1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 #include <linux/list.h> 50 #include <linux/rwsem.h> 51 #include <linux/scatterlist.h> 52 53 #include <asm/atomic.h> 54 #include <asm/uaccess.h> 55 56 union ib_gid { 57 u8 raw[16]; 58 struct { 59 __be64 subnet_prefix; 60 __be64 interface_id; 61 } global; 62 }; 63 64 enum rdma_node_type { 65 /* IB values map to NodeInfo:NodeType. */ 66 RDMA_NODE_IB_CA = 1, 67 RDMA_NODE_IB_SWITCH, 68 RDMA_NODE_IB_ROUTER, 69 RDMA_NODE_RNIC 70 }; 71 72 enum rdma_transport_type { 73 RDMA_TRANSPORT_IB, 74 RDMA_TRANSPORT_IWARP 75 }; 76 77 enum rdma_transport_type 78 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 79 80 enum ib_device_cap_flags { 81 IB_DEVICE_RESIZE_MAX_WR = 1, 82 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 83 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 84 IB_DEVICE_RAW_MULTI = (1<<3), 85 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 86 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 87 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 88 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 89 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 90 IB_DEVICE_INIT_TYPE = (1<<9), 91 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 92 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 93 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 94 IB_DEVICE_SRQ_RESIZE = (1<<13), 95 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 96 IB_DEVICE_ZERO_STAG = (1<<15), 97 IB_DEVICE_SEND_W_INV = (1<<16), 98 IB_DEVICE_MEM_WINDOW = (1<<17) 99 }; 100 101 enum ib_atomic_cap { 102 IB_ATOMIC_NONE, 103 IB_ATOMIC_HCA, 104 IB_ATOMIC_GLOB 105 }; 106 107 struct ib_device_attr { 108 u64 fw_ver; 109 __be64 sys_image_guid; 110 u64 max_mr_size; 111 u64 page_size_cap; 112 u32 vendor_id; 113 u32 vendor_part_id; 114 u32 hw_ver; 115 int max_qp; 116 int max_qp_wr; 117 int device_cap_flags; 118 int max_sge; 119 int max_sge_rd; 120 int max_cq; 121 int max_cqe; 122 int max_mr; 123 int max_pd; 124 int max_qp_rd_atom; 125 int max_ee_rd_atom; 126 int max_res_rd_atom; 127 int max_qp_init_rd_atom; 128 int max_ee_init_rd_atom; 129 enum ib_atomic_cap atomic_cap; 130 int max_ee; 131 int max_rdd; 132 int max_mw; 133 int max_raw_ipv6_qp; 134 int max_raw_ethy_qp; 135 int max_mcast_grp; 136 int max_mcast_qp_attach; 137 int max_total_mcast_qp_attach; 138 int max_ah; 139 int max_fmr; 140 int max_map_per_fmr; 141 int max_srq; 142 int max_srq_wr; 143 int max_srq_sge; 144 u16 max_pkeys; 145 u8 local_ca_ack_delay; 146 }; 147 148 enum ib_mtu { 149 IB_MTU_256 = 1, 150 IB_MTU_512 = 2, 151 IB_MTU_1024 = 3, 152 IB_MTU_2048 = 4, 153 IB_MTU_4096 = 5 154 }; 155 156 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 157 { 158 switch (mtu) { 159 case IB_MTU_256: return 256; 160 case IB_MTU_512: return 512; 161 case IB_MTU_1024: return 1024; 162 case IB_MTU_2048: return 2048; 163 case IB_MTU_4096: return 4096; 164 default: return -1; 165 } 166 } 167 168 enum ib_port_state { 169 IB_PORT_NOP = 0, 170 IB_PORT_DOWN = 1, 171 IB_PORT_INIT = 2, 172 IB_PORT_ARMED = 3, 173 IB_PORT_ACTIVE = 4, 174 IB_PORT_ACTIVE_DEFER = 5 175 }; 176 177 enum ib_port_cap_flags { 178 IB_PORT_SM = 1 << 1, 179 IB_PORT_NOTICE_SUP = 1 << 2, 180 IB_PORT_TRAP_SUP = 1 << 3, 181 IB_PORT_OPT_IPD_SUP = 1 << 4, 182 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 183 IB_PORT_SL_MAP_SUP = 1 << 6, 184 IB_PORT_MKEY_NVRAM = 1 << 7, 185 IB_PORT_PKEY_NVRAM = 1 << 8, 186 IB_PORT_LED_INFO_SUP = 1 << 9, 187 IB_PORT_SM_DISABLED = 1 << 10, 188 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 189 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 190 IB_PORT_CM_SUP = 1 << 16, 191 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 192 IB_PORT_REINIT_SUP = 1 << 18, 193 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 194 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 195 IB_PORT_DR_NOTICE_SUP = 1 << 21, 196 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 197 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 198 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 199 IB_PORT_CLIENT_REG_SUP = 1 << 25 200 }; 201 202 enum ib_port_width { 203 IB_WIDTH_1X = 1, 204 IB_WIDTH_4X = 2, 205 IB_WIDTH_8X = 4, 206 IB_WIDTH_12X = 8 207 }; 208 209 static inline int ib_width_enum_to_int(enum ib_port_width width) 210 { 211 switch (width) { 212 case IB_WIDTH_1X: return 1; 213 case IB_WIDTH_4X: return 4; 214 case IB_WIDTH_8X: return 8; 215 case IB_WIDTH_12X: return 12; 216 default: return -1; 217 } 218 } 219 220 struct ib_port_attr { 221 enum ib_port_state state; 222 enum ib_mtu max_mtu; 223 enum ib_mtu active_mtu; 224 int gid_tbl_len; 225 u32 port_cap_flags; 226 u32 max_msg_sz; 227 u32 bad_pkey_cntr; 228 u32 qkey_viol_cntr; 229 u16 pkey_tbl_len; 230 u16 lid; 231 u16 sm_lid; 232 u8 lmc; 233 u8 max_vl_num; 234 u8 sm_sl; 235 u8 subnet_timeout; 236 u8 init_type_reply; 237 u8 active_width; 238 u8 active_speed; 239 u8 phys_state; 240 }; 241 242 enum ib_device_modify_flags { 243 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 244 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 245 }; 246 247 struct ib_device_modify { 248 u64 sys_image_guid; 249 char node_desc[64]; 250 }; 251 252 enum ib_port_modify_flags { 253 IB_PORT_SHUTDOWN = 1, 254 IB_PORT_INIT_TYPE = (1<<2), 255 IB_PORT_RESET_QKEY_CNTR = (1<<3) 256 }; 257 258 struct ib_port_modify { 259 u32 set_port_cap_mask; 260 u32 clr_port_cap_mask; 261 u8 init_type; 262 }; 263 264 enum ib_event_type { 265 IB_EVENT_CQ_ERR, 266 IB_EVENT_QP_FATAL, 267 IB_EVENT_QP_REQ_ERR, 268 IB_EVENT_QP_ACCESS_ERR, 269 IB_EVENT_COMM_EST, 270 IB_EVENT_SQ_DRAINED, 271 IB_EVENT_PATH_MIG, 272 IB_EVENT_PATH_MIG_ERR, 273 IB_EVENT_DEVICE_FATAL, 274 IB_EVENT_PORT_ACTIVE, 275 IB_EVENT_PORT_ERR, 276 IB_EVENT_LID_CHANGE, 277 IB_EVENT_PKEY_CHANGE, 278 IB_EVENT_SM_CHANGE, 279 IB_EVENT_SRQ_ERR, 280 IB_EVENT_SRQ_LIMIT_REACHED, 281 IB_EVENT_QP_LAST_WQE_REACHED, 282 IB_EVENT_CLIENT_REREGISTER 283 }; 284 285 struct ib_event { 286 struct ib_device *device; 287 union { 288 struct ib_cq *cq; 289 struct ib_qp *qp; 290 struct ib_srq *srq; 291 u8 port_num; 292 } element; 293 enum ib_event_type event; 294 }; 295 296 struct ib_event_handler { 297 struct ib_device *device; 298 void (*handler)(struct ib_event_handler *, struct ib_event *); 299 struct list_head list; 300 }; 301 302 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 303 do { \ 304 (_ptr)->device = _device; \ 305 (_ptr)->handler = _handler; \ 306 INIT_LIST_HEAD(&(_ptr)->list); \ 307 } while (0) 308 309 struct ib_global_route { 310 union ib_gid dgid; 311 u32 flow_label; 312 u8 sgid_index; 313 u8 hop_limit; 314 u8 traffic_class; 315 }; 316 317 struct ib_grh { 318 __be32 version_tclass_flow; 319 __be16 paylen; 320 u8 next_hdr; 321 u8 hop_limit; 322 union ib_gid sgid; 323 union ib_gid dgid; 324 }; 325 326 enum { 327 IB_MULTICAST_QPN = 0xffffff 328 }; 329 330 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 331 332 enum ib_ah_flags { 333 IB_AH_GRH = 1 334 }; 335 336 enum ib_rate { 337 IB_RATE_PORT_CURRENT = 0, 338 IB_RATE_2_5_GBPS = 2, 339 IB_RATE_5_GBPS = 5, 340 IB_RATE_10_GBPS = 3, 341 IB_RATE_20_GBPS = 6, 342 IB_RATE_30_GBPS = 4, 343 IB_RATE_40_GBPS = 7, 344 IB_RATE_60_GBPS = 8, 345 IB_RATE_80_GBPS = 9, 346 IB_RATE_120_GBPS = 10 347 }; 348 349 /** 350 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 351 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 352 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 353 * @rate: rate to convert. 