xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 5bd8e16d)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 
52 #include <linux/atomic.h>
53 #include <asm/uaccess.h>
54 
55 extern struct workqueue_struct *ib_wq;
56 
57 union ib_gid {
58 	u8	raw[16];
59 	struct {
60 		__be64	subnet_prefix;
61 		__be64	interface_id;
62 	} global;
63 };
64 
65 enum rdma_node_type {
66 	/* IB values map to NodeInfo:NodeType. */
67 	RDMA_NODE_IB_CA 	= 1,
68 	RDMA_NODE_IB_SWITCH,
69 	RDMA_NODE_IB_ROUTER,
70 	RDMA_NODE_RNIC
71 };
72 
73 enum rdma_transport_type {
74 	RDMA_TRANSPORT_IB,
75 	RDMA_TRANSPORT_IWARP
76 };
77 
78 enum rdma_transport_type
79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80 
81 enum rdma_link_layer {
82 	IB_LINK_LAYER_UNSPECIFIED,
83 	IB_LINK_LAYER_INFINIBAND,
84 	IB_LINK_LAYER_ETHERNET,
85 };
86 
87 enum ib_device_cap_flags {
88 	IB_DEVICE_RESIZE_MAX_WR		= 1,
89 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
90 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
91 	IB_DEVICE_RAW_MULTI		= (1<<3),
92 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
93 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
94 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
95 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
96 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
97 	IB_DEVICE_INIT_TYPE		= (1<<9),
98 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
99 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
100 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
101 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
102 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
103 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
104 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
105 	IB_DEVICE_MEM_WINDOW		= (1<<17),
106 	/*
107 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 	 * messages and can verify the validity of checksum for
110 	 * incoming messages.  Setting this flag implies that the
111 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 	 */
113 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
114 	IB_DEVICE_UD_TSO		= (1<<19),
115 	IB_DEVICE_XRC			= (1<<20),
116 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
117 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
118 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
119 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
120 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
121 };
122 
123 enum ib_atomic_cap {
124 	IB_ATOMIC_NONE,
125 	IB_ATOMIC_HCA,
126 	IB_ATOMIC_GLOB
127 };
128 
129 struct ib_device_attr {
130 	u64			fw_ver;
131 	__be64			sys_image_guid;
132 	u64			max_mr_size;
133 	u64			page_size_cap;
134 	u32			vendor_id;
135 	u32			vendor_part_id;
136 	u32			hw_ver;
137 	int			max_qp;
138 	int			max_qp_wr;
139 	int			device_cap_flags;
140 	int			max_sge;
141 	int			max_sge_rd;
142 	int			max_cq;
143 	int			max_cqe;
144 	int			max_mr;
145 	int			max_pd;
146 	int			max_qp_rd_atom;
147 	int			max_ee_rd_atom;
148 	int			max_res_rd_atom;
149 	int			max_qp_init_rd_atom;
150 	int			max_ee_init_rd_atom;
151 	enum ib_atomic_cap	atomic_cap;
152 	enum ib_atomic_cap	masked_atomic_cap;
153 	int			max_ee;
154 	int			max_rdd;
155 	int			max_mw;
156 	int			max_raw_ipv6_qp;
157 	int			max_raw_ethy_qp;
158 	int			max_mcast_grp;
159 	int			max_mcast_qp_attach;
160 	int			max_total_mcast_qp_attach;
161 	int			max_ah;
162 	int			max_fmr;
163 	int			max_map_per_fmr;
164 	int			max_srq;
165 	int			max_srq_wr;
166 	int			max_srq_sge;
167 	unsigned int		max_fast_reg_page_list_len;
168 	u16			max_pkeys;
169 	u8			local_ca_ack_delay;
170 };
171 
172 enum ib_mtu {
173 	IB_MTU_256  = 1,
174 	IB_MTU_512  = 2,
175 	IB_MTU_1024 = 3,
176 	IB_MTU_2048 = 4,
177 	IB_MTU_4096 = 5
178 };
179 
180 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
181 {
182 	switch (mtu) {
183 	case IB_MTU_256:  return  256;
184 	case IB_MTU_512:  return  512;
185 	case IB_MTU_1024: return 1024;
186 	case IB_MTU_2048: return 2048;
187 	case IB_MTU_4096: return 4096;
188 	default: 	  return -1;
189 	}
190 }
191 
192 enum ib_port_state {
193 	IB_PORT_NOP		= 0,
194 	IB_PORT_DOWN		= 1,
195 	IB_PORT_INIT		= 2,
196 	IB_PORT_ARMED		= 3,
197 	IB_PORT_ACTIVE		= 4,
198 	IB_PORT_ACTIVE_DEFER	= 5
199 };
200 
201 enum ib_port_cap_flags {
202 	IB_PORT_SM				= 1 <<  1,
203 	IB_PORT_NOTICE_SUP			= 1 <<  2,
204 	IB_PORT_TRAP_SUP			= 1 <<  3,
205 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
206 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
207 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
208 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
209 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
210 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
211 	IB_PORT_SM_DISABLED			= 1 << 10,
212 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
213 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
214 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
215 	IB_PORT_CM_SUP				= 1 << 16,
216 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
217 	IB_PORT_REINIT_SUP			= 1 << 18,
218 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
219 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
220 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
221 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
222 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
223 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
224 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
225 };
226 
227 enum ib_port_width {
228 	IB_WIDTH_1X	= 1,
229 	IB_WIDTH_4X	= 2,
230 	IB_WIDTH_8X	= 4,
231 	IB_WIDTH_12X	= 8
232 };
233 
234 static inline int ib_width_enum_to_int(enum ib_port_width width)
235 {
236 	switch (width) {
237 	case IB_WIDTH_1X:  return  1;
238 	case IB_WIDTH_4X:  return  4;
239 	case IB_WIDTH_8X:  return  8;
240 	case IB_WIDTH_12X: return 12;
241 	default: 	  return -1;
242 	}
243 }
244 
245 enum ib_port_speed {
246 	IB_SPEED_SDR	= 1,
247 	IB_SPEED_DDR	= 2,
248 	IB_SPEED_QDR	= 4,
249 	IB_SPEED_FDR10	= 8,
250 	IB_SPEED_FDR	= 16,
251 	IB_SPEED_EDR	= 32
252 };
253 
254 struct ib_protocol_stats {
255 	/* TBD... */
256 };
257 
