 * @device: Device on which the received message arrived. 3576 * @port_num: Port on which the received message arrived. 3577 * @wc: Work completion associated with the received message. 3578 * @grh: References the received global route header. This parameter is 3579 * ignored unless the work completion indicates that the GRH is valid. 3580 * @ah_attr: Returned attributes that can be used when creating an address 3581 * handle for replying to the message. 3582 * When ib_init_ah_attr_from_wc() returns success, 3583 * (a) for IB link layer it optionally contains a reference to SGID attribute 3584 * when GRH is present for IB link layer. 3585 * (b) for RoCE link layer it contains a reference to SGID attribute. 3586 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3587 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3588 * 3589 */ 3590 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3591 const struct ib_wc *wc, const struct ib_grh *grh, 3592 struct rdma_ah_attr *ah_attr); 3593 3594 /** 3595 * ib_create_ah_from_wc - Creates an address handle associated with the 3596 * sender of the specified work completion. 3597 * @pd: The protection domain associated with the address handle. 3598 * @wc: Work completion information associated with a received message. 3599 * @grh: References the received global route header. This parameter is 3600 * ignored unless the work completion indicates that the GRH is valid. 3601 * @port_num: The outbound port number to associate with the address. 3602 * 3603 * The address handle is used to reference a local or global destination 3604 * in all UD QP post sends. 3605 */ 3606 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3607 const struct ib_grh *grh, u32 port_num); 3608 3609 /** 3610 * rdma_modify_ah - Modifies the address vector associated with an address 3611 * handle. 3612 * @ah: The address handle to modify. 3613 * @ah_attr: The new address vector attributes to associate with the 3614 * address handle. 3615 */ 3616 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3617 3618 /** 3619 * rdma_query_ah - Queries the address vector associated with an address 3620 * handle. 3621 * @ah: The address handle to query. 3622 * @ah_attr: The address vector attributes associated with the address 3623 * handle. 3624 */ 3625 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3626 3627 enum rdma_destroy_ah_flags { 3628 /* In a sleepable context */ 3629 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3630 }; 3631 3632 /** 3633 * rdma_destroy_ah_user - Destroys an address handle. 3634 * @ah: The address handle to destroy. 3635 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3636 * @udata: Valid user data or NULL for kernel objects 3637 */ 3638 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3639 3640 /** 3641 * rdma_destroy_ah - Destroys an kernel address handle. 3642 * @ah: The address handle to destroy. 3643 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3644 * 3645 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3646 */ 3647 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3648 { 3649 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3650 3651 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3652 } 3653 3654 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3655 struct ib_srq_init_attr *srq_init_attr, 3656 struct ib_usrq_object *uobject, 3657 struct ib_udata *udata); 3658 static inline struct ib_srq * 3659 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3660 { 3661 if (!pd->device->ops.create_srq) 3662 return ERR_PTR(-EOPNOTSUPP); 3663 3664 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3665 } 3666 3667 /** 3668 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3669 * @srq: The SRQ to modify. 3670 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3671 * the current values of selected SRQ attributes are returned. 3672 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3673 * are being modified. 3674 * 3675 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3676 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3677 * the number of receives queued drops below the limit. 3678 */ 3679 int ib_modify_srq(struct ib_srq *srq, 3680 struct ib_srq_attr *srq_attr, 3681 enum ib_srq_attr_mask srq_attr_mask); 3682 3683 /** 3684 * ib_query_srq - Returns the attribute list and current values for the 3685 * specified SRQ. 3686 * @srq: The SRQ to query. 3687 * @srq_attr: The attributes of the specified SRQ. 3688 */ 3689 int ib_query_srq(struct ib_srq *srq, 3690 struct ib_srq_attr *srq_attr); 3691 3692 /** 3693 * ib_destroy_srq_user - Destroys the specified SRQ. 3694 * @srq: The SRQ to destroy. 3695 * @udata: Valid user data or NULL for kernel objects 3696 */ 3697 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3698 3699 /** 3700 * ib_destroy_srq - Destroys the specified kernel SRQ. 3701 * @srq: The SRQ to destroy. 3702 * 3703 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3704 */ 3705 static inline void ib_destroy_srq(struct ib_srq *srq) 3706 { 3707 int ret = ib_destroy_srq_user(srq, NULL); 3708 3709 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3710 } 3711 3712 /** 3713 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3714 * @srq: The SRQ to post the work request on. 3715 * @recv_wr: A list of work requests to post on the receive queue. 