xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 64c70b1c)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  *
38  * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $
39  */
40 
41 #if !defined(IB_VERBS_H)
42 #define IB_VERBS_H
43 
44 #include <linux/types.h>
45 #include <linux/device.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/kref.h>
49 
50 #include <asm/atomic.h>
51 #include <asm/scatterlist.h>
52 #include <asm/uaccess.h>
53 
54 union ib_gid {
55 	u8	raw[16];
56 	struct {
57 		__be64	subnet_prefix;
58 		__be64	interface_id;
59 	} global;
60 };
61 
62 enum rdma_node_type {
63 	/* IB values map to NodeInfo:NodeType. */
64 	RDMA_NODE_IB_CA 	= 1,
65 	RDMA_NODE_IB_SWITCH,
66 	RDMA_NODE_IB_ROUTER,
67 	RDMA_NODE_RNIC
68 };
69 
70 enum rdma_transport_type {
71 	RDMA_TRANSPORT_IB,
72 	RDMA_TRANSPORT_IWARP
73 };
74 
75 enum rdma_transport_type
76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
77 
78 enum ib_device_cap_flags {
79 	IB_DEVICE_RESIZE_MAX_WR		= 1,
80 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
81 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
82 	IB_DEVICE_RAW_MULTI		= (1<<3),
83 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
84 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
85 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
86 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
87 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
88 	IB_DEVICE_INIT_TYPE		= (1<<9),
89 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
90 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
91 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
92 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
93 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
94 	IB_DEVICE_ZERO_STAG		= (1<<15),
95 	IB_DEVICE_SEND_W_INV		= (1<<16),
96 	IB_DEVICE_MEM_WINDOW		= (1<<17)
97 };
98 
99 enum ib_atomic_cap {
100 	IB_ATOMIC_NONE,
101 	IB_ATOMIC_HCA,
102 	IB_ATOMIC_GLOB
103 };
104 
105 struct ib_device_attr {
106 	u64			fw_ver;
107 	__be64			sys_image_guid;
108 	u64			max_mr_size;
109 	u64			page_size_cap;
110 	u32			vendor_id;
111 	u32			vendor_part_id;
112 	u32			hw_ver;
113 	int			max_qp;
114 	int			max_qp_wr;
115 	int			device_cap_flags;
116 	int			max_sge;
117 	int			max_sge_rd;
118 	int			max_cq;
119 	int			max_cqe;
120 	int			max_mr;
121 	int			max_pd;
122 	int			max_qp_rd_atom;
123 	int			max_ee_rd_atom;
124 	int			max_res_rd_atom;
125 	int			max_qp_init_rd_atom;
126 	int			max_ee_init_rd_atom;
127 	enum ib_atomic_cap	atomic_cap;
128 	int			max_ee;
129 	int			max_rdd;
130 	int			max_mw;
131 	int			max_raw_ipv6_qp;
132 	int			max_raw_ethy_qp;
133 	int			max_mcast_grp;
134 	int			max_mcast_qp_attach;
135 	int			max_total_mcast_qp_attach;
136 	int			max_ah;
137 	int			max_fmr;
138 	int			max_map_per_fmr;
139 	int			max_srq;
140 	int			max_srq_wr;
141 	int			max_srq_sge;
142 	u16			max_pkeys;
143 	u8			local_ca_ack_delay;
144 };
145 
146 enum ib_mtu {
147 	IB_MTU_256  = 1,
148 	IB_MTU_512  = 2,
149 	IB_MTU_1024 = 3,
150 	IB_MTU_2048 = 4,
151 	IB_MTU_4096 = 5
152 };
153 
154 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
155 {
156 	switch (mtu) {
157 	case IB_MTU_256:  return  256;
158 	case IB_MTU_512:  return  512;
159 	case IB_MTU_1024: return 1024;
160 	case IB_MTU_2048: return 2048;
161 	case IB_MTU_4096: return 4096;
162 	default: 	  return -1;
163 	}
164 }
165 
166 enum ib_port_state {
167 	IB_PORT_NOP		= 0,
168 	IB_PORT_DOWN		= 1,
169 	IB_PORT_INIT		= 2,
170 	IB_PORT_ARMED		= 3,
171 	IB_PORT_ACTIVE		= 4,
172 	IB_PORT_ACTIVE_DEFER	= 5
173 };
174 
175 enum ib_port_cap_flags {
176 	IB_PORT_SM				= 1 <<  1,
177 	IB_PORT_NOTICE_SUP			= 1 <<  2,
178 	IB_PORT_TRAP_SUP			= 1 <<  3,
179 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
180 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
181 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
182 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
183 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
184 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
185 	IB_PORT_SM_DISABLED			= 1 << 10,
186 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
187 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
188 	IB_PORT_CM_SUP				= 1 << 16,
189 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
190 	IB_PORT_REINIT_SUP			= 1 << 18,
191 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
192 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
193 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
194 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
195 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
196 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
197 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
198 };
199 
200 enum ib_port_width {
201 	IB_WIDTH_1X	= 1,
202 	IB_WIDTH_4X	= 2,
203 	IB_WIDTH_8X	= 4,
204 	IB_WIDTH_12X	= 8
205 };
206 
207 static inline int ib_width_enum_to_int(enum ib_port_width width)
208 {
209 	switch (width) {
210 	case IB_WIDTH_1X:  return  1;
211 	case IB_WIDTH_4X:  return  4;
212 	case IB_WIDTH_8X:  return  8;
213 	case IB_WIDTH_12X: return 12;
214 	default: 	  return -1;
215 	}
216 }
217 
218 struct ib_port_attr {
219 	enum ib_port_state	state;
220 	enum ib_mtu		max_mtu;
221 	enum ib_mtu		active_mtu;
222 	int			gid_tbl_len;
223 	u32			port_cap_flags;
224 	u32			max_msg_sz;
225 	u32			bad_pkey_cntr;
226 	u32			qkey_viol_cntr;
227 	u16			pkey_tbl_len;
228 	u16			lid;
229 	u16			sm_lid;
230 	u8			lmc;
231 	u8			max_vl_num;
232 	u8			sm_sl;
233 	u8			subnet_timeout;
234 	u8			init_type_reply;
235 	u8			active_width;
236 	u8			active_speed;
237 	u8                      phys_state;
238 };
239 
240 enum ib_device_modify_flags {
241 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
242 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
243 };
244 
245 struct ib_device_modify {
246 	u64	sys_image_guid;
247 	char	node_desc[64];
248 };
249 
250 enum ib_port_modify_flags {
251 	IB_PORT_SHUTDOWN		= 1,
252 	IB_PORT_INIT_TYPE		= (1<<2),
253 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
254 };
255 
256 struct ib_port_modify {
257 	u32	set_port_cap_mask;
258 	u32	clr_port_cap_mask;
259 	u8	init_type;
260 };
261 
262 enum ib_event_type {
263 	IB_EVENT_CQ_ERR,
264 	IB_EVENT_QP_FATAL,
265 	IB_EVENT_QP_REQ_ERR,
266 	IB_EVENT_QP_ACCESS_ERR,
267 	IB_EVENT_COMM_EST,
268 	IB_EVENT_SQ_DRAINED,
269 	IB_EVENT_PATH_MIG,
270 	IB_EVENT_PATH_MIG_ERR,
271 	IB_EVENT_DEVICE_FATAL,
272 	IB_EVENT_PORT_ACTIVE,
273 	IB_EVENT_PORT_ERR,
274 	IB_EVENT_LID_CHANGE,
275 	IB_EVENT_PKEY_CHANGE,
276 	IB_EVENT_SM_CHANGE,
277 	IB_EVENT_SRQ_ERR,
278 	IB_EVENT_SRQ_LIMIT_REACHED,
279 	IB_EVENT_QP_LAST_WQE_REACHED,
280 	IB_EVENT_CLIENT_REREGISTER
281 };
282 
283 struct ib_event {
284 	struct ib_device	*device;
285 	union {
286 		struct ib_cq	*cq;
287 		struct ib_qp	*qp;
288 		struct ib_srq	*srq;
289 		u8		port_num;
290 	} element;
291 	enum ib_event_type	event;
292 };
293 
294 struct ib_event_handler {
295 	struct ib_device *device;
296 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
297 	struct list_head  list;
298 };
299 
300 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
301 	do {							\
302 		(_ptr)->device  = _device;			\
303 		(_ptr)->handler = _handler;			\
304 		INIT_LIST_HEAD(&(_ptr)->list);			\
305 	} while (0)
306 
307 struct ib_global_route {
308 	union ib_gid	dgid;
309 	u32		flow_label;
310 	u8		sgid_index;
311 	u8		hop_limit;
312 	u8		traffic_class;
313 };
314 
315 struct ib_grh {
316 	__be32		version_tclass_flow;
317 	__be16		paylen;
318 	u8		next_hdr;
319 	u8		hop_limit;
320 	union ib_gid	sgid;
321 	union ib_gid	dgid;
322 };
323 
324 enum {
325 	IB_MULTICAST_QPN = 0xffffff
326 };
327 
328 #define IB_LID_PERMISSIVE	__constant_htons(0xFFFF)
329 
330 enum ib_ah_flags {
331 	IB_AH_GRH	= 1
332 };
333 
334 enum ib_rate {
335 	IB_RATE_PORT_CURRENT = 0,
336 	IB_RATE_2_5_GBPS = 2,
337 	IB_RATE_5_GBPS   = 5,
338 	IB_RATE_10_GBPS  = 3,
339 	IB_RATE_20_GBPS  = 6,
340 	IB_RATE_30_GBPS  = 4,
341 	IB_RATE_40_GBPS  = 7,
342 	IB_RATE_60_GBPS  = 8,
343 	IB_RATE_80_GBPS  = 9,
344 	IB_RATE_120_GBPS = 10
345 };
346 
347 /**
348  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
349  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
350  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
351  * @rate: rate to convert.