258 struct iw_protocol_stats {
259 	u64	ipInReceives;
260 	u64	ipInHdrErrors;
261 	u64	ipInTooBigErrors;
262 	u64	ipInNoRoutes;
263 	u64	ipInAddrErrors;
264 	u64	ipInUnknownProtos;
265 	u64	ipInTruncatedPkts;
266 	u64	ipInDiscards;
267 	u64	ipInDelivers;
268 	u64	ipOutForwDatagrams;
269 	u64	ipOutRequests;
270 	u64	ipOutDiscards;
271 	u64	ipOutNoRoutes;
272 	u64	ipReasmTimeout;
273 	u64	ipReasmReqds;
274 	u64	ipReasmOKs;
275 	u64	ipReasmFails;
276 	u64	ipFragOKs;
277 	u64	ipFragFails;
278 	u64	ipFragCreates;
279 	u64	ipInMcastPkts;
280 	u64	ipOutMcastPkts;
281 	u64	ipInBcastPkts;
282 	u64	ipOutBcastPkts;
283 
284 	u64	tcpRtoAlgorithm;
285 	u64	tcpRtoMin;
286 	u64	tcpRtoMax;
287 	u64	tcpMaxConn;
288 	u64	tcpActiveOpens;
289 	u64	tcpPassiveOpens;
290 	u64	tcpAttemptFails;
291 	u64	tcpEstabResets;
292 	u64	tcpCurrEstab;
293 	u64	tcpInSegs;
294 	u64	tcpOutSegs;
295 	u64	tcpRetransSegs;
296 	u64	tcpInErrs;
297 	u64	tcpOutRsts;
298 };
299 
300 union rdma_protocol_stats {
301 	struct ib_protocol_stats	ib;
302 	struct iw_protocol_stats	iw;
303 };
304 
305 struct ib_port_attr {
306 	enum ib_port_state	state;
307 	enum ib_mtu		max_mtu;
308 	enum ib_mtu		active_mtu;
309 	int			gid_tbl_len;
310 	u32			port_cap_flags;
311 	u32			max_msg_sz;
312 	u32			bad_pkey_cntr;
313 	u32			qkey_viol_cntr;
314 	u16			pkey_tbl_len;
315 	u16			lid;
316 	u16			sm_lid;
317 	u8			lmc;
318 	u8			max_vl_num;
319 	u8			sm_sl;
320 	u8			subnet_timeout;
321 	u8			init_type_reply;
322 	u8			active_width;
323 	u8			active_speed;
324 	u8                      phys_state;
325 };
326 
327 enum ib_device_modify_flags {
328 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
329 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
330 };
331 
332 struct ib_device_modify {
333 	u64	sys_image_guid;
334 	char	node_desc[64];
335 };
336 
337 enum ib_port_modify_flags {
338 	IB_PORT_SHUTDOWN		= 1,
339 	IB_PORT_INIT_TYPE		= (1<<2),
340 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
341 };
342 
343 struct ib_port_modify {
344 	u32	set_port_cap_mask;
345 	u32	clr_port_cap_mask;
346 	u8	init_type;
347 };
348 
349 enum ib_event_type {
350 	IB_EVENT_CQ_ERR,
351 	IB_EVENT_QP_FATAL,
352 	IB_EVENT_QP_REQ_ERR,
353 	IB_EVENT_QP_ACCESS_ERR,
354 	IB_EVENT_COMM_EST,
355 	IB_EVENT_SQ_DRAINED,
356 	IB_EVENT_PATH_MIG,
357 	IB_EVENT_PATH_MIG_ERR,
358 	IB_EVENT_DEVICE_FATAL,
359 	IB_EVENT_PORT_ACTIVE,
360 	IB_EVENT_PORT_ERR,
361 	IB_EVENT_LID_CHANGE,
362 	IB_EVENT_PKEY_CHANGE,
363 	IB_EVENT_SM_CHANGE,
364 	IB_EVENT_SRQ_ERR,
365 	IB_EVENT_SRQ_LIMIT_REACHED,
366 	IB_EVENT_QP_LAST_WQE_REACHED,
367 	IB_EVENT_CLIENT_REREGISTER,
368 	IB_EVENT_GID_CHANGE,
369 };
370 
371 struct ib_event {
372 	struct ib_device	*device;
373 	union {
374 		struct ib_cq	*cq;
375 		struct ib_qp	*qp;
376 		struct ib_srq	*srq;
377 		u8		port_num;
378 	} element;
379 	enum ib_event_type	event;
380 };
381 
382 struct ib_event_handler {
383 	struct ib_device *device;
384 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
385 	struct list_head  list;
386 };
387 
388 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
389 	do {							\
390 		(_ptr)->device  = _device;			\
391 		(_ptr)->handler = _handler;			\
392 		INIT_LIST_HEAD(&(_ptr)->list);			\
393 	} while (0)
394 
395 struct ib_global_route {
396 	union ib_gid	dgid;
397 	u32		flow_label;
398 	u8		sgid_index;
399 	u8		hop_limit;
400 	u8		traffic_class;
401 };
402 
403 struct ib_grh {
404 	__be32		version_tclass_flow;
405 	__be16		paylen;
406 	u8		next_hdr;
407 	u8		hop_limit;
408 	union ib_gid	sgid;
409 	union ib_gid	dgid;
410 };
411 
412 enum {
413 	IB_MULTICAST_QPN = 0xffffff
414 };
415 
416 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
417 
418 enum ib_ah_flags {
419 	IB_AH_GRH	= 1
420 };
421 
422 enum ib_rate {
423 	IB_RATE_PORT_CURRENT = 0,
424 	IB_RATE_2_5_GBPS = 2,
425 	IB_RATE_5_GBPS   = 5,
426 	IB_RATE_10_GBPS  = 3,
427 	IB_RATE_20_GBPS  = 6,
428 	IB_RATE_30_GBPS  = 4,
429 	IB_RATE_40_GBPS  = 7,
430 	IB_RATE_60_GBPS  = 8,
431 	IB_RATE_80_GBPS  = 9,
432 	IB_RATE_120_GBPS = 10,
433 	IB_RATE_14_GBPS  = 11,
434 	IB_RATE_56_GBPS  = 12,
435 	IB_RATE_112_GBPS = 13,
436 	IB_RATE_168_GBPS = 14,
437 	IB_RATE_25_GBPS  = 15,
438 	IB_RATE_100_GBPS = 16,
439 	IB_RATE_200_GBPS = 17,
440 	IB_RATE_300_GBPS = 18
441 };
442 
443 /**
444  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
445  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
446  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
447  * @rate: rate to convert.
448  */
449 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
450 
451 /**
452  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
453  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
454  * @rate: rate to convert.
455  */
456 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
457 
458 /**
459  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
460  * enum.
461  * @mult: multiple to convert.
462  */
463 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
464 
465 struct ib_ah_attr {
466 	struct ib_global_route	grh;
467 	u16			dlid;
468 	u8			sl;
469 	u8			src_path_bits;
470 	u8			static_rate;
471 	u8			ah_flags;
472 	u8			port_num;
473 };
474 
475 enum ib_wc_status {
476 	IB_WC_SUCCESS,
477 	IB_WC_LOC_LEN_ERR,
478 	IB_WC_LOC_QP_OP_ERR,
479 	IB_WC_LOC_EEC_OP_ERR,
480 	IB_WC_LOC_PROT_ERR,
481 	IB_WC_WR_FLUSH_ERR,
482 	IB_WC_MW_BIND_ERR,
483 	IB_WC_BAD_RESP_ERR,
484 	IB_WC_LOC_ACCESS_ERR,
485 	IB_WC_REM_INV_REQ_ERR,
486 	IB_WC_REM_ACCESS_ERR,
487 	IB_WC_REM_OP_ERR,
488 	IB_WC_RETRY_EXC_ERR,
489 	IB_WC_RNR_RETRY_EXC_ERR,
490 	IB_WC_LOC_RDD_VIOL_ERR,
491 	IB_WC_REM_INV_RD_REQ_ERR,
492 	IB_WC_REM_ABORT_ERR,
493 	IB_WC_INV_EECN_ERR,
494 	IB_WC_INV_EEC_STATE_ERR,
495 	IB_WC_FATAL_ERR,
496 	IB_WC_RESP_TIMEOUT_ERR,
497 	IB_WC_GENERAL_ERR
498 };
499 
500 enum ib_wc_opcode {
501 	IB_WC_SEND,
502 	IB_WC_RDMA_WRITE,
503 	IB_WC_RDMA_READ,
504 	IB_WC_COMP_SWAP,
505 	IB_WC_FETCH_ADD,
506 	IB_WC_BIND_MW,
507 	IB_WC_LSO,
508 	IB_WC_LOCAL_INV,
509 	IB_WC_FAST_REG_MR,
510 	IB_WC_MASKED_COMP_SWAP,
511 	IB_WC_MASKED_FETCH_ADD,
512 /*
513  * Set value of IB_WC_RECV so consumers can test if a completion is a
514  * receive by testing (opcode & IB_WC_RECV).
