xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 6189f1b0)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52 
53 #include <linux/atomic.h>
54 #include <linux/mmu_notifier.h>
55 #include <asm/uaccess.h>
56 
57 extern struct workqueue_struct *ib_wq;
58 
59 union ib_gid {
60 	u8	raw[16];
61 	struct {
62 		__be64	subnet_prefix;
63 		__be64	interface_id;
64 	} global;
65 };
66 
67 enum rdma_node_type {
68 	/* IB values map to NodeInfo:NodeType. */
69 	RDMA_NODE_IB_CA 	= 1,
70 	RDMA_NODE_IB_SWITCH,
71 	RDMA_NODE_IB_ROUTER,
72 	RDMA_NODE_RNIC,
73 	RDMA_NODE_USNIC,
74 	RDMA_NODE_USNIC_UDP,
75 };
76 
77 enum rdma_transport_type {
78 	RDMA_TRANSPORT_IB,
79 	RDMA_TRANSPORT_IWARP,
80 	RDMA_TRANSPORT_USNIC,
81 	RDMA_TRANSPORT_USNIC_UDP
82 };
83 
84 enum rdma_protocol_type {
85 	RDMA_PROTOCOL_IB,
86 	RDMA_PROTOCOL_IBOE,
87 	RDMA_PROTOCOL_IWARP,
88 	RDMA_PROTOCOL_USNIC_UDP
89 };
90 
91 __attribute_const__ enum rdma_transport_type
92 rdma_node_get_transport(enum rdma_node_type node_type);
93 
94 enum rdma_link_layer {
95 	IB_LINK_LAYER_UNSPECIFIED,
96 	IB_LINK_LAYER_INFINIBAND,
97 	IB_LINK_LAYER_ETHERNET,
98 };
99 
100 enum ib_device_cap_flags {
101 	IB_DEVICE_RESIZE_MAX_WR		= 1,
102 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
103 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
104 	IB_DEVICE_RAW_MULTI		= (1<<3),
105 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
106 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
107 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
108 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
109 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
110 	IB_DEVICE_INIT_TYPE		= (1<<9),
111 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
112 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
113 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
114 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
115 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
116 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
117 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
118 	IB_DEVICE_MEM_WINDOW		= (1<<17),
119 	/*
120 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
121 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
122 	 * messages and can verify the validity of checksum for
123 	 * incoming messages.  Setting this flag implies that the
124 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
125 	 */
126 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
127 	IB_DEVICE_UD_TSO		= (1<<19),
128 	IB_DEVICE_XRC			= (1<<20),
129 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
130 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
131 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
132 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
133 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
134 	IB_DEVICE_SIGNATURE_HANDOVER	= (1<<30),
135 	IB_DEVICE_ON_DEMAND_PAGING	= (1<<31),
136 };
137 
138 enum ib_signature_prot_cap {
139 	IB_PROT_T10DIF_TYPE_1 = 1,
140 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
141 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
142 };
143 
144 enum ib_signature_guard_cap {
145 	IB_GUARD_T10DIF_CRC	= 1,
146 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
147 };
148 
149 enum ib_atomic_cap {
150 	IB_ATOMIC_NONE,
151 	IB_ATOMIC_HCA,
152 	IB_ATOMIC_GLOB
153 };
154 
155 enum ib_odp_general_cap_bits {
156 	IB_ODP_SUPPORT = 1 << 0,
157 };
158 
159 enum ib_odp_transport_cap_bits {
160 	IB_ODP_SUPPORT_SEND	= 1 << 0,
161 	IB_ODP_SUPPORT_RECV	= 1 << 1,
162 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
163 	IB_ODP_SUPPORT_READ	= 1 << 3,
164 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
165 };
166 
167 struct ib_odp_caps {
168 	uint64_t general_caps;
169 	struct {
170 		uint32_t  rc_odp_caps;
171 		uint32_t  uc_odp_caps;
172 		uint32_t  ud_odp_caps;
173 	} per_transport_caps;
174 };
175 
176 enum ib_cq_creation_flags {
177 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
178 };
179 
180 struct ib_cq_init_attr {
181 	unsigned int	cqe;
182 	int		comp_vector;
183 	u32		flags;
184 };
185 
186 struct ib_device_attr {
187 	u64			fw_ver;
188 	__be64			sys_image_guid;
189 	u64			max_mr_size;
190 	u64			page_size_cap;
191 	u32			vendor_id;
192 	u32			vendor_part_id;
193 	u32			hw_ver;
194 	int			max_qp;
195 	int			max_qp_wr;
196 	int			device_cap_flags;
197 	int			max_sge;
198 	int			max_sge_rd;
199 	int			max_cq;
200 	int			max_cqe;
201 	int			max_mr;
202 	int			max_pd;
203 	int			max_qp_rd_atom;
204 	int			max_ee_rd_atom;
205 	int			max_res_rd_atom;
206 	int			max_qp_init_rd_atom;
207 	int			max_ee_init_rd_atom;
208 	enum ib_atomic_cap	atomic_cap;
209 	enum ib_atomic_cap	masked_atomic_cap;
210 	int			max_ee;
211 	int			max_rdd;
212 	int			max_mw;
213 	int			max_raw_ipv6_qp;
214 	int			max_raw_ethy_qp;
215 	int			max_mcast_grp;
216 	int			max_mcast_qp_attach;
217 	int			max_total_mcast_qp_attach;
218 	int			max_ah;
219 	int			max_fmr;
220 	int			max_map_per_fmr;
221 	int			max_srq;
222 	int			max_srq_wr;
223 	int			max_srq_sge;
224 	unsigned int		max_fast_reg_page_list_len;
225 	u16			max_pkeys;
226 	u8			local_ca_ack_delay;
227 	int			sig_prot_cap;
228 	int			sig_guard_cap;
229 	struct ib_odp_caps	odp_caps;
230 	uint64_t		timestamp_mask;
231 	uint64_t		hca_core_clock; /* in KHZ */
232 };
233 
234 enum ib_mtu {
235 	IB_MTU_256  = 1,
236 	IB_MTU_512  = 2,
237 	IB_MTU_1024 = 3,
238 	IB_MTU_2048 = 4,
239 	IB_MTU_4096 = 5
240 };
241 
242 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
243 {
244 	switch (mtu) {
245 	case IB_MTU_256:  return  256;
246 	case IB_MTU_512:  return  512;
247 	case IB_MTU_1024: return 1024;
248 	case IB_MTU_2048: return 2048;
249 	case IB_MTU_4096: return 4096;
250 	default: 	  return -1;
251 	}
252 }
253 
254 enum ib_port_state {
255 	IB_PORT_NOP		= 0,
256 	IB_PORT_DOWN		= 1,
257 	IB_PORT_INIT		= 2,
258 	IB_PORT_ARMED		= 3,
259 	IB_PORT_ACTIVE		= 4,
260 	IB_PORT_ACTIVE_DEFER	= 5
261 };
262 
263 enum ib_port_cap_flags {
264 	IB_PORT_SM				= 1 <<  1,
265 	IB_PORT_NOTICE_SUP			= 1 <<  2,
266 	IB_PORT_TRAP_SUP			= 1 <<  3,
267 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
268 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
269 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
270 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
271 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
272 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
273 	IB_PORT_SM_DISABLED			= 1 << 10,
274 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
275 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
276 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
277 	IB_PORT_CM_SUP				= 1 << 16,
278 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
279 	IB_PORT_REINIT_SUP			= 1 << 18,
280 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
281 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
282 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
283 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
284 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
285 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
286 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
287 	IB_PORT_IP_BASED_GIDS			= 1 << 26
288 };
289 
290 enum ib_port_width {
291 	IB_WIDTH_1X	= 1,
292 	IB_WIDTH_4X	= 2,
293 	IB_WIDTH_8X	= 4,
294 	IB_WIDTH_12X	= 8
295 };
296 
297 static inline int ib_width_enum_to_int(enum ib_port_width width)
298 {
299 	switch (width) {
300 	case IB_WIDTH_1X:  return  1;
301 	case IB_WIDTH_4X:  return  4;
302 	case IB_WIDTH_8X:  return  8;
303 	case IB_WIDTH_12X: return 12;
304 	default: 	  return -1;
305 	}
306 }
307 
308 enum ib_port_speed {
309 	IB_SPEED_SDR	= 1,
310 	IB_SPEED_DDR	= 2,
311 	IB_SPEED_QDR	= 4,
312 	IB_SPEED_FDR10	= 8,
313 	IB_SPEED_FDR	= 16,
314 	IB_SPEED_EDR	= 32
315 };
316 
317 struct ib_protocol_stats {
318 	/* TBD... */
319 };
320 
321 struct iw_protocol_stats {
322 	u64	ipInReceives;
323 	u64	ipInHdrErrors;
324 	u64	ipInTooBigErrors;
325 	u64	ipInNoRoutes;
326 	u64	ipInAddrErrors;
327 	u64	ipInUnknownProtos;
328 	u64	ipInTruncatedPkts;
329 	u64	ipInDiscards;
330 	u64	ipInDelivers;
331 	u64	ipOutForwDatagrams;
332 	u64	ipOutRequests;
333 	u64	ipOutDiscards;
334 	u64	ipOutNoRoutes;
335 	u64	ipReasmTimeout;
336 	u64	ipReasmReqds;
337 	u64	ipReasmOKs;
338 	u64	ipReasmFails;
339 	u64	ipFragOKs;
340 	u64	ipFragFails;
341 	u64	ipFragCreates;
342 	u64	ipInMcastPkts;
343 	u64	ipOutMcastPkts;
344 	u64	ipInBcastPkts;
345 	u64	ipOutBcastPkts;
346 
347 	u64	tcpRtoAlgorithm;
348 	u64	tcpRtoMin;
349 	u64	tcpRtoMax;
350 	u64	tcpMaxConn;
351 	u64	tcpActiveOpens;
352 	u64	tcpPassiveOpens;
353 	u64	tcpAttemptFails;
354 	u64	tcpEstabResets;
355 	u64	tcpCurrEstab;
356 	u64	tcpInSegs;
357 	u64	tcpOutSegs;
358 	u64	tcpRetransSegs;
359 	u64	tcpInErrs;
360 	u64	tcpOutRsts;
361 };
362 
363 union rdma_protocol_stats {
364 	struct ib_protocol_stats	ib;
365 	struct iw_protocol_stats	iw;
366 };
367 
368 /* Define bits for the various functionality this port needs to be supported by
369  * the core.