352  */
353 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
354 
355 /**
356  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
357  * enum.
358  * @mult: multiple to convert.
359  */
360 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
361 
362 struct ib_ah_attr {
363 	struct ib_global_route	grh;
364 	u16			dlid;
365 	u8			sl;
366 	u8			src_path_bits;
367 	u8			static_rate;
368 	u8			ah_flags;
369 	u8			port_num;
370 };
371 
372 enum ib_wc_status {
373 	IB_WC_SUCCESS,
374 	IB_WC_LOC_LEN_ERR,
375 	IB_WC_LOC_QP_OP_ERR,
376 	IB_WC_LOC_EEC_OP_ERR,
377 	IB_WC_LOC_PROT_ERR,
378 	IB_WC_WR_FLUSH_ERR,
379 	IB_WC_MW_BIND_ERR,
380 	IB_WC_BAD_RESP_ERR,
381 	IB_WC_LOC_ACCESS_ERR,
382 	IB_WC_REM_INV_REQ_ERR,
383 	IB_WC_REM_ACCESS_ERR,
384 	IB_WC_REM_OP_ERR,
385 	IB_WC_RETRY_EXC_ERR,
386 	IB_WC_RNR_RETRY_EXC_ERR,
387 	IB_WC_LOC_RDD_VIOL_ERR,
388 	IB_WC_REM_INV_RD_REQ_ERR,
389 	IB_WC_REM_ABORT_ERR,
390 	IB_WC_INV_EECN_ERR,
391 	IB_WC_INV_EEC_STATE_ERR,
392 	IB_WC_FATAL_ERR,
393 	IB_WC_RESP_TIMEOUT_ERR,
394 	IB_WC_GENERAL_ERR
395 };
396 
397 enum ib_wc_opcode {
398 	IB_WC_SEND,
399 	IB_WC_RDMA_WRITE,
400 	IB_WC_RDMA_READ,
401 	IB_WC_COMP_SWAP,
402 	IB_WC_FETCH_ADD,
403 	IB_WC_BIND_MW,
404 /*
405  * Set value of IB_WC_RECV so consumers can test if a completion is a
406  * receive by testing (opcode & IB_WC_RECV).
407  */
408 	IB_WC_RECV			= 1 << 7,
409 	IB_WC_RECV_RDMA_WITH_IMM
410 };
411 
412 enum ib_wc_flags {
413 	IB_WC_GRH		= 1,
414 	IB_WC_WITH_IMM		= (1<<1)
415 };
416 
417 struct ib_wc {
418 	u64			wr_id;
419 	enum ib_wc_status	status;
420 	enum ib_wc_opcode	opcode;
421 	u32			vendor_err;
422 	u32			byte_len;
423 	struct ib_qp	       *qp;
424 	__be32			imm_data;
425 	u32			src_qp;
426 	int			wc_flags;
427 	u16			pkey_index;
428 	u16			slid;
429 	u8			sl;
430 	u8			dlid_path_bits;
431 	u8			port_num;	/* valid only for DR SMPs on switches */
432 };
433 
434 enum ib_cq_notify_flags {
435 	IB_CQ_SOLICITED			= 1 << 0,
436 	IB_CQ_NEXT_COMP			= 1 << 1,
437 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
438 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
439 };
440 
441 enum ib_srq_attr_mask {
442 	IB_SRQ_MAX_WR	= 1 << 0,
443 	IB_SRQ_LIMIT	= 1 << 1,
444 };
445 
446 struct ib_srq_attr {
447 	u32	max_wr;
448 	u32	max_sge;
449 	u32	srq_limit;
450 };
451 
452 struct ib_srq_init_attr {
453 	void		      (*event_handler)(struct ib_event *, void *);
454 	void		       *srq_context;
455 	struct ib_srq_attr	attr;
456 };
457 
458 struct ib_qp_cap {
459 	u32	max_send_wr;
460 	u32	max_recv_wr;
461 	u32	max_send_sge;
462 	u32	max_recv_sge;
463 	u32	max_inline_data;
464 };
465 
466 enum ib_sig_type {
467 	IB_SIGNAL_ALL_WR,
468 	IB_SIGNAL_REQ_WR
469 };
470 
471 enum ib_qp_type {
472 	/*
473 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
474 	 * here (and in that order) since the MAD layer uses them as
475 	 * indices into a 2-entry table.