3716 * @bad_recv_wr: On an immediate failure, this parameter will reference 3717 * the work request that failed to be posted on the QP. 3718 */ 3719 static inline int ib_post_srq_recv(struct ib_srq *srq, 3720 const struct ib_recv_wr *recv_wr, 3721 const struct ib_recv_wr **bad_recv_wr) 3722 { 3723 const struct ib_recv_wr *dummy; 3724 3725 return srq->device->ops.post_srq_recv(srq, recv_wr, 3726 bad_recv_wr ? : &dummy); 3727 } 3728 3729 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3730 struct ib_qp_init_attr *qp_init_attr, 3731 const char *caller); 3732 /** 3733 * ib_create_qp - Creates a kernel QP associated with the specific protection 3734 * domain. 3735 * @pd: The protection domain associated with the QP. 3736 * @init_attr: A list of initial attributes required to create the 3737 * QP. If QP creation succeeds, then the attributes are updated to 3738 * the actual capabilities of the created QP. 3739 */ 3740 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3741 struct ib_qp_init_attr *init_attr) 3742 { 3743 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3744 } 3745 3746 /** 3747 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3748 * @qp: The QP to modify. 3749 * @attr: On input, specifies the QP attributes to modify. On output, 3750 * the current values of selected QP attributes are returned. 3751 * @attr_mask: A bit-mask used to specify which attributes of the QP 3752 * are being modified. 3753 * @udata: pointer to user's input output buffer information 3754 * are being modified. 3755 * It returns 0 on success and returns appropriate error code on error. 3756 */ 3757 int ib_modify_qp_with_udata(struct ib_qp *qp, 3758 struct ib_qp_attr *attr, 3759 int attr_mask, 3760 struct ib_udata *udata); 3761 3762 /** 3763 * ib_modify_qp - Modifies the attributes for the specified QP and then 3764 * transitions the QP to the given state. 3765 * @qp: The QP to modify. 3766 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3767 * the current values of selected QP attributes are returned. 3768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3769 * are being modified. 3770 */ 3771 int ib_modify_qp(struct ib_qp *qp, 3772 struct ib_qp_attr *qp_attr, 3773 int qp_attr_mask); 3774 3775 /** 3776 * ib_query_qp - Returns the attribute list and current values for the 3777 * specified QP. 3778 * @qp: The QP to query. 3779 * @qp_attr: The attributes of the specified QP. 3780 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3781 * @qp_init_attr: Additional attributes of the selected QP. 3782 * 3783 * The qp_attr_mask may be used to limit the query to gathering only the 3784 * selected attributes. 3785 */ 3786 int ib_query_qp(struct ib_qp *qp, 3787 struct ib_qp_attr *qp_attr, 3788 int qp_attr_mask, 3789 struct ib_qp_init_attr *qp_init_attr); 3790 3791 /** 3792 * ib_destroy_qp - Destroys the specified QP. 3793 * @qp: The QP to destroy. 3794 * @udata: Valid udata or NULL for kernel objects 3795 */ 3796 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3797 3798 /** 3799 * ib_destroy_qp - Destroys the specified kernel QP. 3800 * @qp: The QP to destroy. 3801 * 3802 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3803 */ 3804 static inline int ib_destroy_qp(struct ib_qp *qp) 3805 { 3806 return ib_destroy_qp_user(qp, NULL); 3807 } 3808 3809 /** 3810 * ib_open_qp - Obtain a reference to an existing sharable QP. 3811 * @xrcd - XRC domain 3812 * @qp_open_attr: Attributes identifying the QP to open. 3813 * 3814 * Returns a reference to a sharable QP. 3815 */ 3816 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3817 struct ib_qp_open_attr *qp_open_attr); 3818 3819 /** 3820 * ib_close_qp - Release an external reference to a QP. 3821 * @qp: The QP handle to release 3822 * 3823 * The opened QP handle is released by the caller. The underlying 3824 * shared QP is not destroyed until all internal references are released. 3825 */ 3826 int ib_close_qp(struct ib_qp *qp); 3827 3828 /** 3829 * ib_post_send - Posts a list of work requests to the send queue of 3830 * the specified QP. 3831 * @qp: The QP to post the work request on. 3832 * @send_wr: A list of work requests to post on the send queue. 3833 * @bad_send_wr: On an immediate failure, this parameter will reference 3834 * the work request that failed to be posted on the QP. 3835 * 3836 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3837 * error is returned, the QP state shall not be affected, 3838 * ib_post_send() will return an immediate error after queueing any 3839 * earlier work requests in the list. 3840 */ 3841 static inline int ib_post_send(struct ib_qp *qp, 3842 const struct ib_send_wr *send_wr, 3843 const struct ib_send_wr **bad_send_wr) 3844 { 3845 const struct ib_send_wr *dummy; 3846 3847 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3848 } 3849 3850 /** 3851 * ib_post_recv - Posts a list of work requests to the receive queue of 3852 * the specified QP. 3853 * @qp: The QP to post the work request on. 3854 * @recv_wr: A list of work requests to post on the receive queue. 