370  */
371 /* Management                           0x00000FFF */
372 #define RDMA_CORE_CAP_IB_MAD            0x00000001
373 #define RDMA_CORE_CAP_IB_SMI            0x00000002
374 #define RDMA_CORE_CAP_IB_CM             0x00000004
375 #define RDMA_CORE_CAP_IW_CM             0x00000008
376 #define RDMA_CORE_CAP_IB_SA             0x00000010
377 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
378 
379 /* Address format                       0x000FF000 */
380 #define RDMA_CORE_CAP_AF_IB             0x00001000
381 #define RDMA_CORE_CAP_ETH_AH            0x00002000
382 
383 /* Protocol                             0xFFF00000 */
384 #define RDMA_CORE_CAP_PROT_IB           0x00100000
385 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
386 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
387 
388 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
389 					| RDMA_CORE_CAP_IB_MAD \
390 					| RDMA_CORE_CAP_IB_SMI \
391 					| RDMA_CORE_CAP_IB_CM  \
392 					| RDMA_CORE_CAP_IB_SA  \
393 					| RDMA_CORE_CAP_AF_IB)
394 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
395 					| RDMA_CORE_CAP_IB_MAD  \
396 					| RDMA_CORE_CAP_IB_CM   \
397 					| RDMA_CORE_CAP_AF_IB   \
398 					| RDMA_CORE_CAP_ETH_AH)
399 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
400 					| RDMA_CORE_CAP_IW_CM)
401 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
402 					| RDMA_CORE_CAP_OPA_MAD)
403 
404 struct ib_port_attr {
405 	enum ib_port_state	state;
406 	enum ib_mtu		max_mtu;
407 	enum ib_mtu		active_mtu;
408 	int			gid_tbl_len;
409 	u32			port_cap_flags;
410 	u32			max_msg_sz;
411 	u32			bad_pkey_cntr;
412 	u32			qkey_viol_cntr;
413 	u16			pkey_tbl_len;
414 	u16			lid;
415 	u16			sm_lid;
416 	u8			lmc;
417 	u8			max_vl_num;
418 	u8			sm_sl;
419 	u8			subnet_timeout;
420 	u8			init_type_reply;
421 	u8			active_width;
422 	u8			active_speed;
423 	u8                      phys_state;
424 };
425 
426 enum ib_device_modify_flags {
427 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
428 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
429 };
430 
431 struct ib_device_modify {
432 	u64	sys_image_guid;
433 	char	node_desc[64];
434 };
435 
436 enum ib_port_modify_flags {
437 	IB_PORT_SHUTDOWN		= 1,
438 	IB_PORT_INIT_TYPE		= (1<<2),
439 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
440 };
441 
442 struct ib_port_modify {
443 	u32	set_port_cap_mask;
444 	u32	clr_port_cap_mask;
445 	u8	init_type;
446 };
447 
448 enum ib_event_type {
449 	IB_EVENT_CQ_ERR,
450 	IB_EVENT_QP_FATAL,
451 	IB_EVENT_QP_REQ_ERR,
452 	IB_EVENT_QP_ACCESS_ERR,
453 	IB_EVENT_COMM_EST,
454 	IB_EVENT_SQ_DRAINED,
455 	IB_EVENT_PATH_MIG,
456 	IB_EVENT_PATH_MIG_ERR,
457 	IB_EVENT_DEVICE_FATAL,
458 	IB_EVENT_PORT_ACTIVE,
459 	IB_EVENT_PORT_ERR,
460 	IB_EVENT_LID_CHANGE,
461 	IB_EVENT_PKEY_CHANGE,
462 	IB_EVENT_SM_CHANGE,
463 	IB_EVENT_SRQ_ERR,
464 	IB_EVENT_SRQ_LIMIT_REACHED,
465 	IB_EVENT_QP_LAST_WQE_REACHED,
466 	IB_EVENT_CLIENT_REREGISTER,
467 	IB_EVENT_GID_CHANGE,
468 };
469 
470 __attribute_const__ const char *ib_event_msg(enum ib_event_type event);
471 
472 struct ib_event {
473 	struct ib_device	*device;
474 	union {
475 		struct ib_cq	*cq;
476 		struct ib_qp	*qp;
477 		struct ib_srq	*srq;
478 		u8		port_num;
479 	} element;
480 	enum ib_event_type	event;
481 };
482 
483 struct ib_event_handler {
484 	struct ib_device *device;
485 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
486 	struct list_head  list;
487 };
488 
489 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
490 	do {							\
491 		(_ptr)->device  = _device;			\
492 		(_ptr)->handler = _handler;			\
493 		INIT_LIST_HEAD(&(_ptr)->list);			\
494 	} while (0)
495 
496 struct ib_global_route {
497 	union ib_gid	dgid;
498 	u32		flow_label;
499 	u8		sgid_index;
500 	u8		hop_limit;
501 	u8		traffic_class;
502 };
503 
504 struct ib_grh {
505 	__be32		version_tclass_flow;
506 	__be16		paylen;
507 	u8		next_hdr;
508 	u8		hop_limit;
509 	union ib_gid	sgid;
510 	union ib_gid	dgid;
511 };
512 
513 enum {
514 	IB_MULTICAST_QPN = 0xffffff
515 };
516 
517 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
518 
519 enum ib_ah_flags {
520 	IB_AH_GRH	= 1
521 };
522 
523 enum ib_rate {
524 	IB_RATE_PORT_CURRENT = 0,
525 	IB_RATE_2_5_GBPS = 2,
526 	IB_RATE_5_GBPS   = 5,
527 	IB_RATE_10_GBPS  = 3,
528 	IB_RATE_20_GBPS  = 6,
529 	IB_RATE_30_GBPS  = 4,
530 	IB_RATE_40_GBPS  = 7,
531 	IB_RATE_60_GBPS  = 8,
532 	IB_RATE_80_GBPS  = 9,
533 	IB_RATE_120_GBPS = 10,
534 	IB_RATE_14_GBPS  = 11,
535 	IB_RATE_56_GBPS  = 12,
536 	IB_RATE_112_GBPS = 13,
537 	IB_RATE_168_GBPS = 14,
538 	IB_RATE_25_GBPS  = 15,
539 	IB_RATE_100_GBPS = 16,
540 	IB_RATE_200_GBPS = 17,
541 	IB_RATE_300_GBPS = 18
542 };
543 
544 /**
545  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
546  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
547  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
548  * @rate: rate to convert.
549  */
550 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
551 
552 /**
553  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
554  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
555  * @rate: rate to convert.
556  */
557 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
558 
559 enum ib_mr_create_flags {
560 	IB_MR_SIGNATURE_EN = 1,
561 };
562 
563 /**
564  * ib_mr_init_attr - Memory region init attributes passed to routine
565  *     ib_create_mr.
566  * @max_reg_descriptors: max number of registration descriptors that
567  *     may be used with registration work requests.
568  * @flags: MR creation flags bit mask.
569  */
570 struct ib_mr_init_attr {
571 	int	    max_reg_descriptors;
572 	u32	    flags;
573 };
574 
575 /**
576  * Signature types
577  * IB_SIG_TYPE_NONE: Unprotected.
578  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
579  */
580 enum ib_signature_type {
581 	IB_SIG_TYPE_NONE,
582 	IB_SIG_TYPE_T10_DIF,
583 };
584 
585 /**
586  * Signature T10-DIF block-guard types
587  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
588  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
589  */
590 enum ib_t10_dif_bg_type {
591 	IB_T10DIF_CRC,
592 	IB_T10DIF_CSUM
593 };
594 
595 /**
596  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
597  *     domain.
598  * @bg_type: T10-DIF block guard type (CRC|CSUM)
599  * @pi_interval: protection information interval.
600  * @bg: seed of guard computation.
601  * @app_tag: application tag of guard block
602  * @ref_tag: initial guard block reference tag.
603  * @ref_remap: Indicate wethear the reftag increments each block
604  * @app_escape: Indicate to skip block check if apptag=0xffff
605  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
606  * @apptag_check_mask: check bitmask of application tag.
607  */
608 struct ib_t10_dif_domain {
609 	enum ib_t10_dif_bg_type bg_type;
610 	u16			pi_interval;
611 	u16			bg;
612 	u16			app_tag;
613 	u32			ref_tag;
614 	bool			ref_remap;
615 	bool			app_escape;
616 	bool			ref_escape;
617 	u16			apptag_check_mask;
618 };
619 
620 /**
621  * struct ib_sig_domain - Parameters for signature domain
622  * @sig_type: specific signauture type
623  * @sig: union of all signature domain attributes that may
624  *     be used to set domain layout.
625  */
626 struct ib_sig_domain {
627 	enum ib_signature_type sig_type;
628 	union {
629 		struct ib_t10_dif_domain dif;
630 	} sig;
631 };
632 
633 /**
634  * struct ib_sig_attrs - Parameters for signature handover operation
635  * @check_mask: bitmask for signature byte check (8 bytes)
636  * @mem: memory domain layout desciptor.
637  * @wire: wire domain layout desciptor.
638  */
639 struct ib_sig_attrs {
640 	u8			check_mask;
641 	struct ib_sig_domain	mem;
642 	struct ib_sig_domain	wire;
643 };
644 
645 enum ib_sig_err_type {
646 	IB_SIG_BAD_GUARD,
647 	IB_SIG_BAD_REFTAG,
648 	IB_SIG_BAD_APPTAG,
649 };
650 
651 /**
652  * struct ib_sig_err - signature error descriptor
653  */
654 struct ib_sig_err {
655 	enum ib_sig_err_type	err_type;
656 	u32			expected;
657 	u32			actual;
658 	u64			sig_err_offset;
659 	u32			key;
660 };
661 
662 enum ib_mr_status_check {
663 	IB_MR_CHECK_SIG_STATUS = 1,
664 };
665 
666 /**
667  * struct ib_mr_status - Memory region status container
668  *
669  * @fail_status: Bitmask of MR checks status. For each
670  *     failed check a corresponding status bit is set.
671  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
672  *     failure.
673  */
674 struct ib_mr_status {
675 	u32		    fail_status;
676 	struct ib_sig_err   sig_err;
677 };
678 
679 /**
680  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
681  * enum.
682  * @mult: multiple to convert.
683  */
684 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
685 
686 struct ib_ah_attr {
687 	struct ib_global_route	grh;
688 	u16			dlid;
689 	u8			sl;
690 	u8			src_path_bits;
691 	u8			static_rate;
692 	u8			ah_flags;
693 	u8			port_num;
694 	u8			dmac[ETH_ALEN];
695 	u16			vlan_id;
696 };
697 
698 enum ib_wc_status {
699 	IB_WC_SUCCESS,
700 	IB_WC_LOC_LEN_ERR,
701 	IB_WC_LOC_QP_OP_ERR,
702 	IB_WC_LOC_EEC_OP_ERR,
703 	IB_WC_LOC_PROT_ERR,
704 	IB_WC_WR_FLUSH_ERR,
705 	IB_WC_MW_BIND_ERR,
706 	IB_WC_BAD_RESP_ERR,
707 	IB_WC_LOC_ACCESS_ERR,
708 	IB_WC_REM_INV_REQ_ERR,
709 	IB_WC_REM_ACCESS_ERR,
710 	IB_WC_REM_OP_ERR,
711 	IB_WC_RETRY_EXC_ERR,
712 	IB_WC_RNR_RETRY_EXC_ERR,
713 	IB_WC_LOC_RDD_VIOL_ERR,
714 	IB_WC_REM_INV_RD_REQ_ERR,
715 	IB_WC_REM_ABORT_ERR,
716 	IB_WC_INV_EECN_ERR,
717 	IB_WC_INV_EEC_STATE_ERR,
718 	IB_WC_FATAL_ERR,
719 	IB_WC_RESP_TIMEOUT_ERR,
720 	IB_WC_GENERAL_ERR
721 };
722 
723 __attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
724 
725 enum ib_wc_opcode {
726 	IB_WC_SEND,
727 	IB_WC_RDMA_WRITE,
728 	IB_WC_RDMA_READ,
729 	IB_WC_COMP_SWAP,
730 	IB_WC_FETCH_ADD,
731 	IB_WC_BIND_MW,
732 	IB_WC_LSO,
733 	IB_WC_LOCAL_INV,
734 	IB_WC_FAST_REG_MR,
735 	IB_WC_MASKED_COMP_SWAP,
736 	IB_WC_MASKED_FETCH_ADD,
737 /*
738  * Set value of IB_WC_RECV so consumers can test if a completion is a
739  * receive by testing (opcode & IB_WC_RECV).
740  */
741 	IB_WC_RECV			= 1 << 7,
742 	IB_WC_RECV_RDMA_WITH_IMM
743 };
744 
745 enum ib_wc_flags {
746 	IB_WC_GRH		= 1,
747 	IB_WC_WITH_IMM		= (1<<1),
748 	IB_WC_WITH_INVALIDATE	= (1<<2),
749 	IB_WC_IP_CSUM_OK	= (1<<3),
750 	IB_WC_WITH_SMAC		= (1<<4),
751 	IB_WC_WITH_VLAN		= (1<<5),
752 };
753 
754 struct ib_wc {
755 	u64			wr_id;
756 	enum ib_wc_status	status;
757 	enum ib_wc_opcode	opcode;
758 	u32			vendor_err;
759 	u32			byte_len;
760 	struct ib_qp	       *qp;
761 	union {
762 		__be32		imm_data;
763 		u32		invalidate_rkey;
764 	} ex;
765 	u32			src_qp;
766 	int			wc_flags;
767 	u16			pkey_index;
768 	u16			slid;
769 	u8			sl;
770 	u8			dlid_path_bits;
771 	u8			port_num;	/* valid only for DR SMPs on switches */
772 	u8			smac[ETH_ALEN];
773 	u16			vlan_id;
774 };
775 
776 enum ib_cq_notify_flags {
777 	IB_CQ_SOLICITED			= 1 << 0,
778 	IB_CQ_NEXT_COMP			= 1 << 1,
779 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
780 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
781 };
782 
783 enum ib_srq_type {
784 	IB_SRQT_BASIC,
785 	IB_SRQT_XRC
786 };
787 
788 enum ib_srq_attr_mask {
789 	IB_SRQ_MAX_WR	= 1 << 0,
790 	IB_SRQ_LIMIT	= 1 << 1,
791 };
792 
793 struct ib_srq_attr {
794 	u32	max_wr;
795 	u32	max_sge;
796 	u32	srq_limit;
797 };
798 
799 struct ib_srq_init_attr {
800 	void		      (*event_handler)(struct ib_event *, void *);
801 	void		       *srq_context;
802 	struct ib_srq_attr	attr;
803 	enum ib_srq_type	srq_type;
804 
805 	union {
806 		struct {
807 			struct ib_xrcd *xrcd;
808 			struct ib_cq   *cq;
809 		} xrc;
810 	} ext;
811 };
812 
813 struct ib_qp_cap {
814 	u32	max_send_wr;
815 	u32	max_recv_wr;
816 	u32	max_send_sge;
817 	u32	max_recv_sge;
818 	u32	max_inline_data;
819 };
820 
821 enum ib_sig_type {
822 	IB_SIGNAL_ALL_WR,
823 	IB_SIGNAL_REQ_WR
824 };
825 
826 enum ib_qp_type {
827 	/*
828 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
829 	 * here (and in that order) since the MAD layer uses them as
830 	 * indices into a 2-entry table.