515  */
516 	IB_WC_RECV			= 1 << 7,
517 	IB_WC_RECV_RDMA_WITH_IMM
518 };
519 
520 enum ib_wc_flags {
521 	IB_WC_GRH		= 1,
522 	IB_WC_WITH_IMM		= (1<<1),
523 	IB_WC_WITH_INVALIDATE	= (1<<2),
524 	IB_WC_IP_CSUM_OK	= (1<<3),
525 };
526 
527 struct ib_wc {
528 	u64			wr_id;
529 	enum ib_wc_status	status;
530 	enum ib_wc_opcode	opcode;
531 	u32			vendor_err;
532 	u32			byte_len;
533 	struct ib_qp	       *qp;
534 	union {
535 		__be32		imm_data;
536 		u32		invalidate_rkey;
537 	} ex;
538 	u32			src_qp;
539 	int			wc_flags;
540 	u16			pkey_index;
541 	u16			slid;
542 	u8			sl;
543 	u8			dlid_path_bits;
544 	u8			port_num;	/* valid only for DR SMPs on switches */
545 };
546 
547 enum ib_cq_notify_flags {
548 	IB_CQ_SOLICITED			= 1 << 0,
549 	IB_CQ_NEXT_COMP			= 1 << 1,
550 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
551 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
552 };
553 
554 enum ib_srq_type {
555 	IB_SRQT_BASIC,
556 	IB_SRQT_XRC
557 };
558 
559 enum ib_srq_attr_mask {
560 	IB_SRQ_MAX_WR	= 1 << 0,
561 	IB_SRQ_LIMIT	= 1 << 1,
562 };
563 
564 struct ib_srq_attr {
565 	u32	max_wr;
566 	u32	max_sge;
567 	u32	srq_limit;
568 };
569 
570 struct ib_srq_init_attr {
571 	void		      (*event_handler)(struct ib_event *, void *);
572 	void		       *srq_context;
573 	struct ib_srq_attr	attr;
574 	enum ib_srq_type	srq_type;
575 
576 	union {
577 		struct {
578 			struct ib_xrcd *xrcd;
579 			struct ib_cq   *cq;
580 		} xrc;
581 	} ext;
582 };
583 
584 struct ib_qp_cap {
585 	u32	max_send_wr;
586 	u32	max_recv_wr;
587 	u32	max_send_sge;
588 	u32	max_recv_sge;
589 	u32	max_inline_data;
590 };
591 
592 enum ib_sig_type {
593 	IB_SIGNAL_ALL_WR,
594 	IB_SIGNAL_REQ_WR
595 };
596 
597 enum ib_qp_type {
598 	/*
599 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
600 	 * here (and in that order) since the MAD layer uses them as
601 	 * indices into a 2-entry table.
602 	 */
603 	IB_QPT_SMI,
604 	IB_QPT_GSI,
605 
606 	IB_QPT_RC,
607 	IB_QPT_UC,
608 	IB_QPT_UD,
609 	IB_QPT_RAW_IPV6,
610 	IB_QPT_RAW_ETHERTYPE,
611 	IB_QPT_RAW_PACKET = 8,
612 	IB_QPT_XRC_INI = 9,
613 	IB_QPT_XRC_TGT,
614 	IB_QPT_MAX,
615 	/* Reserve a range for qp types internal to the low level driver.
616 	 * These qp types will not be visible at the IB core layer, so the
617 	 * IB_QPT_MAX usages should not be affected in the core layer
618 	 */
619 	IB_QPT_RESERVED1 = 0x1000,
620 	IB_QPT_RESERVED2,
621 	IB_QPT_RESERVED3,
622 	IB_QPT_RESERVED4,
623 	IB_QPT_RESERVED5,
624 	IB_QPT_RESERVED6,
625 	IB_QPT_RESERVED7,
626 	IB_QPT_RESERVED8,
627 	IB_QPT_RESERVED9,
628 	IB_QPT_RESERVED10,
629 };
630 
631 enum ib_qp_create_flags {
632 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
633 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
634 	/* reserve bits 26-31 for low level drivers' internal use */
635 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
636 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
637 };
638 
639 
640 /*
641  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
642  * callback to destroy the passed in QP.
643  */
644 
645 struct ib_qp_init_attr {
646 	void                  (*event_handler)(struct ib_event *, void *);
647 	void		       *qp_context;
648 	struct ib_cq	       *send_cq;
649 	struct ib_cq	       *recv_cq;
650 	struct ib_srq	       *srq;
651 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
652 	struct ib_qp_cap	cap;
653 	enum ib_sig_type	sq_sig_type;
654 	enum ib_qp_type		qp_type;
655 	enum ib_qp_create_flags	create_flags;
656 	u8			port_num; /* special QP types only */
657 };
658 
659 struct ib_qp_open_attr {
660 	void                  (*event_handler)(struct ib_event *, void *);
661 	void		       *qp_context;
662 	u32			qp_num;
663 	enum ib_qp_type		qp_type;
664 };
665 
666 enum ib_rnr_timeout {
667 	IB_RNR_TIMER_655_36 =  0,
668 	IB_RNR_TIMER_000_01 =  1,
669 	IB_RNR_TIMER_000_02 =  2,
670 	IB_RNR_TIMER_000_03 =  3,
671 	IB_RNR_TIMER_000_04 =  4,
672 	IB_RNR_TIMER_000_06 =  5,
673 	IB_RNR_TIMER_000_08 =  6,
674 	IB_RNR_TIMER_000_12 =  7,
675 	IB_RNR_TIMER_000_16 =  8,
676 	IB_RNR_TIMER_000_24 =  9,
677 	IB_RNR_TIMER_000_32 = 10,
678 	IB_RNR_TIMER_000_48 = 11,
679 	IB_RNR_TIMER_000_64 = 12,
680 	IB_RNR_TIMER_000_96 = 13,
681 	IB_RNR_TIMER_001_28 = 14,
682 	IB_RNR_TIMER_001_92 = 15,
683 	IB_RNR_TIMER_002_56 = 16,
684 	IB_RNR_TIMER_003_84 = 17,
685 	IB_RNR_TIMER_005_12 = 18,
686 	IB_RNR_TIMER_007_68 = 19,
687 	IB_RNR_TIMER_010_24 = 20,
688 	IB_RNR_TIMER_015_36 = 21,
689 	IB_RNR_TIMER_020_48 = 22,
690 	IB_RNR_TIMER_030_72 = 23,
691 	IB_RNR_TIMER_040_96 = 24,
692 	IB_RNR_TIMER_061_44 = 25,
693 	IB_RNR_TIMER_081_92 = 26,
694 	IB_RNR_TIMER_122_88 = 27,
695 	IB_RNR_TIMER_163_84 = 28,
696 	IB_RNR_TIMER_245_76 = 29,
697 	IB_RNR_TIMER_327_68 = 30,
698 	IB_RNR_TIMER_491_52 = 31
699 };
700 
701 enum ib_qp_attr_mask {
702 	IB_QP_STATE			= 1,
703 	IB_QP_CUR_STATE			= (1<<1),
704 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
705 	IB_QP_ACCESS_FLAGS		= (1<<3),
706 	IB_QP_PKEY_INDEX		= (1<<4),
707 	IB_QP_PORT			= (1<<5),
708 	IB_QP_QKEY			= (1<<6),
709 	IB_QP_AV			= (1<<7),
710 	IB_QP_PATH_MTU			= (1<<8),
711 	IB_QP_TIMEOUT			= (1<<9),
712 	IB_QP_RETRY_CNT			= (1<<10),
713 	IB_QP_RNR_RETRY			= (1<<11),
714 	IB_QP_RQ_PSN			= (1<<12),
715 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
716 	IB_QP_ALT_PATH			= (1<<14),
717 	IB_QP_MIN_RNR_TIMER		= (1<<15),
718 	IB_QP_SQ_PSN			= (1<<16),
719 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
720 	IB_QP_PATH_MIG_STATE		= (1<<18),
721 	IB_QP_CAP			= (1<<19),
722 	IB_QP_DEST_QPN			= (1<<20)
723 };
724 
725 enum ib_qp_state {
726 	IB_QPS_RESET,
727 	IB_QPS_INIT,
728 	IB_QPS_RTR,
729 	IB_QPS_RTS,
730 	IB_QPS_SQD,
731 	IB_QPS_SQE,
732 	IB_QPS_ERR
733 };
734 
735 enum ib_mig_state {
736 	IB_MIG_MIGRATED,
737 	IB_MIG_REARM,
738 	IB_MIG_ARMED
739 };
740 
741 enum ib_mw_type {
742 	IB_MW_TYPE_1 = 1,
743 	IB_MW_TYPE_2 = 2
744 };
745 
746 struct ib_qp_attr {
747 	enum ib_qp_state	qp_state;
748 	enum ib_qp_state	cur_qp_state;
749 	enum ib_mtu		path_mtu;
750 	enum ib_mig_state	path_mig_state;
751 	u32			qkey;
752 	u32			rq_psn;
753 	u32			sq_psn;
754 	u32			dest_qp_num;
755 	int			qp_access_flags;
756 	struct ib_qp_cap	cap;
757 	struct ib_ah_attr	ah_attr;
758 	struct ib_ah_attr	alt_ah_attr;
759 	u16			pkey_index;
760 	u16			alt_pkey_index;
761 	u8			en_sqd_async_notify;
762 	u8			sq_draining;
763 	u8			max_rd_atomic;
764 	u8			max_dest_rd_atomic;
765 	u8			min_rnr_timer;
766 	u8			port_num;
767 	u8			timeout;
768 	u8			retry_cnt;
769 	u8			rnr_retry;
770 	u8			alt_port_num;
771 	u8			alt_timeout;
772 };
773 
774 enum ib_wr_opcode {
775 	IB_WR_RDMA_WRITE,
776 	IB_WR_RDMA_WRITE_WITH_IMM,
777 	IB_WR_SEND,
778 	IB_WR_SEND_WITH_IMM,
779 	IB_WR_RDMA_READ,
780 	IB_WR_ATOMIC_CMP_AND_SWP,
781 	IB_WR_ATOMIC_FETCH_AND_ADD,
782 	IB_WR_LSO,
783 	IB_WR_SEND_WITH_INV,
784 	IB_WR_RDMA_READ_WITH_INV,
785 	IB_WR_LOCAL_INV,
786 	IB_WR_FAST_REG_MR,
787 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
788 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
789 	IB_WR_BIND_MW,
790 	/* reserve values for low level drivers' internal use.