3855 * @bad_recv_wr: On an immediate failure, this parameter will reference 3856 * the work request that failed to be posted on the QP. 3857 */ 3858 static inline int ib_post_recv(struct ib_qp *qp, 3859 const struct ib_recv_wr *recv_wr, 3860 const struct ib_recv_wr **bad_recv_wr) 3861 { 3862 const struct ib_recv_wr *dummy; 3863 3864 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3865 } 3866 3867 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3868 int comp_vector, enum ib_poll_context poll_ctx, 3869 const char *caller); 3870 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3871 int nr_cqe, int comp_vector, 3872 enum ib_poll_context poll_ctx) 3873 { 3874 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3875 KBUILD_MODNAME); 3876 } 3877 3878 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3879 int nr_cqe, enum ib_poll_context poll_ctx, 3880 const char *caller); 3881 3882 /** 3883 * ib_alloc_cq_any: Allocate kernel CQ 3884 * @dev: The IB device 3885 * @private: Private data attached to the CQE 3886 * @nr_cqe: Number of CQEs in the CQ 3887 * @poll_ctx: Context used for polling the CQ 3888 */ 3889 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3890 void *private, int nr_cqe, 3891 enum ib_poll_context poll_ctx) 3892 { 3893 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3894 KBUILD_MODNAME); 3895 } 3896 3897 void ib_free_cq(struct ib_cq *cq); 3898 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3899 3900 /** 3901 * ib_create_cq - Creates a CQ on the specified device. 3902 * @device: The device on which to create the CQ. 3903 * @comp_handler: A user-specified callback that is invoked when a 3904 * completion event occurs on the CQ. 3905 * @event_handler: A user-specified callback that is invoked when an 3906 * asynchronous event not associated with a completion occurs on the CQ. 3907 * @cq_context: Context associated with the CQ returned to the user via 3908 * the associated completion and event handlers. 3909 * @cq_attr: The attributes the CQ should be created upon. 3910 * 3911 * Users can examine the cq structure to determine the actual CQ size. 3912 */ 3913 struct ib_cq *__ib_create_cq(struct ib_device *device, 3914 ib_comp_handler comp_handler, 3915 void (*event_handler)(struct ib_event *, void *), 3916 void *cq_context, 3917 const struct ib_cq_init_attr *cq_attr, 3918 const char *caller); 3919 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3920 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3921 3922 /** 3923 * ib_resize_cq - Modifies the capacity of the CQ. 3924 * @cq: The CQ to resize. 3925 * @cqe: The minimum size of the CQ. 3926 * 3927 * Users can examine the cq structure to determine the actual CQ size. 3928 */ 3929 int ib_resize_cq(struct ib_cq *cq, int cqe); 3930 3931 /** 3932 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3933 * @cq: The CQ to modify. 3934 * @cq_count: number of CQEs that will trigger an event 3935 * @cq_period: max period of time in usec before triggering an event 3936 * 3937 */ 3938 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3939 3940 /** 3941 * ib_destroy_cq_user - Destroys the specified CQ. 3942 * @cq: The CQ to destroy. 3943 * @udata: Valid user data or NULL for kernel objects 3944 */ 3945 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3946 3947 /** 3948 * ib_destroy_cq - Destroys the specified kernel CQ. 3949 * @cq: The CQ to destroy. 3950 * 3951 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3952 */ 3953 static inline void ib_destroy_cq(struct ib_cq *cq) 3954 { 3955 int ret = ib_destroy_cq_user(cq, NULL); 3956 3957 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3958 } 3959 3960 /** 3961 * ib_poll_cq - poll a CQ for completion(s) 3962 * @cq:the CQ being polled 3963 * @num_entries:maximum number of completions to return 3964 * @wc:array of at least @num_entries &struct ib_wc where completions 3965 * will be returned 3966 * 3967 * Poll a CQ for (possibly multiple) completions. If the return value 3968 * is < 0, an error occurred. If the return value is >= 0, it is the 3969 * number of completions returned. If the return value is 3970 * non-negative and < num_entries, then the CQ was emptied. 3971 */ 3972 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3973 struct ib_wc *wc) 3974 { 3975 return cq->device->ops.poll_cq(cq, num_entries, wc); 3976 } 3977 3978 /** 3979 * ib_req_notify_cq - Request completion notification on a CQ. 3980 * @cq: The CQ to generate an event for. 3981 * @flags: 3982 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3983 * to request an event on the next solicited event or next work 3984 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3985 * may also be |ed in to request a hint about missed events, as 3986 * described below. 3987 * 3988 * Return Value: 3989 * < 0 means an error occurred while requesting notification 3990 * == 0 means notification was requested successfully, and if 3991 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3992 * were missed and it is safe to wait for another event. In 3993 * this case is it guaranteed that any work completions added 3994 * to the CQ since the last CQ poll will trigger a completion 3995 * notification event. 3996 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3997 * in. It means that the consumer must poll the CQ again to 3998 * make sure it is empty to avoid missing an event because of a 3999 * race between requesting notification and an entry being 4000 * added to the CQ. This return value means it is possible 4001 * (but not guaranteed) that a work completion has been added 4002 * to the CQ since the last poll without triggering a 4003 * completion notification event. 