831 	 */
832 	IB_QPT_SMI,
833 	IB_QPT_GSI,
834 
835 	IB_QPT_RC,
836 	IB_QPT_UC,
837 	IB_QPT_UD,
838 	IB_QPT_RAW_IPV6,
839 	IB_QPT_RAW_ETHERTYPE,
840 	IB_QPT_RAW_PACKET = 8,
841 	IB_QPT_XRC_INI = 9,
842 	IB_QPT_XRC_TGT,
843 	IB_QPT_MAX,
844 	/* Reserve a range for qp types internal to the low level driver.
845 	 * These qp types will not be visible at the IB core layer, so the
846 	 * IB_QPT_MAX usages should not be affected in the core layer
847 	 */
848 	IB_QPT_RESERVED1 = 0x1000,
849 	IB_QPT_RESERVED2,
850 	IB_QPT_RESERVED3,
851 	IB_QPT_RESERVED4,
852 	IB_QPT_RESERVED5,
853 	IB_QPT_RESERVED6,
854 	IB_QPT_RESERVED7,
855 	IB_QPT_RESERVED8,
856 	IB_QPT_RESERVED9,
857 	IB_QPT_RESERVED10,
858 };
859 
860 enum ib_qp_create_flags {
861 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
862 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
863 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
864 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
865 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
866 	/* reserve bits 26-31 for low level drivers' internal use */
867 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
868 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
869 };
870 
871 
872 /*
873  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
874  * callback to destroy the passed in QP.
875  */
876 
877 struct ib_qp_init_attr {
878 	void                  (*event_handler)(struct ib_event *, void *);
879 	void		       *qp_context;
880 	struct ib_cq	       *send_cq;
881 	struct ib_cq	       *recv_cq;
882 	struct ib_srq	       *srq;
883 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
884 	struct ib_qp_cap	cap;
885 	enum ib_sig_type	sq_sig_type;
886 	enum ib_qp_type		qp_type;
887 	enum ib_qp_create_flags	create_flags;
888 	u8			port_num; /* special QP types only */
889 };
890 
891 struct ib_qp_open_attr {
892 	void                  (*event_handler)(struct ib_event *, void *);
893 	void		       *qp_context;
894 	u32			qp_num;
895 	enum ib_qp_type		qp_type;
896 };
897 
898 enum ib_rnr_timeout {
899 	IB_RNR_TIMER_655_36 =  0,
900 	IB_RNR_TIMER_000_01 =  1,
901 	IB_RNR_TIMER_000_02 =  2,
902 	IB_RNR_TIMER_000_03 =  3,
903 	IB_RNR_TIMER_000_04 =  4,
904 	IB_RNR_TIMER_000_06 =  5,
905 	IB_RNR_TIMER_000_08 =  6,
906 	IB_RNR_TIMER_000_12 =  7,
907 	IB_RNR_TIMER_000_16 =  8,
908 	IB_RNR_TIMER_000_24 =  9,
909 	IB_RNR_TIMER_000_32 = 10,
910 	IB_RNR_TIMER_000_48 = 11,
911 	IB_RNR_TIMER_000_64 = 12,
912 	IB_RNR_TIMER_000_96 = 13,
913 	IB_RNR_TIMER_001_28 = 14,
914 	IB_RNR_TIMER_001_92 = 15,
915 	IB_RNR_TIMER_002_56 = 16,
916 	IB_RNR_TIMER_003_84 = 17,
917 	IB_RNR_TIMER_005_12 = 18,
918 	IB_RNR_TIMER_007_68 = 19,
919 	IB_RNR_TIMER_010_24 = 20,
920 	IB_RNR_TIMER_015_36 = 21,
921 	IB_RNR_TIMER_020_48 = 22,
922 	IB_RNR_TIMER_030_72 = 23,
923 	IB_RNR_TIMER_040_96 = 24,
924 	IB_RNR_TIMER_061_44 = 25,
925 	IB_RNR_TIMER_081_92 = 26,
926 	IB_RNR_TIMER_122_88 = 27,
927 	IB_RNR_TIMER_163_84 = 28,
928 	IB_RNR_TIMER_245_76 = 29,
929 	IB_RNR_TIMER_327_68 = 30,
930 	IB_RNR_TIMER_491_52 = 31
931 };
932 
933 enum ib_qp_attr_mask {
934 	IB_QP_STATE			= 1,
935 	IB_QP_CUR_STATE			= (1<<1),
936 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
937 	IB_QP_ACCESS_FLAGS		= (1<<3),
938 	IB_QP_PKEY_INDEX		= (1<<4),
939 	IB_QP_PORT			= (1<<5),
940 	IB_QP_QKEY			= (1<<6),
941 	IB_QP_AV			= (1<<7),
942 	IB_QP_PATH_MTU			= (1<<8),
943 	IB_QP_TIMEOUT			= (1<<9),
944 	IB_QP_RETRY_CNT			= (1<<10),
945 	IB_QP_RNR_RETRY			= (1<<11),
946 	IB_QP_RQ_PSN			= (1<<12),
947 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
948 	IB_QP_ALT_PATH			= (1<<14),
949 	IB_QP_MIN_RNR_TIMER		= (1<<15),
950 	IB_QP_SQ_PSN			= (1<<16),
951 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
952 	IB_QP_PATH_MIG_STATE		= (1<<18),
953 	IB_QP_CAP			= (1<<19),
954 	IB_QP_DEST_QPN			= (1<<20),
955 	IB_QP_SMAC			= (1<<21),
956 	IB_QP_ALT_SMAC			= (1<<22),
957 	IB_QP_VID			= (1<<23),
958 	IB_QP_ALT_VID			= (1<<24),
959 };
960 
961 enum ib_qp_state {
962 	IB_QPS_RESET,
963 	IB_QPS_INIT,
964 	IB_QPS_RTR,
965 	IB_QPS_RTS,
966 	IB_QPS_SQD,
967 	IB_QPS_SQE,
968 	IB_QPS_ERR
969 };
970 
971 enum ib_mig_state {
972 	IB_MIG_MIGRATED,
973 	IB_MIG_REARM,
974 	IB_MIG_ARMED
975 };
976 
977 enum ib_mw_type {
978 	IB_MW_TYPE_1 = 1,
979 	IB_MW_TYPE_2 = 2
980 };
981 
982 struct ib_qp_attr {
983 	enum ib_qp_state	qp_state;
984 	enum ib_qp_state	cur_qp_state;
985 	enum ib_mtu		path_mtu;
986 	enum ib_mig_state	path_mig_state;
987 	u32			qkey;
988 	u32			rq_psn;
989 	u32			sq_psn;
990 	u32			dest_qp_num;
991 	int			qp_access_flags;
992 	struct ib_qp_cap	cap;
993 	struct ib_ah_attr	ah_attr;
994 	struct ib_ah_attr	alt_ah_attr;
995 	u16			pkey_index;
996 	u16			alt_pkey_index;
997 	u8			en_sqd_async_notify;
998 	u8			sq_draining;
999 	u8			max_rd_atomic;
1000 	u8			max_dest_rd_atomic;
1001 	u8			min_rnr_timer;
1002 	u8			port_num;
1003 	u8			timeout;
1004 	u8			retry_cnt;
1005 	u8			rnr_retry;
1006 	u8			alt_port_num;
1007 	u8			alt_timeout;
1008 	u8			smac[ETH_ALEN];
1009 	u8			alt_smac[ETH_ALEN];
1010 	u16			vlan_id;
1011 	u16			alt_vlan_id;
1012 };
1013 
1014 enum ib_wr_opcode {
1015 	IB_WR_RDMA_WRITE,
1016 	IB_WR_RDMA_WRITE_WITH_IMM,
1017 	IB_WR_SEND,
1018 	IB_WR_SEND_WITH_IMM,
1019 	IB_WR_RDMA_READ,
1020 	IB_WR_ATOMIC_CMP_AND_SWP,
1021 	IB_WR_ATOMIC_FETCH_AND_ADD,
1022 	IB_WR_LSO,
1023 	IB_WR_SEND_WITH_INV,
1024 	IB_WR_RDMA_READ_WITH_INV,
1025 	IB_WR_LOCAL_INV,
1026 	IB_WR_FAST_REG_MR,
1027 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1028 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1029 	IB_WR_BIND_MW,
1030 	IB_WR_REG_SIG_MR,
1031 	/* reserve values for low level drivers' internal use.
1032 	 * These values will not be used at all in the ib core layer.
1033 	 */
1034 	IB_WR_RESERVED1 = 0xf0,
1035 	IB_WR_RESERVED2,
1036 	IB_WR_RESERVED3,
1037 	IB_WR_RESERVED4,
1038 	IB_WR_RESERVED5,
1039 	IB_WR_RESERVED6,
1040 	IB_WR_RESERVED7,
1041 	IB_WR_RESERVED8,
1042 	IB_WR_RESERVED9,
1043 	IB_WR_RESERVED10,
1044 };
1045 
1046 enum ib_send_flags {
1047 	IB_SEND_FENCE		= 1,
1048 	IB_SEND_SIGNALED	= (1<<1),
1049 	IB_SEND_SOLICITED	= (1<<2),
1050 	IB_SEND_INLINE		= (1<<3),
1051 	IB_SEND_IP_CSUM		= (1<<4),
1052 
1053 	/* reserve bits 26-31 for low level drivers' internal use */
1054 	IB_SEND_RESERVED_START	= (1 << 26),
1055 	IB_SEND_RESERVED_END	= (1 << 31),
1056 };
1057 
1058 struct ib_sge {
1059 	u64	addr;
1060 	u32	length;
1061 	u32	lkey;
1062 };
1063 
1064 struct ib_fast_reg_page_list {
1065 	struct ib_device       *device;
1066 	u64		       *page_list;
1067 	unsigned int		max_page_list_len;
1068 };
1069 
1070 /**
1071  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1072  * @mr: A memory region to bind the memory window to.
1073  * @addr: The address where the memory window should begin.
1074  * @length: The length of the memory window, in bytes.
1075  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1076  *
1077  * This struct contains the shared parameters for type 1 and type 2
1078  * memory window bind operations.
1079  */
1080 struct ib_mw_bind_info {
1081 	struct ib_mr   *mr;
1082 	u64		addr;
1083 	u64		length;
1084 	int		mw_access_flags;
1085 };
1086 
1087 struct ib_send_wr {
1088 	struct ib_send_wr      *next;
1089 	u64			wr_id;
1090 	struct ib_sge	       *sg_list;
1091 	int			num_sge;
1092 	enum ib_wr_opcode	opcode;
1093 	int			send_flags;
1094 	union {
1095 		__be32		imm_data;
1096 		u32		invalidate_rkey;
1097 	} ex;
1098 	union {
1099 		struct {
1100 			u64	remote_addr;
1101 			u32	rkey;
1102 		} rdma;
1103 		struct {
1104 			u64	remote_addr;
1105 			u64	compare_add;
1106 			u64	swap;
1107 			u64	compare_add_mask;
1108 			u64	swap_mask;
1109 			u32	rkey;
1110 		} atomic;
1111 		struct {
1112 			struct ib_ah *ah;
1113 			void   *header;
1114 			int     hlen;
1115 			int     mss;
1116 			u32	remote_qpn;
1117 			u32	remote_qkey;
1118 			u16	pkey_index; /* valid for GSI only */
1119 			u8	port_num;   /* valid for DR SMPs on switch only */
1120 		} ud;
1121 		struct {
1122 			u64				iova_start;
1123 			struct ib_fast_reg_page_list   *page_list;
1124 			unsigned int			page_shift;
1125 			unsigned int			page_list_len;
1126 			u32				length;
1127 			int				access_flags;
1128 			u32				rkey;
1129 		} fast_reg;
1130 		struct {
1131 			struct ib_mw            *mw;
1132 			/* The new rkey for the memory window. */
1133 			u32                      rkey;
1134 			struct ib_mw_bind_info   bind_info;
1135 		} bind_mw;
1136 		struct {
1137 			struct ib_sig_attrs    *sig_attrs;
1138 			struct ib_mr	       *sig_mr;
1139 			int			access_flags;
1140 			struct ib_sge	       *prot;
1141 		} sig_handover;
1142 	} wr;
1143 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
1144 };
1145 
1146 struct ib_recv_wr {
1147 	struct ib_recv_wr      *next;
1148 	u64			wr_id;
1149 	struct ib_sge	       *sg_list;
1150 	int			num_sge;
1151 };
1152 
1153 enum ib_access_flags {
1154 	IB_ACCESS_LOCAL_WRITE	= 1,
1155 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1156 	IB_ACCESS_REMOTE_READ	= (1<<2),
1157 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1158 	IB_ACCESS_MW_BIND	= (1<<4),
1159 	IB_ZERO_BASED		= (1<<5),
1160 	IB_ACCESS_ON_DEMAND     = (1<<6),
1161 };
1162 
1163 struct ib_phys_buf {
1164 	u64      addr;
1165 	u64      size;
1166 };
1167 
1168 struct ib_mr_attr {
1169 	struct ib_pd	*pd;
1170 	u64		device_virt_addr;
1171 	u64		size;
1172 	int		mr_access_flags;
1173 	u32		lkey;
1174 	u32		rkey;
1175 };
1176 
1177 enum ib_mr_rereg_flags {
1178 	IB_MR_REREG_TRANS	= 1,
1179 	IB_MR_REREG_PD		= (1<<1),
1180 	IB_MR_REREG_ACCESS	= (1<<2),
1181 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1182 };
1183 
1184 /**
1185  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1186  * @wr_id:      Work request id.