476 	 */
477 	IB_QPT_SMI,
478 	IB_QPT_GSI,
479 
480 	IB_QPT_RC,
481 	IB_QPT_UC,
482 	IB_QPT_UD,
483 	IB_QPT_RAW_IPV6,
484 	IB_QPT_RAW_ETY
485 };
486 
487 struct ib_qp_init_attr {
488 	void                  (*event_handler)(struct ib_event *, void *);
489 	void		       *qp_context;
490 	struct ib_cq	       *send_cq;
491 	struct ib_cq	       *recv_cq;
492 	struct ib_srq	       *srq;
493 	struct ib_qp_cap	cap;
494 	enum ib_sig_type	sq_sig_type;
495 	enum ib_qp_type		qp_type;
496 	u8			port_num; /* special QP types only */
497 };
498 
499 enum ib_rnr_timeout {
500 	IB_RNR_TIMER_655_36 =  0,
501 	IB_RNR_TIMER_000_01 =  1,
502 	IB_RNR_TIMER_000_02 =  2,
503 	IB_RNR_TIMER_000_03 =  3,
504 	IB_RNR_TIMER_000_04 =  4,
505 	IB_RNR_TIMER_000_06 =  5,
506 	IB_RNR_TIMER_000_08 =  6,
507 	IB_RNR_TIMER_000_12 =  7,
508 	IB_RNR_TIMER_000_16 =  8,
509 	IB_RNR_TIMER_000_24 =  9,
510 	IB_RNR_TIMER_000_32 = 10,
511 	IB_RNR_TIMER_000_48 = 11,
512 	IB_RNR_TIMER_000_64 = 12,
513 	IB_RNR_TIMER_000_96 = 13,
514 	IB_RNR_TIMER_001_28 = 14,
515 	IB_RNR_TIMER_001_92 = 15,
516 	IB_RNR_TIMER_002_56 = 16,
517 	IB_RNR_TIMER_003_84 = 17,
518 	IB_RNR_TIMER_005_12 = 18,
519 	IB_RNR_TIMER_007_68 = 19,
520 	IB_RNR_TIMER_010_24 = 20,
521 	IB_RNR_TIMER_015_36 = 21,
522 	IB_RNR_TIMER_020_48 = 22,
523 	IB_RNR_TIMER_030_72 = 23,
524 	IB_RNR_TIMER_040_96 = 24,
525 	IB_RNR_TIMER_061_44 = 25,
526 	IB_RNR_TIMER_081_92 = 26,
527 	IB_RNR_TIMER_122_88 = 27,
528 	IB_RNR_TIMER_163_84 = 28,
529 	IB_RNR_TIMER_245_76 = 29,
530 	IB_RNR_TIMER_327_68 = 30,
531 	IB_RNR_TIMER_491_52 = 31
532 };
533 
534 enum ib_qp_attr_mask {
535 	IB_QP_STATE			= 1,
536 	IB_QP_CUR_STATE			= (1<<1),
537 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
538 	IB_QP_ACCESS_FLAGS		= (1<<3),
539 	IB_QP_PKEY_INDEX		= (1<<4),
540 	IB_QP_PORT			= (1<<5),
541 	IB_QP_QKEY			= (1<<6),
542 	IB_QP_AV			= (1<<7),
543 	IB_QP_PATH_MTU			= (1<<8),
544 	IB_QP_TIMEOUT			= (1<<9),
545 	IB_QP_RETRY_CNT			= (1<<10),
546 	IB_QP_RNR_RETRY			= (1<<11),
547 	IB_QP_RQ_PSN			= (1<<12),
548 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
549 	IB_QP_ALT_PATH			= (1<<14),
550 	IB_QP_MIN_RNR_TIMER		= (1<<15),
551 	IB_QP_SQ_PSN			= (1<<16),
552 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
553 	IB_QP_PATH_MIG_STATE		= (1<<18),
554 	IB_QP_CAP			= (1<<19),
555 	IB_QP_DEST_QPN			= (1<<20)
556 };
557 
558 enum ib_qp_state {
559 	IB_QPS_RESET,
560 	IB_QPS_INIT,
561 	IB_QPS_RTR,
562 	IB_QPS_RTS,
563 	IB_QPS_SQD,
564 	IB_QPS_SQE,
565 	IB_QPS_ERR
566 };
567 
568 enum ib_mig_state {
569 	IB_MIG_MIGRATED,
570 	IB_MIG_REARM,
571 	IB_MIG_ARMED
572 };
573 
574 struct ib_qp_attr {
575 	enum ib_qp_state	qp_state;
576 	enum ib_qp_state	cur_qp_state;
577 	enum ib_mtu		path_mtu;
578 	enum ib_mig_state	path_mig_state;
579 	u32			qkey;
580 	u32			rq_psn;
581 	u32			sq_psn;
582 	u32			dest_qp_num;
583 	int			qp_access_flags;
584 	struct ib_qp_cap	cap;
585 	struct ib_ah_attr	ah_attr;
586 	struct ib_ah_attr	alt_ah_attr;
587 	u16			pkey_index;
588 	u16			alt_pkey_index;
589 	u8			en_sqd_async_notify;
590 	u8			sq_draining;
591 	u8			max_rd_atomic;
592 	u8			max_dest_rd_atomic;
593 	u8			min_rnr_timer;
594 	u8			port_num;
595 	u8			timeout;
596 	u8			retry_cnt;
597 	u8			rnr_retry;
598 	u8			alt_port_num;
599 	u8			alt_timeout;
600 };
601 
602 enum ib_wr_opcode {
603 	IB_WR_RDMA_WRITE,
604 	IB_WR_RDMA_WRITE_WITH_IMM,
605 	IB_WR_SEND,
606 	IB_WR_SEND_WITH_IMM,
607 	IB_WR_RDMA_READ,
608 	IB_WR_ATOMIC_CMP_AND_SWP,
609 	IB_WR_ATOMIC_FETCH_AND_ADD
610 };
611 
612 enum ib_send_flags {
613 	IB_SEND_FENCE		= 1,
614 	IB_SEND_SIGNALED	= (1<<1),
615 	IB_SEND_SOLICITED	= (1<<2),
616 	IB_SEND_INLINE		= (1<<3)
617 };
618 
619 struct ib_sge {
620 	u64	addr;
621 	u32	length;
622 	u32	lkey;
623 };
624 
625 struct ib_send_wr {
626 	struct ib_send_wr      *next;
627 	u64			wr_id;
628 	struct ib_sge	       *sg_list;
629 	int			num_sge;
630 	enum ib_wr_opcode	opcode;
631 	int			send_flags;
632 	__be32			imm_data;
633 	union {
634 		struct {
635 			u64	remote_addr;
636 			u32	rkey;
637 		} rdma;
638 		struct {
639 			u64	remote_addr;
640 			u64	compare_add;
641 			u64	swap;
642 			u32	rkey;
643 		} atomic;
644 		struct {
645 			struct ib_ah *ah;
646 			u32	remote_qpn;
647 			u32	remote_qkey;
648 			u16	pkey_index; /* valid for GSI only */
649 			u8	port_num;   /* valid for DR SMPs on switch only */
650 		} ud;
651 	} wr;
652 };
653 
654 struct ib_recv_wr {
655 	struct ib_recv_wr      *next;
656 	u64			wr_id;
657 	struct ib_sge	       *sg_list;
658 	int			num_sge;
659 };
660 
661 enum ib_access_flags {
662 	IB_ACCESS_LOCAL_WRITE	= 1,
663 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
664 	IB_ACCESS_REMOTE_READ	= (1<<2),
665 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
666 	IB_ACCESS_MW_BIND	= (1<<4)
667 };
668 
669 struct ib_phys_buf {
670 	u64      addr;
671 	u64      size;
672 };
673 
674 struct ib_mr_attr {
675 	struct ib_pd	*pd;
676 	u64		device_virt_addr;
677 	u64		size;
678 	int		mr_access_flags;
679 	u32		lkey;
680 	u32		rkey;
681 };
682 
683 enum ib_mr_rereg_flags {
684 	IB_MR_REREG_TRANS	= 1,
685 	IB_MR_REREG_PD		= (1<<1),
686 	IB_MR_REREG_ACCESS	= (1<<2)
687 };
688 
689 struct ib_mw_bind {
690 	struct ib_mr   *mr;
691 	u64		wr_id;
692 	u64		addr;
693 	u32		length;
694 	int		send_flags;
695 	int		mw_access_flags;
696 };
697 
698 struct ib_fmr_attr {
699 	int	max_pages;
700 	int	max_maps;
701 	u8	page_shift;
702 };
703 
704 struct ib_ucontext {
705 	struct ib_device       *device;
706 	struct list_head	pd_list;
707 	struct list_head	mr_list;
708 	struct list_head	mw_list;
709 	struct list_head	cq_list;
710 	struct list_head	qp_list;
711 	struct list_head	srq_list;
712 	struct list_head	ah_list;
713 	int			closing;
714 };
715 
716 struct ib_uobject {
717 	u64			user_handle;	/* handle given to us by userspace */
718 	struct ib_ucontext     *context;	/* associated user context */
719 	void		       *object;		/* containing object */
720 	struct list_head	list;		/* link to context's list */
721 	u32			id;		/* index into kernel idr */
722 	struct kref		ref;
723 	struct rw_semaphore	mutex;		/* protects .live */
724 	int			live;
725 };
726 
727 struct ib_udata {
728 	void __user *inbuf;
729 	void __user *outbuf;
730 	size_t       inlen;
731 	size_t       outlen;
732 };
733 
734 #define IB_UMEM_MAX_PAGE_CHUNK						\
735 	((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) /	\
736 	 ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] -	\
737 	  (void *) &((struct ib_umem_chunk *) 0)->page_list[0]))
738 
739 struct ib_pd {
740 	struct ib_device       *device;
741 	struct ib_uobject      *uobject;
742 	atomic_t          	usecnt; /* count all resources */
743 };
744 
745 struct ib_ah {
746 	struct ib_device	*device;
747 	struct ib_pd		*pd;
748 	struct ib_uobject	*uobject;
749 };
750 
751 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
752 
753 struct ib_cq {
754 	struct ib_device       *device;
755 	struct ib_uobject      *uobject;
756 	ib_comp_handler   	comp_handler;
757 	void                  (*event_handler)(struct ib_event *, void *);
758 	void *            	cq_context;
759 	int               	cqe;
760 	atomic_t          	usecnt; /* count number of work queues */
761 };
762 
763 struct ib_srq {
764 	struct ib_device       *device;
765 	struct ib_pd	       *pd;
766 	struct ib_uobject      *uobject;
767 	void		      (*event_handler)(struct ib_event *, void *);