4004 */ 4005 static inline int ib_req_notify_cq(struct ib_cq *cq, 4006 enum ib_cq_notify_flags flags) 4007 { 4008 return cq->device->ops.req_notify_cq(cq, flags); 4009 } 4010 4011 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4012 int comp_vector_hint, 4013 enum ib_poll_context poll_ctx); 4014 4015 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4016 4017 /* 4018 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4019 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4020 * address into the dma address. 4021 */ 4022 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4023 { 4024 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4025 } 4026 4027 /* 4028 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4029 */ 4030 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4031 { 4032 if (ib_uses_virt_dma(dev)) 4033 return false; 4034 4035 return dma_pci_p2pdma_supported(dev->dma_device); 4036 } 4037 4038 /** 4039 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4040 * @dma_addr: The DMA address 4041 * 4042 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4043 * going through the dma_addr marshalling. 4044 */ 4045 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4046 { 4047 /* virt_dma mode maps the kvs's directly into the dma addr */ 4048 return (void *)(uintptr_t)dma_addr; 4049 } 4050 4051 /** 4052 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4053 * @dma_addr: The DMA address 4054 * 4055 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4056 * through the dma_addr marshalling. 4057 */ 4058 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4059 { 4060 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4061 } 4062 4063 /** 4064 * ib_dma_mapping_error - check a DMA addr for error 4065 * @dev: The device for which the dma_addr was created 4066 * @dma_addr: The DMA address to check 4067 */ 4068 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4069 { 4070 if (ib_uses_virt_dma(dev)) 4071 return 0; 4072 return dma_mapping_error(dev->dma_device, dma_addr); 4073 } 4074 4075 /** 4076 * ib_dma_map_single - Map a kernel virtual address to DMA address 4077 * @dev: The device for which the dma_addr is to be created 4078 * @cpu_addr: The kernel virtual address 4079 * @size: The size of the region in bytes 4080 * @direction: The direction of the DMA 4081 */ 4082 static inline u64 ib_dma_map_single(struct ib_device *dev, 4083 void *cpu_addr, size_t size, 4084 enum dma_data_direction direction) 4085 { 4086 if (ib_uses_virt_dma(dev)) 4087 return (uintptr_t)cpu_addr; 4088 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4089 } 4090 4091 /** 4092 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4093 * @dev: The device for which the DMA address was created 4094 * @addr: The DMA address 4095 * @size: The size of the region in bytes 4096 * @direction: The direction of the DMA 4097 */ 4098 static inline void ib_dma_unmap_single(struct ib_device *dev, 4099 u64 addr, size_t size, 4100 enum dma_data_direction direction) 4101 { 4102 if (!ib_uses_virt_dma(dev)) 4103 dma_unmap_single(dev->dma_device, addr, size, direction); 4104 } 4105 4106 /** 4107 * ib_dma_map_page - Map a physical page to DMA address 4108 * @dev: The device for which the dma_addr is to be created 4109 * @page: The page to be mapped 4110 * @offset: The offset within the page 4111 * @size: The size of the region in bytes 4112 * @direction: The direction of the DMA 4113 */ 4114 static inline u64 ib_dma_map_page(struct ib_device *dev, 4115 struct page *page, 4116 unsigned long offset, 4117 size_t size, 4118 enum dma_data_direction direction) 4119 { 4120 if (ib_uses_virt_dma(dev)) 4121 return (uintptr_t)(page_address(page) + offset); 4122 return dma_map_page(dev->dma_device, page, offset, size, direction); 4123 } 4124 4125 /** 4126 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4127 * @dev: The device for which the DMA address was created 4128 * @addr: The DMA address 4129 * @size: The size of the region in bytes 4130 * @direction: The direction of the DMA 4131 */ 4132 static inline void ib_dma_unmap_page(struct ib_device *dev, 4133 u64 addr, size_t size, 4134 enum dma_data_direction direction) 4135 { 4136 if (!ib_uses_virt_dma(dev)) 4137 dma_unmap_page(dev->dma_device, addr, size, direction); 4138 } 4139 4140 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4141 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4142 struct scatterlist *sg, int nents, 4143 enum dma_data_direction direction, 4144 unsigned long dma_attrs) 4145 { 4146 if (ib_uses_virt_dma(dev)) 4147 return ib_dma_virt_map_sg(dev, sg, nents); 4148 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4149 dma_attrs); 4150 } 4151 4152 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4153 struct scatterlist *sg, int nents, 4154 enum dma_data_direction direction, 4155 unsigned long dma_attrs) 4156 { 4157 if (!ib_uses_virt_dma(dev)) 4158 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4159 dma_attrs); 4160 } 4161 4162 /** 4163 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4164 * @dev: The device for which the DMA addresses are to be created 4165 * @sg: The sg_table object describing the buffer 4166 * @direction: The direction of the DMA 4167 * @attrs: Optional DMA attributes for the map operation 4168 */ 4169 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4170 struct sg_table *sgt, 4171 enum dma_data_direction direction, 4172 unsigned long dma_attrs) 4173 { 4174 int nents; 4175 4176 if (ib_uses_virt_dma(dev)) { 4177 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4178 if (!nents) 4179 return -EIO; 4180 sgt->nents = nents; 4181 return 0; 4182 } 4183 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4184 } 4185 4186 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4187 struct sg_table *sgt, 4188 enum dma_data_direction direction, 4189 unsigned long dma_attrs) 4190 { 4191 if (!ib_uses_virt_dma(dev)) 4192 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4193 } 4194 4195 /** 4196 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4197 * @dev: The device for which the DMA addresses are to be created 4198 * @sg: The array of scatter/gather entries 4199 * @nents: The number of scatter/gather entries 4200 * @direction: The direction of the DMA 4201 */ 4202 static inline int ib_dma_map_sg(struct ib_device *dev, 4203 struct scatterlist *sg, int nents, 4204 enum dma_data_direction direction) 4205 { 4206 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4207 } 4208 4209 /** 4210 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4211 * @dev: The device for which the DMA addresses were created 4212 * @sg: The array of scatter/gather entries 4213 * @nents: The number of scatter/gather entries 4214 * @direction: The direction of the DMA 4215 */ 4216 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4217 struct scatterlist *sg, int nents, 4218 enum dma_data_direction direction) 4219 { 4220 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4221 } 4222 4223 /** 4224 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4225 * @dev: The device to query 4226 * 4227 * The returned value represents a size in bytes. 4228 */ 4229 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4230 { 4231 if (ib_uses_virt_dma(dev)) 4232 return UINT_MAX; 4233 return dma_get_max_seg_size(dev->dma_device); 4234 } 4235 4236 /** 4237 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4238 * @dev: The device for which the DMA address was created 4239 * @addr: The DMA address 4240 * @size: The size of the region in bytes 4241 * @dir: The direction of the DMA 4242 */ 4243 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4244 u64 addr, 4245 size_t size, 4246 enum dma_data_direction dir) 4247 { 4248 if (!ib_uses_virt_dma(dev)) 4249 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4250 } 4251 4252 /** 4253 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4254 * @dev: The device for which the DMA address was created 4255 * @addr: The DMA address 4256 * @size: The size of the region in bytes 4257 * @dir: The direction of the DMA 4258 */ 4259 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4260 u64 addr, 4261 size_t size, 4262 enum dma_data_direction dir) 4263 { 4264 if (!ib_uses_virt_dma(dev)) 4265 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4266 } 4267 4268 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4269 * space. This function should be called when 'current' is the owning MM. 4270 */ 4271 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4272 u64 virt_addr, int mr_access_flags); 4273 4274 /* ib_advise_mr - give an advice about an address range in a memory region */ 4275 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4276 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4277 /** 4278 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4279 * HCA translation table. 4280 * @mr: The memory region to deregister. 4281 * @udata: Valid user data or NULL for kernel object 4282 * 4283 * This function can fail, if the memory region has memory windows bound to it. 4284 */ 4285 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4286 4287 /** 4288 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4289 * HCA translation table. 4290 * @mr: The memory region to deregister. 4291 * 4292 * This function can fail, if the memory region has memory windows bound to it. 4293 * 4294 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4295 */ 4296 static inline int ib_dereg_mr(struct ib_mr *mr) 4297 { 4298 return ib_dereg_mr_user(mr, NULL); 4299 } 4300 4301 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4302 u32 max_num_sg); 4303 4304 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4305 u32 max_num_data_sg, 4306 u32 max_num_meta_sg); 4307 4308 /** 4309 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4310 * R_Key and L_Key. 4311 * @mr - struct ib_mr pointer to be updated. 4312 * @newkey - new key to be used. 4313 */ 4314 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4315 { 4316 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4317 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4318 } 4319 4320 /** 4321 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4322 * for calculating a new rkey for type 2 memory windows. 4323 * @rkey - the rkey to increment. 4324 */ 4325 static inline u32 ib_inc_rkey(u32 rkey) 4326 { 4327 const u32 mask = 0x000000ff; 4328 return ((rkey + 1) & mask) | (rkey & ~mask); 4329 } 4330 4331 /** 4332 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4333 * @qp: QP to attach to the multicast group. The QP must be type 4334 * IB_QPT_UD. 4335 * @gid: Multicast group GID. 4336 * @lid: Multicast group LID in host byte order. 