1187  * @send_flags: Flags from ib_send_flags enum.
1188  * @bind_info:  More parameters of the bind operation.
1189  */
1190 struct ib_mw_bind {
1191 	u64                    wr_id;
1192 	int                    send_flags;
1193 	struct ib_mw_bind_info bind_info;
1194 };
1195 
1196 struct ib_fmr_attr {
1197 	int	max_pages;
1198 	int	max_maps;
1199 	u8	page_shift;
1200 };
1201 
1202 struct ib_umem;
1203 
1204 struct ib_ucontext {
1205 	struct ib_device       *device;
1206 	struct list_head	pd_list;
1207 	struct list_head	mr_list;
1208 	struct list_head	mw_list;
1209 	struct list_head	cq_list;
1210 	struct list_head	qp_list;
1211 	struct list_head	srq_list;
1212 	struct list_head	ah_list;
1213 	struct list_head	xrcd_list;
1214 	struct list_head	rule_list;
1215 	int			closing;
1216 
1217 	struct pid             *tgid;
1218 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1219 	struct rb_root      umem_tree;
1220 	/*
1221 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1222 	 * mmu notifiers registration.
1223 	 */
1224 	struct rw_semaphore	umem_rwsem;
1225 	void (*invalidate_range)(struct ib_umem *umem,
1226 				 unsigned long start, unsigned long end);
1227 
1228 	struct mmu_notifier	mn;
1229 	atomic_t		notifier_count;
1230 	/* A list of umems that don't have private mmu notifier counters yet. */
1231 	struct list_head	no_private_counters;
1232 	int                     odp_mrs_count;
1233 #endif
1234 };
1235 
1236 struct ib_uobject {
1237 	u64			user_handle;	/* handle given to us by userspace */
1238 	struct ib_ucontext     *context;	/* associated user context */
1239 	void		       *object;		/* containing object */
1240 	struct list_head	list;		/* link to context's list */
1241 	int			id;		/* index into kernel idr */
1242 	struct kref		ref;
1243 	struct rw_semaphore	mutex;		/* protects .live */
1244 	int			live;
1245 };
1246 
1247 struct ib_udata {
1248 	const void __user *inbuf;
1249 	void __user *outbuf;
1250 	size_t       inlen;
1251 	size_t       outlen;
1252 };
1253 
1254 struct ib_pd {
1255 	struct ib_device       *device;
1256 	struct ib_uobject      *uobject;
1257 	atomic_t          	usecnt; /* count all resources */
1258 };
1259 
1260 struct ib_xrcd {
1261 	struct ib_device       *device;
1262 	atomic_t		usecnt; /* count all exposed resources */
1263 	struct inode	       *inode;
1264 
1265 	struct mutex		tgt_qp_mutex;
1266 	struct list_head	tgt_qp_list;
1267 };
1268 
1269 struct ib_ah {
1270 	struct ib_device	*device;
1271 	struct ib_pd		*pd;
1272 	struct ib_uobject	*uobject;
1273 };
1274 
1275 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1276 
1277 struct ib_cq {
1278 	struct ib_device       *device;
1279 	struct ib_uobject      *uobject;
1280 	ib_comp_handler   	comp_handler;
1281 	void                  (*event_handler)(struct ib_event *, void *);
1282 	void                   *cq_context;
1283 	int               	cqe;
1284 	atomic_t          	usecnt; /* count number of work queues */
1285 };
1286 
1287 struct ib_srq {
1288 	struct ib_device       *device;
1289 	struct ib_pd	       *pd;
1290 	struct ib_uobject      *uobject;
1291 	void		      (*event_handler)(struct ib_event *, void *);
1292 	void		       *srq_context;
1293 	enum ib_srq_type	srq_type;
1294 	atomic_t		usecnt;
1295 
1296 	union {
1297 		struct {
1298 			struct ib_xrcd *xrcd;
1299 			struct ib_cq   *cq;
1300 			u32		srq_num;
1301 		} xrc;
1302 	} ext;
1303 };
1304 
1305 struct ib_qp {
1306 	struct ib_device       *device;
1307 	struct ib_pd	       *pd;
1308 	struct ib_cq	       *send_cq;
1309 	struct ib_cq	       *recv_cq;
1310 	struct ib_srq	       *srq;
1311 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1312 	struct list_head	xrcd_list;
1313 	/* count times opened, mcast attaches, flow attaches */
1314 	atomic_t		usecnt;
1315 	struct list_head	open_list;
1316 	struct ib_qp           *real_qp;
1317 	struct ib_uobject      *uobject;
1318 	void                  (*event_handler)(struct ib_event *, void *);
1319 	void		       *qp_context;
1320 	u32			qp_num;
1321 	enum ib_qp_type		qp_type;
1322 };
1323 
1324 struct ib_mr {
1325 	struct ib_device  *device;
1326 	struct ib_pd	  *pd;
1327 	struct ib_uobject *uobject;
1328 	u32		   lkey;
1329 	u32		   rkey;
1330 	atomic_t	   usecnt; /* count number of MWs */
1331 };
1332 
1333 struct ib_mw {
1334 	struct ib_device	*device;
1335 	struct ib_pd		*pd;
1336 	struct ib_uobject	*uobject;
1337 	u32			rkey;
1338 	enum ib_mw_type         type;
1339 };
1340 
1341 struct ib_fmr {
1342 	struct ib_device	*device;
1343 	struct ib_pd		*pd;
1344 	struct list_head	list;
1345 	u32			lkey;
1346 	u32			rkey;
1347 };
1348 
1349 /* Supported steering options */
1350 enum ib_flow_attr_type {
1351 	/* steering according to rule specifications */
1352 	IB_FLOW_ATTR_NORMAL		= 0x0,
1353 	/* default unicast and multicast rule -
1354 	 * receive all Eth traffic which isn't steered to any QP
1355 	 */
1356 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1357 	/* default multicast rule -
1358 	 * receive all Eth multicast traffic which isn't steered to any QP
1359 	 */
1360 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1361 	/* sniffer rule - receive all port traffic */
1362 	IB_FLOW_ATTR_SNIFFER		= 0x3
1363 };
1364 
1365 /* Supported steering header types */
1366 enum ib_flow_spec_type {
1367 	/* L2 headers*/
1368 	IB_FLOW_SPEC_ETH	= 0x20,
1369 	IB_FLOW_SPEC_IB		= 0x22,
1370 	/* L3 header*/
1371 	IB_FLOW_SPEC_IPV4	= 0x30,
1372 	/* L4 headers*/
1373 	IB_FLOW_SPEC_TCP	= 0x40,
1374 	IB_FLOW_SPEC_UDP	= 0x41
1375 };
1376 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1377 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1378 
1379 /* Flow steering rule priority is set according to it's domain.
1380  * Lower domain value means higher priority.
1381  */
1382 enum ib_flow_domain {
1383 	IB_FLOW_DOMAIN_USER,
1384 	IB_FLOW_DOMAIN_ETHTOOL,
1385 	IB_FLOW_DOMAIN_RFS,
1386 	IB_FLOW_DOMAIN_NIC,
1387 	IB_FLOW_DOMAIN_NUM /* Must be last */
1388 };
1389 
1390 struct ib_flow_eth_filter {
1391 	u8	dst_mac[6];
1392 	u8	src_mac[6];
1393 	__be16	ether_type;
1394 	__be16	vlan_tag;
1395 };
1396 
1397 struct ib_flow_spec_eth {
1398 	enum ib_flow_spec_type	  type;
1399 	u16			  size;
1400 	struct ib_flow_eth_filter val;
1401 	struct ib_flow_eth_filter mask;
1402 };
1403 
1404 struct ib_flow_ib_filter {
1405 	__be16 dlid;
1406 	__u8   sl;
1407 };
1408 
1409 struct ib_flow_spec_ib {
1410 	enum ib_flow_spec_type	 type;
1411 	u16			 size;
1412 	struct ib_flow_ib_filter val;
1413 	struct ib_flow_ib_filter mask;
1414 };
1415 
1416 struct ib_flow_ipv4_filter {
1417 	__be32	src_ip;
1418 	__be32	dst_ip;
1419 };
1420 
1421 struct ib_flow_spec_ipv4 {
1422 	enum ib_flow_spec_type	   type;
1423 	u16			   size;
1424 	struct ib_flow_ipv4_filter val;
1425 	struct ib_flow_ipv4_filter mask;
1426 };
1427 
1428 struct ib_flow_tcp_udp_filter {
1429 	__be16	dst_port;
1430 	__be16	src_port;
1431 };
1432 
1433 struct ib_flow_spec_tcp_udp {
1434 	enum ib_flow_spec_type	      type;
1435 	u16			      size;
1436 	struct ib_flow_tcp_udp_filter val;
1437 	struct ib_flow_tcp_udp_filter mask;
1438 };
1439 
1440 union ib_flow_spec {
1441 	struct {
1442 		enum ib_flow_spec_type	type;
1443 		u16			size;
1444 	};
1445 	struct ib_flow_spec_eth		eth;
1446 	struct ib_flow_spec_ib		ib;
1447 	struct ib_flow_spec_ipv4        ipv4;
1448 	struct ib_flow_spec_tcp_udp	tcp_udp;
1449 };
1450 
1451 struct ib_flow_attr {
1452 	enum ib_flow_attr_type type;
1453 	u16	     size;
1454 	u16	     priority;
1455 	u32	     flags;
1456 	u8	     num_of_specs;
1457 	u8	     port;
1458 	/* Following are the optional layers according to user request
1459 	 * struct ib_flow_spec_xxx
1460 	 * struct ib_flow_spec_yyy
1461 	 */
1462 };
1463 
1464 struct ib_flow {
1465 	struct ib_qp		*qp;
1466 	struct ib_uobject	*uobject;
1467 };
1468 
1469 struct ib_mad_hdr;
1470 struct ib_grh;
1471 
1472 enum ib_process_mad_flags {
1473 	IB_MAD_IGNORE_MKEY	= 1,
1474 	IB_MAD_IGNORE_BKEY	= 2,
1475 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1476 };
1477 
1478 enum ib_mad_result {
1479 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1480 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1481 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1482 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1483 };
1484 
1485 #define IB_DEVICE_NAME_MAX 64
1486 
1487 struct ib_cache {
1488 	rwlock_t                lock;
1489 	struct ib_event_handler event_handler;
1490 	struct ib_pkey_cache  **pkey_cache;
1491 	struct ib_gid_cache   **gid_cache;
1492 	u8                     *lmc_cache;
1493 };
1494 
1495 struct ib_dma_mapping_ops {
1496 	int		(*mapping_error)(struct ib_device *dev,
1497 					 u64 dma_addr);
1498 	u64		(*map_single)(struct ib_device *dev,
1499 				      void *ptr, size_t size,
1500 				      enum dma_data_direction direction);
1501 	void		(*unmap_single)(struct ib_device *dev,
1502 					u64 addr, size_t size,
1503 					enum dma_data_direction direction);
1504 	u64		(*map_page)(struct ib_device *dev,
1505 				    struct page *page, unsigned long offset,
1506 				    size_t size,
1507 				    enum dma_data_direction direction);
1508 	void		(*unmap_page)(struct ib_device *dev,
1509 				      u64 addr, size_t size,
1510 				      enum dma_data_direction direction);
1511 	int		(*map_sg)(struct ib_device *dev,
1512 				  struct scatterlist *sg, int nents,
1513 				  enum dma_data_direction direction);
1514 	void		(*unmap_sg)(struct ib_device *dev,
1515 				    struct scatterlist *sg, int nents,
1516 				    enum dma_data_direction direction);
1517 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1518 					       u64 dma_handle,
1519 					       size_t size,
1520 					       enum dma_data_direction dir);
1521 	void		(*sync_single_for_device)(struct ib_device *dev,
1522 						  u64 dma_handle,
1523 						  size_t size,
1524 						  enum dma_data_direction dir);
1525 	void		*(*alloc_coherent)(struct ib_device *dev,
1526 					   size_t size,
1527 					   u64 *dma_handle,
1528 					   gfp_t flag);
1529 	void		(*free_coherent)(struct ib_device *dev,
1530 					 size_t size, void *cpu_addr,
1531 					 u64 dma_handle);
1532 };
1533 
1534 struct iw_cm_verbs;
1535 
1536 struct ib_port_immutable {
1537 	int                           pkey_tbl_len;
1538 	int                           gid_tbl_len;
1539 	u32                           core_cap_flags;
1540 	u32                           max_mad_size;
1541 };
1542 
1543 struct ib_device {
1544 	struct device                *dma_device;
1545 
1546 	char                          name[IB_DEVICE_NAME_MAX];
1547 
1548 	struct list_head              event_handler_list;
1549 	spinlock_t                    event_handler_lock;
1550 
1551 	spinlock_t                    client_data_lock;
1552 	struct list_head              core_list;
1553 	struct list_head              client_data_list;
1554 
1555 	struct ib_cache               cache;
1556 	/**
1557 	 * port_immutable is indexed by port number
1558 	 */
1559 	struct ib_port_immutable     *port_immutable;
1560 
1561 	int			      num_comp_vectors;
1562 
1563 	struct iw_cm_verbs	     *iwcm;
1564 
1565 	int		           (*get_protocol_stats)(struct ib_device *device,
1566 							 union rdma_protocol_stats *stats);
1567 	int		           (*query_device)(struct ib_device *device,
1568 						   struct ib_device_attr *device_attr,
1569 						   struct ib_udata *udata);
1570 	int		           (*query_port)(struct ib_device *device,
1571 						 u8 port_num,
1572 						 struct ib_port_attr *port_attr);
1573 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1574 						     u8 port_num);
1575 	int		           (*query_gid)(struct ib_device *device,
1576 						u8 port_num, int index,
1577 						union ib_gid *gid);
1578 	int		           (*query_pkey)(struct ib_device *device,
1579 						 u8 port_num, u16 index, u16 *pkey);
1580 	int		           (*modify_device)(struct ib_device *device,
1581 						    int device_modify_mask,
1582 						    struct ib_device_modify *device_modify);
1583 	int		           (*modify_port)(struct ib_device *device,
1584 						  u8 port_num, int port_modify_mask,
1585 						  struct ib_port_modify *port_modify);