791 	 * These values will not be used at all in the ib core layer.
792 	 */
793 	IB_WR_RESERVED1 = 0xf0,
794 	IB_WR_RESERVED2,
795 	IB_WR_RESERVED3,
796 	IB_WR_RESERVED4,
797 	IB_WR_RESERVED5,
798 	IB_WR_RESERVED6,
799 	IB_WR_RESERVED7,
800 	IB_WR_RESERVED8,
801 	IB_WR_RESERVED9,
802 	IB_WR_RESERVED10,
803 };
804 
805 enum ib_send_flags {
806 	IB_SEND_FENCE		= 1,
807 	IB_SEND_SIGNALED	= (1<<1),
808 	IB_SEND_SOLICITED	= (1<<2),
809 	IB_SEND_INLINE		= (1<<3),
810 	IB_SEND_IP_CSUM		= (1<<4),
811 
812 	/* reserve bits 26-31 for low level drivers' internal use */
813 	IB_SEND_RESERVED_START	= (1 << 26),
814 	IB_SEND_RESERVED_END	= (1 << 31),
815 };
816 
817 struct ib_sge {
818 	u64	addr;
819 	u32	length;
820 	u32	lkey;
821 };
822 
823 struct ib_fast_reg_page_list {
824 	struct ib_device       *device;
825 	u64		       *page_list;
826 	unsigned int		max_page_list_len;
827 };
828 
829 /**
830  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
831  * @mr: A memory region to bind the memory window to.
832  * @addr: The address where the memory window should begin.
833  * @length: The length of the memory window, in bytes.
834  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
835  *
836  * This struct contains the shared parameters for type 1 and type 2
837  * memory window bind operations.
838  */
839 struct ib_mw_bind_info {
840 	struct ib_mr   *mr;
841 	u64		addr;
842 	u64		length;
843 	int		mw_access_flags;
844 };
845 
846 struct ib_send_wr {
847 	struct ib_send_wr      *next;
848 	u64			wr_id;
849 	struct ib_sge	       *sg_list;
850 	int			num_sge;
851 	enum ib_wr_opcode	opcode;
852 	int			send_flags;
853 	union {
854 		__be32		imm_data;
855 		u32		invalidate_rkey;
856 	} ex;
857 	union {
858 		struct {
859 			u64	remote_addr;
860 			u32	rkey;
861 		} rdma;
862 		struct {
863 			u64	remote_addr;
864 			u64	compare_add;
865 			u64	swap;
866 			u64	compare_add_mask;
867 			u64	swap_mask;
868 			u32	rkey;
869 		} atomic;
870 		struct {
871 			struct ib_ah *ah;
872 			void   *header;
873 			int     hlen;
874 			int     mss;
875 			u32	remote_qpn;
876 			u32	remote_qkey;
877 			u16	pkey_index; /* valid for GSI only */
878 			u8	port_num;   /* valid for DR SMPs on switch only */
879 		} ud;
880 		struct {
881 			u64				iova_start;
882 			struct ib_fast_reg_page_list   *page_list;
883 			unsigned int			page_shift;
884 			unsigned int			page_list_len;
885 			u32				length;
886 			int				access_flags;
887 			u32				rkey;
888 		} fast_reg;
889 		struct {
890 			struct ib_mw            *mw;
891 			/* The new rkey for the memory window. */
892 			u32                      rkey;
893 			struct ib_mw_bind_info   bind_info;
894 		} bind_mw;
895 	} wr;
896 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
897 };
898 
899 struct ib_recv_wr {
900 	struct ib_recv_wr      *next;
901 	u64			wr_id;
902 	struct ib_sge	       *sg_list;
903 	int			num_sge;
904 };
905 
906 enum ib_access_flags {
907 	IB_ACCESS_LOCAL_WRITE	= 1,
908 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
909 	IB_ACCESS_REMOTE_READ	= (1<<2),
910 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
911 	IB_ACCESS_MW_BIND	= (1<<4),
912 	IB_ZERO_BASED		= (1<<5)
913 };
914 
915 struct ib_phys_buf {
916 	u64      addr;
917 	u64      size;
918 };
919 
920 struct ib_mr_attr {
921 	struct ib_pd	*pd;
922 	u64		device_virt_addr;
923 	u64		size;
924 	int		mr_access_flags;
925 	u32		lkey;
926 	u32		rkey;
927 };
928 
929 enum ib_mr_rereg_flags {
930 	IB_MR_REREG_TRANS	= 1,
931 	IB_MR_REREG_PD		= (1<<1),
932 	IB_MR_REREG_ACCESS	= (1<<2)
933 };
934 
935 /**
936  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
937  * @wr_id:      Work request id.
938  * @send_flags: Flags from ib_send_flags enum.
939  * @bind_info:  More parameters of the bind operation.
