1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 50 #include <asm/atomic.h> 51 #include <asm/scatterlist.h> 52 #include <asm/uaccess.h> 53 54 union ib_gid { 55 u8 raw[16]; 56 struct { 57 __be64 subnet_prefix; 58 __be64 interface_id; 59 } global; 60 }; 61 62 enum rdma_node_type { 63 /* IB values map to NodeInfo:NodeType. */ 64 RDMA_NODE_IB_CA = 1, 65 RDMA_NODE_IB_SWITCH, 66 RDMA_NODE_IB_ROUTER, 67 RDMA_NODE_RNIC 68 }; 69 70 enum rdma_transport_type { 71 RDMA_TRANSPORT_IB, 72 RDMA_TRANSPORT_IWARP 73 }; 74 75 enum rdma_transport_type 76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 77 78 enum ib_device_cap_flags { 79 IB_DEVICE_RESIZE_MAX_WR = 1, 80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 82 IB_DEVICE_RAW_MULTI = (1<<3), 83 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 87 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 88 IB_DEVICE_INIT_TYPE = (1<<9), 89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 92 IB_DEVICE_SRQ_RESIZE = (1<<13), 93 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 94 IB_DEVICE_ZERO_STAG = (1<<15), 95 IB_DEVICE_SEND_W_INV = (1<<16), 96 IB_DEVICE_MEM_WINDOW = (1<<17) 97 }; 98 99 enum ib_atomic_cap { 100 IB_ATOMIC_NONE, 101 IB_ATOMIC_HCA, 102 IB_ATOMIC_GLOB 103 }; 104 105 struct ib_device_attr { 106 u64 fw_ver; 107 __be64 sys_image_guid; 108 u64 max_mr_size; 109 u64 page_size_cap; 110 u32 vendor_id; 111 u32 vendor_part_id; 112 u32 hw_ver; 113 int max_qp; 114 int max_qp_wr; 115 int device_cap_flags; 116 int max_sge; 117 int max_sge_rd; 118 int max_cq; 119 int max_cqe; 120 int max_mr; 121 int max_pd; 122 int max_qp_rd_atom; 123 int max_ee_rd_atom; 124 int max_res_rd_atom; 125 int max_qp_init_rd_atom; 126 int max_ee_init_rd_atom; 127 enum ib_atomic_cap atomic_cap; 128 int max_ee; 129 int max_rdd; 130 int max_mw; 131 int max_raw_ipv6_qp; 132 int max_raw_ethy_qp; 133 int max_mcast_grp; 134 int max_mcast_qp_attach; 135 int max_total_mcast_qp_attach; 136 int max_ah; 137 int max_fmr; 138 int max_map_per_fmr; 139 int max_srq; 140 int max_srq_wr; 141 int max_srq_sge; 142 u16 max_pkeys; 143 u8 local_ca_ack_delay; 144 }; 145 146 enum ib_mtu { 147 IB_MTU_256 = 1, 148 IB_MTU_512 = 2, 149 IB_MTU_1024 = 3, 150 IB_MTU_2048 = 4, 151 IB_MTU_4096 = 5 152 }; 153 154 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 155 { 156 switch (mtu) { 157 case IB_MTU_256: return 256; 158 case IB_MTU_512: return 512; 159 case IB_MTU_1024: return 1024; 160 case IB_MTU_2048: return 2048; 161 case IB_MTU_4096: return 4096; 162 default: return -1; 163 } 164 } 165 166 enum ib_port_state { 167 IB_PORT_NOP = 0, 168 IB_PORT_DOWN = 1, 169 IB_PORT_INIT = 2, 170 IB_PORT_ARMED = 3, 171 IB_PORT_ACTIVE = 4, 172 IB_PORT_ACTIVE_DEFER = 5 173 }; 174 175 enum ib_port_cap_flags { 176 IB_PORT_SM = 1 << 1, 177 IB_PORT_NOTICE_SUP = 1 << 2, 178 IB_PORT_TRAP_SUP = 1 << 3, 179 IB_PORT_OPT_IPD_SUP = 1 << 4, 180 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 181 IB_PORT_SL_MAP_SUP = 1 << 6, 182 IB_PORT_MKEY_NVRAM = 1 << 7, 183 IB_PORT_PKEY_NVRAM = 1 << 8, 184 IB_PORT_LED_INFO_SUP = 1 << 9, 185 IB_PORT_SM_DISABLED = 1 << 10, 186 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 187 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 188 IB_PORT_CM_SUP = 1 << 16, 189 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 190 IB_PORT_REINIT_SUP = 1 << 18, 191 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 192 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 193 IB_PORT_DR_NOTICE_SUP = 1 << 21, 194 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 195 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 196 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 197 IB_PORT_CLIENT_REG_SUP = 1 << 25 198 }; 199 200 enum ib_port_width { 201 IB_WIDTH_1X = 1, 202 IB_WIDTH_4X = 2, 203 IB_WIDTH_8X = 4, 204 IB_WIDTH_12X = 8 205 }; 206 207 static inline int ib_width_enum_to_int(enum ib_port_width width) 208 { 209 switch (width) { 210 case IB_WIDTH_1X: return 1; 211 case IB_WIDTH_4X: return 4; 212 case IB_WIDTH_8X: return 8; 213 case IB_WIDTH_12X: return 12; 214 default: return -1; 215 } 216 } 217 218 struct ib_port_attr { 219 enum ib_port_state state; 220 enum ib_mtu max_mtu; 221 enum ib_mtu active_mtu; 222 int gid_tbl_len; 223 u32 port_cap_flags; 224 u32 max_msg_sz; 225 u32 bad_pkey_cntr; 226 u32 qkey_viol_cntr; 227 u16 pkey_tbl_len; 228 u16 lid; 229 u16 sm_lid; 230 u8 lmc; 231 u8 max_vl_num; 232 u8 sm_sl; 233 u8 subnet_timeout; 234 u8 init_type_reply; 235 u8 active_width; 236 u8 active_speed; 237 u8 phys_state; 238 }; 239 240 enum ib_device_modify_flags { 241 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 242 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 243 }; 244 245 struct ib_device_modify { 246 u64 sys_image_guid; 247 char node_desc[64]; 248 }; 249 250 enum ib_port_modify_flags { 251 IB_PORT_SHUTDOWN = 1, 252 IB_PORT_INIT_TYPE = (1<<2), 253 IB_PORT_RESET_QKEY_CNTR = (1<<3) 254 }; 255 256 struct ib_port_modify { 257 u32 set_port_cap_mask; 258 u32 clr_port_cap_mask; 259 u8 init_type; 260 }; 261 262 enum ib_event_type { 263 IB_EVENT_CQ_ERR, 264 IB_EVENT_QP_FATAL, 265 IB_EVENT_QP_REQ_ERR, 266 IB_EVENT_QP_ACCESS_ERR, 267 IB_EVENT_COMM_EST, 268 IB_EVENT_SQ_DRAINED, 269 IB_EVENT_PATH_MIG, 270 IB_EVENT_PATH_MIG_ERR, 271 IB_EVENT_DEVICE_FATAL, 272 IB_EVENT_PORT_ACTIVE, 273 IB_EVENT_PORT_ERR, 274 IB_EVENT_LID_CHANGE, 275 IB_EVENT_PKEY_CHANGE, 276 IB_EVENT_SM_CHANGE, 277 IB_EVENT_SRQ_ERR, 278 IB_EVENT_SRQ_LIMIT_REACHED, 279 IB_EVENT_QP_LAST_WQE_REACHED, 280 IB_EVENT_CLIENT_REREGISTER 281 }; 282 283 struct ib_event { 284 struct ib_device *device; 285 union { 286 struct ib_cq *cq; 287 struct ib_qp *qp; 288 struct ib_srq *srq; 289 u8 port_num; 290 } element; 291 enum ib_event_type event; 292 }; 293 294 struct ib_event_handler { 295 struct ib_device *device; 296 void (*handler)(struct ib_event_handler *, struct ib_event *); 297 struct list_head list; 298 }; 299 300 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 301 do { \ 302 (_ptr)->device = _device; \ 303 (_ptr)->handler = _handler; \ 304 INIT_LIST_HEAD(&(_ptr)->list); \ 305 } while (0) 306 307 struct ib_global_route { 308 union ib_gid dgid; 309 u32 flow_label; 310 u8 sgid_index; 311 u8 hop_limit; 312 u8 traffic_class; 313 }; 314 315 struct ib_grh { 316 __be32 version_tclass_flow; 317 __be16 paylen; 318 u8 next_hdr; 319 u8 hop_limit; 320 union ib_gid sgid; 321 union ib_gid dgid; 322 }; 323 324 enum { 325 IB_MULTICAST_QPN = 0xffffff 326 }; 327 328 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 329 330 enum ib_ah_flags { 331 IB_AH_GRH = 1 332 }; 333 334 enum ib_rate { 335 IB_RATE_PORT_CURRENT = 0, 336 IB_RATE_2_5_GBPS = 2, 337 IB_RATE_5_GBPS = 5, 338 IB_RATE_10_GBPS = 3, 339 IB_RATE_20_GBPS = 6, 340 IB_RATE_30_GBPS = 4, 341 IB_RATE_40_GBPS = 7, 342 IB_RATE_60_GBPS = 8, 343 IB_RATE_80_GBPS = 9, 344 IB_RATE_120_GBPS = 10 345 }; 346 347 /** 348 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 349 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 350 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 351 * @rate: rate to convert. 