4337 * 4338 * In order to send and receive multicast packets, subnet 4339 * administration must have created the multicast group and configured 4340 * the fabric appropriately. The port associated with the specified 4341 * QP must also be a member of the multicast group. 4342 */ 4343 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4344 4345 /** 4346 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4347 * @qp: QP to detach from the multicast group. 4348 * @gid: Multicast group GID. 4349 * @lid: Multicast group LID in host byte order. 4350 */ 4351 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4352 4353 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4354 struct inode *inode, struct ib_udata *udata); 4355 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4356 4357 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4358 unsigned int flags) 4359 { 4360 u64 device_cap = ib_dev->attrs.device_cap_flags; 4361 4362 /* 4363 * Local write permission is required if remote write or 4364 * remote atomic permission is also requested. 4365 */ 4366 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4367 !(flags & IB_ACCESS_LOCAL_WRITE)) 4368 return -EINVAL; 4369 4370 if (flags & ~IB_ACCESS_SUPPORTED) 4371 return -EINVAL; 4372 4373 if (flags & IB_ACCESS_ON_DEMAND && 4374 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4375 return -EOPNOTSUPP; 4376 4377 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4378 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4379 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4380 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4381 return -EOPNOTSUPP; 4382 4383 return 0; 4384 } 4385 4386 static inline bool ib_access_writable(int access_flags) 4387 { 4388 /* 4389 * We have writable memory backing the MR if any of the following 4390 * access flags are set. "Local write" and "remote write" obviously 4391 * require write access. "Remote atomic" can do things like fetch and 4392 * add, which will modify memory, and "MW bind" can change permissions 4393 * by binding a window. 4394 */ 4395 return access_flags & 4396 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4397 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4398 } 4399 4400 /** 4401 * ib_check_mr_status: lightweight check of MR status. 4402 * This routine may provide status checks on a selected 4403 * ib_mr. first use is for signature status check. 4404 * 4405 * @mr: A memory region. 4406 * @check_mask: Bitmask of which checks to perform from 4407 * ib_mr_status_check enumeration. 4408 * @mr_status: The container of relevant status checks. 4409 * failed checks will be indicated in the status bitmask 4410 * and the relevant info shall be in the error item. 4411 */ 4412 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4413 struct ib_mr_status *mr_status); 4414 4415 /** 4416 * ib_device_try_get: Hold a registration lock 4417 * device: The device to lock 4418 * 4419 * A device under an active registration lock cannot become unregistered. It 4420 * is only possible to obtain a registration lock on a device that is fully 4421 * registered, otherwise this function returns false. 4422 * 4423 * The registration lock is only necessary for actions which require the 4424 * device to still be registered. Uses that only require the device pointer to 4425 * be valid should use get_device(&ibdev->dev) to hold the memory. 4426 * 4427 */ 4428 static inline bool ib_device_try_get(struct ib_device *dev) 4429 { 4430 return refcount_inc_not_zero(&dev->refcount); 4431 } 4432 4433 void ib_device_put(struct ib_device *device); 4434 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4435 enum rdma_driver_id driver_id); 4436 struct ib_device *ib_device_get_by_name(const char *name, 4437 enum rdma_driver_id driver_id); 4438 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4439 u16 pkey, const union ib_gid *gid, 4440 const struct sockaddr *addr); 4441 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4442 unsigned int port); 4443 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port); 4444 4445 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4446 struct ib_wq_init_attr *init_attr); 4447 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4448 4449 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4450 unsigned int *sg_offset, unsigned int page_size); 4451 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4452 int data_sg_nents, unsigned int *data_sg_offset, 4453 struct scatterlist *meta_sg, int meta_sg_nents, 4454 unsigned int *meta_sg_offset, unsigned int page_size); 4455 4456 static inline int 4457 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4458 unsigned int *sg_offset, unsigned int page_size) 4459 { 4460 int n; 4461 4462 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4463 mr->iova = 0; 4464 4465 return n; 4466 } 4467 4468 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4469 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4470 4471 void ib_drain_rq(struct ib_qp *qp); 4472 void ib_drain_sq(struct ib_qp *qp); 4473 void ib_drain_qp(struct ib_qp *qp); 4474 4475 