768 	void		       *srq_context;
769 	atomic_t		usecnt;
770 };
771 
772 struct ib_qp {
773 	struct ib_device       *device;
774 	struct ib_pd	       *pd;
775 	struct ib_cq	       *send_cq;
776 	struct ib_cq	       *recv_cq;
777 	struct ib_srq	       *srq;
778 	struct ib_uobject      *uobject;
779 	void                  (*event_handler)(struct ib_event *, void *);
780 	void		       *qp_context;
781 	u32			qp_num;
782 	enum ib_qp_type		qp_type;
783 };
784 
785 struct ib_mr {
786 	struct ib_device  *device;
787 	struct ib_pd	  *pd;
788 	struct ib_uobject *uobject;
789 	u32		   lkey;
790 	u32		   rkey;
791 	atomic_t	   usecnt; /* count number of MWs */
792 };
793 
794 struct ib_mw {
795 	struct ib_device	*device;
796 	struct ib_pd		*pd;
797 	struct ib_uobject	*uobject;
798 	u32			rkey;
799 };
800 
801 struct ib_fmr {
802 	struct ib_device	*device;
803 	struct ib_pd		*pd;
804 	struct list_head	list;
805 	u32			lkey;
806 	u32			rkey;
807 };
808 
809 struct ib_mad;
810 struct ib_grh;
811 
812 enum ib_process_mad_flags {
813 	IB_MAD_IGNORE_MKEY	= 1,
814 	IB_MAD_IGNORE_BKEY	= 2,
815 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
816 };
817 
818 enum ib_mad_result {
819 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
820 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
821 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
822 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
823 };
824 
825 #define IB_DEVICE_NAME_MAX 64
826 
827 struct ib_cache {
828 	rwlock_t                lock;
829 	struct ib_event_handler event_handler;
830 	struct ib_pkey_cache  **pkey_cache;
831 	struct ib_gid_cache   **gid_cache;
832 	u8                     *lmc_cache;
833 };
834 
835 struct ib_dma_mapping_ops {
836 	int		(*mapping_error)(struct ib_device *dev,
837 					 u64 dma_addr);
838 	u64		(*map_single)(struct ib_device *dev,
839 				      void *ptr, size_t size,
840 				      enum dma_data_direction direction);
841 	void		(*unmap_single)(struct ib_device *dev,
842 					u64 addr, size_t size,
843 					enum dma_data_direction direction);
844 	u64		(*map_page)(struct ib_device *dev,
845 				    struct page *page, unsigned long offset,
846 				    size_t size,
847 				    enum dma_data_direction direction);
848 	void		(*unmap_page)(struct ib_device *dev,
849 				      u64 addr, size_t size,
850 				      enum dma_data_direction direction);
851 	int		(*map_sg)(struct ib_device *dev,
852 				  struct scatterlist *sg, int nents,
853 				  enum dma_data_direction direction);
854 	void		(*unmap_sg)(struct ib_device *dev,
855 				    struct scatterlist *sg, int nents,
856 				    enum dma_data_direction direction);
857 	u64		(*dma_address)(struct ib_device *dev,
858 				       struct scatterlist *sg);
859 	unsigned int	(*dma_len)(struct ib_device *dev,
860 				   struct scatterlist *sg);
861 	void		(*sync_single_for_cpu)(struct ib_device *dev,
862 					       u64 dma_handle,
863 					       size_t size,
864 				               enum dma_data_direction dir);
865 	void		(*sync_single_for_device)(struct ib_device *dev,
866 						  u64 dma_handle,
867 						  size_t size,
868 						  enum dma_data_direction dir);
869 	void		*(*alloc_coherent)(struct ib_device *dev,
870 					   size_t size,
871 					   u64 *dma_handle,
872 					   gfp_t flag);
873 	void		(*free_coherent)(struct ib_device *dev,
874 					 size_t size, void *cpu_addr,
875 					 u64 dma_handle);
876 };
877 
878 struct iw_cm_verbs;
879 
880 struct ib_device {
881 	struct device                *dma_device;
882 
883 	char                          name[IB_DEVICE_NAME_MAX];
884 
885 	struct list_head              event_handler_list;
886 	spinlock_t                    event_handler_lock;
887 
888 	struct list_head              core_list;
889 	struct list_head              client_data_list;
890 	spinlock_t                    client_data_lock;
891 
892 	struct ib_cache               cache;
893 	int                          *pkey_tbl_len;
894 	int                          *gid_tbl_len;
895 
896 	u32                           flags;
897 
898 	int			      num_comp_vectors;
899 
900 	struct iw_cm_verbs	     *iwcm;
901 
902 	int		           (*query_device)(struct ib_device *device,
903 						   struct ib_device_attr *device_attr);
904 	int		           (*query_port)(struct ib_device *device,
905 						 u8 port_num,
906 						 struct ib_port_attr *port_attr);
907 	int		           (*query_gid)(struct ib_device *device,
908 						u8 port_num, int index,
909 						union ib_gid *gid);
910 	int		           (*query_pkey)(struct ib_device *device,
911 						 u8 port_num, u16 index, u16 *pkey);
912 	int		           (*modify_device)(struct ib_device *device,
913 						    int device_modify_mask,
914 						    struct ib_device_modify *device_modify);
915 	int		           (*modify_port)(struct ib_device *device,
916 						  u8 port_num, int port_modify_mask,
917 						  struct ib_port_modify *port_modify);
918 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
919 						     struct ib_udata *udata);
920 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
921 	int                        (*mmap)(struct ib_ucontext *context,
922 					   struct vm_area_struct *vma);
923 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
924 					       struct ib_ucontext *context,
925 					       struct ib_udata *udata);
926 	int                        (*dealloc_pd)(struct ib_pd *pd);
927 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
928 						struct ib_ah_attr *ah_attr);
929 	int                        (*modify_ah)(struct ib_ah *ah,
930 						struct ib_ah_attr *ah_attr);
931 	int                        (*query_ah)(struct ib_ah *ah,
932 					       struct ib_ah_attr *ah_attr);
933 	int                        (*destroy_ah)(struct ib_ah *ah);
934 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
935 						 struct ib_srq_init_attr *srq_init_attr,
936 						 struct ib_udata *udata);
937 	int                        (*modify_srq)(struct ib_srq *srq,
938 						 struct ib_srq_attr *srq_attr,
939 						 enum ib_srq_attr_mask srq_attr_mask,
940 						 struct ib_udata *udata);
941 	int                        (*query_srq)(struct ib_srq *srq,
942 						struct ib_srq_attr *srq_attr);
943 	int                        (*destroy_srq)(struct ib_srq *srq);
944 	int                        (*post_srq_recv)(struct ib_srq *srq,
945 						    struct ib_recv_wr *recv_wr,
946 						    struct ib_recv_wr **bad_recv_wr);
947 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
948 						struct ib_qp_init_attr *qp_init_attr,
949 						struct ib_udata *udata);
950 	int                        (*modify_qp)(struct ib_qp *qp,
951 						struct ib_qp_attr *qp_attr,
952 						int qp_attr_mask,
953 						struct ib_udata *udata);
954 	int                        (*query_qp)(struct ib_qp *qp,
955 					       struct ib_qp_attr *qp_attr,
956 					       int qp_attr_mask,
957 					       struct ib_qp_init_attr *qp_init_attr);
958 	int                        (*destroy_qp)(struct ib_qp *qp);
959 	int                        (*post_send)(struct ib_qp *qp,
960 						struct ib_send_wr *send_wr,
961 						struct ib_send_wr **bad_send_wr);
962 	int                        (*post_recv)(struct ib_qp *qp,
963 						struct ib_recv_wr *recv_wr,
964 						struct ib_recv_wr **bad_recv_wr);
965 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
966 						int comp_vector,
967 						struct ib_ucontext *context,