352 */ 353 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 354 355 /** 356 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 357 * enum. 358 * @mult: multiple to convert. 359 */ 360 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 361 362 struct ib_ah_attr { 363 struct ib_global_route grh; 364 u16 dlid; 365 u8 sl; 366 u8 src_path_bits; 367 u8 static_rate; 368 u8 ah_flags; 369 u8 port_num; 370 }; 371 372 enum ib_wc_status { 373 IB_WC_SUCCESS, 374 IB_WC_LOC_LEN_ERR, 375 IB_WC_LOC_QP_OP_ERR, 376 IB_WC_LOC_EEC_OP_ERR, 377 IB_WC_LOC_PROT_ERR, 378 IB_WC_WR_FLUSH_ERR, 379 IB_WC_MW_BIND_ERR, 380 IB_WC_BAD_RESP_ERR, 381 IB_WC_LOC_ACCESS_ERR, 382 IB_WC_REM_INV_REQ_ERR, 383 IB_WC_REM_ACCESS_ERR, 384 IB_WC_REM_OP_ERR, 385 IB_WC_RETRY_EXC_ERR, 386 IB_WC_RNR_RETRY_EXC_ERR, 387 IB_WC_LOC_RDD_VIOL_ERR, 388 IB_WC_REM_INV_RD_REQ_ERR, 389 IB_WC_REM_ABORT_ERR, 390 IB_WC_INV_EECN_ERR, 391 IB_WC_INV_EEC_STATE_ERR, 392 IB_WC_FATAL_ERR, 393 IB_WC_RESP_TIMEOUT_ERR, 394 IB_WC_GENERAL_ERR 395 }; 396 397 enum ib_wc_opcode { 398 IB_WC_SEND, 399 IB_WC_RDMA_WRITE, 400 IB_WC_RDMA_READ, 401 IB_WC_COMP_SWAP, 402 IB_WC_FETCH_ADD, 403 IB_WC_BIND_MW, 404 /* 405 * Set value of IB_WC_RECV so consumers can test if a completion is a 406 * receive by testing (opcode & IB_WC_RECV). 407 */ 408 IB_WC_RECV = 1 << 7, 409 IB_WC_RECV_RDMA_WITH_IMM 410 }; 411 412 enum ib_wc_flags { 413 IB_WC_GRH = 1, 414 IB_WC_WITH_IMM = (1<<1) 415 }; 416 417 struct ib_wc { 418 u64 wr_id; 419 enum ib_wc_status status; 420 enum ib_wc_opcode opcode; 421 u32 vendor_err; 422 u32 byte_len; 423 struct ib_qp *qp; 424 __be32 imm_data; 425 u32 src_qp; 426 int wc_flags; 427 u16 pkey_index; 428 u16 slid; 429 u8 sl; 430 u8 dlid_path_bits; 431 u8 port_num; /* valid only for DR SMPs on switches */ 432 }; 433 434 enum ib_cq_notify_flags { 435 IB_CQ_SOLICITED = 1 << 0, 436 IB_CQ_NEXT_COMP = 1 << 1, 437 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 438 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 439 }; 440 441 enum ib_srq_attr_mask { 442 IB_SRQ_MAX_WR = 1 << 0, 443 IB_SRQ_LIMIT = 1 << 1, 444 }; 445 446 struct ib_srq_attr { 447 u32 max_wr; 448 u32 max_sge; 449 u32 srq_limit; 450 }; 451 452 struct ib_srq_init_attr { 453 void (*event_handler)(struct ib_event *, void *); 454 void *srq_context; 455 struct ib_srq_attr attr; 456 }; 457 458 struct ib_qp_cap { 459 u32 max_send_wr; 460 u32 max_recv_wr; 461 u32 max_send_sge; 462 u32 max_recv_sge; 463 u32 max_inline_data; 464 }; 465 466 enum ib_sig_type { 467 IB_SIGNAL_ALL_WR, 468 IB_SIGNAL_REQ_WR 469 }; 470 471 enum ib_qp_type { 472 /* 473 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 474 * here (and in that order) since the MAD layer uses them as 475 * indices into a 2-entry table. 476 */ 477 IB_QPT_SMI, 478 IB_QPT_GSI, 479 480 IB_QPT_RC, 481 IB_QPT_UC, 482 IB_QPT_UD, 483 IB_QPT_RAW_IPV6, 484 IB_QPT_RAW_ETY 485 }; 486 487 struct ib_qp_init_attr { 488 void (*event_handler)(struct ib_event *, void *); 489 void *qp_context; 490 struct ib_cq *send_cq; 491 struct ib_cq *recv_cq; 492 struct ib_srq *srq; 493 struct ib_qp_cap cap; 494 enum ib_sig_type sq_sig_type; 495 enum ib_qp_type qp_type; 496 u8 port_num; /* special QP types only */ 497 }; 498 499 enum ib_rnr_timeout { 500 IB_RNR_TIMER_655_36 = 0, 501 IB_RNR_TIMER_000_01 = 1, 502 IB_RNR_TIMER_000_02 = 2, 503 IB_RNR_TIMER_000_03 = 3, 504 IB_RNR_TIMER_000_04 = 4, 505 IB_RNR_TIMER_000_06 = 5, 506 IB_RNR_TIMER_000_08 = 6, 507 IB_RNR_TIMER_000_12 = 7, 508 IB_RNR_TIMER_000_16 = 8, 509 IB_RNR_TIMER_000_24 = 9, 510 IB_RNR_TIMER_000_32 = 10, 511 IB_RNR_TIMER_000_48 = 11, 512 IB_RNR_TIMER_000_64 = 12, 513 IB_RNR_TIMER_000_96 = 13, 514 IB_RNR_TIMER_001_28 = 14, 515 IB_RNR_TIMER_001_92 = 15, 516 IB_RNR_TIMER_002_56 = 16, 517 IB_RNR_TIMER_003_84 = 17, 518 IB_RNR_TIMER_005_12 = 18, 519 IB_RNR_TIMER_007_68 = 19, 520 IB_RNR_TIMER_010_24 = 20, 521 IB_RNR_TIMER_015_36 = 21, 522 IB_RNR_TIMER_020_48 = 22, 523 IB_RNR_TIMER_030_72 = 23, 524 IB_RNR_TIMER_040_96 = 24, 525 IB_RNR_TIMER_061_44 = 25, 526 IB_RNR_TIMER_081_92 = 26, 527 IB_RNR_TIMER_122_88 = 27, 528 IB_RNR_TIMER_163_84 = 28, 529 IB_RNR_TIMER_245_76 = 29, 530 IB_RNR_TIMER_327_68 = 30, 531 IB_RNR_TIMER_491_52 = 31 532 }; 533 534 enum ib_qp_attr_mask { 535 IB_QP_STATE = 1, 536 IB_QP_CUR_STATE = (1<<1), 537 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 538 IB_QP_ACCESS_FLAGS = (1<<3), 539 IB_QP_PKEY_INDEX = (1<<4), 540 IB_QP_PORT = (1<<5), 541 IB_QP_QKEY = (1<<6), 542 IB_QP_AV = (1<<7), 543 IB_QP_PATH_MTU = (1<<8), 544 IB_QP_TIMEOUT = (1<<9), 545 IB_QP_RETRY_CNT = (1<<10), 546 IB_QP_RNR_RETRY = (1<<11), 547 IB_QP_RQ_PSN = (1<<12), 548 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 549 IB_QP_ALT_PATH = (1<<14), 550 IB_QP_MIN_RNR_TIMER = (1<<15), 551 IB_QP_SQ_PSN = (1<<16), 552 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 553 IB_QP_PATH_MIG_STATE = (1<<18), 554 IB_QP_CAP = (1<<19), 555 IB_QP_DEST_QPN = (1<<20) 556 }; 557 558 enum ib_qp_state { 559 IB_QPS_RESET, 560 IB_QPS_INIT, 561 IB_QPS_RTR, 562 IB_QPS_RTS, 563 IB_QPS_SQD, 564 IB_QPS_SQE, 565 IB_QPS_ERR 566 }; 567 568 enum ib_mig_state { 569 IB_MIG_MIGRATED, 570 IB_MIG_REARM, 571 IB_MIG_ARMED 572 }; 573 574 struct ib_qp_attr { 575 enum ib_qp_state qp_state; 576 enum ib_qp_state cur_qp_state; 577 enum ib_mtu path_mtu; 578 enum ib_mig_state path_mig_state; 579 u32 qkey; 580 u32 rq_psn; 581 u32 sq_psn; 582 u32 dest_qp_num; 583 int qp_access_flags; 584 struct ib_qp_cap cap; 585 struct ib_ah_attr ah_attr; 586 struct ib_ah_attr alt_ah_attr; 587 u16 pkey_index; 588 u16 alt_pkey_index; 589 u8 en_sqd_async_notify; 590 u8 sq_draining; 591 u8 max_rd_atomic; 592 u8 max_dest_rd_atomic; 593 u8 min_rnr_timer; 594 u8 port_num; 595 u8 timeout; 596 u8 retry_cnt; 597 u8 rnr_retry; 598 u8 alt_port_num; 599 u8 alt_timeout; 600 }; 601 602 enum ib_wr_opcode { 603 IB_WR_RDMA_WRITE, 604 IB_WR_RDMA_WRITE_WITH_IMM, 605 IB_WR_SEND, 606 IB_WR_SEND_WITH_IMM, 607 IB_WR_RDMA_READ, 608 IB_WR_ATOMIC_CMP_AND_SWP, 609 IB_WR_ATOMIC_FETCH_AND_ADD 610 }; 611 612 enum ib_send_flags { 613 IB_SEND_FENCE = 1, 614 IB_SEND_SIGNALED = (1<<1), 615 IB_SEND_SOLICITED = (1<<2), 616 IB_SEND_INLINE = (1<<3) 617 }; 618 619 struct ib_sge { 620 u64 addr; 621 u32 length; 622 u32 lkey; 623 }; 624 625 struct ib_send_wr { 626 struct ib_send_wr *next; 627 u64 wr_id; 628 struct ib_sge *sg_list; 629 int num_sge; 630 enum ib_wr_opcode opcode; 631 int send_flags; 632 __be32 imm_data; 633 union { 634 struct { 635 u64 remote_addr; 636 u32 