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4476 u8 *width); 4477 4478 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4479 { 4480 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4481 return attr->roce.dmac; 4482 return NULL; 4483 } 4484 4485 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4486 { 4487 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4488 attr->ib.dlid = (u16)dlid; 4489 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4490 attr->opa.dlid = dlid; 4491 } 4492 4493 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4494 { 4495 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4496 return attr->ib.dlid; 4497 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4498 return attr->opa.dlid; 4499 return 0; 4500 } 4501 4502 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4503 { 4504 attr->sl = sl; 4505 } 4506 4507 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4508 { 4509 return attr->sl; 4510 } 4511 4512 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4513 u8 src_path_bits) 4514 { 4515 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4516 attr->ib.src_path_bits = src_path_bits; 4517 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4518 attr->opa.src_path_bits = src_path_bits; 4519 } 4520 4521 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4522 { 4523 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4524 return attr->ib.src_path_bits; 4525 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4526 return attr->opa.src_path_bits; 4527 return 0; 4528 } 4529 4530 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4531 bool make_grd) 4532 { 4533 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4534 attr->opa.make_grd = make_grd; 4535 } 4536 4537 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4538 { 4539 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4540 return attr->opa.make_grd; 4541 return false; 4542 } 4543 4544 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4545 { 4546 attr->port_num = port_num; 4547 } 4548 4549 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4550 { 4551 return attr->port_num; 4552 } 4553 4554 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4555 u8 static_rate) 4556 { 4557 attr->static_rate = static_rate; 4558 } 4559 4560 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4561 { 4562 return attr->static_rate; 4563 } 4564 4565 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4566 enum ib_ah_flags flag) 4567 { 4568 attr->ah_flags = flag; 4569 } 4570 4571 static inline enum ib_ah_flags 4572 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4573 { 4574 return attr->ah_flags; 4575 } 4576 4577 static inline const struct ib_global_route 4578 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4579 { 4580 return &attr->grh; 4581 } 4582 4583 /*To retrieve and modify the grh */ 4584 static inline struct ib_global_route 4585 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4586 { 4587 return &attr->grh; 4588 } 4589 4590 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4591 { 4592 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4593 4594 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4595 } 4596 4597 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4598 __be64 prefix) 4599 { 4600 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4601 4602 grh->dgid.global.subnet_prefix = prefix; 4603 } 4604 4605 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4606 __be64 if_id) 4607 { 4608 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4609 4610 grh->dgid.global.interface_id = if_id; 4611 } 4612 4613 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4614 union ib_gid *dgid, u32 flow_label, 4615 u8 sgid_index, u8 hop_limit, 4616 u8 traffic_class) 4617 { 4618 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4619 4620 attr->ah_flags = IB_AH_GRH; 4621 if (dgid) 4622 grh->dgid = *dgid; 4623 grh->flow_label = flow_label; 4624 grh->sgid_index = sgid_index; 4625 grh->hop_limit = hop_limit; 4626 grh->traffic_class = traffic_class; 4627 grh->sgid_attr = NULL; 4628 } 4629 4630 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4631 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4632 u32 flow_label, u8 hop_limit, u8 traffic_class, 4633 const struct ib_gid_attr *sgid_attr); 4634 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4635 const struct rdma_ah_attr *src); 4636 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4637 const struct rdma_ah_attr *new); 4638 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4639 4640 /** 4641 * rdma_ah_find_type - Return address handle type. 4642 * 4643 * @dev: Device to be checked 4644 * @port_num: Port number 4645 */ 4646 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4647 u32 port_num) 4648 { 4649 if (rdma_protocol_roce(dev, port_num)) 4650 return RDMA_AH_ATTR_TYPE_ROCE; 4651 if (rdma_protocol_ib(dev, port_num)) { 4652 if (rdma_cap_opa_ah(dev, port_num)) 4653 return RDMA_AH_ATTR_TYPE_OPA; 4654 return RDMA_AH_ATTR_TYPE_IB; 4655 } 4656 4657 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4658 } 4659 4660 /** 4661 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4662 * In the current implementation the only way to 4663 * get the 32bit lid is from other sources for OPA. 4664 * For IB, lids will always be 16bits so cast the 4665 * value accordingly. 