968 						struct ib_udata *udata);
969 	int                        (*destroy_cq)(struct ib_cq *cq);
970 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
971 						struct ib_udata *udata);
972 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
973 					      struct ib_wc *wc);
974 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
975 	int                        (*req_notify_cq)(struct ib_cq *cq,
976 						    enum ib_cq_notify_flags flags);
977 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
978 						      int wc_cnt);
979 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
980 						 int mr_access_flags);
981 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
982 						  struct ib_phys_buf *phys_buf_array,
983 						  int num_phys_buf,
984 						  int mr_access_flags,
985 						  u64 *iova_start);
986 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
987 						  u64 start, u64 length,
988 						  u64 virt_addr,
989 						  int mr_access_flags,
990 						  struct ib_udata *udata);
991 	int                        (*query_mr)(struct ib_mr *mr,
992 					       struct ib_mr_attr *mr_attr);
993 	int                        (*dereg_mr)(struct ib_mr *mr);
994 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
995 						    int mr_rereg_mask,
996 						    struct ib_pd *pd,
997 						    struct ib_phys_buf *phys_buf_array,
998 						    int num_phys_buf,
999 						    int mr_access_flags,
1000 						    u64 *iova_start);
1001 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1002 	int                        (*bind_mw)(struct ib_qp *qp,
1003 					      struct ib_mw *mw,
1004 					      struct ib_mw_bind *mw_bind);
1005 	int                        (*dealloc_mw)(struct ib_mw *mw);
1006 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1007 						int mr_access_flags,
1008 						struct ib_fmr_attr *fmr_attr);
1009 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1010 						   u64 *page_list, int list_len,
1011 						   u64 iova);
1012 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1013 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1014 	int                        (*attach_mcast)(struct ib_qp *qp,
1015 						   union ib_gid *gid,
1016 						   u16 lid);
1017 	int                        (*detach_mcast)(struct ib_qp *qp,
1018 						   union ib_gid *gid,
1019 						   u16 lid);
1020 	int                        (*process_mad)(struct ib_device *device,
1021 						  int process_mad_flags,
1022 						  u8 port_num,
1023 						  struct ib_wc *in_wc,
1024 						  struct ib_grh *in_grh,
1025 						  struct ib_mad *in_mad,
1026 						  struct ib_mad *out_mad);
1027 
1028 	struct ib_dma_mapping_ops   *dma_ops;
1029 
1030 	struct module               *owner;
1031 	struct class_device          class_dev;
1032 	struct kobject               ports_parent;
1033 	struct list_head             port_list;
1034 
1035 	enum {
1036 		IB_DEV_UNINITIALIZED,
1037 		IB_DEV_REGISTERED,
1038 		IB_DEV_UNREGISTERED
1039 	}                            reg_state;
1040 
1041 	u64			     uverbs_cmd_mask;
1042 	int			     uverbs_abi_ver;
1043 
1044 	char			     node_desc[64];
1045 	__be64			     node_guid;
1046 	u8                           node_type;
1047 	u8                           phys_port_cnt;
1048 };
1049 
1050 struct ib_client {
1051 	char  *name;
1052 	void (*add)   (struct ib_device *);
1053 	void (*remove)(struct ib_device *);
1054 
1055 	struct list_head list;
1056 };
1057 
1058 struct ib_device *ib_alloc_device(size_t size);
1059 void ib_dealloc_device(struct ib_device *device);
1060 
1061 int ib_register_device   (struct ib_device *device);
1062 void ib_unregister_device(struct ib_device *device);
1063 
1064 int ib_register_client   (struct ib_client *client);
1065 void ib_unregister_client(struct ib_client *client);
1066 
1067 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1068 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1069 			 void *data);
1070 
1071 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1072 {
1073 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1074 }
1075 
1076 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1077 {
1078 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1079 }
1080 
1081 /**
1082  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1083  * contains all required attributes and no attributes not allowed for
1084  * the given QP state transition.
1085  * @cur_state: Current QP state
1086  * @next_state: Next QP state
1087  * @type: QP type
1088  * @mask: Mask of supplied QP attributes
1089  *
1090  * This function is a helper function that a low-level driver's
1091  * modify_qp method can use to validate the consumer's input.  It
1092  * checks that cur_state and next_state are valid QP states, that a
1093  * transition from cur_state to next_state is allowed by the IB spec,
1094  * and that the attribute mask supplied is allowed for the transition.
1095  */
1096 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1097 		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1098 
1099 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1100 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1101 void ib_dispatch_event(struct ib_event *event);
1102 
1103 int ib_query_device(struct ib_device *device,
1104 		    struct ib_device_attr *device_attr);
1105 
1106 int ib_query_port(struct ib_device *device,
1107 		  u8 port_num, struct ib_port_attr *port_attr);
1108 
1109 int ib_query_gid(struct ib_device *device,
1110 		 u8 port_num, int index, union ib_gid *gid);
1111 
1112 int ib_query_pkey(struct ib_device *device,
1113 		  u8 port_num, u16 index, u16 *pkey);
1114 
1115 int ib_modify_device(struct ib_device *device,
1116 		     int device_modify_mask,
1117 		     struct ib_device_modify *device_modify);
1118 
1119 int ib_modify_port(struct ib_device *device,
1120 		   u8 port_num, int port_modify_mask,
1121 		   struct ib_port_modify *port_modify);
1122 
1123 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1124 		u8 *port_num, u16 *index);
1125 
1126 int ib_find_pkey(struct ib_device *device,
1127 		 u8 port_num, u16 pkey, u16 *index);
1128 
1129 /**
1130  * ib_alloc_pd - Allocates an unused protection domain.
1131  * @device: The device on which to allocate the protection domain.
1132  *
1133  * A protection domain object provides an association between QPs, shared
1134  * receive queues, address handles, memory regions, and memory windows.
1135  */
1136 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1137 
1138 /**
1139  * ib_dealloc_pd - Deallocates a protection domain.
1140  * @pd: The protection domain to deallocate.
1141  */
1142 int ib_dealloc_pd(struct ib_pd *pd);
1143 
1144 /**
1145  * ib_create_ah - Creates an address handle for the given address vector.
1146  * @pd: The protection domain associated with the address handle.
1147  * @ah_attr: The attributes of the address vector.
1148  *
1149  * The address handle is used to reference a local or global destination
1150  * in all UD QP post sends.
1151  */
1152 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1153 
1154 /**
1155  * ib_init_ah_from_wc - Initializes address handle attributes from a
1156  *   work completion.
1157  * @device: Device on which the received message arrived.
1158  * @port_num: Port on which the received message arrived.
1159  * @wc: Work completion associated with the received message.