rkey; 637 } rdma; 638 struct { 639 u64 remote_addr; 640 u64 compare_add; 641 u64 swap; 642 u32 rkey; 643 } atomic; 644 struct { 645 struct ib_ah *ah; 646 u32 remote_qpn; 647 u32 remote_qkey; 648 u16 pkey_index; /* valid for GSI only */ 649 u8 port_num; /* valid for DR SMPs on switch only */ 650 } ud; 651 } wr; 652 }; 653 654 struct ib_recv_wr { 655 struct ib_recv_wr *next; 656 u64 wr_id; 657 struct ib_sge *sg_list; 658 int num_sge; 659 }; 660 661 enum ib_access_flags { 662 IB_ACCESS_LOCAL_WRITE = 1, 663 IB_ACCESS_REMOTE_WRITE = (1<<1), 664 IB_ACCESS_REMOTE_READ = (1<<2), 665 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 666 IB_ACCESS_MW_BIND = (1<<4) 667 }; 668 669 struct ib_phys_buf { 670 u64 addr; 671 u64 size; 672 }; 673 674 struct ib_mr_attr { 675 struct ib_pd *pd; 676 u64 device_virt_addr; 677 u64 size; 678 int mr_access_flags; 679 u32 lkey; 680 u32 rkey; 681 }; 682 683 enum ib_mr_rereg_flags { 684 IB_MR_REREG_TRANS = 1, 685 IB_MR_REREG_PD = (1<<1), 686 IB_MR_REREG_ACCESS = (1<<2) 687 }; 688 689 struct ib_mw_bind { 690 struct ib_mr *mr; 691 u64 wr_id; 692 u64 addr; 693 u32 length; 694 int send_flags; 695 int mw_access_flags; 696 }; 697 698 struct ib_fmr_attr { 699 int max_pages; 700 int max_maps; 701 u8 page_shift; 702 }; 703 704 struct ib_ucontext { 705 struct ib_device *device; 706 struct list_head pd_list; 707 struct list_head mr_list; 708 struct list_head mw_list; 709 struct list_head cq_list; 710 struct list_head qp_list; 711 struct list_head srq_list; 712 struct list_head ah_list; 713 int closing; 714 }; 715 716 struct ib_uobject { 717 u64 user_handle; /* handle given to us by userspace */ 718 struct ib_ucontext *context; /* associated user context */ 719 void *object; /* containing object */ 720 struct list_head list; /* link to context's list */ 721 u32 id; /* index into kernel idr */ 722 struct kref ref; 723 struct rw_semaphore mutex; /* protects .live */ 724 int live; 725 }; 726 727 struct ib_udata { 728 void __user *inbuf; 729 void __user *outbuf; 730 size_t inlen; 731 size_t outlen; 732 }; 733 734 #define IB_UMEM_MAX_PAGE_CHUNK \ 735 ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ 736 ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ 737 (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) 738 739 struct ib_pd { 740 struct ib_device *device; 741 struct ib_uobject *uobject; 742 atomic_t usecnt; /* count all resources */ 743 }; 744 745 struct ib_ah { 746 struct ib_device *device; 747 struct ib_pd *pd; 748 struct ib_uobject *uobject; 749 }; 750 751 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 752 753 struct ib_cq { 754 struct ib_device *device; 755 struct ib_uobject *uobject; 756 ib_comp_handler comp_handler; 757 void (*event_handler)(struct ib_event *, void *); 758 void * cq_context; 759 int cqe; 760 atomic_t usecnt; /* count number of work queues */ 761 }; 762 763 struct ib_srq { 764 struct ib_device *device; 765 struct ib_pd *pd; 766 struct ib_uobject *uobject; 767 void (*event_handler)(struct ib_event *, void *); 768 void *srq_context; 769 atomic_t usecnt; 770 }; 771 772 struct ib_qp { 773 struct ib_device *device; 774 struct ib_pd *pd; 775 struct ib_cq *send_cq; 776 struct ib_cq *recv_cq; 777 struct ib_srq *srq; 778 struct ib_uobject *uobject; 779 void (*event_handler)(struct ib_event *, void *); 780 void *qp_context; 781 u32 qp_num; 782 enum ib_qp_type qp_type; 783 }; 784 785 struct ib_mr { 786 struct ib_device *device; 787 struct ib_pd *pd; 788 struct ib_uobject *uobject; 789 u32 lkey; 790 u32 rkey; 791 atomic_t usecnt; /* count number of MWs */ 792 }; 793 794 struct ib_mw { 795 struct ib_device *device; 796 struct ib_pd *pd; 797 struct ib_uobject *uobject; 798 u32 rkey; 799 }; 800 801 struct ib_fmr { 802 struct ib_device *device; 803 struct ib_pd *pd; 804 struct list_head list; 805 u32 lkey; 806 u32 rkey; 807 }; 808 809 struct ib_mad; 810 struct ib_grh; 811 812 enum ib_process_mad_flags { 813 IB_MAD_IGNORE_MKEY = 1, 814 IB_MAD_IGNORE_BKEY = 2, 815 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 816 }; 817 818 enum ib_mad_result { 819 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 820 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 821 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 822 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 823 }; 824 825 #define IB_DEVICE_NAME_MAX 64 826 827 struct ib_cache { 828 rwlock_t lock; 829 struct ib_event_handler event_handler; 830 struct ib_pkey_cache **pkey_cache; 831 struct ib_gid_cache **gid_cache; 832 u8 *lmc_cache; 833 }; 834 835 struct ib_dma_mapping_ops { 836 int (*mapping_error)(struct ib_device *dev, 837 u64 dma_addr); 838 u64 (*map_single)(struct ib_device *dev, 839 void *ptr, size_t size, 840 enum dma_data_direction direction); 841 void (*unmap_single)(struct ib_device *dev, 842 u64 addr, size_t size, 843 enum dma_data_direction direction); 844 u64 (*map_page)(struct ib_device *dev, 845 struct page *page, unsigned long offset, 846 size_t size, 847 enum dma_data_direction direction); 848 void (*unmap_page)(struct ib_device *dev, 849 u64 addr, size_t size, 850 enum dma_data_direction direction); 851 int (*map_sg)(struct ib_device *dev, 852 struct scatterlist *sg, int nents, 853 enum dma_data_direction direction); 854 void (*unmap_sg)(struct ib_device *dev, 855 struct scatterlist *sg, int nents, 856 enum dma_data_direction direction); 857 u64 (*dma_address)(struct ib_device *dev, 858 struct scatterlist *sg); 859 unsigned int (*dma_len)(struct ib_device *dev, 860 struct scatterlist *sg); 861 void (*sync_single_for_cpu)(struct ib_device *dev, 862 u64 dma_handle, 863 size_t size, 864 enum dma_data_direction dir); 865 void (*sync_single_for_device)(struct ib_device *dev, 866 u64 dma_handle, 867 size_t size, 868 enum dma_data_direction dir); 869 void *(*alloc_coherent)(struct ib_device *dev, 870 size_t size, 871 u64 *dma_handle, 872 gfp_t flag); 873 void (*free_coherent)(struct ib_device *dev, 874 size_t size, void *cpu_addr, 875 u64 dma_handle); 876 }; 877 878 struct iw_cm_verbs; 879 880 struct ib_device { 881 struct device *dma_device; 882 883 char name[IB_DEVICE_NAME_MAX]; 884 885 struct list_head event_handler_list; 886 spinlock_t event_handler_lock; 887 888 struct list_head core_list; 889 struct list_head client_data_list; 890 spinlock_t client_data_lock; 891 892 struct ib_cache cache; 893 int *pkey_tbl_len; 894 int *gid_tbl_len; 895 896 u32 flags; 897 898 int num_comp_vectors; 899 900 struct iw_cm_verbs *iwcm; 901 902 int (*query_device)(struct ib_device *device, 903 struct ib_device_attr *device_attr); 904 int (*query_port)(struct ib_device *device, 905 u8 port_num, 906 struct ib_port_attr *port_attr); 907 int (*query_gid)(struct ib_device *device, 908 u8 port_num, int index, 909 union ib_gid *gid); 