1586 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1587 						     struct ib_udata *udata);
1588 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1589 	int                        (*mmap)(struct ib_ucontext *context,
1590 					   struct vm_area_struct *vma);
1591 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1592 					       struct ib_ucontext *context,
1593 					       struct ib_udata *udata);
1594 	int                        (*dealloc_pd)(struct ib_pd *pd);
1595 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1596 						struct ib_ah_attr *ah_attr);
1597 	int                        (*modify_ah)(struct ib_ah *ah,
1598 						struct ib_ah_attr *ah_attr);
1599 	int                        (*query_ah)(struct ib_ah *ah,
1600 					       struct ib_ah_attr *ah_attr);
1601 	int                        (*destroy_ah)(struct ib_ah *ah);
1602 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1603 						 struct ib_srq_init_attr *srq_init_attr,
1604 						 struct ib_udata *udata);
1605 	int                        (*modify_srq)(struct ib_srq *srq,
1606 						 struct ib_srq_attr *srq_attr,
1607 						 enum ib_srq_attr_mask srq_attr_mask,
1608 						 struct ib_udata *udata);
1609 	int                        (*query_srq)(struct ib_srq *srq,
1610 						struct ib_srq_attr *srq_attr);
1611 	int                        (*destroy_srq)(struct ib_srq *srq);
1612 	int                        (*post_srq_recv)(struct ib_srq *srq,
1613 						    struct ib_recv_wr *recv_wr,
1614 						    struct ib_recv_wr **bad_recv_wr);
1615 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1616 						struct ib_qp_init_attr *qp_init_attr,
1617 						struct ib_udata *udata);
1618 	int                        (*modify_qp)(struct ib_qp *qp,
1619 						struct ib_qp_attr *qp_attr,
1620 						int qp_attr_mask,
1621 						struct ib_udata *udata);
1622 	int                        (*query_qp)(struct ib_qp *qp,
1623 					       struct ib_qp_attr *qp_attr,
1624 					       int qp_attr_mask,
1625 					       struct ib_qp_init_attr *qp_init_attr);
1626 	int                        (*destroy_qp)(struct ib_qp *qp);
1627 	int                        (*post_send)(struct ib_qp *qp,
1628 						struct ib_send_wr *send_wr,
1629 						struct ib_send_wr **bad_send_wr);
1630 	int                        (*post_recv)(struct ib_qp *qp,
1631 						struct ib_recv_wr *recv_wr,
1632 						struct ib_recv_wr **bad_recv_wr);
1633 	struct ib_cq *             (*create_cq)(struct ib_device *device,
1634 						const struct ib_cq_init_attr *attr,
1635 						struct ib_ucontext *context,
1636 						struct ib_udata *udata);
1637 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1638 						u16 cq_period);
1639 	int                        (*destroy_cq)(struct ib_cq *cq);
1640 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1641 						struct ib_udata *udata);
1642 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1643 					      struct ib_wc *wc);
1644 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1645 	int                        (*req_notify_cq)(struct ib_cq *cq,
1646 						    enum ib_cq_notify_flags flags);
1647 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1648 						      int wc_cnt);
1649 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1650 						 int mr_access_flags);
1651 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1652 						  struct ib_phys_buf *phys_buf_array,
1653 						  int num_phys_buf,
1654 						  int mr_access_flags,
1655 						  u64 *iova_start);
1656 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1657 						  u64 start, u64 length,
1658 						  u64 virt_addr,
1659 						  int mr_access_flags,
1660 						  struct ib_udata *udata);
1661 	int			   (*rereg_user_mr)(struct ib_mr *mr,
1662 						    int flags,
1663 						    u64 start, u64 length,
1664 						    u64 virt_addr,
1665 						    int mr_access_flags,
1666 						    struct ib_pd *pd,
1667 						    struct ib_udata *udata);
1668 	int                        (*query_mr)(struct ib_mr *mr,
1669 					       struct ib_mr_attr *mr_attr);
1670 	int                        (*dereg_mr)(struct ib_mr *mr);
1671 	int                        (*destroy_mr)(struct ib_mr *mr);
1672 	struct ib_mr *		   (*create_mr)(struct ib_pd *pd,
1673 						struct ib_mr_init_attr *mr_init_attr);
1674 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1675 					       int max_page_list_len);
1676 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1677 								   int page_list_len);
1678 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1679 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1680 						    int mr_rereg_mask,
1681 						    struct ib_pd *pd,
1682 						    struct ib_phys_buf *phys_buf_array,
1683 						    int num_phys_buf,
1684 						    int mr_access_flags,
1685 						    u64 *iova_start);
1686 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1687 					       enum ib_mw_type type);
1688 	int                        (*bind_mw)(struct ib_qp *qp,
1689 					      struct ib_mw *mw,
1690 					      struct ib_mw_bind *mw_bind);
1691 	int                        (*dealloc_mw)(struct ib_mw *mw);
1692 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1693 						int mr_access_flags,
1694 						struct ib_fmr_attr *fmr_attr);
1695 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1696 						   u64 *page_list, int list_len,
1697 						   u64 iova);
1698 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1699 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1700 	int                        (*attach_mcast)(struct ib_qp *qp,
1701 						   union ib_gid *gid,
1702 						   u16 lid);
1703 	int                        (*detach_mcast)(struct ib_qp *qp,
1704 						   union ib_gid *gid,
1705 						   u16 lid);
1706 	int                        (*process_mad)(struct ib_device *device,
1707 						  int process_mad_flags,
1708 						  u8 port_num,
1709 						  const struct ib_wc *in_wc,
1710 						  const struct ib_grh *in_grh,
1711 						  const struct ib_mad_hdr *in_mad,
1712 						  size_t in_mad_size,
1713 						  struct ib_mad_hdr *out_mad,
1714 						  size_t *out_mad_size,
1715 						  u16 *out_mad_pkey_index);
1716 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1717 						 struct ib_ucontext *ucontext,
1718 						 struct ib_udata *udata);
1719 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1720 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1721 						  struct ib_flow_attr
1722 						  *flow_attr,
1723 						  int domain);
1724 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1725 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1726 						      struct ib_mr_status *mr_status);
1727 
1728 	struct ib_dma_mapping_ops   *dma_ops;
1729 
1730 	struct module               *owner;
1731 	struct device                dev;
1732 	struct kobject               *ports_parent;
1733 	struct list_head             port_list;
1734 
1735 	enum {
1736 		IB_DEV_UNINITIALIZED,
1737 		IB_DEV_REGISTERED,
1738 		IB_DEV_UNREGISTERED
1739 	}                            reg_state;
1740 
1741 	int			     uverbs_abi_ver;
1742 	u64			     uverbs_cmd_mask;
1743 	u64			     uverbs_ex_cmd_mask;
1744 
1745 	char			     node_desc[64];
1746 	__be64			     node_guid;
1747 	u32			     local_dma_lkey;
1748 	u16                          is_switch:1;
1749 	u8                           node_type;
1750 	u8                           phys_port_cnt;
1751 
1752 	/**
1753 	 * The following mandatory functions are used only at device
1754 	 * registration.  Keep functions such as these at the end of this
1755 	 * structure to avoid cache line misses when accessing struct ib_device
1756 	 * in fast paths.
1757 	 */
1758 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1759 };
1760 
1761 struct ib_client {
1762 	char  *name;
1763 	void (*add)   (struct ib_device *);
1764 	void (*remove)(struct ib_device *);
1765 
1766 	struct list_head list;
1767 };
1768 
1769 struct ib_device *ib_alloc_device(size_t size);
1770 void ib_dealloc_device(struct ib_device *device);
1771 
1772 int ib_register_device(struct ib_device *device,
1773 		       int (*port_callback)(struct ib_device *,
1774 					    u8, struct kobject *));
1775 void ib_unregister_device(struct ib_device *device);
1776 
1777 int ib_register_client   (struct ib_client *client);
1778 void ib_unregister_client(struct ib_client *client);
1779 
1780 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1781 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1782 			 void *data);
1783 
1784 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1785 {
1786 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1787 }
1788 
1789 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1790 {
1791 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1792 }
1793 
1794 /**
1795  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1796  * contains all required attributes and no attributes not allowed for
1797  * the given QP state transition.
1798  * @cur_state: Current QP state
1799  * @next_state: Next QP state
1800  * @type: QP type
1801  * @mask: Mask of supplied QP attributes
1802  * @ll : link layer of port
1803  *
1804  * This function is a helper function that a low-level driver's
1805  * modify_qp method can use to validate the consumer's input.  It
1806  * checks that cur_state and next_state are valid QP states, that a
1807  * transition from cur_state to next_state is allowed by the IB spec,
1808  * and that the attribute mask supplied is allowed for the transition.
1809  */
1810 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1811 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1812 		       enum rdma_link_layer ll);
1813 
1814 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1815 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1816 void ib_dispatch_event(struct ib_event *event);
1817 
1818 int ib_query_device(struct ib_device *device,
1819 		    struct ib_device_attr *device_attr);
1820 
1821 int ib_query_port(struct ib_device *device,
1822 		  u8 port_num, struct ib_port_attr *port_attr);
1823 
1824 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1825 					       u8 port_num);
1826 
1827 /**
1828  * rdma_cap_ib_switch - Check if the device is IB switch
1829  * @device: Device to check
1830  *
1831  * Device driver is responsible for setting is_switch bit on
1832  * in ib_device structure at init time.
1833  *
1834  * Return: true if the device is IB switch.
1835  */
1836 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1837 {
1838 	return device->is_switch;
1839 }
1840 
1841 /**
1842  * rdma_start_port - Return the first valid port number for the device
1843  * specified
1844  *
1845  * @device: Device to be checked
1846  *
1847  * Return start port number
1848  */
1849 static inline u8 rdma_start_port(const struct ib_device *device)
1850 {
1851 	return rdma_cap_ib_switch(device) ? 0 : 1;
1852 }
1853 
1854 /**
1855  * rdma_end_port - Return the last valid port number for the device
1856  * specified
1857  *
1858  * @device: Device to be checked
1859  *
1860  * Return last port number
1861  */
1862 static inline u8 rdma_end_port(const struct ib_device *device)
1863 {
1864 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1865 }
1866 
1867 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1868 {
1869 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1870 }
1871 
1872 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1873 {
1874 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1875 }
1876 
1877 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1878 {
1879 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1880 }
1881 
1882 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1883 {
1884 	return device->port_immutable[port_num].core_cap_flags &
1885 		(RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1886 }
1887 
1888 /**
1889  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1890  * Management Datagrams.
1891  * @device: Device to check
1892  * @port_num: Port number to check
1893  *
1894  * Management Datagrams (MAD) are a required part of the InfiniBand
1895  * specification and are supported on all InfiniBand devices.  A slightly
1896  * extended version are also supported on OPA interfaces.