354 */ 355 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 356 357 /** 358 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 359 * enum. 360 * @mult: multiple to convert. 361 */ 362 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 363 364 struct ib_ah_attr { 365 struct ib_global_route grh; 366 u16 dlid; 367 u8 sl; 368 u8 src_path_bits; 369 u8 static_rate; 370 u8 ah_flags; 371 u8 port_num; 372 }; 373 374 enum ib_wc_status { 375 IB_WC_SUCCESS, 376 IB_WC_LOC_LEN_ERR, 377 IB_WC_LOC_QP_OP_ERR, 378 IB_WC_LOC_EEC_OP_ERR, 379 IB_WC_LOC_PROT_ERR, 380 IB_WC_WR_FLUSH_ERR, 381 IB_WC_MW_BIND_ERR, 382 IB_WC_BAD_RESP_ERR, 383 IB_WC_LOC_ACCESS_ERR, 384 IB_WC_REM_INV_REQ_ERR, 385 IB_WC_REM_ACCESS_ERR, 386 IB_WC_REM_OP_ERR, 387 IB_WC_RETRY_EXC_ERR, 388 IB_WC_RNR_RETRY_EXC_ERR, 389 IB_WC_LOC_RDD_VIOL_ERR, 390 IB_WC_REM_INV_RD_REQ_ERR, 391 IB_WC_REM_ABORT_ERR, 392 IB_WC_INV_EECN_ERR, 393 IB_WC_INV_EEC_STATE_ERR, 394 IB_WC_FATAL_ERR, 395 IB_WC_RESP_TIMEOUT_ERR, 396 IB_WC_GENERAL_ERR 397 }; 398 399 enum ib_wc_opcode { 400 IB_WC_SEND, 401 IB_WC_RDMA_WRITE, 402 IB_WC_RDMA_READ, 403 IB_WC_COMP_SWAP, 404 IB_WC_FETCH_ADD, 405 IB_WC_BIND_MW, 406 /* 407 * Set value of IB_WC_RECV so consumers can test if a completion is a 408 * receive by testing (opcode & IB_WC_RECV). 409 */ 410 IB_WC_RECV = 1 << 7, 411 IB_WC_RECV_RDMA_WITH_IMM 412 }; 413 414 enum ib_wc_flags { 415 IB_WC_GRH = 1, 416 IB_WC_WITH_IMM = (1<<1) 417 }; 418 419 struct ib_wc { 420 u64 wr_id; 421 enum ib_wc_status status; 422 enum ib_wc_opcode opcode; 423 u32 vendor_err; 424 u32 byte_len; 425 struct ib_qp *qp; 426 __be32 imm_data; 427 u32 src_qp; 428 int wc_flags; 429 u16 pkey_index; 430 u16 slid; 431 u8 sl; 432 u8 dlid_path_bits; 433 u8 port_num; /* valid only for DR SMPs on switches */ 434 }; 435 436 enum ib_cq_notify_flags { 437 IB_CQ_SOLICITED = 1 << 0, 438 IB_CQ_NEXT_COMP = 1 << 1, 439 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 440 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 441 }; 442 443 enum ib_srq_attr_mask { 444 IB_SRQ_MAX_WR = 1 << 0, 445 IB_SRQ_LIMIT = 1 << 1, 446 }; 447 448 struct ib_srq_attr { 449 u32 max_wr; 450 u32 max_sge; 451 u32 srq_limit; 452 }; 453 454 struct ib_srq_init_attr { 455 void (*event_handler)(struct ib_event *, void *); 456 void *srq_context; 457 struct ib_srq_attr attr; 458 }; 459 460 struct ib_qp_cap { 461 u32 max_send_wr; 462 u32 max_recv_wr; 463 u32 max_send_sge; 464 u32 max_recv_sge; 465 u32 max_inline_data; 466 }; 467 468 enum ib_sig_type { 469 IB_SIGNAL_ALL_WR, 470 IB_SIGNAL_REQ_WR 471 }; 472 473 enum ib_qp_type { 474 /* 475 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 476 * here (and in that order) since the MAD layer uses them as 477 * indices into a 2-entry table. 478 */ 479 IB_QPT_SMI, 480 IB_QPT_GSI, 481 482 IB_QPT_RC, 483 IB_QPT_UC, 484 IB_QPT_UD, 485 IB_QPT_RAW_IPV6, 486 IB_QPT_RAW_ETY 487 }; 488 489 struct ib_qp_init_attr { 490 void (*event_handler)(struct ib_event *, void *); 491 void *qp_context; 492 struct ib_cq *send_cq; 493 struct ib_cq *recv_cq; 494 struct ib_srq *srq; 495 struct ib_qp_cap cap; 496 enum ib_sig_type sq_sig_type; 497 enum ib_qp_type qp_type; 498 u8 port_num; /* special QP types only */ 499 }; 500 501 enum ib_rnr_timeout { 502 IB_RNR_TIMER_655_36 = 0, 503 IB_RNR_TIMER_000_01 = 1, 504 IB_RNR_TIMER_000_02 = 2, 505 IB_RNR_TIMER_000_03 = 3, 506 IB_RNR_TIMER_000_04 = 4, 507 IB_RNR_TIMER_000_06 = 5, 508 IB_RNR_TIMER_000_08 = 6, 509 IB_RNR_TIMER_000_12 = 7, 510 IB_RNR_TIMER_000_16 = 8, 511 IB_RNR_TIMER_000_24 = 9, 512 IB_RNR_TIMER_000_32 = 10, 513 IB_RNR_TIMER_000_48 = 11, 514 IB_RNR_TIMER_000_64 = 12, 515 IB_RNR_TIMER_000_96 = 13, 516 IB_RNR_TIMER_001_28 = 14, 517 IB_RNR_TIMER_001_92 = 15, 518 IB_RNR_TIMER_002_56 = 16, 519 IB_RNR_TIMER_003_84 = 17, 520 IB_RNR_TIMER_005_12 = 18, 521 IB_RNR_TIMER_007_68 = 19, 522 IB_RNR_TIMER_010_24 = 20, 523 IB_RNR_TIMER_015_36 = 21, 524 IB_RNR_TIMER_020_48 = 22, 525 IB_RNR_TIMER_030_72 = 23, 526 IB_RNR_TIMER_040_96 = 24, 527 IB_RNR_TIMER_061_44 = 25, 528 IB_RNR_TIMER_081_92 = 26, 529 IB_RNR_TIMER_122_88 = 27, 530 IB_RNR_TIMER_163_84 = 28, 531 IB_RNR_TIMER_245_76 = 29, 532 IB_RNR_TIMER_327_68 = 30, 533 IB_RNR_TIMER_491_52 = 31 534 }; 535 536 enum ib_qp_attr_mask { 537 IB_QP_STATE = 1, 538 IB_QP_CUR_STATE = (1<<1), 539 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 540 IB_QP_ACCESS_FLAGS = (1<<3), 541 IB_QP_PKEY_INDEX = (1<<4), 542 IB_QP_PORT = (1<<5), 543 IB_QP_QKEY = (1<<6), 544 IB_QP_AV = (1<<7), 545 IB_QP_PATH_MTU = (1<<8), 546 IB_QP_TIMEOUT = (1<<9), 547 IB_QP_RETRY_CNT = (1<<10), 548 IB_QP_RNR_RETRY = (1<<11), 549 IB_QP_RQ_PSN = (1<<12), 550 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 551 IB_QP_ALT_PATH = (1<<14), 552 IB_QP_MIN_RNR_TIMER = (1<<15), 553 IB_QP_SQ_PSN = (1<<16), 554 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 555 IB_QP_PATH_MIG_STATE = (1<<18), 556 IB_QP_CAP = (1<<19), 557 IB_QP_DEST_QPN = (1<<20) 558 }; 559 560 enum ib_qp_state { 561 IB_QPS_RESET, 562 IB_QPS_INIT, 563 IB_QPS_RTR, 564 IB_QPS_RTS, 565 IB_QPS_SQD, 566 IB_QPS_SQE, 567 IB_QPS_ERR 568 }; 569 570 enum ib_mig_state { 571 IB_MIG_MIGRATED, 572 IB_MIG_REARM, 573 IB_MIG_ARMED 574 }; 575 576 struct ib_qp_attr { 577 enum ib_qp_state qp_state; 578 enum ib_qp_state cur_qp_state; 579 enum ib_mtu path_mtu; 580 enum ib_mig_state path_mig_state; 581 u32 qkey; 582 u32 rq_psn; 583 u32 sq_psn; 584 u32 dest_qp_num; 585 int qp_access_flags; 586 struct ib_qp_cap cap; 587 struct ib_ah_attr ah_attr; 588 struct ib_ah_attr alt_ah_attr; 589 u16 pkey_index; 590 u16 alt_pkey_index; 591 u8 en_sqd_async_notify; 592 u8 sq_draining; 593 u8 max_rd_atomic; 594 u8 max_dest_rd_atomic; 595 u8 min_rnr_timer; 596 u8 port_num; 597 u8 timeout; 598 u8 retry_cnt; 599 u8 rnr_retry; 600 u8 alt_port_num; 601 u8 alt_timeout; 602 }; 603 604 enum ib_wr_opcode { 605 IB_WR_RDMA_WRITE, 606 IB_WR_RDMA_WRITE_WITH_IMM, 607 IB_WR_SEND, 608 IB_WR_SEND_WITH_IMM, 609 IB_WR_RDMA_READ, 610 IB_WR_ATOMIC_CMP_AND_SWP, 611 IB_WR_ATOMIC_FETCH_AND_ADD 612 }; 613 614 enum ib_send_flags { 615 IB_SEND_FENCE = 1, 616 IB_SEND_SIGNALED = (1<<1), 617 IB_SEND_SOLICITED = (1<<2), 618 IB_SEND_INLINE = (1<<3) 619 }; 620 621 struct ib_sge { 622 u64 addr; 623 u32 length; 624 u32 lkey; 625 }; 626 627 struct ib_send_wr { 628 struct ib_send_wr *next; 629 u64 wr_id; 630 struct ib_sge *sg_list; 631 int num_sge; 632 enum ib_wr_opcode opcode; 633 int send_flags; 634 __be32 imm_data; 635 union { 636 struct { 637 u64 remote_addr; 638 u32 rkey; 639 } rdma; 640 struct { 641 u64 remote_addr; 642 u64 compare_add; 643 u64 swap; 644 u32 rkey; 645 } atomic; 646 struct { 647 struct ib_ah *ah; 648 u32 remote_qpn; 649 u32 remote_qkey; 650 u16 pkey_index; /* valid for GSI only */ 651 u8 port_num; /* valid for DR SMPs on switch only */ 652 } ud; 653 } wr; 654 }; 655 656 struct ib_recv_wr { 657 struct ib_recv_wr *next; 658 u64 wr_id; 659 struct ib_sge *sg_list; 660 int num_sge; 661 }; 662 663 enum ib_access_flags { 664 IB_ACCESS_LOCAL_WRITE = 1, 665 IB_ACCESS_REMOTE_WRITE = (1<<1), 666 IB_ACCESS_REMOTE_READ = (1<<2), 667 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 668 IB_ACCESS_MW_BIND = (1<<4) 669 }; 670 671 struct ib_phys_buf { 672 u64 addr; 673 u64 size; 674 }; 675 676 struct ib_mr_attr { 677 struct ib_pd *pd; 678 u64 device_virt_addr; 679 u64 size; 680 int mr_access_flags; 681 u32 lkey; 682 u32 rkey; 683 }; 684 685 enum ib_mr_rereg_flags { 686 IB_MR_REREG_TRANS = 1, 687 IB_MR_REREG_PD = (1<<1), 688 IB_MR_REREG_ACCESS = (1<<2) 689 }; 690 691 struct ib_mw_bind { 692 struct ib_mr *mr; 693 u64 wr_id; 694 u64 addr; 695 u32 length; 696 int send_flags; 697 int mw_access_flags; 698 }; 699 700 struct ib_fmr_attr { 701 int max_pages; 702 int max_maps; 703 u8 page_shift; 704 }; 705 706 struct ib_ucontext { 707 struct ib_device *device; 708 struct list_head pd_list; 709 struct list_head mr_list; 710 struct list_head mw_list; 711 struct list_head cq_list; 712 struct list_head qp_list; 713 struct list_head srq_list; 714 struct list_head ah_list; 715 int closing; 716 }; 717 718 struct ib_uobject { 719 u64 user_handle; /* handle given to us by userspace */ 720 struct ib_ucontext *context; /* associated user context */ 721 void *object; /* containing object */ 722 struct list_head list; /* link to context's list */ 723 u32 id; /* index into kernel idr */ 724 struct kref ref; 725 struct rw_semaphore mutex; /* protects .live */ 726 int live; 727 }; 728 729 struct ib_udata { 730 void __user *inbuf; 731 void __user *outbuf; 732 size_t inlen; 733 size_t outlen; 734 }; 735 736 struct ib_pd { 737 struct ib_device *device; 738 struct ib_uobject *uobject; 739 atomic_t usecnt; /* count all resources */ 740 }; 741 742 struct ib_ah { 743 struct ib_device *device; 744 struct ib_pd *pd; 745 struct ib_uobject *uobject; 746 }; 747 748 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 749 750 struct ib_cq { 751 struct ib_device *device; 752 struct ib_uobject *uobject; 753 ib_comp_handler comp_handler; 754 void (*event_handler)(struct ib_event *, void *); 755 void * cq_context; 756 int cqe; 757 atomic_t usecnt; /* count number of work queues */ 758 }; 759 760 struct ib_srq { 761 struct ib_device *device; 762 struct ib_pd *pd; 763 struct ib_uobject *uobject; 764 void (*event_handler)(struct ib_event *, void *); 765 void *srq_context; 766 atomic_t usecnt; 767 }; 768 769 struct ib_qp { 770 struct ib_device *device; 771 struct ib_pd *pd; 772 struct ib_cq *send_cq; 773 struct ib_cq *recv_cq; 774 struct ib_srq *srq; 775 struct ib_uobject *uobject; 776 void (*event_handler)(struct ib_event *, void *); 777 void *qp_context; 778 u32 qp_num; 779 enum ib_qp_type qp_type; 780 }; 781 782 struct ib_mr { 783 struct ib_device *device; 784 struct ib_pd *pd; 785 struct ib_uobject *uobject; 786 u32 lkey; 787 u32 rkey; 788 atomic_t usecnt; /* count number of MWs */ 789 }; 790 791 struct ib_mw { 792 struct ib_device *device; 793 struct ib_pd *pd; 794 struct ib_uobject *uobject; 795 u32 rkey; 796 }; 797 798 struct ib_fmr { 799 struct ib_device *device; 800 struct ib_pd *pd; 801 struct list_head list; 802 u32 lkey; 803 u32 rkey; 804 }; 805 806 struct ib_mad; 807 struct ib_grh; 808 809 enum ib_process_mad_flags { 810 IB_MAD_IGNORE_MKEY = 1, 811 IB_MAD_IGNORE_BKEY = 2, 812 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 813 }; 814 815 enum ib_mad_result { 816 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 817 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 818 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 819 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 820 }; 821 822 #define IB_DEVICE_NAME_MAX 64 823 824 struct ib_cache { 825 rwlock_t lock; 826 struct ib_event_handler event_handler; 827 struct ib_pkey_cache **pkey_cache; 828 struct ib_gid_cache **gid_cache; 829 u8 *lmc_cache; 830 }; 831 832 struct ib_dma_mapping_ops { 833 int (*mapping_error)(struct ib_device *dev, 834 u64 dma_addr); 835 u64 (*map_single)(struct ib_device *dev, 836 void *ptr, size_t size, 837 enum dma_data_direction direction); 838 void (*unmap_single)(struct ib_device *dev, 839 u64 addr, size_t size, 840 enum dma_data_direction direction); 841 u64 (*map_page)(struct ib_device *dev, 842 struct page *page, unsigned long offset, 843 size_t size, 844 enum dma_data_direction direction); 845 void (*unmap_page)(struct ib_device *dev, 846 u64 addr, size_t size, 847 enum dma_data_direction direction); 848 int (*map_sg)(struct ib_device *dev, 849 struct scatterlist *sg, int nents, 850 enum dma_data_direction direction); 851 void (*unmap_sg)(struct ib_device *dev, 852 struct scatterlist *sg, int nents, 853 enum dma_data_direction direction); 854 u64 (*dma_address)(struct ib_device *dev, 855 struct scatterlist *sg); 856 unsigned int (*dma_len)(struct ib_device *dev, 857 struct scatterlist *sg); 858 void (*sync_single_for_cpu)(struct ib_device *dev, 859 u64 dma_handle, 860 size_t size, 861 enum dma_data_direction dir); 862 void (*sync_single_for_device)(struct ib_device *dev, 863 u64 dma_handle, 864 size_t size, 865 enum dma_data_direction dir); 866 void *(*alloc_coherent)(struct ib_device *dev, 867 size_t size, 868 u64 *dma_handle, 869 gfp_t flag); 870 void (*free_coherent)(struct ib_device *dev, 871 size_t size, void *cpu_addr, 872 u64 dma_handle); 873 }; 874 875 struct iw_cm_verbs; 876 877 struct ib_device { 878 struct device *dma_device; 879 880 char name[IB_DEVICE_NAME_MAX]; 881 882 struct list_head event_handler_list; 883 spinlock_t event_handler_lock; 884 885 struct list_head core_list; 886 struct list_head client_data_list; 887 spinlock_t client_data_lock; 888 889 struct ib_cache cache; 890 int *pkey_tbl_len; 891 int *gid_tbl_len; 892 893 u32 flags; 894 895 int num_comp_vectors; 896 897 struct iw_cm_verbs *iwcm; 898 899 int (*query_device)(struct ib_device *device, 900 struct ib_device_attr *device_attr); 901 int (*query_port)(struct ib_device *device, 902 u8 port_num, 903 struct ib_port_attr *port_attr); 904 int (*query_gid)(struct ib_device *device, 905 u8 port_num, int index, 906 union ib_gid *gid); 907 int (*query_pkey)(struct ib_device *device, 908 u8 port_num, u16 index, u16 *pkey); 909 int (*modify_device)(struct ib_device *device, 910 int device_modify_mask, 911 struct ib_device_modify *device_modify); 912 int (*modify_port)(struct ib_device *device, 913 u8 port_num, int port_modify_mask, 914 struct ib_port_modify *port_modify); 915 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 916 struct ib_udata *udata); 917 int (*dealloc_ucontext)(struct ib_ucontext *context); 918 int (*mmap)(struct ib_ucontext *context, 919 struct vm_area_struct *vma); 920 struct ib_pd * (*alloc_pd)(struct ib_device *device, 921 struct ib_ucontext *context, 922 struct ib_udata *udata); 923 int (*dealloc_pd)(struct ib_pd *pd); 924 struct ib_ah * (*create_ah)(struct ib_pd *pd, 925 struct ib_ah_attr *ah_attr); 926 int (*modify_ah)(struct ib_ah *ah, 927 struct ib_ah_attr *ah_attr); 928 int (*query_ah)(struct ib_ah *ah, 929 struct ib_ah_attr *ah_attr); 930 int (*destroy_ah)(struct ib_ah *ah); 931 struct ib_srq * (*create_srq)(struct ib_pd *pd, 932 struct ib_srq_init_attr *srq_init_attr, 933 struct ib_udata *udata); 934 int (*modify_srq)(struct ib_srq *srq, 935 struct ib_srq_attr *srq_attr, 936 enum ib_srq_attr_mask srq_attr_mask, 937 struct ib_udata *udata); 938 int (*query_srq)(struct ib_srq *srq, 939 struct ib_srq_attr *srq_attr); 940 int (*destroy_srq)(struct ib_srq *srq); 941 int (*post_srq_recv)(struct ib_srq *srq, 942 struct ib_recv_wr *recv_wr, 943 struct ib_recv_wr **bad_recv_wr); 944 struct ib_qp * (*create_qp)(struct ib_pd *pd, 945 struct ib_qp_init_attr *qp_init_attr, 946 struct ib_udata *udata); 947 int (*modify_qp)(struct ib_qp *qp, 948 struct ib_qp_attr *qp_attr, 949 int qp_attr_mask, 950 struct ib_udata *udata); 951 int (*query_qp)(struct ib_qp *qp, 952 struct ib_qp_attr *qp_attr, 953 int qp_attr_mask, 954 struct ib_qp_init_attr *qp_init_attr); 955 int (*destroy_qp)(struct ib_qp *qp); 956 int (*post_send)(struct ib_qp *qp, 957 struct ib_send_wr *send_wr, 958 struct ib_send_wr **bad_send_wr); 959 int (*post_recv)(struct ib_qp *qp, 960 struct ib_recv_wr *recv_wr, 961 struct ib_recv_wr **bad_recv_wr); 962 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 963 int comp_vector, 964 struct ib_ucontext *context, 965 struct ib_udata *udata); 966 int (*destroy_cq)(struct ib_cq *cq); 967 int (*resize_cq)(struct ib_cq *cq, int cqe, 968 struct ib_udata *udata); 969 int (*poll_cq)(struct ib_cq *cq, int num_entries, 970 struct ib_wc *wc); 971 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 972 int (*req_notify_cq)(struct ib_cq *cq, 973 enum ib_cq_notify_flags flags); 974 int (*req_ncomp_notif)(struct ib_cq *cq, 975 int wc_cnt); 976 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 977 int mr_access_flags); 978 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 979 struct ib_phys_buf *phys_buf_array, 980 int num_phys_buf, 981 int mr_access_flags, 982 u64 *iova_start); 983 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 984 u64 start, u64 length, 985 u64 virt_addr, 986 int mr_access_flags, 987 struct ib_udata *udata); 988 int (*query_mr)(struct ib_mr *mr, 989 struct ib_mr_attr *mr_attr); 990 int (*dereg_mr)(struct ib_mr *mr); 991 int (*rereg_phys_mr)(struct ib_mr *mr, 992 int mr_rereg_mask, 993 struct ib_pd *pd, 994 struct ib_phys_buf *phys_buf_array, 995 int num_phys_buf, 996 int mr_access_flags, 997 u64 *iova_start); 998 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 999 int (*bind_mw)(struct ib_qp *qp, 1000 struct ib_mw *mw, 1001 struct ib_mw_bind *mw_bind); 1002 int (*dealloc_mw)(struct ib_mw *mw); 1003 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1004 int mr_access_flags, 1005 struct ib_fmr_attr *fmr_attr); 1006 int (*map_phys_fmr)(struct ib_fmr *fmr, 1007 u64 *page_list, int list_len, 1008 u64 iova); 1009 int (*unmap_fmr)(struct list_head *fmr_list); 1010 int (*dealloc_fmr)(struct ib_fmr *fmr); 1011 int (*attach_mcast)(struct ib_qp *qp, 1012 union ib_gid *gid, 1013 u16 lid); 1014 int (*detach_mcast)(struct ib_qp *qp, 1015 union ib_gid *gid, 1016 u16 lid); 1017 int (*process_mad)(struct ib_device *device, 1018 int process_mad_flags, 1019 u8 port_num, 1020 struct ib_wc *in_wc, 1021 struct ib_grh *in_grh, 1022 struct ib_mad *in_mad, 1023 struct ib_mad *out_mad); 1024 1025 struct ib_dma_mapping_ops *dma_ops; 1026 1027 struct module *owner; 1028 struct class_device class_dev; 1029 struct kobject *ports_parent; 1030 struct list_head port_list; 1031 1032 enum { 1033 IB_DEV_UNINITIALIZED, 1034 IB_DEV_REGISTERED, 1035 IB_DEV_UNREGISTERED 1036 } reg_state; 1037 1038 u64 uverbs_cmd_mask; 1039 int uverbs_abi_ver; 1040 1041 char node_desc[64]; 1042 __be64 node_guid; 1043 u8 node_type; 1044 u8 phys_port_cnt; 1045 }; 1046 1047 struct ib_client { 1048 char *name; 1049 void (*add) (struct ib_device *); 1050 void (*remove)(struct ib_device *); 1051 1052 struct list_head list; 1053 }; 1054 1055 struct ib_device *ib_alloc_device(size_t size); 1056 void ib_dealloc_device(struct ib_device *device); 1057 1058 int ib_register_device (struct ib_device *device); 1059 void ib_unregister_device(struct ib_device *device); 1060 1061 int ib_register_client (struct ib_client *client); 1062 void ib_unregister_client(struct ib_client *client); 1063 1064 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1065 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1066 void *data); 1067 1068 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1069 { 1070 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1071 } 1072 1073 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1074 { 1075 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1076 } 1077 1078 /** 1079 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1080 * contains all required attributes and no attributes not allowed for 1081 * the given QP state transition. 1082 * @cur_state: Current QP state 1083 * @next_state: Next QP state 1084 * @type: QP type 1085 * @mask: Mask of supplied QP attributes 1086 * 1087 * This function is a helper function that a low-level driver's 1088 * modify_qp method can use to validate the consumer's input. It 1089 * checks that cur_state and next_state are valid QP states, that a 1090 * transition from cur_state to next_state is allowed by the IB spec, 1091 * and that the attribute mask supplied is allowed for the transition. 