910 int (*query_pkey)(struct ib_device *device, 911 u8 port_num, u16 index, u16 *pkey); 912 int (*modify_device)(struct ib_device *device, 913 int device_modify_mask, 914 struct ib_device_modify *device_modify); 915 int (*modify_port)(struct ib_device *device, 916 u8 port_num, int port_modify_mask, 917 struct ib_port_modify *port_modify); 918 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 919 struct ib_udata *udata); 920 int (*dealloc_ucontext)(struct ib_ucontext *context); 921 int (*mmap)(struct ib_ucontext *context, 922 struct vm_area_struct *vma); 923 struct ib_pd * (*alloc_pd)(struct ib_device *device, 924 struct ib_ucontext *context, 925 struct ib_udata *udata); 926 int (*dealloc_pd)(struct ib_pd *pd); 927 struct ib_ah * (*create_ah)(struct ib_pd *pd, 928 struct ib_ah_attr *ah_attr); 929 int (*modify_ah)(struct ib_ah *ah, 930 struct ib_ah_attr *ah_attr); 931 int (*query_ah)(struct ib_ah *ah, 932 struct ib_ah_attr *ah_attr); 933 int (*destroy_ah)(struct ib_ah *ah); 934 struct ib_srq * (*create_srq)(struct ib_pd *pd, 935 struct ib_srq_init_attr *srq_init_attr, 936 struct ib_udata *udata); 937 int (*modify_srq)(struct ib_srq *srq, 938 struct ib_srq_attr *srq_attr, 939 enum ib_srq_attr_mask srq_attr_mask, 940 struct ib_udata *udata); 941 int (*query_srq)(struct ib_srq *srq, 942 struct ib_srq_attr *srq_attr); 943 int (*destroy_srq)(struct ib_srq *srq); 944 int (*post_srq_recv)(struct ib_srq *srq, 945 struct ib_recv_wr *recv_wr, 946 struct ib_recv_wr **bad_recv_wr); 947 struct ib_qp * (*create_qp)(struct ib_pd *pd, 948 struct ib_qp_init_attr *qp_init_attr, 949 struct ib_udata *udata); 950 int (*modify_qp)(struct ib_qp *qp, 951 struct ib_qp_attr *qp_attr, 952 int qp_attr_mask, 953 struct ib_udata *udata); 954 int (*query_qp)(struct ib_qp *qp, 955 struct ib_qp_attr *qp_attr, 956 int qp_attr_mask, 957 struct ib_qp_init_attr *qp_init_attr); 958 int (*destroy_qp)(struct ib_qp *qp); 959 int (*post_send)(struct ib_qp *qp, 960 struct ib_send_wr *send_wr, 961 struct ib_send_wr **bad_send_wr); 962 int (*post_recv)(struct ib_qp *qp, 963 struct ib_recv_wr *recv_wr, 964 struct ib_recv_wr **bad_recv_wr); 965 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 966 int comp_vector, 967 struct ib_ucontext *context, 968 struct ib_udata *udata); 969 int (*destroy_cq)(struct ib_cq *cq); 970 int (*resize_cq)(struct ib_cq *cq, int cqe, 971 struct ib_udata *udata); 972 int (*poll_cq)(struct ib_cq *cq, int num_entries, 973 struct ib_wc *wc); 974 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 975 int (*req_notify_cq)(struct ib_cq *cq, 976 enum ib_cq_notify_flags flags); 977 int (*req_ncomp_notif)(struct ib_cq *cq, 978 int wc_cnt); 979 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 980 int mr_access_flags); 981 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 982 struct ib_phys_buf *phys_buf_array, 983 int num_phys_buf, 984 int mr_access_flags, 985 u64 *iova_start); 986 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 987 u64 start, u64 length, 988 u64 virt_addr, 989 int mr_access_flags, 990 struct ib_udata *udata); 991 int (*query_mr)(struct ib_mr *mr, 992 struct ib_mr_attr *mr_attr); 993 int (*dereg_mr)(struct ib_mr *mr); 994 int (*rereg_phys_mr)(struct ib_mr *mr, 995 int mr_rereg_mask, 996 struct ib_pd *pd, 997 struct ib_phys_buf *phys_buf_array, 998 int num_phys_buf, 999 int mr_access_flags, 1000 u64 *iova_start); 1001 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1002 int (*bind_mw)(struct ib_qp *qp, 1003 struct ib_mw *mw, 1004 struct ib_mw_bind *mw_bind); 1005 int (*dealloc_mw)(struct ib_mw *mw); 1006 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1007 int mr_access_flags, 1008 struct ib_fmr_attr *fmr_attr); 1009 int (*map_phys_fmr)(struct ib_fmr *fmr, 1010 u64 *page_list, int list_len, 1011 u64 iova); 1012 int (*unmap_fmr)(struct list_head *fmr_list); 1013 int (*dealloc_fmr)(struct ib_fmr *fmr); 1014 int (*attach_mcast)(struct ib_qp *qp, 1015 union ib_gid *gid, 1016 u16 lid); 1017 int (*detach_mcast)(struct ib_qp *qp, 1018 union ib_gid *gid, 1019 u16 lid); 1020 int (*process_mad)(struct ib_device *device, 1021 int process_mad_flags, 1022 u8 port_num, 1023 struct ib_wc *in_wc, 1024 struct ib_grh *in_grh, 1025 struct ib_mad *in_mad, 1026 struct ib_mad *out_mad); 1027 1028 struct ib_dma_mapping_ops *dma_ops; 1029 1030 struct module *owner; 1031 struct class_device class_dev; 1032 struct kobject ports_parent; 1033 struct list_head port_list; 1034 1035 enum { 1036 IB_DEV_UNINITIALIZED, 1037 IB_DEV_REGISTERED, 1038 IB_DEV_UNREGISTERED 1039 } reg_state; 1040 1041 u64 uverbs_cmd_mask; 1042 int uverbs_abi_ver; 1043 1044 char node_desc[64]; 1045 __be64 node_guid; 1046 u8 node_type; 1047 u8 phys_port_cnt; 1048 }; 1049 1050 struct ib_client { 1051 char *name; 1052 void (*add) (struct ib_device *); 1053 void (*remove)(struct ib_device *); 1054 1055 struct list_head list; 1056 }; 1057 1058 struct ib_device *ib_alloc_device(size_t size); 1059 void ib_dealloc_device(struct ib_device *device); 1060 1061 int ib_register_device (struct ib_device *device); 1062 void ib_unregister_device(struct ib_device *device); 1063 1064 int ib_register_client (struct ib_client *client); 1065 void ib_unregister_client(struct ib_client *client); 1066 1067 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1068 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1069 void *data); 1070 1071 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1072 { 1073 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1074 } 1075 1076 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1077 { 1078 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1079 } 1080 1081 /** 1082 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1083 * contains all required attributes and no attributes not allowed for 1084 * the given QP state transition. 1085 * @cur_state: Current QP state 1086 * @next_state: Next QP state 1087 * @type: QP type 1088 * @mask: Mask of supplied QP attributes 1089 * 1090 * This function is a helper function that a low-level driver's 1091 * modify_qp method can use to validate the consumer's input. It 1092 * checks that cur_state and next_state are valid QP states, that a 1093 * transition from cur_state to next_state is allowed by the IB spec, 1094 * and that the attribute mask supplied is allowed for the transition. 