1897  *
1898  * Return: true if the port supports sending/receiving of MAD packets.
1899  */
1900 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1901 {
1902 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
1903 }
1904 
1905 /**
1906  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1907  * Management Datagrams.
1908  * @device: Device to check
1909  * @port_num: Port number to check
1910  *
1911  * Intel OmniPath devices extend and/or replace the InfiniBand Management
1912  * datagrams with their own versions.  These OPA MADs share many but not all of
1913  * the characteristics of InfiniBand MADs.
1914  *
1915  * OPA MADs differ in the following ways:
1916  *
1917  *    1) MADs are variable size up to 2K
1918  *       IBTA defined MADs remain fixed at 256 bytes
1919  *    2) OPA SMPs must carry valid PKeys
1920  *    3) OPA SMP packets are a different format
1921  *
1922  * Return: true if the port supports OPA MAD packet formats.
1923  */
1924 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1925 {
1926 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1927 		== RDMA_CORE_CAP_OPA_MAD;
1928 }
1929 
1930 /**
1931  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1932  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1933  * @device: Device to check
1934  * @port_num: Port number to check
1935  *
1936  * Each InfiniBand node is required to provide a Subnet Management Agent
1937  * that the subnet manager can access.  Prior to the fabric being fully
1938  * configured by the subnet manager, the SMA is accessed via a well known
1939  * interface called the Subnet Management Interface (SMI).  This interface
1940  * uses directed route packets to communicate with the SM to get around the
1941  * chicken and egg problem of the SM needing to know what's on the fabric
1942  * in order to configure the fabric, and needing to configure the fabric in
1943  * order to send packets to the devices on the fabric.  These directed
1944  * route packets do not need the fabric fully configured in order to reach
1945  * their destination.  The SMI is the only method allowed to send
1946  * directed route packets on an InfiniBand fabric.
1947  *
1948  * Return: true if the port provides an SMI.
1949  */
1950 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
1951 {
1952 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
1953 }
1954 
1955 /**
1956  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1957  * Communication Manager.
1958  * @device: Device to check
1959  * @port_num: Port number to check
1960  *
1961  * The InfiniBand Communication Manager is one of many pre-defined General
1962  * Service Agents (GSA) that are accessed via the General Service
1963  * Interface (GSI).  It's role is to facilitate establishment of connections
1964  * between nodes as well as other management related tasks for established
1965  * connections.
1966  *
1967  * Return: true if the port supports an IB CM (this does not guarantee that
1968  * a CM is actually running however).
1969  */
1970 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
1971 {
1972 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
1973 }
1974 
1975 /**
1976  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
1977  * Communication Manager.
1978  * @device: Device to check
1979  * @port_num: Port number to check
1980  *
1981  * Similar to above, but specific to iWARP connections which have a different
1982  * managment protocol than InfiniBand.
1983  *
1984  * Return: true if the port supports an iWARP CM (this does not guarantee that
1985  * a CM is actually running however).
1986  */
1987 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
1988 {
1989 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
1990 }
1991 
1992 /**
1993  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
1994  * Subnet Administration.
1995  * @device: Device to check
1996  * @port_num: Port number to check
1997  *
1998  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
1999  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2000  * fabrics, devices should resolve routes to other hosts by contacting the
2001  * SA to query the proper route.
2002  *
2003  * Return: true if the port should act as a client to the fabric Subnet
2004  * Administration interface.  This does not imply that the SA service is
2005  * running locally.
2006  */
2007 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2008 {
2009 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2010 }
2011 
2012 /**
2013  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2014  * Multicast.
2015  * @device: Device to check
2016  * @port_num: Port number to check
2017  *
2018  * InfiniBand multicast registration is more complex than normal IPv4 or
2019  * IPv6 multicast registration.  Each Host Channel Adapter must register
2020  * with the Subnet Manager when it wishes to join a multicast group.  It
2021  * should do so only once regardless of how many queue pairs it subscribes
2022  * to this group.  And it should leave the group only after all queue pairs
2023  * attached to the group have been detached.
2024  *
2025  * Return: true if the port must undertake the additional adminstrative
2026  * overhead of registering/unregistering with the SM and tracking of the
2027  * total number of queue pairs attached to the multicast group.
2028  */
2029 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2030 {
2031 	return rdma_cap_ib_sa(device, port_num);
2032 }
2033 
2034 /**
2035  * rdma_cap_af_ib - Check if the port of device has the capability
2036  * Native Infiniband Address.
2037  * @device: Device to check
2038  * @port_num: Port number to check
2039  *
2040  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2041  * GID.  RoCE uses a different mechanism, but still generates a GID via
2042  * a prescribed mechanism and port specific data.
2043  *
2044  * Return: true if the port uses a GID address to identify devices on the
2045  * network.
2046  */
2047 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2048 {
2049 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2050 }
2051 
2052 /**
2053  * rdma_cap_eth_ah - Check if the port of device has the capability
2054  * Ethernet Address Handle.
2055  * @device: Device to check
2056  * @port_num: Port number to check
2057  *
2058  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2059  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2060  * port.  Normally, packet headers are generated by the sending host
2061  * adapter, but when sending connectionless datagrams, we must manually
2062  * inject the proper headers for the fabric we are communicating over.
2063  *
2064  * Return: true if we are running as a RoCE port and must force the
2065  * addition of a Global Route Header built from our Ethernet Address
2066  * Handle into our header list for connectionless packets.
2067  */
2068 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2069 {
2070 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2071 }
2072 
2073 /**
2074  * rdma_cap_read_multi_sge - Check if the port of device has the capability
2075  * RDMA Read Multiple Scatter-Gather Entries.
2076  * @device: Device to check
2077  * @port_num: Port number to check
2078  *
2079  * iWARP has a restriction that RDMA READ requests may only have a single
2080  * Scatter/Gather Entry (SGE) in the work request.
2081  *
2082  * NOTE: although the linux kernel currently assumes all devices are either
2083  * single SGE RDMA READ devices or identical SGE maximums for RDMA READs and
2084  * WRITEs, according to Tom Talpey, this is not accurate.  There are some
2085  * devices out there that support more than a single SGE on RDMA READ
2086  * requests, but do not support the same number of SGEs as they do on
2087  * RDMA WRITE requests.  The linux kernel would need rearchitecting to
2088  * support these imbalanced READ/WRITE SGEs allowed devices.  So, for now,
2089  * suffice with either the device supports the same READ/WRITE SGEs, or
2090  * it only gets one READ sge.
2091  *
2092  * Return: true for any device that allows more than one SGE in RDMA READ
2093  * requests.
2094  */
2095 static inline bool rdma_cap_read_multi_sge(struct ib_device *device,
2096 					   u8 port_num)
2097 {
2098 	return !(device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP);
2099 }
2100 
2101 /**
2102  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2103  *
2104  * @device: Device
2105  * @port_num: Port number
2106  *
2107  * This MAD size includes the MAD headers and MAD payload.  No other headers
2108  * are included.
2109  *
2110  * Return the max MAD size required by the Port.  Will return 0 if the port
2111  * does not support MADs
2112  */
2113 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2114 {
2115 	return device->port_immutable[port_num].max_mad_size;
2116 }
2117 
2118 int ib_query_gid(struct ib_device *device,
2119 		 u8 port_num, int index, union ib_gid *gid);
2120 
2121 int ib_query_pkey(struct ib_device *device,
2122 		  u8 port_num, u16 index, u16 *pkey);
2123 
2124 int ib_modify_device(struct ib_device *device,
2125 		     int device_modify_mask,
2126 		     struct ib_device_modify *device_modify);
2127 
2128 int ib_modify_port(struct ib_device *device,
2129 		   u8 port_num, int port_modify_mask,
2130 		   struct ib_port_modify *port_modify);
2131 
2132 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2133 		u8 *port_num, u16 *index);
2134 
2135 int ib_find_pkey(struct ib_device *device,
2136 		 u8 port_num, u16 pkey, u16 *index);
2137 
2138 /**
2139  * ib_alloc_pd - Allocates an unused protection domain.
2140  * @device: The device on which to allocate the protection domain.
2141  *
2142  * A protection domain object provides an association between QPs, shared
2143  * receive queues, address handles, memory regions, and memory windows.
2144  */
2145 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2146 
2147 /**
2148  * ib_dealloc_pd - Deallocates a protection domain.
2149  * @pd: The protection domain to deallocate.
2150  */
2151 int ib_dealloc_pd(struct ib_pd *pd);
2152 
2153 /**
2154  * ib_create_ah - Creates an address handle for the given address vector.
2155  * @pd: The protection domain associated with the address handle.
2156  * @ah_attr: The attributes of the address vector.
2157  *
2158  * The address handle is used to reference a local or global destination
2159  * in all UD QP post sends.
2160  */
2161 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2162 
2163 /**
2164  * ib_init_ah_from_wc - Initializes address handle attributes from a
2165  *   work completion.
2166  * @device: Device on which the received message arrived.
2167  * @port_num: Port on which the received message arrived.
2168  * @wc: Work completion associated with the received message.
2169  * @grh: References the received global route header.  This parameter is
2170  *   ignored unless the work completion indicates that the GRH is valid.
2171  * @ah_attr: Returned attributes that can be used when creating an address
2172  *   handle for replying to the message.
2173  */
2174 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2175 		       const struct ib_wc *wc, const struct ib_grh *grh,
2176 		       struct ib_ah_attr *ah_attr);
2177 
2178 /**
2179  * ib_create_ah_from_wc - Creates an address handle associated with the
2180  *   sender of the specified work completion.
2181  * @pd: The protection domain associated with the address handle.
2182  * @wc: Work completion information associated with a received message.
2183  * @grh: References the received global route header.  This parameter is
2184  *   ignored unless the work completion indicates that the GRH is valid.
2185  * @port_num: The outbound port number to associate with the address.
2186  *
2187  * The address handle is used to reference a local or global destination
2188  * in all UD QP post sends.
2189  */
2190 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2191 				   const struct ib_grh *grh, u8 port_num);
2192 
2193 /**
2194  * ib_modify_ah - Modifies the address vector associated with an address
2195  *   handle.
2196  * @ah: The address handle to modify.
2197  * @ah_attr: The new address vector attributes to associate with the
2198  *   address handle.
2199  */
2200 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2201 
2202 /**
2203  * ib_query_ah - Queries the address vector associated with an address
2204  *   handle.
2205  * @ah: The address handle to query.
2206  * @ah_attr: The address vector attributes associated with the address
2207  *   handle.
2208  */
2209 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2210 
2211 /**
2212  * ib_destroy_ah - Destroys an address handle.
2213  * @ah: The address handle to destroy.
2214  */
2215 int ib_destroy_ah(struct ib_ah *ah);
2216 
2217 /**
2218  * ib_create_srq - Creates a SRQ associated with the specified protection
2219  *   domain.
2220  * @pd: The protection domain associated with the SRQ.
2221  * @srq_init_attr: A list of initial attributes required to create the
2222  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2223  *   the actual capabilities of the created SRQ.
2224  *
2225  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2226  * requested size of the SRQ, and set to the actual values allocated
2227  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2228  * will always be at least as large as the requested values.
2229  */
2230 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2231 			     struct ib_srq_init_attr *srq_init_attr);
2232 
2233 /**
2234  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2235  * @srq: The SRQ to modify.
2236  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2237  *   the current values of selected SRQ attributes are returned.
2238  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2239  *   are being modified.
2240  *
2241  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2242  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2243  * the number of receives queued drops below the limit.
2244  */
2245 int ib_modify_srq(struct ib_srq *srq,
2246 		  struct ib_srq_attr *srq_attr,
2247 		  enum ib_srq_attr_mask srq_attr_mask);
2248 
2249 /**
2250  * ib_query_srq - Returns the attribute list and current values for the
2251  *   specified SRQ.
2252  * @srq: The SRQ to query.
2253  * @srq_attr: The attributes of the specified SRQ.
2254  */
2255 int ib_query_srq(struct ib_srq *srq,
2256 		 struct ib_srq_attr *srq_attr);
2257 
2258 /**
2259  * ib_destroy_srq - Destroys the specified SRQ.
2260  * @srq: The SRQ to destroy.
2261  */
2262 int ib_destroy_srq(struct ib_srq *srq);
2263 
2264 /**
2265  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2266  * @srq: The SRQ to post the work request on.
2267  * @recv_wr: A list of work requests to post on the receive queue.
2268  * @bad_recv_wr: On an immediate failure, this parameter will reference
2269  *   the work request that failed to be posted on the QP.
2270  */
2271 static inline int ib_post_srq_recv(struct ib_srq *srq,
2272 				   struct ib_recv_wr *recv_wr,
2273 				   struct ib_recv_wr **bad_recv_wr)
2274 {
2275 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2276 }
2277 
2278 /**
2279  * ib_create_qp - Creates a QP associated with the specified protection
2280  *   domain.