4666 * 4667 * @lid: A 32bit LID 4668 */ 4669 static inline u16 ib_lid_cpu16(u32 lid) 4670 { 4671 WARN_ON_ONCE(lid & 0xFFFF0000); 4672 return (u16)lid; 4673 } 4674 4675 /** 4676 * ib_lid_be16 - Return lid in 16bit BE encoding. 4677 * 4678 * @lid: A 32bit LID 4679 */ 4680 static inline __be16 ib_lid_be16(u32 lid) 4681 { 4682 WARN_ON_ONCE(lid & 0xFFFF0000); 4683 return cpu_to_be16((u16)lid); 4684 } 4685 4686 /** 4687 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4688 * vector 4689 * @device: the rdma device 4690 * @comp_vector: index of completion vector 4691 * 4692 * Returns NULL on failure, otherwise a corresponding cpu map of the 4693 * completion vector (returns all-cpus map if the device driver doesn't 4694 * implement get_vector_affinity). 4695 */ 4696 static inline const struct cpumask * 4697 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4698 { 4699 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4700 !device->ops.get_vector_affinity) 4701 return NULL; 4702 4703 return device->ops.get_vector_affinity(device, comp_vector); 4704 4705 } 4706 4707 /** 4708 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4709 * and add their gids, as needed, to the relevant RoCE devices. 4710 * 4711 * @device: the rdma device 4712 */ 4713 void rdma_roce_rescan_device(struct ib_device *ibdev); 4714 4715 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4716 4717 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4718 4719 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4720 enum rdma_netdev_t type, const char *name, 4721 unsigned char name_assign_type, 4722 void (*setup)(struct net_device *)); 4723 4724 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4725 enum rdma_netdev_t type, const char *name, 4726 unsigned char name_assign_type, 4727 void (*setup)(struct net_device *), 4728 struct net_device *netdev); 4729 4730 /** 4731 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4732 * 4733 * @device: device pointer for which ib_device pointer to retrieve 4734 * 4735 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4736 * 4737 */ 4738 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4739 { 4740 struct ib_core_device *coredev = 4741 container_of(device, struct ib_core_device, dev); 4742 4743 return coredev->owner; 4744 } 4745 4746 /** 4747 * ibdev_to_node - return the NUMA node for a given ib_device 4748 * @dev: device to get the NUMA node for. 4749 */ 4750 static inline int ibdev_to_node(struct ib_device *ibdev) 4751 { 4752 struct device *parent = ibdev->dev.parent; 4753 4754 if (!parent) 4755 return NUMA_NO_NODE; 4756 return dev_to_node(parent); 4757 } 4758 4759 /** 4760 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4761 * ib_device holder structure from device pointer. 4762 * 4763 * NOTE: New drivers should not make use of this API; This API is only for 4764 * existing drivers who have exposed sysfs entries using 4765 * ops->device_group. 4766 */ 4767 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4768 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4769 4770 bool rdma_dev_access_netns(const struct ib_device *device, 4771 const struct net *net); 4772 4773 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4774 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4775 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4776 4777 /** 4778 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4779 * on the flow_label 4780 * 4781 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4782 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4783 * convention. 4784 */ 4785 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4786 { 4787 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4788 4789 fl_low ^= fl_high >> 14; 4790 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4791 } 4792 4793 /** 4794 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4795 * local and remote qpn values 4796 * 4797 * This function folded the multiplication results of two qpns, 24 bit each, 4798 * fields, and converts it to a 20 bit results. 4799 * 4800 * This function will create symmetric flow_label value based on the local 4801 * and remote qpn values. this will allow both the requester and responder 4802 * to calculate the same flow_label for a given connection. 4803 * 4804 * This helper function should be used by driver in case the upper layer 4805 * provide a zero flow_label value. This is to improve entropy of RDMA 4806 * traffic in the network. 4807 */ 4808 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4809 { 4810 u64 v = (u64)lqpn * rqpn; 4811 4812 v ^= v >> 20; 4813 v ^= v >> 40; 4814 4815 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4816 } 4817 4818 /** 4819 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4820 * label. If flow label is not defined in GRH then 4821 * calculate it based on lqpn/rqpn. 4822 * 4823 * @fl: flow label from GRH 4824 * @lqpn: local qp number 4825 * @rqpn: remote qp number 4826 */ 4827 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4828 { 4829 if (!fl) 4830 fl = rdma_calc_flow_label(lqpn, rqpn); 4831 4832 return rdma_flow_label_to_udp_sport(fl); 4833 } 4834 4835 const struct ib_port_immutable* 4836 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4837 #endif /* IB_VERBS_H */ 4838