1095 */ 1096 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1097 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1098 1099 int ib_register_event_handler (struct ib_event_handler *event_handler); 1100 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1101 void ib_dispatch_event(struct ib_event *event); 1102 1103 int ib_query_device(struct ib_device *device, 1104 struct ib_device_attr *device_attr); 1105 1106 int ib_query_port(struct ib_device *device, 1107 u8 port_num, struct ib_port_attr *port_attr); 1108 1109 int ib_query_gid(struct ib_device *device, 1110 u8 port_num, int index, union ib_gid *gid); 1111 1112 int ib_query_pkey(struct ib_device *device, 1113 u8 port_num, u16 index, u16 *pkey); 1114 1115 int ib_modify_device(struct ib_device *device, 1116 int device_modify_mask, 1117 struct ib_device_modify *device_modify); 1118 1119 int ib_modify_port(struct ib_device *device, 1120 u8 port_num, int port_modify_mask, 1121 struct ib_port_modify *port_modify); 1122 1123 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1124 u8 *port_num, u16 *index); 1125 1126 int ib_find_pkey(struct ib_device *device, 1127 u8 port_num, u16 pkey, u16 *index); 1128 1129 /** 1130 * ib_alloc_pd - Allocates an unused protection domain. 1131 * @device: The device on which to allocate the protection domain. 1132 * 1133 * A protection domain object provides an association between QPs, shared 1134 * receive queues, address handles, memory regions, and memory windows. 1135 */ 1136 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1137 1138 /** 1139 * ib_dealloc_pd - Deallocates a protection domain. 1140 * @pd: The protection domain to deallocate. 1141 */ 1142 int ib_dealloc_pd(struct ib_pd *pd); 1143 1144 /** 1145 * ib_create_ah - Creates an address handle for the given address vector. 1146 * @pd: The protection domain associated with the address handle. 1147 * @ah_attr: The attributes of the address vector. 1148 * 1149 * The address handle is used to reference a local or global destination 1150 * in all UD QP post sends. 1151 */ 1152 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1153 1154 /** 1155 * ib_init_ah_from_wc - Initializes address handle attributes from a 1156 * work completion. 1157 * @device: Device on which the received message arrived. 1158 * @port_num: Port on which the received message arrived. 1159 * @wc: Work completion associated with the received message. 1160 * @grh: References the received global route header. This parameter is 1161 * ignored unless the work completion indicates that the GRH is valid. 1162 * @ah_attr: Returned attributes that can be used when creating an address 1163 * handle for replying to the message. 1164 */ 1165 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1166 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1167 1168 /** 1169 * ib_create_ah_from_wc - Creates an address handle associated with the 1170 * sender of the specified work completion. 1171 * @pd: The protection domain associated with the address handle. 1172 * @wc: Work completion information associated with a received message. 1173 * @grh: References the received global route header. This parameter is 1174 * ignored unless the work completion indicates that the GRH is valid. 1175 * @port_num: The outbound port number to associate with the address. 1176 * 1177 * The address handle is used to reference a local or global destination 1178 * in all UD QP post sends. 1179 */ 1180 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1181 struct ib_grh *grh, u8 port_num); 1182 1183 /** 1184 * ib_modify_ah - Modifies the address vector associated with an address 1185 * handle. 1186 * @ah: The address handle to modify. 1187 * @ah_attr: The new address vector attributes to associate with the 1188 * address handle. 1189 */ 1190 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1191 1192 /** 1193 * ib_query_ah - Queries the address vector associated with an address 1194 * handle. 1195 * @ah: The address handle to query. 1196 * @ah_attr: The address vector attributes associated with the address 1197 * handle. 1198 */ 1199 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1200 1201 /** 1202 * ib_destroy_ah - Destroys an address handle. 1203 * @ah: The address handle to destroy. 1204 */ 1205 int ib_destroy_ah(struct ib_ah *ah); 1206 1207 /** 1208 * ib_create_srq - Creates a SRQ associated with the specified protection 1209 * domain. 1210 * @pd: The protection domain associated with the SRQ. 1211 * @srq_init_attr: A list of initial attributes required to create the 1212 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1213 * the actual capabilities of the created SRQ. 1214 * 1215 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1216 * requested size of the SRQ, and set to the actual values allocated 1217 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1218 * will always be at least as large as the requested values. 1219 */ 1220 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1221 struct ib_srq_init_attr *srq_init_attr); 1222 1223 /** 1224 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1225 * @srq: The SRQ to modify. 1226 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1227 * the current values of selected SRQ attributes are returned. 1228 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1229 * are being modified. 1230 * 1231 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1232 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1233 * the number of receives queued drops below the limit. 1234 */ 1235 int ib_modify_srq(struct ib_srq *srq, 1236 struct ib_srq_attr *srq_attr, 1237 enum ib_srq_attr_mask srq_attr_mask); 1238 1239 /** 1240 * ib_query_srq - Returns the attribute list and current values for the 1241 * specified SRQ. 1242 * @srq: The SRQ to query. 1243 * @srq_attr: The attributes of the specified SRQ. 1244 */ 1245 int ib_query_srq(struct ib_srq *srq, 1246 struct ib_srq_attr *srq_attr); 1247 1248 /** 1249 * ib_destroy_srq - Destroys the specified SRQ. 1250 * @srq: The SRQ to destroy. 1251 */ 1252 int ib_destroy_srq(struct ib_srq *srq); 1253 1254 /** 1255 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1256 * @srq: The SRQ to post the work request on. 1257 * @recv_wr: A list of work requests to post on the receive queue. 1258 * @bad_recv_wr: On an immediate failure, this parameter will reference 1259 * the work request that failed to be posted on the QP. 1260 */ 1261 static inline int ib_post_srq_recv(struct ib_srq *srq, 1262 struct ib_recv_wr *recv_wr, 1263 struct ib_recv_wr **bad_recv_wr) 1264 { 1265 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1266 } 1267 1268 /** 1269 * ib_create_qp - Creates a QP associated with the specified protection 1270 * domain. 1271 * @pd: The protection domain associated with the QP. 1272 * @qp_init_attr: A list of initial attributes required to create the 1273 * QP. If QP creation succeeds, then the attributes are updated to 1274 * the actual capabilities of the created QP. 1275 */ 1276 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1277 struct ib_qp_init_attr *qp_init_attr); 1278 1279 /** 1280 * ib_modify_qp - Modifies the attributes for the specified QP and then 1281 * transitions the QP to the given state. 