2281  * @pd: The protection domain associated with the QP.
2282  * @qp_init_attr: A list of initial attributes required to create the
2283  *   QP.  If QP creation succeeds, then the attributes are updated to
2284  *   the actual capabilities of the created QP.
2285  */
2286 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2287 			   struct ib_qp_init_attr *qp_init_attr);
2288 
2289 /**
2290  * ib_modify_qp - Modifies the attributes for the specified QP and then
2291  *   transitions the QP to the given state.
2292  * @qp: The QP to modify.
2293  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2294  *   the current values of selected QP attributes are returned.
2295  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2296  *   are being modified.
2297  */
2298 int ib_modify_qp(struct ib_qp *qp,
2299 		 struct ib_qp_attr *qp_attr,
2300 		 int qp_attr_mask);
2301 
2302 /**
2303  * ib_query_qp - Returns the attribute list and current values for the
2304  *   specified QP.
2305  * @qp: The QP to query.
2306  * @qp_attr: The attributes of the specified QP.
2307  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2308  * @qp_init_attr: Additional attributes of the selected QP.
2309  *
2310  * The qp_attr_mask may be used to limit the query to gathering only the
2311  * selected attributes.
2312  */
2313 int ib_query_qp(struct ib_qp *qp,
2314 		struct ib_qp_attr *qp_attr,
2315 		int qp_attr_mask,
2316 		struct ib_qp_init_attr *qp_init_attr);
2317 
2318 /**
2319  * ib_destroy_qp - Destroys the specified QP.
2320  * @qp: The QP to destroy.
2321  */
2322 int ib_destroy_qp(struct ib_qp *qp);
2323 
2324 /**
2325  * ib_open_qp - Obtain a reference to an existing sharable QP.
2326  * @xrcd - XRC domain
2327  * @qp_open_attr: Attributes identifying the QP to open.
2328  *
2329  * Returns a reference to a sharable QP.
2330  */
2331 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2332 			 struct ib_qp_open_attr *qp_open_attr);
2333 
2334 /**
2335  * ib_close_qp - Release an external reference to a QP.
2336  * @qp: The QP handle to release
2337  *
2338  * The opened QP handle is released by the caller.  The underlying
2339  * shared QP is not destroyed until all internal references are released.
2340  */
2341 int ib_close_qp(struct ib_qp *qp);
2342 
2343 /**
2344  * ib_post_send - Posts a list of work requests to the send queue of
2345  *   the specified QP.
2346  * @qp: The QP to post the work request on.
2347  * @send_wr: A list of work requests to post on the send queue.
2348  * @bad_send_wr: On an immediate failure, this parameter will reference
2349  *   the work request that failed to be posted on the QP.
2350  *
2351  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2352  * error is returned, the QP state shall not be affected,
2353  * ib_post_send() will return an immediate error after queueing any
2354  * earlier work requests in the list.
2355  */
2356 static inline int ib_post_send(struct ib_qp *qp,
2357 			       struct ib_send_wr *send_wr,
2358 			       struct ib_send_wr **bad_send_wr)
2359 {
2360 	return qp->device->post_send(qp, send_wr, bad_send_wr);
2361 }
2362 
2363 /**
2364  * ib_post_recv - Posts a list of work requests to the receive queue of
2365  *   the specified QP.
2366  * @qp: The QP to post the work request on.
2367  * @recv_wr: A list of work requests to post on the receive queue.
2368  * @bad_recv_wr: On an immediate failure, this parameter will reference
2369  *   the work request that failed to be posted on the QP.
2370  */
2371 static inline int ib_post_recv(struct ib_qp *qp,
2372 			       struct ib_recv_wr *recv_wr,
2373 			       struct ib_recv_wr **bad_recv_wr)
2374 {
2375 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2376 }
2377 
2378 /**
2379  * ib_create_cq - Creates a CQ on the specified device.
2380  * @device: The device on which to create the CQ.
2381  * @comp_handler: A user-specified callback that is invoked when a
2382  *   completion event occurs on the CQ.
2383  * @event_handler: A user-specified callback that is invoked when an
2384  *   asynchronous event not associated with a completion occurs on the CQ.
2385  * @cq_context: Context associated with the CQ returned to the user via
2386  *   the associated completion and event handlers.
2387  * @cq_attr: The attributes the CQ should be created upon.
2388  *
2389  * Users can examine the cq structure to determine the actual CQ size.
2390  */
2391 struct ib_cq *ib_create_cq(struct ib_device *device,
2392 			   ib_comp_handler comp_handler,
2393 			   void (*event_handler)(struct ib_event *, void *),
2394 			   void *cq_context,
2395 			   const struct ib_cq_init_attr *cq_attr);
2396 
2397 /**
2398  * ib_resize_cq - Modifies the capacity of the CQ.
2399  * @cq: The CQ to resize.
2400  * @cqe: The minimum size of the CQ.
2401  *
2402  * Users can examine the cq structure to determine the actual CQ size.
2403  */
2404 int ib_resize_cq(struct ib_cq *cq, int cqe);
2405 
2406 /**
2407  * ib_modify_cq - Modifies moderation params of the CQ
2408  * @cq: The CQ to modify.
2409  * @cq_count: number of CQEs that will trigger an event
2410  * @cq_period: max period of time in usec before triggering an event
2411  *
2412  */
2413 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2414 
2415 /**
2416  * ib_destroy_cq - Destroys the specified CQ.
2417  * @cq: The CQ to destroy.
2418  */
2419 int ib_destroy_cq(struct ib_cq *cq);
2420 
2421 /**
2422  * ib_poll_cq - poll a CQ for completion(s)
2423  * @cq:the CQ being polled
2424  * @num_entries:maximum number of completions to return
2425  * @wc:array of at least @num_entries &struct ib_wc where completions
2426  *   will be returned
2427  *
2428  * Poll a CQ for (possibly multiple) completions.  If the return value
2429  * is < 0, an error occurred.  If the return value is >= 0, it is the
2430  * number of completions returned.  If the return value is
2431  * non-negative and < num_entries, then the CQ was emptied.
2432  */
2433 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2434 			     struct ib_wc *wc)
2435 {
2436 	return cq->device->poll_cq(cq, num_entries, wc);
2437 }
2438 
2439 /**
2440  * ib_peek_cq - Returns the number of unreaped completions currently
2441  *   on the specified CQ.
2442  * @cq: The CQ to peek.
2443  * @wc_cnt: A minimum number of unreaped completions to check for.
2444  *
2445  * If the number of unreaped completions is greater than or equal to wc_cnt,
2446  * this function returns wc_cnt, otherwise, it returns the actual number of
2447  * unreaped completions.
2448  */
2449 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2450 
2451 /**
2452  * ib_req_notify_cq - Request completion notification on a CQ.
2453  * @cq: The CQ to generate an event for.
2454  * @flags:
2455  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2456  *   to request an event on the next solicited event or next work
2457  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2458  *   may also be |ed in to request a hint about missed events, as
2459  *   described below.
2460  *
2461  * Return Value:
2462  *    < 0 means an error occurred while requesting notification
2463  *   == 0 means notification was requested successfully, and if
2464  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2465  *        were missed and it is safe to wait for another event.  In
2466  *        this case is it guaranteed that any work completions added
2467  *        to the CQ since the last CQ poll will trigger a completion
2468  *        notification event.
2469  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2470  *        in.  It means that the consumer must poll the CQ again to
2471  *        make sure it is empty to avoid missing an event because of a
2472  *        race between requesting notification and an entry being
2473  *        added to the CQ.  This return value means it is possible
2474  *        (but not guaranteed) that a work completion has been added
2475  *        to the CQ since the last poll without triggering a
2476  *        completion notification event.
2477  */
2478 static inline int ib_req_notify_cq(struct ib_cq *cq,
2479 				   enum ib_cq_notify_flags flags)
2480 {
2481 	return cq->device->req_notify_cq(cq, flags);
2482 }
2483 
2484 /**
2485  * ib_req_ncomp_notif - Request completion notification when there are
2486  *   at least the specified number of unreaped completions on the CQ.
2487  * @cq: The CQ to generate an event for.
2488  * @wc_cnt: The number of unreaped completions that should be on the
2489  *   CQ before an event is generated.
2490  */
2491 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2492 {
2493 	return cq->device->req_ncomp_notif ?
2494 		cq->device->req_ncomp_notif(cq, wc_cnt) :
2495 		-ENOSYS;
2496 }
2497 
2498 /**
2499  * ib_get_dma_mr - Returns a memory region for system memory that is
2500  *   usable for DMA.
2501  * @pd: The protection domain associated with the memory region.
2502  * @mr_access_flags: Specifies the memory access rights.
2503  *
2504  * Note that the ib_dma_*() functions defined below must be used
2505  * to create/destroy addresses used with the Lkey or Rkey returned
2506  * by ib_get_dma_mr().
2507  */
2508 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2509 
2510 /**
2511  * ib_dma_mapping_error - check a DMA addr for error
2512  * @dev: The device for which the dma_addr was created
2513  * @dma_addr: The DMA address to check
2514  */
2515 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2516 {
2517 	if (dev->dma_ops)
2518 		return dev->dma_ops->mapping_error(dev, dma_addr);
2519 	return dma_mapping_error(dev->dma_device, dma_addr);
2520 }
2521 
2522 /**
2523  * ib_dma_map_single - Map a kernel virtual address to DMA address
2524  * @dev: The device for which the dma_addr is to be created
2525  * @cpu_addr: The kernel virtual address
2526  * @size: The size of the region in bytes
2527  * @direction: The direction of the DMA
2528  */
2529 static inline u64 ib_dma_map_single(struct ib_device *dev,
2530 				    void *cpu_addr, size_t size,
2531 				    enum dma_data_direction direction)
2532 {
2533 	if (dev->dma_ops)
2534 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2535 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2536 }
2537 
2538 /**
2539  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2540  * @dev: The device for which the DMA address was created
2541  * @addr: The DMA address
2542  * @size: The size of the region in bytes
2543  * @direction: The direction of the DMA
2544  */
2545 static inline void ib_dma_unmap_single(struct ib_device *dev,
2546 				       u64 addr, size_t size,
2547 				       enum dma_data_direction direction)
2548 {
2549 	if (dev->dma_ops)
2550 		dev->dma_ops->unmap_single(dev, addr, size, direction);
2551 	else
2552 		dma_unmap_single(dev->dma_device, addr, size, direction);
2553 }
2554 
2555 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2556 					  void *cpu_addr, size_t size,
2557 					  enum dma_data_direction direction,
2558 					  struct dma_attrs *attrs)
2559 {
2560 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2561 				    direction, attrs);
2562 }
2563 
2564 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2565 					     u64 addr, size_t size,
2566 					     enum dma_data_direction direction,
2567 					     struct dma_attrs *attrs)
2568 {
2569 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2570 				      direction, attrs);
2571 }
2572 
2573 /**
2574  * ib_dma_map_page - Map a physical page to DMA address
2575  * @dev: The device for which the dma_addr is to be created
2576  * @page: The page to be mapped
2577  * @offset: The offset within the page
2578  * @size: The size of the region in bytes
2579  * @direction: The direction of the DMA
2580  */
2581 static inline u64 ib_dma_map_page(struct ib_device *dev,
2582 				  struct page *page,
2583 				  unsigned long offset,
2584 				  size_t size,
2585 					 enum dma_data_direction direction)
2586 {
2587 	if (dev->dma_ops)
2588 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2589 	return dma_map_page(dev->dma_device, page, offset, size, direction);
2590 }
2591 
2592 /**
2593  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2594  * @dev: The device for which the DMA address was created
2595  * @addr: The DMA address
2596  * @size: The size of the region in bytes
2597  * @direction: The direction of the DMA
2598  */
2599 static inline void ib_dma_unmap_page(struct ib_device *dev,
2600 				     u64 addr, size_t size,
2601 				     enum dma_data_direction direction)
2602 {
2603 	if (dev->dma_ops)
2604 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2605 	else
2606 		dma_unmap_page(dev->dma_device, addr, size, direction);
2607 }
2608 
2609 /**
2610  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2611  * @dev: The device for which the DMA addresses are to be created
2612  * @sg: The array of scatter/gather entries
2613  * @nents: The number of scatter/gather entries
2614  * @direction: The direction of the DMA
2615  */
2616 static inline int ib_dma_map_sg(struct ib_device *dev,
2617 				struct scatterlist *sg, int nents,
2618 				enum dma_data_direction direction)
2619 {
2620 	if (dev->dma_ops)
2621 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2622 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2623 }
2624 
2625 /**
2626  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2627  * @dev: The device for which the DMA addresses were created
2628  * @sg: The array of scatter/gather entries
2629  * @nents: The number of scatter/gather entries
2630  * @direction: The direction of the DMA
2631  */
2632 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2633 				   struct scatterlist *sg, int nents,
2634 				   enum dma_data_direction direction)
2635 {
2636 	if (dev->dma_ops)
2637 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2638 	else
2639 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2640 }
2641 
2642 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2643 				      struct scatterlist *sg, int nents,
2644 				      enum dma_data_direction direction,
2645 				      struct dma_attrs *attrs)
2646 {
2647 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2648 }
2649 
2650 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2651 					 struct scatterlist *sg, int nents,
2652 					 enum dma_data_direction direction,
2653 					 struct dma_attrs *attrs)
2654 {
2655 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2656 }
2657 /**
2658  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2659  * @dev: The device for which the DMA addresses were created
2660  * @sg: The scatter/gather entry
2661  *
2662  * Note: this function is obsolete. To do: change all occurrences of
2663  * ib_sg_dma_address() into sg_dma_address().