1092 */ 1093 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1094 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1095 1096 int ib_register_event_handler (struct ib_event_handler *event_handler); 1097 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1098 void ib_dispatch_event(struct ib_event *event); 1099 1100 int ib_query_device(struct ib_device *device, 1101 struct ib_device_attr *device_attr); 1102 1103 int ib_query_port(struct ib_device *device, 1104 u8 port_num, struct ib_port_attr *port_attr); 1105 1106 int ib_query_gid(struct ib_device *device, 1107 u8 port_num, int index, union ib_gid *gid); 1108 1109 int ib_query_pkey(struct ib_device *device, 1110 u8 port_num, u16 index, u16 *pkey); 1111 1112 int ib_modify_device(struct ib_device *device, 1113 int device_modify_mask, 1114 struct ib_device_modify *device_modify); 1115 1116 int ib_modify_port(struct ib_device *device, 1117 u8 port_num, int port_modify_mask, 1118 struct ib_port_modify *port_modify); 1119 1120 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1121 u8 *port_num, u16 *index); 1122 1123 int ib_find_pkey(struct ib_device *device, 1124 u8 port_num, u16 pkey, u16 *index); 1125 1126 /** 1127 * ib_alloc_pd - Allocates an unused protection domain. 1128 * @device: The device on which to allocate the protection domain. 1129 * 1130 * A protection domain object provides an association between QPs, shared 1131 * receive queues, address handles, memory regions, and memory windows. 1132 */ 1133 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1134 1135 /** 1136 * ib_dealloc_pd - Deallocates a protection domain. 1137 * @pd: The protection domain to deallocate. 1138 */ 1139 int ib_dealloc_pd(struct ib_pd *pd); 1140 1141 /** 1142 * ib_create_ah - Creates an address handle for the given address vector. 1143 * @pd: The protection domain associated with the address handle. 1144 * @ah_attr: The attributes of the address vector. 1145 * 1146 * The address handle is used to reference a local or global destination 1147 * in all UD QP post sends. 1148 */ 1149 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1150 1151 /** 1152 * ib_init_ah_from_wc - Initializes address handle attributes from a 1153 * work completion. 1154 * @device: Device on which the received message arrived. 1155 * @port_num: Port on which the received message arrived. 1156 * @wc: Work completion associated with the received message. 1157 * @grh: References the received global route header. This parameter is 1158 * ignored unless the work completion indicates that the GRH is valid. 1159 * @ah_attr: Returned attributes that can be used when creating an address 1160 * handle for replying to the message. 1161 */ 1162 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1163 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1164 1165 /** 1166 * ib_create_ah_from_wc - Creates an address handle associated with the 1167 * sender of the specified work completion. 1168 * @pd: The protection domain associated with the address handle. 1169 * @wc: Work completion information associated with a received message. 1170 * @grh: References the received global route header. This parameter is 1171 * ignored unless the work completion indicates that the GRH is valid. 1172 * @port_num: The outbound port number to associate with the address. 1173 * 1174 * The address handle is used to reference a local or global destination 1175 * in all UD QP post sends. 1176 */ 1177 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1178 struct ib_grh *grh, u8 port_num); 1179 1180 /** 1181 * ib_modify_ah - Modifies the address vector associated with an address 1182 * handle. 1183 * @ah: The address handle to modify. 1184 * @ah_attr: The new address vector attributes to associate with the 1185 * address handle. 1186 */ 1187 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1188 1189 /** 1190 * ib_query_ah - Queries the address vector associated with an address 1191 * handle. 1192 * @ah: The address handle to query. 1193 * @ah_attr: The address vector attributes associated with the address 1194 * handle. 1195 */ 1196 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1197 1198 /** 1199 * ib_destroy_ah - Destroys an address handle. 1200 * @ah: The address handle to destroy. 1201 */ 1202 int ib_destroy_ah(struct ib_ah *ah); 1203 1204 /** 1205 * ib_create_srq - Creates a SRQ associated with the specified protection 1206 * domain. 1207 * @pd: The protection domain associated with the SRQ. 1208 * @srq_init_attr: A list of initial attributes required to create the 1209 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1210 * the actual capabilities of the created SRQ. 1211 * 1212 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1213 * requested size of the SRQ, and set to the actual values allocated 1214 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1215 * will always be at least as large as the requested values. 1216 */ 1217 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1218 struct ib_srq_init_attr *srq_init_attr); 1219 1220 /** 1221 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1222 * @srq: The SRQ to modify. 1223 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1224 * the current values of selected SRQ attributes are returned. 1225 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1226 * are being modified. 1227 * 1228 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1229 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1230 * the number of receives queued drops below the limit. 1231 */ 1232 int ib_modify_srq(struct ib_srq *srq, 1233 struct ib_srq_attr *srq_attr, 1234 enum ib_srq_attr_mask srq_attr_mask); 1235 1236 /** 1237 * ib_query_srq - Returns the attribute list and current values for the 1238 * specified SRQ. 1239 * @srq: The SRQ to query. 1240 * @srq_attr: The attributes of the specified SRQ. 1241 */ 1242 int ib_query_srq(struct ib_srq *srq, 1243 struct ib_srq_attr *srq_attr); 1244 1245 /** 1246 * ib_destroy_srq - Destroys the specified SRQ. 1247 * @srq: The SRQ to destroy. 1248 */ 1249 int ib_destroy_srq(struct ib_srq *srq); 1250 1251 /** 1252 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1253 * @srq: The SRQ to post the work request on. 1254 * @recv_wr: A list of work requests to post on the receive queue. 1255 * @bad_recv_wr: On an immediate failure, this parameter will reference 1256 * the work request that failed to be posted on the QP. 1257 */ 1258 static inline int ib_post_srq_recv(struct ib_srq *srq, 1259 struct ib_recv_wr *recv_wr, 1260 struct ib_recv_wr **bad_recv_wr) 1261 { 1262 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1263 } 1264 1265 /** 1266 * ib_create_qp - Creates a QP associated with the specified protection 1267 * domain. 1268 * @pd: The protection domain associated with the QP. 1269 * @qp_init_attr: A list of initial attributes required to create the 1270 * QP. If QP creation succeeds, then the attributes are updated to 1271 * the actual capabilities of the created QP. 1272 */ 1273 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1274 struct ib_qp_init_attr *qp_init_attr); 1275 1276 /** 1277 * ib_modify_qp - Modifies the attributes for the specified QP and then 1278 * transitions the QP to the given state. 