940  */
941 struct ib_mw_bind {
942 	u64                    wr_id;
943 	int                    send_flags;
944 	struct ib_mw_bind_info bind_info;
945 };
946 
947 struct ib_fmr_attr {
948 	int	max_pages;
949 	int	max_maps;
950 	u8	page_shift;
951 };
952 
953 struct ib_ucontext {
954 	struct ib_device       *device;
955 	struct list_head	pd_list;
956 	struct list_head	mr_list;
957 	struct list_head	mw_list;
958 	struct list_head	cq_list;
959 	struct list_head	qp_list;
960 	struct list_head	srq_list;
961 	struct list_head	ah_list;
962 	struct list_head	xrcd_list;
963 	struct list_head	rule_list;
964 	int			closing;
965 };
966 
967 struct ib_uobject {
968 	u64			user_handle;	/* handle given to us by userspace */
969 	struct ib_ucontext     *context;	/* associated user context */
970 	void		       *object;		/* containing object */
971 	struct list_head	list;		/* link to context's list */
972 	int			id;		/* index into kernel idr */
973 	struct kref		ref;
974 	struct rw_semaphore	mutex;		/* protects .live */
975 	int			live;
976 };
977 
978 struct ib_udata {
979 	void __user *inbuf;
980 	void __user *outbuf;
981 	size_t       inlen;
982 	size_t       outlen;
983 };
984 
985 struct ib_pd {
986 	struct ib_device       *device;
987 	struct ib_uobject      *uobject;
988 	atomic_t          	usecnt; /* count all resources */
989 };
990 
991 struct ib_xrcd {
992 	struct ib_device       *device;
993 	atomic_t		usecnt; /* count all exposed resources */
994 	struct inode	       *inode;
995 
996 	struct mutex		tgt_qp_mutex;
997 	struct list_head	tgt_qp_list;
998 };
999 
1000 struct ib_ah {
1001 	struct ib_device	*device;
1002 	struct ib_pd		*pd;
1003 	struct ib_uobject	*uobject;
1004 };
1005 
1006 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1007 
1008 struct ib_cq {
1009 	struct ib_device       *device;
1010 	struct ib_uobject      *uobject;
1011 	ib_comp_handler   	comp_handler;
1012 	void                  (*event_handler)(struct ib_event *, void *);
1013 	void                   *cq_context;
1014 	int               	cqe;
1015 	atomic_t          	usecnt; /* count number of work queues */
1016 };
1017 
1018 struct ib_srq {
1019 	struct ib_device       *device;
1020 	struct ib_pd	       *pd;
1021 	struct ib_uobject      *uobject;
1022 	void		      (*event_handler)(struct ib_event *, void *);
1023 	void		       *srq_context;
1024 	enum ib_srq_type	srq_type;
1025 	atomic_t		usecnt;
1026 
1027 	union {
1028 		struct {
1029 			struct ib_xrcd *xrcd;
1030 			struct ib_cq   *cq;
1031 			u32		srq_num;
1032 		} xrc;
1033 	} ext;
1034 };
1035 
1036 struct ib_qp {
1037 	struct ib_device       *device;
1038 	struct ib_pd	       *pd;
1039 	struct ib_cq	       *send_cq;
1040 	struct ib_cq	       *recv_cq;
1041 	struct ib_srq	       *srq;
1042 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1043 	struct list_head	xrcd_list;
1044 	/* count times opened, mcast attaches, flow attaches */
1045 	atomic_t		usecnt;
1046 	struct list_head	open_list;
1047 	struct ib_qp           *real_qp;
1048 	struct ib_uobject      *uobject;
1049 	void                  (*event_handler)(struct ib_event *, void *);
1050 	void		       *qp_context;
1051 	u32			qp_num;
1052 	enum ib_qp_type		qp_type;
1053 };
1054 
1055 struct ib_mr {
1056 	struct ib_device  *device;
1057 	struct ib_pd	  *pd;
1058 	struct ib_uobject *uobject;
1059 	u32		   lkey;
1060 	u32		   rkey;
1061 	atomic_t	   usecnt; /* count number of MWs */
1062 };
1063 
1064 struct ib_mw {
1065 	struct ib_device	*device;
1066 	struct ib_pd		*pd;
1067 	struct ib_uobject	*uobject;
1068 	u32			rkey;
1069 	enum ib_mw_type         type;
1070 };
1071 
1072 struct ib_fmr {
1073 	struct ib_device	*device;
1074 	struct ib_pd		*pd;
1075 	struct list_head	list;
1076 	u32			lkey;
1077 	u32			rkey;
1078 };
1079 
1080 /* Supported steering options */
1081 enum ib_flow_attr_type {
1082 	/* steering according to rule specifications */
1083 	IB_FLOW_ATTR_NORMAL		= 0x0,
1084 	/* default unicast and multicast rule -
1085 	 * receive all Eth traffic which isn't steered to any QP
1086 	 */
1087 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1088 	/* default multicast rule -
1089 	 * receive all Eth multicast traffic which isn't steered to any QP
1090 	 */
1091 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1092 	/* sniffer rule - receive all port traffic */
1093 	IB_FLOW_ATTR_SNIFFER		= 0x3
1094 };
1095 
1096 /* Supported steering header types */
1097 enum ib_flow_spec_type {
1098 	/* L2 headers*/
1099 	IB_FLOW_SPEC_ETH	= 0x20,
1100 	/* L3 header*/
1101 	IB_FLOW_SPEC_IPV4	= 0x30,
1102 	/* L4 headers*/
1103 	IB_FLOW_SPEC_TCP	= 0x40,
1104 	IB_FLOW_SPEC_UDP	= 0x41
1105 };
1106 
1107 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1108 
1109 /* Flow steering rule priority is set according to it's domain.
1110  * Lower domain value means higher priority.
1111  */
1112 enum ib_flow_domain {
1113 	IB_FLOW_DOMAIN_USER,
1114 	IB_FLOW_DOMAIN_ETHTOOL,
1115 	IB_FLOW_DOMAIN_RFS,
1116 	IB_FLOW_DOMAIN_NIC,
1117 	IB_FLOW_DOMAIN_NUM /* Must be last */
1118 };
1119 
1120 struct ib_flow_eth_filter {
1121 	u8	dst_mac[6];
1122 	u8	src_mac[6];
1123 	__be16	ether_type;
1124 	__be16	vlan_tag;
1125 };
1126 
1127 struct ib_flow_spec_eth {
1128 	enum ib_flow_spec_type	  type;
1129 	u16			  size;
1130 	struct ib_flow_eth_filter val;
1131 	struct ib_flow_eth_filter mask;
1132 };
1133 
1134 struct ib_flow_ipv4_filter {
1135 	__be32	src_ip;
1136 	__be32	dst_ip;
1137 };
1138 
1139 struct ib_flow_spec_ipv4 {
1140 	enum ib_flow_spec_type	   type;
1141 	u16			   size;
1142 	struct ib_flow_ipv4_filter val;
1143 	struct ib_flow_ipv4_filter mask;
1144 };
1145 
1146 struct ib_flow_tcp_udp_filter {
1147 	__be16	dst_port;
1148 	__be16	src_port;
1149 };
1150 
1151 struct ib_flow_spec_tcp_udp {
1152 	enum ib_flow_spec_type	      type;
1153 	u16			      size;
1154 	struct ib_flow_tcp_udp_filter val;
1155 	struct ib_flow_tcp_udp_filter mask;
1156 };
1157 
1158 union ib_flow_spec {
1159 	struct {
1160 		enum ib_flow_spec_type	type;
1161 		u16			size;
1162 	};
1163 	struct ib_flow_spec_eth		eth;
1164 	struct ib_flow_spec_ipv4        ipv4;
1165 	struct ib_flow_spec_tcp_udp	tcp_udp;
1166 };
1167 
1168 struct ib_flow_attr {
1169 	enum ib_flow_attr_type type;
1170 	u16	     size;
1171 	u16	     priority;
1172 	u32	     flags;
1173 	u8	     num_of_specs;
1174 	u8	     port;
1175 	/* Following are the optional layers according to user request
1176 	 * struct ib_flow_spec_xxx
1177 	 * struct ib_flow_spec_yyy
1178 	 */
1179 };
1180 
1181 struct ib_flow {
1182 	struct ib_qp		*qp;
1183 	struct ib_uobject	*uobject;
1184 };
1185 
1186 struct ib_mad;
1187 struct ib_grh;
1188 
1189 enum ib_process_mad_flags {
1190 	IB_MAD_IGNORE_MKEY	= 1,
1191 	IB_MAD_IGNORE_BKEY	= 2,
1192 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1193 };
1194 
1195 enum ib_mad_result {
1196 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1197 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1198 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1199 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1200 };
1201 
1202 #define IB_DEVICE_NAME_MAX 64
1203 
1204 struct ib_cache {
1205 	rwlock_t                lock;
1206 	struct ib_event_handler event_handler;
1207 	struct ib_pkey_cache  **pkey_cache;
1208 	struct ib_gid_cache   **gid_cache;
1209 	u8                     *lmc_cache;
1210 };
1211 
1212 struct ib_dma_mapping_ops {
1213 	int		(*mapping_error)(struct ib_device *dev,
1214 					 u64 dma_addr);
1215 	u64		(*map_single)(struct ib_device *dev,
1216 				      void *ptr, size_t size,
1217 				      enum dma_data_direction direction);
1218 	void		(*unmap_single)(struct ib_device *dev,
1219 					u64 addr, size_t size,
1220 					enum dma_data_direction direction);
1221 	u64		(*map_page)(struct ib_device *dev,
1222 				    struct page *page, unsigned long offset,
1223 				    size_t size,
1224 				    enum dma_data_direction direction);
1225 	void		(*unmap_page)(struct ib_device *dev,
1226 				      u64 addr, size_t size,
1227 				      enum dma_data_direction direction);
1228 	int		(*map_sg)(struct ib_device *dev,
1229 				  struct scatterlist *sg, int nents,
1230 				  enum dma_data_direction direction);
1231 	void		(*unmap_sg)(struct ib_device *dev,
1232 				    struct scatterlist *sg, int nents,
1233 				    enum dma_data_direction direction);
1234 	u64		(*dma_address)(struct ib_device *dev,
1235 				       struct scatterlist *sg);
1236 	unsigned int	(*dma_len)(struct ib_device *dev,
1237 				   struct scatterlist *sg);
1238 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1239 					       u64 dma_handle,
1240 					       size_t size,
1241 					       enum dma_data_direction dir);
1242 	void		(*sync_single_for_device)(struct ib_device *dev,
1243 						  u64 dma_handle,
1244 						  size_t size,
1245 						  enum dma_data_direction dir);
1246 	void		*(*alloc_coherent)(struct ib_device *dev,
1247 					   size_t size,
1248 					   u64 *dma_handle,
1249 					   gfp_t flag);
1250 	void		(*free_coherent)(struct ib_device *dev,
1251 					 size_t size, void *cpu_addr,
1252 					 u64 dma_handle);
1253 };
1254 
1255 struct iw_cm_verbs;
1256 
1257 struct ib_device {
1258 	struct device                *dma_device;
1259 
1260 	char                          name[IB_DEVICE_NAME_MAX];
1261 
1262 	struct list_head              event_handler_list;