1282 * @qp: The QP to modify. 1283 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1284 * the current values of selected QP attributes are returned. 1285 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1286 * are being modified. 1287 */ 1288 int ib_modify_qp(struct ib_qp *qp, 1289 struct ib_qp_attr *qp_attr, 1290 int qp_attr_mask); 1291 1292 /** 1293 * ib_query_qp - Returns the attribute list and current values for the 1294 * specified QP. 1295 * @qp: The QP to query. 1296 * @qp_attr: The attributes of the specified QP. 1297 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1298 * @qp_init_attr: Additional attributes of the selected QP. 1299 * 1300 * The qp_attr_mask may be used to limit the query to gathering only the 1301 * selected attributes. 1302 */ 1303 int ib_query_qp(struct ib_qp *qp, 1304 struct ib_qp_attr *qp_attr, 1305 int qp_attr_mask, 1306 struct ib_qp_init_attr *qp_init_attr); 1307 1308 /** 1309 * ib_destroy_qp - Destroys the specified QP. 1310 * @qp: The QP to destroy. 1311 */ 1312 int ib_destroy_qp(struct ib_qp *qp); 1313 1314 /** 1315 * ib_post_send - Posts a list of work requests to the send queue of 1316 * the specified QP. 1317 * @qp: The QP to post the work request on. 1318 * @send_wr: A list of work requests to post on the send queue. 1319 * @bad_send_wr: On an immediate failure, this parameter will reference 1320 * the work request that failed to be posted on the QP. 1321 */ 1322 static inline int ib_post_send(struct ib_qp *qp, 1323 struct ib_send_wr *send_wr, 1324 struct ib_send_wr **bad_send_wr) 1325 { 1326 return qp->device->post_send(qp, send_wr, bad_send_wr); 1327 } 1328 1329 /** 1330 * ib_post_recv - Posts a list of work requests to the receive queue of 1331 * the specified QP. 1332 * @qp: The QP to post the work request on. 1333 * @recv_wr: A list of work requests to post on the receive queue. 1334 * @bad_recv_wr: On an immediate failure, this parameter will reference 1335 * the work request that failed to be posted on the QP. 1336 */ 1337 static inline int ib_post_recv(struct ib_qp *qp, 1338 struct ib_recv_wr *recv_wr, 1339 struct ib_recv_wr **bad_recv_wr) 1340 { 1341 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1342 } 1343 1344 /** 1345 * ib_create_cq - Creates a CQ on the specified device. 1346 * @device: The device on which to create the CQ. 1347 * @comp_handler: A user-specified callback that is invoked when a 1348 * completion event occurs on the CQ. 1349 * @event_handler: A user-specified callback that is invoked when an 1350 * asynchronous event not associated with a completion occurs on the CQ. 1351 * @cq_context: Context associated with the CQ returned to the user via 1352 * the associated completion and event handlers. 1353 * @cqe: The minimum size of the CQ. 1354 * @comp_vector - Completion vector used to signal completion events. 1355 * Must be >= 0 and < context->num_comp_vectors. 1356 * 1357 * Users can examine the cq structure to determine the actual CQ size. 1358 */ 1359 struct ib_cq *ib_create_cq(struct ib_device *device, 1360 ib_comp_handler comp_handler, 1361 void (*event_handler)(struct ib_event *, void *), 1362 void *cq_context, int cqe, int comp_vector); 1363 1364 /** 1365 * ib_resize_cq - Modifies the capacity of the CQ. 1366 * @cq: The CQ to resize. 1367 * @cqe: The minimum size of the CQ. 1368 * 1369 * Users can examine the cq structure to determine the actual CQ size. 1370 */ 1371 int ib_resize_cq(struct ib_cq *cq, int cqe); 1372 1373 /** 1374 * ib_destroy_cq - Destroys the specified CQ. 1375 * @cq: The CQ to destroy. 1376 */ 1377 int ib_destroy_cq(struct ib_cq *cq); 1378 1379 /** 1380 * ib_poll_cq - poll a CQ for completion(s) 1381 * @cq:the CQ being polled 1382 * @num_entries:maximum number of completions to return 1383 * @wc:array of at least @num_entries &struct ib_wc where completions 1384 * will be returned 1385 * 1386 * Poll a CQ for (possibly multiple) completions. If the return value 1387 * is < 0, an error occurred. If the return value is >= 0, it is the 1388 * number of completions returned. If the return value is 1389 * non-negative and < num_entries, then the CQ was emptied. 1390 */ 1391 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1392 struct ib_wc *wc) 1393 { 1394 return cq->device->poll_cq(cq, num_entries, wc); 1395 } 1396 1397 /** 1398 * ib_peek_cq - Returns the number of unreaped completions currently 1399 * on the specified CQ. 1400 * @cq: The CQ to peek. 1401 * @wc_cnt: A minimum number of unreaped completions to check for. 1402 * 1403 * If the number of unreaped completions is greater than or equal to wc_cnt, 1404 * this function returns wc_cnt, otherwise, it returns the actual number of 1405 * unreaped completions. 1406 */ 1407 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1408 1409 /** 1410 * ib_req_notify_cq - Request completion notification on a CQ. 1411 * @cq: The CQ to generate an event for. 1412 * @flags: 1413 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1414 * to request an event on the next solicited event or next work 1415 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1416 * may also be |ed in to request a hint about missed events, as 1417 * described below. 1418 * 1419 * Return Value: 1420 * < 0 means an error occurred while requesting notification 1421 * == 0 means notification was requested successfully, and if 1422 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1423 * were missed and it is safe to wait for another event. In 1424 * this case is it guaranteed that any work completions added 1425 * to the CQ since the last CQ poll will trigger a completion 1426 * notification event. 1427 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1428 * in. It means that the consumer must poll the CQ again to 1429 * make sure it is empty to avoid missing an event because of a 1430 * race between requesting notification and an entry being 1431 * added to the CQ. This return value means it is possible 1432 * (but not guaranteed) that a work completion has been added 1433 * to the CQ since the last poll without triggering a 1434 * completion notification event. 1435 */ 1436 static inline int ib_req_notify_cq(struct ib_cq *cq, 1437 enum ib_cq_notify_flags flags) 1438 { 1439 return cq->device->req_notify_cq(cq, flags); 1440 } 1441 1442 /** 1443 * ib_req_ncomp_notif - Request completion notification when there are 1444 * at least the specified number of unreaped completions on the CQ. 1445 * @cq: The CQ to generate an event for. 1446 * @wc_cnt: The number of unreaped completions that should be on the 1447 * CQ before an event is generated. 1448 */ 1449 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1450 { 1451 return cq->device->req_ncomp_notif ? 