1279 * @qp: The QP to modify. 1280 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1281 * the current values of selected QP attributes are returned. 1282 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1283 * are being modified. 1284 */ 1285 int ib_modify_qp(struct ib_qp *qp, 1286 struct ib_qp_attr *qp_attr, 1287 int qp_attr_mask); 1288 1289 /** 1290 * ib_query_qp - Returns the attribute list and current values for the 1291 * specified QP. 1292 * @qp: The QP to query. 1293 * @qp_attr: The attributes of the specified QP. 1294 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1295 * @qp_init_attr: Additional attributes of the selected QP. 1296 * 1297 * The qp_attr_mask may be used to limit the query to gathering only the 1298 * selected attributes. 1299 */ 1300 int ib_query_qp(struct ib_qp *qp, 1301 struct ib_qp_attr *qp_attr, 1302 int qp_attr_mask, 1303 struct ib_qp_init_attr *qp_init_attr); 1304 1305 /** 1306 * ib_destroy_qp - Destroys the specified QP. 1307 * @qp: The QP to destroy. 1308 */ 1309 int ib_destroy_qp(struct ib_qp *qp); 1310 1311 /** 1312 * ib_post_send - Posts a list of work requests to the send queue of 1313 * the specified QP. 1314 * @qp: The QP to post the work request on. 1315 * @send_wr: A list of work requests to post on the send queue. 1316 * @bad_send_wr: On an immediate failure, this parameter will reference 1317 * the work request that failed to be posted on the QP. 1318 */ 1319 static inline int ib_post_send(struct ib_qp *qp, 1320 struct ib_send_wr *send_wr, 1321 struct ib_send_wr **bad_send_wr) 1322 { 1323 return qp->device->post_send(qp, send_wr, bad_send_wr); 1324 } 1325 1326 /** 1327 * ib_post_recv - Posts a list of work requests to the receive queue of 1328 * the specified QP. 1329 * @qp: The QP to post the work request on. 1330 * @recv_wr: A list of work requests to post on the receive queue. 1331 * @bad_recv_wr: On an immediate failure, this parameter will reference 1332 * the work request that failed to be posted on the QP. 1333 */ 1334 static inline int ib_post_recv(struct ib_qp *qp, 1335 struct ib_recv_wr *recv_wr, 1336 struct ib_recv_wr **bad_recv_wr) 1337 { 1338 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1339 } 1340 1341 /** 1342 * ib_create_cq - Creates a CQ on the specified device. 1343 * @device: The device on which to create the CQ. 1344 * @comp_handler: A user-specified callback that is invoked when a 1345 * completion event occurs on the CQ. 1346 * @event_handler: A user-specified callback that is invoked when an 1347 * asynchronous event not associated with a completion occurs on the CQ. 1348 * @cq_context: Context associated with the CQ returned to the user via 1349 * the associated completion and event handlers. 1350 * @cqe: The minimum size of the CQ. 1351 * @comp_vector - Completion vector used to signal completion events. 1352 * Must be >= 0 and < context->num_comp_vectors. 1353 * 1354 * Users can examine the cq structure to determine the actual CQ size. 1355 */ 1356 struct ib_cq *ib_create_cq(struct ib_device *device, 1357 ib_comp_handler comp_handler, 1358 void (*event_handler)(struct ib_event *, void *), 1359 void *cq_context, int cqe, int comp_vector); 1360 1361 /** 1362 * ib_resize_cq - Modifies the capacity of the CQ. 1363 * @cq: The CQ to resize. 1364 * @cqe: The minimum size of the CQ. 1365 * 1366 * Users can examine the cq structure to determine the actual CQ size. 1367 */ 1368 int ib_resize_cq(struct ib_cq *cq, int cqe); 1369 1370 /** 1371 * ib_destroy_cq - Destroys the specified CQ. 1372 * @cq: The CQ to destroy. 1373 */ 1374 int ib_destroy_cq(struct ib_cq *cq); 1375 1376 /** 1377 * ib_poll_cq - poll a CQ for completion(s) 1378 * @cq:the CQ being polled 1379 * @num_entries:maximum number of completions to return 1380 * @wc:array of at least @num_entries &struct ib_wc where completions 1381 * will be returned 1382 * 1383 * Poll a CQ for (possibly multiple) completions. If the return value 1384 * is < 0, an error occurred. If the return value is >= 0, it is the 1385 * number of completions returned. If the return value is 1386 * non-negative and < num_entries, then the CQ was emptied. 1387 */ 1388 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1389 struct ib_wc *wc) 1390 { 1391 return cq->device->poll_cq(cq, num_entries, wc); 1392 } 1393 1394 /** 1395 * ib_peek_cq - Returns the number of unreaped completions currently 1396 * on the specified CQ. 1397 * @cq: The CQ to peek. 1398 * @wc_cnt: A minimum number of unreaped completions to check for. 1399 * 1400 * If the number of unreaped completions is greater than or equal to wc_cnt, 1401 * this function returns wc_cnt, otherwise, it returns the actual number of 1402 * unreaped completions. 1403 */ 1404 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1405 1406 /** 1407 * ib_req_notify_cq - Request completion notification on a CQ. 1408 * @cq: The CQ to generate an event for. 1409 * @flags: 1410 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1411 * to request an event on the next solicited event or next work 1412 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1413 * may also be |ed in to request a hint about missed events, as 1414 * described below. 1415 * 1416 * Return Value: 1417 * < 0 means an error occurred while requesting notification 1418 * == 0 means notification was requested successfully, and if 1419 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1420 * were missed and it is safe to wait for another event. In 1421 * this case is it guaranteed that any work completions added 1422 * to the CQ since the last CQ poll will trigger a completion 1423 * notification event. 1424 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1425 * in. It means that the consumer must poll the CQ again to 1426 * make sure it is empty to avoid missing an event because of a 1427 * race between requesting notification and an entry being 1428 * added to the CQ. This return value means it is possible 1429 * (but not guaranteed) that a work completion has been added 1430 * to the CQ since the last poll without triggering a 1431 * completion notification event. 1432 */ 1433 static inline int ib_req_notify_cq(struct ib_cq *cq, 1434 enum ib_cq_notify_flags flags) 1435 { 1436 return cq->device->req_notify_cq(cq, flags); 1437 } 1438 1439 /** 1440 * ib_req_ncomp_notif - Request completion notification when there are 1441 * at least the specified number of unreaped completions on the CQ. 1442 * @cq: The CQ to generate an event for. 1443 * @wc_cnt: The number of unreaped completions that should be on the 1444 * CQ before an event is generated. 