1263 	spinlock_t                    event_handler_lock;
1264 
1265 	spinlock_t                    client_data_lock;
1266 	struct list_head              core_list;
1267 	struct list_head              client_data_list;
1268 
1269 	struct ib_cache               cache;
1270 	int                          *pkey_tbl_len;
1271 	int                          *gid_tbl_len;
1272 
1273 	int			      num_comp_vectors;
1274 
1275 	struct iw_cm_verbs	     *iwcm;
1276 
1277 	int		           (*get_protocol_stats)(struct ib_device *device,
1278 							 union rdma_protocol_stats *stats);
1279 	int		           (*query_device)(struct ib_device *device,
1280 						   struct ib_device_attr *device_attr);
1281 	int		           (*query_port)(struct ib_device *device,
1282 						 u8 port_num,
1283 						 struct ib_port_attr *port_attr);
1284 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1285 						     u8 port_num);
1286 	int		           (*query_gid)(struct ib_device *device,
1287 						u8 port_num, int index,
1288 						union ib_gid *gid);
1289 	int		           (*query_pkey)(struct ib_device *device,
1290 						 u8 port_num, u16 index, u16 *pkey);
1291 	int		           (*modify_device)(struct ib_device *device,
1292 						    int device_modify_mask,
1293 						    struct ib_device_modify *device_modify);
1294 	int		           (*modify_port)(struct ib_device *device,
1295 						  u8 port_num, int port_modify_mask,
1296 						  struct ib_port_modify *port_modify);
1297 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1298 						     struct ib_udata *udata);
1299 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1300 	int                        (*mmap)(struct ib_ucontext *context,
1301 					   struct vm_area_struct *vma);
1302 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1303 					       struct ib_ucontext *context,
1304 					       struct ib_udata *udata);
1305 	int                        (*dealloc_pd)(struct ib_pd *pd);
1306 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1307 						struct ib_ah_attr *ah_attr);
1308 	int                        (*modify_ah)(struct ib_ah *ah,
1309 						struct ib_ah_attr *ah_attr);
1310 	int                        (*query_ah)(struct ib_ah *ah,
1311 					       struct ib_ah_attr *ah_attr);
1312 	int                        (*destroy_ah)(struct ib_ah *ah);
1313 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1314 						 struct ib_srq_init_attr *srq_init_attr,
1315 						 struct ib_udata *udata);
1316 	int                        (*modify_srq)(struct ib_srq *srq,
1317 						 struct ib_srq_attr *srq_attr,
1318 						 enum ib_srq_attr_mask srq_attr_mask,
1319 						 struct ib_udata *udata);
1320 	int                        (*query_srq)(struct ib_srq *srq,
1321 						struct ib_srq_attr *srq_attr);
1322 	int                        (*destroy_srq)(struct ib_srq *srq);
1323 	int                        (*post_srq_recv)(struct ib_srq *srq,
1324 						    struct ib_recv_wr *recv_wr,
1325 						    struct ib_recv_wr **bad_recv_wr);
1326 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1327 						struct ib_qp_init_attr *qp_init_attr,
1328 						struct ib_udata *udata);
1329 	int                        (*modify_qp)(struct ib_qp *qp,
1330 						struct ib_qp_attr *qp_attr,
1331 						int qp_attr_mask,
1332 						struct ib_udata *udata);
1333 	int                        (*query_qp)(struct ib_qp *qp,
1334 					       struct ib_qp_attr *qp_attr,
1335 					       int qp_attr_mask,
1336 					       struct ib_qp_init_attr *qp_init_attr);
1337 	int                        (*destroy_qp)(struct ib_qp *qp);
1338 	int                        (*post_send)(struct ib_qp *qp,
1339 						struct ib_send_wr *send_wr,
1340 						struct ib_send_wr **bad_send_wr);
1341 	int                        (*post_recv)(struct ib_qp *qp,
1342 						struct ib_recv_wr *recv_wr,
1343 						struct ib_recv_wr **bad_recv_wr);
1344 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1345 						int comp_vector,
1346 						struct ib_ucontext *context,
1347 						struct ib_udata *udata);
1348 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1349 						u16 cq_period);
1350 	int                        (*destroy_cq)(struct ib_cq *cq);
1351 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1352 						struct ib_udata *udata);
1353 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1354 					      struct ib_wc *wc);
1355 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1356 	int                        (*req_notify_cq)(struct ib_cq *cq,
1357 						    enum ib_cq_notify_flags flags);
1358 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1359 						      int wc_cnt);
1360 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1361 						 int mr_access_flags);
1362 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1363 						  struct ib_phys_buf *phys_buf_array,
1364 						  int num_phys_buf,
1365 						  int mr_access_flags,
1366 						  u64 *iova_start);
1367 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1368 						  u64 start, u64 length,
1369 						  u64 virt_addr,
1370 						  int mr_access_flags,
1371 						  struct ib_udata *udata);
1372 	int                        (*query_mr)(struct ib_mr *mr,
1373 					       struct ib_mr_attr *mr_attr);
1374 	int                        (*dereg_mr)(struct ib_mr *mr);
1375 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1376 					       int max_page_list_len);
1377 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1378 								   int page_list_len);
1379 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1380 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1381 						    int mr_rereg_mask,
1382 						    struct ib_pd *pd,
1383 						    struct ib_phys_buf *phys_buf_array,
1384 						    int num_phys_buf,
1385 						    int mr_access_flags,
1386 						    u64 *iova_start);
1387 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1388 					       enum ib_mw_type type);
1389 	int                        (*bind_mw)(struct ib_qp *qp,
1390 					      struct ib_mw *mw,
1391 					      struct ib_mw_bind *mw_bind);
1392 	int                        (*dealloc_mw)(struct ib_mw *mw);
1393 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1394 						int mr_access_flags,
1395 						struct ib_fmr_attr *fmr_attr);
1396 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1397 						   u64 *page_list, int list_len,
1398 						   u64 iova);
1399 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1400 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1401 	int                        (*attach_mcast)(struct ib_qp *qp,
1402 						   union ib_gid *gid,
1403 						   u16 lid);
1404 	int                        (*detach_mcast)(struct ib_qp *qp,
1405 						   union ib_gid *gid,
1406 						   u16 lid);
1407 	int                        (*process_mad)(struct ib_device *device,
1408 						  int process_mad_flags,
1409 						  u8 port_num,
1410 						  struct ib_wc *in_wc,
1411 						  struct ib_grh *in_grh,
1412 						  struct ib_mad *in_mad,
1413 						  struct ib_mad *out_mad);
1414 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1415 						 struct ib_ucontext *ucontext,
1416 						 struct ib_udata *udata);
1417 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1418 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1419 						  struct ib_flow_attr
1420 						  *flow_attr,
1421 						  int domain);
1422 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1423 
1424 	struct ib_dma_mapping_ops   *dma_ops;
1425 
1426 	struct module               *owner;
1427 	struct device                dev;
1428 	struct kobject               *ports_parent;
1429 	struct list_head             port_list;
1430 
1431 	enum {
1432 		IB_DEV_UNINITIALIZED,
1433 		IB_DEV_REGISTERED,
1434 		IB_DEV_UNREGISTERED
1435 	}                            reg_state;
1436 
1437 	int			     uverbs_abi_ver;
1438 	u64			     uverbs_cmd_mask;
1439 
1440 	char			     node_desc[64];
1441 	__be64			     node_guid;
1442 	u32			     local_dma_lkey;
1443 	u8                           node_type;
1444 	u8                           phys_port_cnt;
1445 };
1446 
1447 struct ib_client {
1448 	char  *name;
1449 	void (*add)   (struct ib_device *);
1450 	void (*remove)(struct ib_device *);
1451 
1452 	struct list_head list;
1453 };
1454 
1455 struct ib_device *ib_alloc_device(size_t size);
1456 void ib_dealloc_device(struct ib_device *device);
1457 
1458 int ib_register_device(struct ib_device *device,
1459 		       int (*port_callback)(struct ib_device *,
1460 					    u8, struct kobject *));
1461 void ib_unregister_device(struct ib_device *device);
1462 
1463 int ib_register_client   (struct ib_client *client);
1464 void ib_unregister_client(struct ib_client *client);
1465 
1466 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1467 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1468 			 void *data);
1469 
1470 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1471 {
1472 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1473 }
1474 
1475 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1476 {
1477 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1478 }
1479 
1480 /**
1481  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1482  * contains all required attributes and no attributes not allowed for
1483  * the given QP state transition.