1452 cq->device->req_ncomp_notif(cq, wc_cnt) : 1453 -ENOSYS; 1454 } 1455 1456 /** 1457 * ib_get_dma_mr - Returns a memory region for system memory that is 1458 * usable for DMA. 1459 * @pd: The protection domain associated with the memory region. 1460 * @mr_access_flags: Specifies the memory access rights. 1461 * 1462 * Note that the ib_dma_*() functions defined below must be used 1463 * to create/destroy addresses used with the Lkey or Rkey returned 1464 * by ib_get_dma_mr(). 1465 */ 1466 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1467 1468 /** 1469 * ib_dma_mapping_error - check a DMA addr for error 1470 * @dev: The device for which the dma_addr was created 1471 * @dma_addr: The DMA address to check 1472 */ 1473 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1474 { 1475 if (dev->dma_ops) 1476 return dev->dma_ops->mapping_error(dev, dma_addr); 1477 return dma_mapping_error(dma_addr); 1478 } 1479 1480 /** 1481 * ib_dma_map_single - Map a kernel virtual address to DMA address 1482 * @dev: The device for which the dma_addr is to be created 1483 * @cpu_addr: The kernel virtual address 1484 * @size: The size of the region in bytes 1485 * @direction: The direction of the DMA 1486 */ 1487 static inline u64 ib_dma_map_single(struct ib_device *dev, 1488 void *cpu_addr, size_t size, 1489 enum dma_data_direction direction) 1490 { 1491 if (dev->dma_ops) 1492 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1493 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1494 } 1495 1496 /** 1497 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1498 * @dev: The device for which the DMA address was created 1499 * @addr: The DMA address 1500 * @size: The size of the region in bytes 1501 * @direction: The direction of the DMA 1502 */ 1503 static inline void ib_dma_unmap_single(struct ib_device *dev, 1504 u64 addr, size_t size, 1505 enum dma_data_direction direction) 1506 { 1507 if (dev->dma_ops) 1508 dev->dma_ops->unmap_single(dev, addr, size, direction); 1509 else 1510 dma_unmap_single(dev->dma_device, addr, size, direction); 1511 } 1512 1513 /** 1514 * ib_dma_map_page - Map a physical page to DMA address 1515 * @dev: The device for which the dma_addr is to be created 1516 * @page: The page to be mapped 1517 * @offset: The offset within the page 1518 * @size: The size of the region in bytes 1519 * @direction: The direction of the DMA 1520 */ 1521 static inline u64 ib_dma_map_page(struct ib_device *dev, 1522 struct page *page, 1523 unsigned long offset, 1524 size_t size, 1525 enum dma_data_direction direction) 1526 { 1527 if (dev->dma_ops) 1528 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1529 return dma_map_page(dev->dma_device, page, offset, size, direction); 1530 } 1531 1532 /** 1533 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1534 * @dev: The device for which the DMA address was created 1535 * @addr: The DMA address 1536 * @size: The size of the region in bytes 1537 * @direction: The direction of the DMA 1538 */ 1539 static inline void ib_dma_unmap_page(struct ib_device *dev, 1540 u64 addr, size_t size, 1541 enum dma_data_direction direction) 1542 { 1543 if (dev->dma_ops) 1544 dev->dma_ops->unmap_page(dev, addr, size, direction); 1545 else 1546 dma_unmap_page(dev->dma_device, addr, size, direction); 1547 } 1548 1549 /** 1550 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1551 * @dev: The device for which the DMA addresses are to be created 1552 * @sg: The array of scatter/gather entries 1553 * @nents: The number of scatter/gather entries 1554 * @direction: The direction of the DMA 1555 */ 1556 static inline int ib_dma_map_sg(struct ib_device *dev, 1557 struct scatterlist *sg, int nents, 1558 enum dma_data_direction direction) 1559 { 1560 if (dev->dma_ops) 1561 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1562 return dma_map_sg(dev->dma_device, sg, nents, direction); 1563 } 1564 1565 /** 1566 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1567 * @dev: The device for which the DMA addresses were created 1568 * @sg: The array of scatter/gather entries 1569 * @nents: The number of scatter/gather entries 1570 * @direction: The direction of the DMA 1571 */ 1572 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1573 struct scatterlist *sg, int nents, 1574 enum dma_data_direction direction) 1575 { 1576 if (dev->dma_ops) 1577 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1578 else 1579 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1580 } 1581 1582 /** 1583 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1584 * @dev: The device for which the DMA addresses were created 1585 * @sg: The scatter/gather entry 1586 */ 1587 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1588 struct scatterlist *sg) 1589 { 1590 if (dev->dma_ops) 1591 return dev->dma_ops->dma_address(dev, sg); 1592 return sg_dma_address(sg); 1593 } 1594 1595 /** 1596 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1597 * @dev: The device for which the DMA addresses were created 1598 * @sg: The scatter/gather entry 1599 */ 1600 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1601 struct scatterlist *sg) 1602 { 1603 if (dev->dma_ops) 1604 return dev->dma_ops->dma_len(dev, sg); 1605 return sg_dma_len(sg); 1606 } 1607 1608 /** 1609 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1610 * @dev: The device for which the DMA address was created 1611 * @addr: The DMA address 1612 * @size: The size of the region in bytes 1613 * @dir: The direction of the DMA 1614 */ 1615 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1616 u64 addr, 1617 size_t size, 1618 enum dma_data_direction dir) 1619 { 1620 if (dev->dma_ops) 1621 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1622 else 1623 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1624 } 1625 1626 /** 1627 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1628 * @dev: The device for which the DMA address was created 1629 * @addr: The DMA address 1630 * @size: The size of the region in bytes 1631 * @dir: The direction of the DMA 1632 */ 1633 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1634 u64 addr, 1635 size_t size, 1636 enum dma_data_direction dir) 1637 { 1638 if (dev->dma_ops) 1639 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1640 else 1641 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1642 } 1643 1644 /** 1645 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1646 * @dev: The device for which the DMA address is requested 1647 * @size: The size of the region to allocate in bytes 1648 * @dma_handle: A pointer for returning the DMA address of the region 1649 * @flag: memory allocator flags 1650 */ 1651 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1652 size_t size, 1653 u64 *dma_handle, 1654 gfp_t