1160  * @grh: References the received global route header.  This parameter is
1161  *   ignored unless the work completion indicates that the GRH is valid.
1162  * @ah_attr: Returned attributes that can be used when creating an address
1163  *   handle for replying to the message.
1164  */
1165 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1166 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1167 
1168 /**
1169  * ib_create_ah_from_wc - Creates an address handle associated with the
1170  *   sender of the specified work completion.
1171  * @pd: The protection domain associated with the address handle.
1172  * @wc: Work completion information associated with a received message.
1173  * @grh: References the received global route header.  This parameter is
1174  *   ignored unless the work completion indicates that the GRH is valid.
1175  * @port_num: The outbound port number to associate with the address.
1176  *
1177  * The address handle is used to reference a local or global destination
1178  * in all UD QP post sends.
1179  */
1180 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1181 				   struct ib_grh *grh, u8 port_num);
1182 
1183 /**
1184  * ib_modify_ah - Modifies the address vector associated with an address
1185  *   handle.
1186  * @ah: The address handle to modify.
1187  * @ah_attr: The new address vector attributes to associate with the
1188  *   address handle.
1189  */
1190 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1191 
1192 /**
1193  * ib_query_ah - Queries the address vector associated with an address
1194  *   handle.
1195  * @ah: The address handle to query.
1196  * @ah_attr: The address vector attributes associated with the address
1197  *   handle.
1198  */
1199 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1200 
1201 /**
1202  * ib_destroy_ah - Destroys an address handle.
1203  * @ah: The address handle to destroy.
1204  */
1205 int ib_destroy_ah(struct ib_ah *ah);
1206 
1207 /**
1208  * ib_create_srq - Creates a SRQ associated with the specified protection
1209  *   domain.
1210  * @pd: The protection domain associated with the SRQ.
1211  * @srq_init_attr: A list of initial attributes required to create the
1212  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1213  *   the actual capabilities of the created SRQ.
1214  *
1215  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1216  * requested size of the SRQ, and set to the actual values allocated
1217  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1218  * will always be at least as large as the requested values.
1219  */
1220 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1221 			     struct ib_srq_init_attr *srq_init_attr);
1222 
1223 /**
1224  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1225  * @srq: The SRQ to modify.
1226  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1227  *   the current values of selected SRQ attributes are returned.
1228  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1229  *   are being modified.
1230  *
1231  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1232  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1233  * the number of receives queued drops below the limit.
1234  */
1235 int ib_modify_srq(struct ib_srq *srq,
1236 		  struct ib_srq_attr *srq_attr,
1237 		  enum ib_srq_attr_mask srq_attr_mask);
1238 
1239 /**
1240  * ib_query_srq - Returns the attribute list and current values for the
1241  *   specified SRQ.
1242  * @srq: The SRQ to query.
1243  * @srq_attr: The attributes of the specified SRQ.
1244  */
1245 int ib_query_srq(struct ib_srq *srq,
1246 		 struct ib_srq_attr *srq_attr);
1247 
1248 /**
1249  * ib_destroy_srq - Destroys the specified SRQ.
1250  * @srq: The SRQ to destroy.
1251  */
1252 int ib_destroy_srq(struct ib_srq *srq);
1253 
1254 /**
1255  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1256  * @srq: The SRQ to post the work request on.
1257  * @recv_wr: A list of work requests to post on the receive queue.
1258  * @bad_recv_wr: On an immediate failure, this parameter will reference
1259  *   the work request that failed to be posted on the QP.
1260  */
1261 static inline int ib_post_srq_recv(struct ib_srq *srq,
1262 				   struct ib_recv_wr *recv_wr,
1263 				   struct ib_recv_wr **bad_recv_wr)
1264 {
1265 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1266 }
1267 
1268 /**
1269  * ib_create_qp - Creates a QP associated with the specified protection
1270  *   domain.
1271  * @pd: The protection domain associated with the QP.
1272  * @qp_init_attr: A list of initial attributes required to create the
1273  *   QP.  If QP creation succeeds, then the attributes are updated to
1274  *   the actual capabilities of the created QP.
1275  */
1276 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1277 			   struct ib_qp_init_attr *qp_init_attr);
1278 
1279 /**
1280  * ib_modify_qp - Modifies the attributes for the specified QP and then
1281  *   transitions the QP to the given state.
1282  * @qp: The QP to modify.
1283  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1284  *   the current values of selected QP attributes are returned.
1285  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1286  *   are being modified.
1287  */
1288 int ib_modify_qp(struct ib_qp *qp,
1289 		 struct ib_qp_attr *qp_attr,
1290 		 int qp_attr_mask);
1291 
1292 /**
1293  * ib_query_qp - Returns the attribute list and current values for the
1294  *   specified QP.
1295  * @qp: The QP to query.
1296  * @qp_attr: The attributes of the specified QP.
1297  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1298  * @qp_init_attr: Additional attributes of the selected QP.
1299  *
1300  * The qp_attr_mask may be used to limit the query to gathering only the
1301  * selected attributes.
1302  */
1303 int ib_query_qp(struct ib_qp *qp,
1304 		struct ib_qp_attr *qp_attr,
1305 		int qp_attr_mask,
1306 		struct ib_qp_init_attr *qp_init_attr);
1307 
1308 /**
1309  * ib_destroy_qp - Destroys the specified QP.
1310  * @qp: The QP to destroy.
1311  */
1312 int ib_destroy_qp(struct ib_qp *qp);
1313 
1314 /**
1315  * ib_post_send - Posts a list of work requests to the send queue of
1316  *   the specified QP.
1317  * @qp: The QP to post the work request on.
1318  * @send_wr: A list of work requests to post on the send queue.
1319  * @bad_send_wr: On an immediate failure, this parameter will reference
1320  *   the work request that failed to be posted on the QP.
1321  */
1322 static inline int ib_post_send(struct ib_qp *qp,
1323 			       struct ib_send_wr *send_wr,
1324 			       struct ib_send_wr **bad_send_wr)
1325 {
1326 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1327 }
1328 
1329 /**
1330  * ib_post_recv - Posts a list of work requests to the receive queue of
1331  *   the specified QP.
1332  * @qp: The QP to post the work request on.
1333  * @recv_wr: A list of work requests to post on the receive queue.
1334  * @bad_recv_wr: On an immediate failure, this parameter will reference
1335  *   the work request that failed to be posted on the QP.
1336  */
1337 static inline int ib_post_recv(struct ib_qp *qp,
1338 			       struct ib_recv_wr *recv_wr,
1339 			       struct ib_recv_wr **bad_recv_wr)
1340 {
1341 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1342 }
1343 
1344 /**
1345  * ib_create_cq - Creates a CQ on the specified device.
1346  * @device: The device on which to create the CQ.
1347  * @comp_handler: A user-specified callback that is invoked when a
1348  *   completion event occurs on the CQ.
1349  * @event_handler: A user-specified callback that is invoked when an
1350  *   asynchronous event not associated with a completion occurs on the CQ.
1351  * @cq_context: Context associated with the CQ returned to the user via
1352  *   the associated completion and event handlers.
1353  * @cqe: The minimum size of the CQ.
1354  * @comp_vector - Completion vector used to signal completion events.
1355  *     Must be >= 0 and < context->num_comp_vectors.
1356  *
1357  * Users can examine the cq structure to determine the actual CQ size.
1358  */
1359 struct ib_cq *ib_create_cq(struct ib_device *device,
1360 			   ib_comp_handler comp_handler,
1361 			   void (*event_handler)(struct ib_event *, void *),
1362 			   void *cq_context, int cqe, int comp_vector);
1363 
1364 /**
1365  * ib_resize_cq - Modifies the capacity of the CQ.
1366  * @cq: The CQ to resize.
1367  * @cqe: The minimum size of the CQ.
1368  *
1369  * Users can examine the cq structure to determine the actual CQ size.