1484  * @cur_state: Current QP state
1485  * @next_state: Next QP state
1486  * @type: QP type
1487  * @mask: Mask of supplied QP attributes
1488  *
1489  * This function is a helper function that a low-level driver's
1490  * modify_qp method can use to validate the consumer's input.  It
1491  * checks that cur_state and next_state are valid QP states, that a
1492  * transition from cur_state to next_state is allowed by the IB spec,
1493  * and that the attribute mask supplied is allowed for the transition.
1494  */
1495 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1496 		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1497 
1498 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1499 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1500 void ib_dispatch_event(struct ib_event *event);
1501 
1502 int ib_query_device(struct ib_device *device,
1503 		    struct ib_device_attr *device_attr);
1504 
1505 int ib_query_port(struct ib_device *device,
1506 		  u8 port_num, struct ib_port_attr *port_attr);
1507 
1508 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1509 					       u8 port_num);
1510 
1511 int ib_query_gid(struct ib_device *device,
1512 		 u8 port_num, int index, union ib_gid *gid);
1513 
1514 int ib_query_pkey(struct ib_device *device,
1515 		  u8 port_num, u16 index, u16 *pkey);
1516 
1517 int ib_modify_device(struct ib_device *device,
1518 		     int device_modify_mask,
1519 		     struct ib_device_modify *device_modify);
1520 
1521 int ib_modify_port(struct ib_device *device,
1522 		   u8 port_num, int port_modify_mask,
1523 		   struct ib_port_modify *port_modify);
1524 
1525 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1526 		u8 *port_num, u16 *index);
1527 
1528 int ib_find_pkey(struct ib_device *device,
1529 		 u8 port_num, u16 pkey, u16 *index);
1530 
1531 /**
1532  * ib_alloc_pd - Allocates an unused protection domain.
1533  * @device: The device on which to allocate the protection domain.
1534  *
1535  * A protection domain object provides an association between QPs, shared
1536  * receive queues, address handles, memory regions, and memory windows.
1537  */
1538 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1539 
1540 /**
1541  * ib_dealloc_pd - Deallocates a protection domain.
1542  * @pd: The protection domain to deallocate.
1543  */
1544 int ib_dealloc_pd(struct ib_pd *pd);
1545 
1546 /**
1547  * ib_create_ah - Creates an address handle for the given address vector.
1548  * @pd: The protection domain associated with the address handle.
1549  * @ah_attr: The attributes of the address vector.
1550  *
1551  * The address handle is used to reference a local or global destination
1552  * in all UD QP post sends.
1553  */
1554 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1555 
1556 /**
1557  * ib_init_ah_from_wc - Initializes address handle attributes from a
1558  *   work completion.
1559  * @device: Device on which the received message arrived.
1560  * @port_num: Port on which the received message arrived.
1561  * @wc: Work completion associated with the received message.
1562  * @grh: References the received global route header.  This parameter is
1563  *   ignored unless the work completion indicates that the GRH is valid.
1564  * @ah_attr: Returned attributes that can be used when creating an address
1565  *   handle for replying to the message.
1566  */
1567 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1568 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1569 
1570 /**
1571  * ib_create_ah_from_wc - Creates an address handle associated with the
1572  *   sender of the specified work completion.
1573  * @pd: The protection domain associated with the address handle.
1574  * @wc: Work completion information associated with a received message.
1575  * @grh: References the received global route header.  This parameter is
1576  *   ignored unless the work completion indicates that the GRH is valid.
1577  * @port_num: The outbound port number to associate with the address.
1578  *
1579  * The address handle is used to reference a local or global destination
1580  * in all UD QP post sends.
1581  */
1582 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1583 				   struct ib_grh *grh, u8 port_num);
1584 
1585 /**
1586  * ib_modify_ah - Modifies the address vector associated with an address
1587  *   handle.
1588  * @ah: The address handle to modify.
1589  * @ah_attr: The new address vector attributes to associate with the
1590  *   address handle.
1591  */
1592 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1593 
1594 /**
1595  * ib_query_ah - Queries the address vector associated with an address
1596  *   handle.
1597  * @ah: The address handle to query.
1598  * @ah_attr: The address vector attributes associated with the address
1599  *   handle.
1600  */
1601 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1602 
1603 /**
1604  * ib_destroy_ah - Destroys an address handle.
1605  * @ah: The address handle to destroy.
1606  */
1607 int ib_destroy_ah(struct ib_ah *ah);
1608 
1609 /**
1610  * ib_create_srq - Creates a SRQ associated with the specified protection
1611  *   domain.
1612  * @pd: The protection domain associated with the SRQ.
1613  * @srq_init_attr: A list of initial attributes required to create the
1614  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1615  *   the actual capabilities of the created SRQ.
1616  *
1617  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1618  * requested size of the SRQ, and set to the actual values allocated
1619  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1620  * will always be at least as large as the requested values.
1621  */
1622 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1623 			     struct ib_srq_init_attr *srq_init_attr);
1624 
1625 /**
1626  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1627  * @srq: The SRQ to modify.
1628  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1629  *   the current values of selected SRQ attributes are returned.
1630  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1631  *   are being modified.
1632  *
1633  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1634  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1635  * the number of receives queued drops below the limit.
1636  */
1637 int ib_modify_srq(struct ib_srq *srq,
1638 		  struct ib_srq_attr *srq_attr,
1639 		  enum ib_srq_attr_mask srq_attr_mask);
1640 
1641 /**
1642  * ib_query_srq - Returns the attribute list and current values for the
1643  *   specified SRQ.
1644  * @srq: The SRQ to query.
1645  * @srq_attr: The attributes of the specified SRQ.
1646  */
1647 int ib_query_srq(struct ib_srq *srq,
1648 		 struct ib_srq_attr *srq_attr);
1649 
1650 /**
1651  * ib_destroy_srq - Destroys the specified SRQ.
1652  * @srq: The SRQ to destroy.
1653  */
1654 int ib_destroy_srq(struct ib_srq *srq);
1655 
1656 /**
1657  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1658  * @srq: The SRQ to post the work request on.
1659  * @recv_wr: A list of work requests to post on the receive queue.
1660  * @bad_recv_wr: On an immediate failure, this parameter will reference
1661  *   the work request that failed to be posted on the QP.
1662  */
1663 static inline int ib_post_srq_recv(struct ib_srq *srq,
1664 				   struct ib_recv_wr *recv_wr,
1665 				   struct ib_recv_wr **bad_recv_wr)
1666 {
1667 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1668 }
1669 
1670 /**
1671  * ib_create_qp - Creates a QP associated with the specified protection
1672  *   domain.
1673  * @pd: The protection domain associated with the QP.
1674  * @qp_init_attr: A list of initial attributes required to create the
1675  *   QP.  If QP creation succeeds, then the attributes are updated to
1676  *   the actual capabilities of the created QP.