1445 */ 1446 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1447 { 1448 return cq->device->req_ncomp_notif ? 1449 cq->device->req_ncomp_notif(cq, wc_cnt) : 1450 -ENOSYS; 1451 } 1452 1453 /** 1454 * ib_get_dma_mr - Returns a memory region for system memory that is 1455 * usable for DMA. 1456 * @pd: The protection domain associated with the memory region. 1457 * @mr_access_flags: Specifies the memory access rights. 1458 * 1459 * Note that the ib_dma_*() functions defined below must be used 1460 * to create/destroy addresses used with the Lkey or Rkey returned 1461 * by ib_get_dma_mr(). 1462 */ 1463 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1464 1465 /** 1466 * ib_dma_mapping_error - check a DMA addr for error 1467 * @dev: The device for which the dma_addr was created 1468 * @dma_addr: The DMA address to check 1469 */ 1470 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1471 { 1472 if (dev->dma_ops) 1473 return dev->dma_ops->mapping_error(dev, dma_addr); 1474 return dma_mapping_error(dma_addr); 1475 } 1476 1477 /** 1478 * ib_dma_map_single - Map a kernel virtual address to DMA address 1479 * @dev: The device for which the dma_addr is to be created 1480 * @cpu_addr: The kernel virtual address 1481 * @size: The size of the region in bytes 1482 * @direction: The direction of the DMA 1483 */ 1484 static inline u64 ib_dma_map_single(struct ib_device *dev, 1485 void *cpu_addr, size_t size, 1486 enum dma_data_direction direction) 1487 { 1488 if (dev->dma_ops) 1489 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1490 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1491 } 1492 1493 /** 1494 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1495 * @dev: The device for which the DMA address was created 1496 * @addr: The DMA address 1497 * @size: The size of the region in bytes 1498 * @direction: The direction of the DMA 1499 */ 1500 static inline void ib_dma_unmap_single(struct ib_device *dev, 1501 u64 addr, size_t size, 1502 enum dma_data_direction direction) 1503 { 1504 if (dev->dma_ops) 1505 dev->dma_ops->unmap_single(dev, addr, size, direction); 1506 else 1507 dma_unmap_single(dev->dma_device, addr, size, direction); 1508 } 1509 1510 /** 1511 * ib_dma_map_page - Map a physical page to DMA address 1512 * @dev: The device for which the dma_addr is to be created 1513 * @page: The page to be mapped 1514 * @offset: The offset within the page 1515 * @size: The size of the region in bytes 1516 * @direction: The direction of the DMA 1517 */ 1518 static inline u64 ib_dma_map_page(struct ib_device *dev, 1519 struct page *page, 1520 unsigned long offset, 1521 size_t size, 1522 enum dma_data_direction direction) 1523 { 1524 if (dev->dma_ops) 1525 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1526 return dma_map_page(dev->dma_device, page, offset, size, direction); 1527 } 1528 1529 /** 1530 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1531 * @dev: The device for which the DMA address was created 1532 * @addr: The DMA address 1533 * @size: The size of the region in bytes 1534 * @direction: The direction of the DMA 1535 */ 1536 static inline void ib_dma_unmap_page(struct ib_device *dev, 1537 u64 addr, size_t size, 1538 enum dma_data_direction direction) 1539 { 1540 if (dev->dma_ops) 1541 dev->dma_ops->unmap_page(dev, addr, size, direction); 1542 else 1543 dma_unmap_page(dev->dma_device, addr, size, direction); 1544 } 1545 1546 /** 1547 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1548 * @dev: The device for which the DMA addresses are to be created 1549 * @sg: The array of scatter/gather entries 1550 * @nents: The number of scatter/gather entries 1551 * @direction: The direction of the DMA 1552 */ 1553 static inline int ib_dma_map_sg(struct ib_device *dev, 1554 struct scatterlist *sg, int nents, 1555 enum dma_data_direction direction) 1556 { 1557 if (dev->dma_ops) 1558 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1559 return dma_map_sg(dev->dma_device, sg, nents, direction); 1560 } 1561 1562 /** 1563 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1564 * @dev: The device for which the DMA addresses were created 1565 * @sg: The array of scatter/gather entries 1566 * @nents: The number of scatter/gather entries 1567 * @direction: The direction of the DMA 1568 */ 1569 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1570 struct scatterlist *sg, int nents, 1571 enum dma_data_direction direction) 1572 { 1573 if (dev->dma_ops) 1574 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1575 else 1576 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1577 } 1578 1579 /** 1580 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1581 * @dev: The device for which the DMA addresses were created 1582 * @sg: The scatter/gather entry 1583 */ 1584 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1585 struct scatterlist *sg) 1586 { 1587 if (dev->dma_ops) 1588 return dev->dma_ops->dma_address(dev, sg); 1589 return sg_dma_address(sg); 1590 } 1591 1592 /** 1593 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1594 * @dev: The device for which the DMA addresses were created 1595 * @sg: The scatter/gather entry 1596 */ 1597 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1598 struct scatterlist *sg) 1599 { 1600 if (dev->dma_ops) 1601 return dev->dma_ops->dma_len(dev, sg); 1602 return sg_dma_len(sg); 1603 } 1604 1605 /** 1606 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1607 * @dev: The device for which the DMA address was created 1608 * @addr: The DMA address 1609 * @size: The size of the region in bytes 1610 * @dir: The direction of the DMA 1611 */ 1612 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1613 u64 addr, 1614 size_t size, 1615 enum dma_data_direction dir) 1616 { 1617 if (dev->dma_ops) 1618 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1619 else 1620 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1621 } 1622 1623 /** 1624 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1625 * @dev: The device for which the DMA address was created 1626 * @addr: The DMA address 1627 * @size: The size of the region in bytes 1628 * @dir: The direction of the DMA 1629 */ 1630 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1631 u64 addr, 1632 size_t size, 1633 enum dma_data_direction dir) 1634 { 1635 if (dev->dma_ops) 1636 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1637 else 1638 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1639 } 1640 1641 /** 1642 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1643 * @dev: The device for which the DMA address is requested 1644 * @size: The size of the region to allocate in bytes 1645 * @dma_handle: A pointer for returning the DMA address of the region 1646 * @flag: memory allocator flags 1647 */ 1648 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1649 size_t size, 1650 u64 *dma_handle, 1651 gfp_t flag) 1652 { 1653 if (dev->dma_ops) 1654 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1655 else { 1656 dma_addr_t handle; 1657 void *ret; 1658 1659 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1660 *dma_handle = handle; 1661 return ret; 1662 } 1663 } 1664 1665 /** 1666 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1667 * @dev: The device for which the DMA addresses were allocated 1668 * @size: The size of the region 1669 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1670 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1671 */ 1672 static inline void ib_dma_free_coherent(struct ib_device *dev, 1673 size_t size, void *cpu_addr, 1674 u64 dma_handle) 1675 { 1676 if (dev->dma_ops) 1677 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1678 else 1679 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1680 } 1681 1682 /** 1683 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1684 * by an HCA. 1685 * @pd: The protection domain associated assigned to the registered region. 1686 * @phys_buf_array: Specifies a list of physical buffers to use in the 1687 * memory region. 1688 * @num_phys_buf: Specifies the size of the phys_buf_array. 1689 * @mr_access_flags: Specifies the memory access rights. 1690 * @iova_start: The offset of the region's starting I/O virtual address. 1691 */ 1692 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1693 struct ib_phys_buf *phys_buf_array, 1694 int num_phys_buf, 1695 int mr_access_flags, 1696 u64 *iova_start); 1697 1698 /** 1699 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1700 * Conceptually, this call performs the functions deregister memory region 1701 * followed by register physical memory region. Where possible, 1702 * resources are reused instead of deallocated and reallocated. 1703 * @mr: The memory region to modify. 1704 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1705 * properties of the memory region are being modified. 1706 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1707 * the new protection domain to associated with the memory region, 1708 * otherwise, this parameter is ignored. 1709 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1710 * field specifies a list of physical buffers to use in the new 1711 * translation, otherwise, this parameter is ignored. 1712 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1713 * field specifies the size of the phys_buf_array, otherwise, this 1714 * parameter is ignored. 1715 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1716 * field specifies the new memory access rights, otherwise, this 1717 * parameter is ignored. 1718 * @iova_start: The offset of the region's starting I/O virtual address. 1719 */ 1720 int ib_rereg_phys_mr(struct ib_mr *mr, 1721 int mr_rereg_mask, 1722 struct ib_pd *pd, 1723 struct ib_phys_buf *phys_buf_array, 1724 int num_phys_buf, 1725 int mr_access_flags, 1726 u64 *iova_start); 1727 1728 /** 1729 * ib_query_mr - Retrieves information about a specific memory region. 1730 * @mr: The memory region to retrieve information about. 1731 * @mr_attr: The attributes of the specified memory region. 1732 */ 1733 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1734 1735 /** 1736 * ib_dereg_mr - Deregisters a memory region and removes it from the 1737 * HCA translation table. 1738 * @mr: The memory region to deregister. 1739 */ 1740 int ib_dereg_mr(struct ib_mr *mr); 1741 1742 /** 1743 * ib_alloc_mw - Allocates a memory window. 1744 * @pd: The protection domain associated with the memory window. 1745 */ 1746 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1747 1748 /** 1749 * ib_bind_mw - Posts a work request to the send queue of the specified 1750 * QP, which binds the memory window to the given address range and 1751 * remote access attributes. 1752 * @qp: QP to post the bind work request on. 1753 * @mw: The memory window to bind. 1754 * @mw_bind: Specifies information about the memory window, including 1755 * its address range, remote access rights, and associated memory region. 1756 */ 1757 static inline int ib_bind_mw(struct ib_qp *qp, 1758 struct ib_mw *mw, 1759 struct ib_mw_bind *mw_bind) 1760 { 1761 /* XXX reference counting in corresponding MR? */ 1762 return mw->device->bind_mw ? 1763 mw->device->bind_mw(qp, mw, mw_bind) : 1764 -ENOSYS; 1765 } 1766 1767 /** 1768 * ib_dealloc_mw - Deallocates a memory window. 1769 * @mw: The memory window to deallocate. 1770 */ 1771 int ib_dealloc_mw(struct ib_mw *mw); 1772 1773 /** 1774 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1775 * @pd: The protection domain associated with the unmapped region. 1776 * @mr_access_flags: Specifies the memory access rights. 1777 * @fmr_attr: Attributes of the unmapped region. 1778 * 1779 * A fast memory region must be mapped before it can be used as part of 1780 * a work request. 1781 */ 1782 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1783 int mr_access_flags, 1784 struct ib_fmr_attr *fmr_attr); 1785 1786 /** 1787 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1788 * @fmr: The fast memory region to associate with the pages. 1789 * @page_list: An array of physical pages to map to the fast memory region. 1790 * @list_len: The number of pages in page_list. 1791 * @iova: The I/O virtual address to use with the mapped region. 1792 */ 1793 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1794 u64 *page_list, int list_len, 1795 u64 iova) 1796 { 1797 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1798 } 1799 1800 /** 1801 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1802 * @fmr_list: A linked list of fast memory regions to unmap. 1803 */ 1804 int ib_unmap_fmr(struct list_head *fmr_list); 1805 1806 /** 1807 * ib_dealloc_fmr - Deallocates a fast memory region. 1808 * @fmr: The fast memory region to deallocate. 1809 */ 1810 int ib_dealloc_fmr(struct ib_fmr *fmr); 1811 1812 /** 1813 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1814 * @qp: QP to attach to the multicast group. The QP must be type 1815 * IB_QPT_UD. 1816 * @gid: Multicast group GID. 1817 * @lid: Multicast group LID in host byte order. 1818 * 1819 * In order to send and receive multicast packets, subnet 1820 * administration must have created the multicast group and configured 1821 * the fabric appropriately. The port associated with the specified 1822 * QP must also be a member of the multicast group. 1823 */ 1824 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1825 1826 /** 1827 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1828 * @qp: QP to detach from the multicast group. 1829 * @gid: Multicast group GID. 1830 * @lid: Multicast group LID in host byte order. 1831 */ 1832 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1833 1834 #endif /* IB_VERBS_H */ 1835