1370  */
1371 int ib_resize_cq(struct ib_cq *cq, int cqe);
1372 
1373 /**
1374  * ib_destroy_cq - Destroys the specified CQ.
1375  * @cq: The CQ to destroy.
1376  */
1377 int ib_destroy_cq(struct ib_cq *cq);
1378 
1379 /**
1380  * ib_poll_cq - poll a CQ for completion(s)
1381  * @cq:the CQ being polled
1382  * @num_entries:maximum number of completions to return
1383  * @wc:array of at least @num_entries &struct ib_wc where completions
1384  *   will be returned
1385  *
1386  * Poll a CQ for (possibly multiple) completions.  If the return value
1387  * is < 0, an error occurred.  If the return value is >= 0, it is the
1388  * number of completions returned.  If the return value is
1389  * non-negative and < num_entries, then the CQ was emptied.
1390  */
1391 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1392 			     struct ib_wc *wc)
1393 {
1394 	return cq->device->poll_cq(cq, num_entries, wc);
1395 }
1396 
1397 /**
1398  * ib_peek_cq - Returns the number of unreaped completions currently
1399  *   on the specified CQ.
1400  * @cq: The CQ to peek.
1401  * @wc_cnt: A minimum number of unreaped completions to check for.
1402  *
1403  * If the number of unreaped completions is greater than or equal to wc_cnt,
1404  * this function returns wc_cnt, otherwise, it returns the actual number of
1405  * unreaped completions.
1406  */
1407 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1408 
1409 /**
1410  * ib_req_notify_cq - Request completion notification on a CQ.
1411  * @cq: The CQ to generate an event for.
1412  * @flags:
1413  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1414  *   to request an event on the next solicited event or next work
1415  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1416  *   may also be |ed in to request a hint about missed events, as
1417  *   described below.
1418  *
1419  * Return Value:
1420  *    < 0 means an error occurred while requesting notification
1421  *   == 0 means notification was requested successfully, and if
1422  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1423  *        were missed and it is safe to wait for another event.  In
1424  *        this case is it guaranteed that any work completions added
1425  *        to the CQ since the last CQ poll will trigger a completion
1426  *        notification event.
1427  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1428  *        in.  It means that the consumer must poll the CQ again to
1429  *        make sure it is empty to avoid missing an event because of a
1430  *        race between requesting notification and an entry being
1431  *        added to the CQ.  This return value means it is possible
1432  *        (but not guaranteed) that a work completion has been added
1433  *        to the CQ since the last poll without triggering a
1434  *        completion notification event.
1435  */
1436 static inline int ib_req_notify_cq(struct ib_cq *cq,
1437 				   enum ib_cq_notify_flags flags)
1438 {
1439 	return cq->device->req_notify_cq(cq, flags);
1440 }
1441 
1442 /**
1443  * ib_req_ncomp_notif - Request completion notification when there are
1444  *   at least the specified number of unreaped completions on the CQ.
1445  * @cq: The CQ to generate an event for.
1446  * @wc_cnt: The number of unreaped completions that should be on the
1447  *   CQ before an event is generated.
1448  */
1449 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1450 {
1451 	return cq->device->req_ncomp_notif ?
1452 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1453 		-ENOSYS;
1454 }
1455 
1456 /**
1457  * ib_get_dma_mr - Returns a memory region for system memory that is
1458  *   usable for DMA.
1459  * @pd: The protection domain associated with the memory region.
1460  * @mr_access_flags: Specifies the memory access rights.
1461  *
1462  * Note that the ib_dma_*() functions defined below must be used
1463  * to create/destroy addresses used with the Lkey or Rkey returned
1464  * by ib_get_dma_mr().
1465  */
1466 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1467 
1468 /**
1469  * ib_dma_mapping_error - check a DMA addr for error
1470  * @dev: The device for which the dma_addr was created
1471  * @dma_addr: The DMA address to check
1472  */
1473 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1474 {
1475 	if (dev->dma_ops)
1476 		return dev->dma_ops->mapping_error(dev, dma_addr);
1477 	return dma_mapping_error(dma_addr);
1478 }
1479 
1480 /**
1481  * ib_dma_map_single - Map a kernel virtual address to DMA address
1482  * @dev: The device for which the dma_addr is to be created
1483  * @cpu_addr: The kernel virtual address
1484  * @size: The size of the region in bytes
1485  * @direction: The direction of the DMA
1486  */
1487 static inline u64 ib_dma_map_single(struct ib_device *dev,
1488 				    void *cpu_addr, size_t size,
1489 				    enum dma_data_direction direction)
1490 {
1491 	if (dev->dma_ops)
1492 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1493 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1494 }
1495 
1496 /**
1497  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1498  * @dev: The device for which the DMA address was created
1499  * @addr: The DMA address
1500  * @size: The size of the region in bytes
1501  * @direction: The direction of the DMA
1502  */
1503 static inline void ib_dma_unmap_single(struct ib_device *dev,
1504 				       u64 addr, size_t size,
1505 				       enum dma_data_direction direction)
1506 {
1507 	if (dev->dma_ops)
1508 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1509 	else
1510 		dma_unmap_single(dev->dma_device, addr, size, direction);
1511 }
1512 
1513 /**
1514  * ib_dma_map_page - Map a physical page to DMA address
1515  * @dev: The device for which the dma_addr is to be created
1516  * @page: The page to be mapped
1517  * @offset: The offset within the page
1518  * @size: The size of the region in bytes
1519  * @direction: The direction of the DMA
1520  */
1521 static inline u64 ib_dma_map_page(struct ib_device *dev,
1522 				  struct page *page,
1523 				  unsigned long offset,
1524 				  size_t size,
1525 					 enum dma_data_direction direction)
1526 {
1527 	if (dev->dma_ops)
1528 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1529 	return dma_map_page(dev->dma_device, page, offset, size, direction);
1530 }
1531 
1532 /**
1533  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1534  * @dev: The device for which the DMA address was created
1535  * @addr: The DMA address
1536  * @size: The size of the region in bytes
1537  * @direction: The direction of the DMA
1538  */
1539 static inline void ib_dma_unmap_page(struct ib_device *dev,
1540 				     u64 addr, size_t size,
1541 				     enum dma_data_direction direction)
1542 {
1543 	if (dev->dma_ops)
1544 		dev->dma_ops->unmap_page(dev, addr, size, direction);
1545 	else
1546 		dma_unmap_page(dev->dma_device, addr, size, direction);
1547 }
1548 
1549 /**
1550  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1551  * @dev: The device for which the DMA addresses are to be created
1552  * @sg: The array of scatter/gather entries
1553  * @nents: The number of scatter/gather entries
1554  * @direction: The direction of the DMA
1555  */
1556 static inline int ib_dma_map_sg(struct ib_device *dev,
1557 				struct scatterlist *sg, int nents,
1558 				enum dma_data_direction direction)
1559 {
1560 	if (dev->dma_ops)
1561 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1562 	return dma_map_sg(dev->dma_device, sg, nents, direction);
1563 }
1564 
1565 /**
1566  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1567  * @dev: The device for which the DMA addresses were created
1568  * @sg: The array of scatter/gather entries
1569  * @nents: The number of scatter/gather entries
1570  * @direction: The direction of the DMA
1571  */
1572 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1573 				   struct scatterlist *sg, int nents,
1574 				   enum dma_data_direction direction)
1575 {
1576 	if (dev->dma_ops)
1577 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1578 	else
1579 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1580 }
1581 
1582 /**
1583  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1584  * @dev: The device for which the DMA addresses were created
1585  * @sg: The scatter/gather entry
1586  */
1587 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1588 				    struct scatterlist *sg)
1589 {
1590 	if (dev->dma_ops)
1591 		return dev->dma_ops->dma_address(dev, sg);
1592 	return sg_dma_address(sg);
1593 }
1594 
1595 /**
1596  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1597  * @dev: The device for which the DMA addresses were created
1598  * @sg: The scatter/gather entry
1599  */
1600 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1601 					 struct scatterlist *sg)
1602 {
1603 	if (dev->dma_ops)
1604 		return dev->dma_ops->dma_len(dev, sg);
1605 	return sg_dma_len(sg);
1606 }
1607 
1608 /**
1609  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1610  * @dev: The device for which the DMA address was created
1611  * @addr: The DMA address
1612  * @size: The size of the region in bytes
1613  * @dir: The direction of the DMA
1614  */
1615 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1616 					      u64 addr,
1617 					      size_t size,
1618 					      enum dma_data_direction dir)
1619 {
1620 	if (dev->dma_ops)
1621 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1622 	else
1623 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1624 }
1625 
1626 /**
1627  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1628  * @dev: The device for which the DMA address was created
1629  * @addr: The DMA address
1630  * @size: The size of the region in bytes
1631  * @dir: The direction of the DMA
1632  */
1633 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1634 						 u64 addr,
1635 						 size_t size,
1636 						 enum dma_data_direction dir)
1637 {
1638 	if (dev->dma_ops)
1639 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1640 	else
1641 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1642 }
1643 
1644 /**
1645  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1646  * @dev: The device for which the DMA address is requested
1647  * @size: The size of the region to allocate in bytes
1648  * @dma_handle: A pointer for returning the DMA address of the region
1649  * @flag: memory allocator flags
1650  */
1651 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1652 					   size_t size,
1653 					   u64 *dma_handle,
1654 					   gfp_t flag)
1655 {
1656 	if (dev->dma_ops)
1657 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1658 	else {
1659 		dma_addr_t handle;
1660 		void *ret;
1661 
1662 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1663 		*dma_handle = handle;
1664 		return ret;
1665 	}
1666 }
1667 
1668 /**
1669  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1670  * @dev: The device for which the DMA addresses were allocated
1671  * @size: The size of the region
1672  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1673  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1674  */
1675 static inline void ib_dma_free_coherent(struct ib_device *dev,
1676 					size_t size, void *cpu_addr,
1677 					u64 dma_handle)
1678 {
1679 	if (dev->dma_ops)
1680 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1681 	else
1682 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1683 }
1684 
1685 /**
1686  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1687  *   by an HCA.