2664  */
2665 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2666 				    struct scatterlist *sg)
2667 {
2668 	return sg_dma_address(sg);
2669 }
2670 
2671 /**
2672  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2673  * @dev: The device for which the DMA addresses were created
2674  * @sg: The scatter/gather entry
2675  *
2676  * Note: this function is obsolete. To do: change all occurrences of
2677  * ib_sg_dma_len() into sg_dma_len().
2678  */
2679 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2680 					 struct scatterlist *sg)
2681 {
2682 	return sg_dma_len(sg);
2683 }
2684 
2685 /**
2686  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2687  * @dev: The device for which the DMA address was created
2688  * @addr: The DMA address
2689  * @size: The size of the region in bytes
2690  * @dir: The direction of the DMA
2691  */
2692 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2693 					      u64 addr,
2694 					      size_t size,
2695 					      enum dma_data_direction dir)
2696 {
2697 	if (dev->dma_ops)
2698 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2699 	else
2700 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2701 }
2702 
2703 /**
2704  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2705  * @dev: The device for which the DMA address was created
2706  * @addr: The DMA address
2707  * @size: The size of the region in bytes
2708  * @dir: The direction of the DMA
2709  */
2710 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2711 						 u64 addr,
2712 						 size_t size,
2713 						 enum dma_data_direction dir)
2714 {
2715 	if (dev->dma_ops)
2716 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2717 	else
2718 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2719 }
2720 
2721 /**
2722  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2723  * @dev: The device for which the DMA address is requested
2724  * @size: The size of the region to allocate in bytes
2725  * @dma_handle: A pointer for returning the DMA address of the region
2726  * @flag: memory allocator flags
2727  */
2728 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2729 					   size_t size,
2730 					   u64 *dma_handle,
2731 					   gfp_t flag)
2732 {
2733 	if (dev->dma_ops)
2734 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2735 	else {
2736 		dma_addr_t handle;
2737 		void *ret;
2738 
2739 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2740 		*dma_handle = handle;
2741 		return ret;
2742 	}
2743 }
2744 
2745 /**
2746  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2747  * @dev: The device for which the DMA addresses were allocated
2748  * @size: The size of the region
2749  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2750  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2751  */
2752 static inline void ib_dma_free_coherent(struct ib_device *dev,
2753 					size_t size, void *cpu_addr,
2754 					u64 dma_handle)
2755 {
2756 	if (dev->dma_ops)
2757 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2758 	else
2759 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2760 }
2761 
2762 /**
2763  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2764  *   by an HCA.
2765  * @pd: The protection domain associated assigned to the registered region.
2766  * @phys_buf_array: Specifies a list of physical buffers to use in the
2767  *   memory region.
2768  * @num_phys_buf: Specifies the size of the phys_buf_array.
2769  * @mr_access_flags: Specifies the memory access rights.
2770  * @iova_start: The offset of the region's starting I/O virtual address.
2771  */
2772 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2773 			     struct ib_phys_buf *phys_buf_array,
2774 			     int num_phys_buf,
2775 			     int mr_access_flags,
2776 			     u64 *iova_start);
2777 
2778 /**
2779  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2780  *   Conceptually, this call performs the functions deregister memory region
2781  *   followed by register physical memory region.  Where possible,
2782  *   resources are reused instead of deallocated and reallocated.
2783  * @mr: The memory region to modify.
2784  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2785  *   properties of the memory region are being modified.
2786  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2787  *   the new protection domain to associated with the memory region,
2788  *   otherwise, this parameter is ignored.
2789  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2790  *   field specifies a list of physical buffers to use in the new
2791  *   translation, otherwise, this parameter is ignored.
2792  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2793  *   field specifies the size of the phys_buf_array, otherwise, this
2794  *   parameter is ignored.
2795  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2796  *   field specifies the new memory access rights, otherwise, this
2797  *   parameter is ignored.
2798  * @iova_start: The offset of the region's starting I/O virtual address.
2799  */
2800 int ib_rereg_phys_mr(struct ib_mr *mr,
2801 		     int mr_rereg_mask,
2802 		     struct ib_pd *pd,
2803 		     struct ib_phys_buf *phys_buf_array,
2804 		     int num_phys_buf,
2805 		     int mr_access_flags,
2806 		     u64 *iova_start);
2807 
2808 /**
2809  * ib_query_mr - Retrieves information about a specific memory region.
2810  * @mr: The memory region to retrieve information about.
2811  * @mr_attr: The attributes of the specified memory region.
2812  */
2813 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2814 
2815 /**
2816  * ib_dereg_mr - Deregisters a memory region and removes it from the
2817  *   HCA translation table.
2818  * @mr: The memory region to deregister.
2819  *
2820  * This function can fail, if the memory region has memory windows bound to it.
2821  */
2822 int ib_dereg_mr(struct ib_mr *mr);
2823 
2824 
2825 /**
2826  * ib_create_mr - Allocates a memory region that may be used for
2827  *     signature handover operations.
2828  * @pd: The protection domain associated with the region.
2829  * @mr_init_attr: memory region init attributes.
2830  */
2831 struct ib_mr *ib_create_mr(struct ib_pd *pd,
2832 			   struct ib_mr_init_attr *mr_init_attr);
2833 
2834 /**
2835  * ib_destroy_mr - Destroys a memory region that was created using
2836  *     ib_create_mr and removes it from HW translation tables.
2837  * @mr: The memory region to destroy.
2838  *
2839  * This function can fail, if the memory region has memory windows bound to it.
2840  */
2841 int ib_destroy_mr(struct ib_mr *mr);
2842 
2843 /**
2844  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2845  *   IB_WR_FAST_REG_MR send work request.
2846  * @pd: The protection domain associated with the region.
2847  * @max_page_list_len: requested max physical buffer list length to be
2848  *   used with fast register work requests for this MR.
2849  */
2850 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2851 
2852 /**
2853  * ib_alloc_fast_reg_page_list - Allocates a page list array
2854  * @device - ib device pointer.
2855  * @page_list_len - size of the page list array to be allocated.
2856  *
2857  * This allocates and returns a struct ib_fast_reg_page_list * and a
2858  * page_list array that is at least page_list_len in size.  The actual
2859  * size is returned in max_page_list_len.  The caller is responsible
2860  * for initializing the contents of the page_list array before posting
2861  * a send work request with the IB_WC_FAST_REG_MR opcode.
2862  *
2863  * The page_list array entries must be translated using one of the
2864  * ib_dma_*() functions just like the addresses passed to
2865  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2866  * ib_fast_reg_page_list must not be modified by the caller until the
2867  * IB_WC_FAST_REG_MR work request completes.
2868  */
2869 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2870 				struct ib_device *device, int page_list_len);
2871 
2872 /**
2873  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2874  *   page list array.
2875  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2876  */
2877 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2878 
2879 /**
2880  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2881  *   R_Key and L_Key.
2882  * @mr - struct ib_mr pointer to be updated.
2883  * @newkey - new key to be used.
2884  */
2885 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2886 {
2887 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2888 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2889 }
2890 
2891 /**
2892  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2893  * for calculating a new rkey for type 2 memory windows.
2894  * @rkey - the rkey to increment.
2895  */
2896 static inline u32 ib_inc_rkey(u32 rkey)
2897 {
2898 	const u32 mask = 0x000000ff;
2899 	return ((rkey + 1) & mask) | (rkey & ~mask);
2900 }
2901 
2902 /**
2903  * ib_alloc_mw - Allocates a memory window.
2904  * @pd: The protection domain associated with the memory window.
2905  * @type: The type of the memory window (1 or 2).
2906  */
2907 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2908 
2909 /**
2910  * ib_bind_mw - Posts a work request to the send queue of the specified
2911  *   QP, which binds the memory window to the given address range and
2912  *   remote access attributes.
2913  * @qp: QP to post the bind work request on.
2914  * @mw: The memory window to bind.
2915  * @mw_bind: Specifies information about the memory window, including
2916  *   its address range, remote access rights, and associated memory region.
2917  *
2918  * If there is no immediate error, the function will update the rkey member
2919  * of the mw parameter to its new value. The bind operation can still fail
2920  * asynchronously.
2921  */
2922 static inline int ib_bind_mw(struct ib_qp *qp,
2923 			     struct ib_mw *mw,
2924 			     struct ib_mw_bind *mw_bind)
2925 {
2926 	/* XXX reference counting in corresponding MR? */
2927 	return mw->device->bind_mw ?
2928 		mw->device->bind_mw(qp, mw, mw_bind) :
2929 		-ENOSYS;
2930 }
2931 
2932 /**
2933  * ib_dealloc_mw - Deallocates a memory window.
2934  * @mw: The memory window to deallocate.
2935  */
2936 int ib_dealloc_mw(struct ib_mw *mw);
2937 
2938 /**
2939  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2940  * @pd: The protection domain associated with the unmapped region.
2941  * @mr_access_flags: Specifies the memory access rights.
2942  * @fmr_attr: Attributes of the unmapped region.
2943  *
2944  * A fast memory region must be mapped before it can be used as part of
2945  * a work request.
2946  */
2947 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2948 			    int mr_access_flags,
2949 			    struct ib_fmr_attr *fmr_attr);
2950 
2951 /**
2952  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2953  * @fmr: The fast memory region to associate with the pages.
2954  * @page_list: An array of physical pages to map to the fast memory region.
2955  * @list_len: The number of pages in page_list.
2956  * @iova: The I/O virtual address to use with the mapped region.
2957  */
2958 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2959 				  u64 *page_list, int list_len,
2960 				  u64 iova)
2961 {
2962 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2963 }
2964 
2965 /**
2966  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2967  * @fmr_list: A linked list of fast memory regions to unmap.
2968  */
2969 int ib_unmap_fmr(struct list_head *fmr_list);
2970 
2971 /**
2972  * ib_dealloc_fmr - Deallocates a fast memory region.
2973  * @fmr: The fast memory region to deallocate.
2974  */
2975 int ib_dealloc_fmr(struct ib_fmr *fmr);
2976 
2977 /**
2978  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2979  * @qp: QP to attach to the multicast group.  The QP must be type
2980  *   IB_QPT_UD.
2981  * @gid: Multicast group GID.
2982  * @lid: Multicast group LID in host byte order.
2983  *
2984  * In order to send and receive multicast packets, subnet
2985  * administration must have created the multicast group and configured
2986  * the fabric appropriately.  The port associated with the specified
2987  * QP must also be a member of the multicast group.
2988  */
2989 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2990 
2991 /**
2992  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2993  * @qp: QP to detach from the multicast group.
2994  * @gid: Multicast group GID.
2995  * @lid: Multicast group LID in host byte order.
2996  */
2997 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2998 
2999 /**
3000  * ib_alloc_xrcd - Allocates an XRC domain.
3001  * @device: The device on which to allocate the XRC domain.
3002  */
3003 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3004 
3005 /**
3006  * ib_dealloc_xrcd - Deallocates an XRC domain.
3007  * @xrcd: The XRC domain to deallocate.
3008  */
3009 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3010 
3011 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3012 			       struct ib_flow_attr *flow_attr, int domain);
3013 int ib_destroy_flow(struct ib_flow *flow_id);
3014 
3015 static inline int ib_check_mr_access(int flags)
3016 {
3017 	/*
3018 	 * Local write permission is required if remote write or
3019 	 * remote atomic permission is also requested.
3020 	 */
3021 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3022 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3023 		return -EINVAL;
3024 
3025 	return 0;
3026 }
3027 
3028 /**
3029  * ib_check_mr_status: lightweight check of MR status.
3030  *     This routine may provide status checks on a selected
3031  *     ib_mr. first use is for signature status check.
3032  *
3033  * @mr: A memory region.
3034  * @check_mask: Bitmask of which checks to perform from
3035  *     ib_mr_status_check enumeration.
3036  * @mr_status: The container of relevant status checks.
3037  *     failed checks will be indicated in the status bitmask
3038  *     and the relevant info shall be in the error item.
3039  */
3040 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3041 		       struct ib_mr_status *mr_status);
3042 
3043 #endif /* IB_VERBS_H */
3044