flag) 1655 { 1656 if (dev->dma_ops) 1657 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1658 else { 1659 dma_addr_t handle; 1660 void *ret; 1661 1662 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1663 *dma_handle = handle; 1664 return ret; 1665 } 1666 } 1667 1668 /** 1669 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1670 * @dev: The device for which the DMA addresses were allocated 1671 * @size: The size of the region 1672 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1673 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1674 */ 1675 static inline void ib_dma_free_coherent(struct ib_device *dev, 1676 size_t size, void *cpu_addr, 1677 u64 dma_handle) 1678 { 1679 if (dev->dma_ops) 1680 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1681 else 1682 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1683 } 1684 1685 /** 1686 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1687 * by an HCA. 1688 * @pd: The protection domain associated assigned to the registered region. 1689 * @phys_buf_array: Specifies a list of physical buffers to use in the 1690 * memory region. 1691 * @num_phys_buf: Specifies the size of the phys_buf_array. 1692 * @mr_access_flags: Specifies the memory access rights. 1693 * @iova_start: The offset of the region's starting I/O virtual address. 1694 */ 1695 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1696 struct ib_phys_buf *phys_buf_array, 1697 int num_phys_buf, 1698 int mr_access_flags, 1699 u64 *iova_start); 1700 1701 /** 1702 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1703 * Conceptually, this call performs the functions deregister memory region 1704 * followed by register physical memory region. Where possible, 1705 * resources are reused instead of deallocated and reallocated. 1706 * @mr: The memory region to modify. 1707 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1708 * properties of the memory region are being modified. 1709 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1710 * the new protection domain to associated with the memory region, 1711 * otherwise, this parameter is ignored. 1712 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1713 * field specifies a list of physical buffers to use in the new 1714 * translation, otherwise, this parameter is ignored. 1715 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1716 * field specifies the size of the phys_buf_array, otherwise, this 1717 * parameter is ignored. 1718 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1719 * field specifies the new memory access rights, otherwise, this 1720 * parameter is ignored. 1721 * @iova_start: The offset of the region's starting I/O virtual address. 1722 */ 1723 int ib_rereg_phys_mr(struct ib_mr *mr, 1724 int mr_rereg_mask, 1725 struct ib_pd *pd, 1726 struct ib_phys_buf *phys_buf_array, 1727 int num_phys_buf, 1728 int mr_access_flags, 1729 u64 *iova_start); 1730 1731 /** 1732 * ib_query_mr - Retrieves information about a specific memory region. 1733 * @mr: The memory region to retrieve information about. 1734 * @mr_attr: The attributes of the specified memory region. 1735 */ 1736 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1737 1738 /** 1739 * ib_dereg_mr - Deregisters a memory region and removes it from the 1740 * HCA translation table. 1741 * @mr: The memory region to deregister. 1742 */ 1743 int ib_dereg_mr(struct ib_mr *mr); 1744 1745 /** 1746 * ib_alloc_mw - Allocates a memory window. 1747 * @pd: The protection domain associated with the memory window. 1748 */ 1749 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1750 1751 /** 1752 * ib_bind_mw - Posts a work request to the send queue of the specified 1753 * QP, which binds the memory window to the given address range and 1754 * remote access attributes. 1755 * @qp: QP to post the bind work request on. 1756 * @mw: The memory window to bind. 1757 * @mw_bind: Specifies information about the memory window, including 1758 * its address range, remote access rights, and associated memory region. 1759 */ 1760 static inline int ib_bind_mw(struct ib_qp *qp, 1761 struct ib_mw *mw, 1762 struct ib_mw_bind *mw_bind) 1763 { 1764 /* XXX reference counting in corresponding MR? */ 1765 return mw->device->bind_mw ? 1766 mw->device->bind_mw(qp, mw, mw_bind) : 1767 -ENOSYS; 1768 } 1769 1770 /** 1771 * ib_dealloc_mw - Deallocates a memory window. 1772 * @mw: The memory window to deallocate. 1773 */ 1774 int ib_dealloc_mw(struct ib_mw *mw); 1775 1776 /** 1777 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1778 * @pd: The protection domain associated with the unmapped region. 1779 * @mr_access_flags: Specifies the memory access rights. 1780 * @fmr_attr: Attributes of the unmapped region. 1781 * 1782 * A fast memory region must be mapped before it can be used as part of 1783 * a work request. 1784 */ 1785 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1786 int mr_access_flags, 1787 struct ib_fmr_attr *fmr_attr); 1788 1789 /** 1790 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1791 * @fmr: The fast memory region to associate with the pages. 1792 * @page_list: An array of physical pages to map to the fast memory region. 1793 * @list_len: The number of pages in page_list. 1794 * @iova: The I/O virtual address to use with the mapped region. 1795 */ 1796 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1797 u64 *page_list, int list_len, 1798 u64 iova) 1799 { 1800 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1801 } 1802 1803 /** 1804 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1805 * @fmr_list: A linked list of fast memory regions to unmap. 1806 */ 1807 int ib_unmap_fmr(struct list_head *fmr_list); 1808 1809 /** 1810 * ib_dealloc_fmr - Deallocates a fast memory region. 1811 * @fmr: The fast memory region to deallocate. 1812 */ 1813 int ib_dealloc_fmr(struct ib_fmr *fmr); 1814 1815 /** 1816 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1817 * @qp: QP to attach to the multicast group. The QP must be type 1818 * IB_QPT_UD. 1819 * @gid: Multicast group GID. 1820 * @lid: Multicast group LID in host byte order. 1821 * 1822 * In order to send and receive multicast packets, subnet 1823 * administration must have created the multicast group and configured 1824 * the fabric appropriately. The port associated with the specified 1825 * QP must also be a member of the multicast group. 1826 */ 1827 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1828 1829 /** 1830 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1831 * @qp: QP to detach from the multicast group. 1832 * @gid: Multicast group GID. 1833 * @lid: Multicast group LID in host byte order. 1834 */ 1835 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1836 1837 #endif /* IB_VERBS_H */ 1838