1688  * @pd: The protection domain associated assigned to the registered region.
1689  * @phys_buf_array: Specifies a list of physical buffers to use in the
1690  *   memory region.
1691  * @num_phys_buf: Specifies the size of the phys_buf_array.
1692  * @mr_access_flags: Specifies the memory access rights.
1693  * @iova_start: The offset of the region's starting I/O virtual address.
1694  */
1695 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1696 			     struct ib_phys_buf *phys_buf_array,
1697 			     int num_phys_buf,
1698 			     int mr_access_flags,
1699 			     u64 *iova_start);
1700 
1701 /**
1702  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1703  *   Conceptually, this call performs the functions deregister memory region
1704  *   followed by register physical memory region.  Where possible,
1705  *   resources are reused instead of deallocated and reallocated.
1706  * @mr: The memory region to modify.
1707  * @mr_rereg_mask: A bit-mask used to indicate which of the following
1708  *   properties of the memory region are being modified.
1709  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1710  *   the new protection domain to associated with the memory region,
1711  *   otherwise, this parameter is ignored.
1712  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1713  *   field specifies a list of physical buffers to use in the new
1714  *   translation, otherwise, this parameter is ignored.
1715  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1716  *   field specifies the size of the phys_buf_array, otherwise, this
1717  *   parameter is ignored.
1718  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1719  *   field specifies the new memory access rights, otherwise, this
1720  *   parameter is ignored.
1721  * @iova_start: The offset of the region's starting I/O virtual address.
1722  */
1723 int ib_rereg_phys_mr(struct ib_mr *mr,
1724 		     int mr_rereg_mask,
1725 		     struct ib_pd *pd,
1726 		     struct ib_phys_buf *phys_buf_array,
1727 		     int num_phys_buf,
1728 		     int mr_access_flags,
1729 		     u64 *iova_start);
1730 
1731 /**
1732  * ib_query_mr - Retrieves information about a specific memory region.
1733  * @mr: The memory region to retrieve information about.
1734  * @mr_attr: The attributes of the specified memory region.
1735  */
1736 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1737 
1738 /**
1739  * ib_dereg_mr - Deregisters a memory region and removes it from the
1740  *   HCA translation table.
1741  * @mr: The memory region to deregister.
1742  */
1743 int ib_dereg_mr(struct ib_mr *mr);
1744 
1745 /**
1746  * ib_alloc_mw - Allocates a memory window.
1747  * @pd: The protection domain associated with the memory window.
1748  */
1749 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1750 
1751 /**
1752  * ib_bind_mw - Posts a work request to the send queue of the specified
1753  *   QP, which binds the memory window to the given address range and
1754  *   remote access attributes.
1755  * @qp: QP to post the bind work request on.
1756  * @mw: The memory window to bind.
1757  * @mw_bind: Specifies information about the memory window, including
1758  *   its address range, remote access rights, and associated memory region.
1759  */
1760 static inline int ib_bind_mw(struct ib_qp *qp,
1761 			     struct ib_mw *mw,
1762 			     struct ib_mw_bind *mw_bind)
1763 {
1764 	/* XXX reference counting in corresponding MR? */
1765 	return mw->device->bind_mw ?
1766 		mw->device->bind_mw(qp, mw, mw_bind) :
1767 		-ENOSYS;
1768 }
1769 
1770 /**
1771  * ib_dealloc_mw - Deallocates a memory window.
1772  * @mw: The memory window to deallocate.
1773  */
1774 int ib_dealloc_mw(struct ib_mw *mw);
1775 
1776 /**
1777  * ib_alloc_fmr - Allocates a unmapped fast memory region.
1778  * @pd: The protection domain associated with the unmapped region.
1779  * @mr_access_flags: Specifies the memory access rights.
1780  * @fmr_attr: Attributes of the unmapped region.
1781  *
1782  * A fast memory region must be mapped before it can be used as part of
1783  * a work request.
1784  */
1785 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1786 			    int mr_access_flags,
1787 			    struct ib_fmr_attr *fmr_attr);
1788 
1789 /**
1790  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
1791  * @fmr: The fast memory region to associate with the pages.
1792  * @page_list: An array of physical pages to map to the fast memory region.
1793  * @list_len: The number of pages in page_list.
1794  * @iova: The I/O virtual address to use with the mapped region.
1795  */
1796 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
1797 				  u64 *page_list, int list_len,
1798 				  u64 iova)
1799 {
1800 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
1801 }
1802 
1803 /**
1804  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
1805  * @fmr_list: A linked list of fast memory regions to unmap.
1806  */
1807 int ib_unmap_fmr(struct list_head *fmr_list);
1808 
1809 /**
1810  * ib_dealloc_fmr - Deallocates a fast memory region.
1811  * @fmr: The fast memory region to deallocate.
1812  */
1813 int ib_dealloc_fmr(struct ib_fmr *fmr);
1814 
1815 /**
1816  * ib_attach_mcast - Attaches the specified QP to a multicast group.
1817  * @qp: QP to attach to the multicast group.  The QP must be type
1818  *   IB_QPT_UD.
1819  * @gid: Multicast group GID.
1820  * @lid: Multicast group LID in host byte order.
1821  *
1822  * In order to send and receive multicast packets, subnet
1823  * administration must have created the multicast group and configured
1824  * the fabric appropriately.  The port associated with the specified
1825  * QP must also be a member of the multicast group.
1826  */
1827 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
1828 
1829 /**
1830  * ib_detach_mcast - Detaches the specified QP from a multicast group.
1831  * @qp: QP to detach from the multicast group.
1832  * @gid: Multicast group GID.
1833  * @lid: Multicast group LID in host byte order.
1834  */
1835 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
1836 
1837 #endif /* IB_VERBS_H */
1838