1677  */
1678 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1679 			   struct ib_qp_init_attr *qp_init_attr);
1680 
1681 /**
1682  * ib_modify_qp - Modifies the attributes for the specified QP and then
1683  *   transitions the QP to the given state.
1684  * @qp: The QP to modify.
1685  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1686  *   the current values of selected QP attributes are returned.
1687  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1688  *   are being modified.
1689  */
1690 int ib_modify_qp(struct ib_qp *qp,
1691 		 struct ib_qp_attr *qp_attr,
1692 		 int qp_attr_mask);
1693 
1694 /**
1695  * ib_query_qp - Returns the attribute list and current values for the
1696  *   specified QP.
1697  * @qp: The QP to query.
1698  * @qp_attr: The attributes of the specified QP.
1699  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1700  * @qp_init_attr: Additional attributes of the selected QP.
1701  *
1702  * The qp_attr_mask may be used to limit the query to gathering only the
1703  * selected attributes.
1704  */
1705 int ib_query_qp(struct ib_qp *qp,
1706 		struct ib_qp_attr *qp_attr,
1707 		int qp_attr_mask,
1708 		struct ib_qp_init_attr *qp_init_attr);
1709 
1710 /**
1711  * ib_destroy_qp - Destroys the specified QP.
1712  * @qp: The QP to destroy.
1713  */
1714 int ib_destroy_qp(struct ib_qp *qp);
1715 
1716 /**
1717  * ib_open_qp - Obtain a reference to an existing sharable QP.
1718  * @xrcd - XRC domain
1719  * @qp_open_attr: Attributes identifying the QP to open.
1720  *
1721  * Returns a reference to a sharable QP.
1722  */
1723 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1724 			 struct ib_qp_open_attr *qp_open_attr);
1725 
1726 /**
1727  * ib_close_qp - Release an external reference to a QP.
1728  * @qp: The QP handle to release
1729  *
1730  * The opened QP handle is released by the caller.  The underlying
1731  * shared QP is not destroyed until all internal references are released.
1732  */
1733 int ib_close_qp(struct ib_qp *qp);
1734 
1735 /**
1736  * ib_post_send - Posts a list of work requests to the send queue of
1737  *   the specified QP.
1738  * @qp: The QP to post the work request on.
1739  * @send_wr: A list of work requests to post on the send queue.
1740  * @bad_send_wr: On an immediate failure, this parameter will reference
1741  *   the work request that failed to be posted on the QP.
1742  *
1743  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1744  * error is returned, the QP state shall not be affected,
1745  * ib_post_send() will return an immediate error after queueing any
1746  * earlier work requests in the list.
1747  */
1748 static inline int ib_post_send(struct ib_qp *qp,
1749 			       struct ib_send_wr *send_wr,
1750 			       struct ib_send_wr **bad_send_wr)
1751 {
1752 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1753 }
1754 
1755 /**
1756  * ib_post_recv - Posts a list of work requests to the receive queue of
1757  *   the specified QP.
1758  * @qp: The QP to post the work request on.
1759  * @recv_wr: A list of work requests to post on the receive queue.
1760  * @bad_recv_wr: On an immediate failure, this parameter will reference
1761  *   the work request that failed to be posted on the QP.
1762  */
1763 static inline int ib_post_recv(struct ib_qp *qp,
1764 			       struct ib_recv_wr *recv_wr,
1765 			       struct ib_recv_wr **bad_recv_wr)
1766 {
1767 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1768 }
1769 
1770 /**
1771  * ib_create_cq - Creates a CQ on the specified device.
1772  * @device: The device on which to create the CQ.
1773  * @comp_handler: A user-specified callback that is invoked when a
1774  *   completion event occurs on the CQ.
1775  * @event_handler: A user-specified callback that is invoked when an
1776  *   asynchronous event not associated with a completion occurs on the CQ.
1777  * @cq_context: Context associated with the CQ returned to the user via
1778  *   the associated completion and event handlers.
1779  * @cqe: The minimum size of the CQ.
1780  * @comp_vector - Completion vector used to signal completion events.
1781  *     Must be >= 0 and < context->num_comp_vectors.
1782  *
1783  * Users can examine the cq structure to determine the actual CQ size.
1784  */
1785 struct ib_cq *ib_create_cq(struct ib_device *device,
1786 			   ib_comp_handler comp_handler,
1787 			   void (*event_handler)(struct ib_event *, void *),
1788 			   void *cq_context, int cqe, int comp_vector);
1789 
1790 /**
1791  * ib_resize_cq - Modifies the capacity of the CQ.
1792  * @cq: The CQ to resize.
1793  * @cqe: The minimum size of the CQ.
1794  *
1795  * Users can examine the cq structure to determine the actual CQ size.
1796  */
1797 int ib_resize_cq(struct ib_cq *cq, int cqe);
1798 
1799 /**
1800  * ib_modify_cq - Modifies moderation params of the CQ
1801  * @cq: The CQ to modify.
1802  * @cq_count: number of CQEs that will trigger an event
1803  * @cq_period: max period of time in usec before triggering an event
1804  *
1805  */
1806 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1807 
1808 /**
1809  * ib_destroy_cq - Destroys the specified CQ.
1810  * @cq: The CQ to destroy.
1811  */
1812 int ib_destroy_cq(struct ib_cq *cq);
1813 
1814 /**
1815  * ib_poll_cq - poll a CQ for completion(s)
1816  * @cq:the CQ being polled
1817  * @num_entries:maximum number of completions to return
1818  * @wc:array of at least @num_entries &struct ib_wc where completions
1819  *   will be returned
1820  *
1821  * Poll a CQ for (possibly multiple) completions.  If the return value
1822  * is < 0, an error occurred.  If the return value is >= 0, it is the
1823  * number of completions returned.  If the return value is
1824  * non-negative and < num_entries, then the CQ was emptied.
1825  */
1826 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1827 			     struct ib_wc *wc)
1828 {
1829 	return cq->device->poll_cq(cq, num_entries, wc);
1830 }
1831 
1832 /**
1833  * ib_peek_cq - Returns the number of unreaped completions currently
1834  *   on the specified CQ.
1835  * @cq: The CQ to peek.
1836  * @wc_cnt: A minimum number of unreaped completions to check for.
1837  *
1838  * If the number of unreaped completions is greater than or equal to wc_cnt,
1839  * this function returns wc_cnt, otherwise, it returns the actual number of
1840  * unreaped completions.
1841  */
1842 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1843 
1844 /**
1845  * ib_req_notify_cq - Request completion notification on a CQ.
1846  * @cq: The CQ to generate an event for.
1847  * @flags:
1848  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1849  *   to request an event on the next solicited event or next work
1850  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1851  *   may also be |ed in to request a hint about missed events, as
1852  *   described below.
1853  *
1854  * Return Value:
1855  *    < 0 means an error occurred while requesting notification
1856  *   == 0 means notification was requested successfully, and if
1857  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1858  *        were missed and it is safe to wait for another event.  In
1859  *        this case is it guaranteed that any work completions added
1860  *        to the CQ since the last CQ poll will trigger a completion
1861  *        notification event.
1862  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1863  *        in.  It means that the consumer must poll the CQ again to
1864  *        make sure it is empty to avoid missing an event because of a
1865  *        race between requesting notification and an entry being
1866  *        added to the CQ.  This return value means it is possible
1867  *        (but not guaranteed) that a work completion has been added
1868  *        to the CQ since the last poll without triggering a
1869  *        completion notification event.
1870  */
1871 static inline int ib_req_notify_cq(struct ib_cq *cq,
1872 				   enum ib_cq_notify_flags flags)
1873 {
1874 	return cq->device->req_notify_cq(cq, flags);
1875 }
1876 
1877 /**
1878  * ib_req_ncomp_notif - Request completion notification when there are
1879  *   at least the specified number of unreaped completions on the CQ.
1880  * @cq: The CQ to generate an event for.
1881  * @wc_cnt: The number of unreaped completions that should be on the
1882  *   CQ before an event is generated.
1883  */
1884 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1885 {
1886 	return cq->device->req_ncomp_notif ?
1887 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1888 		-ENOSYS;
1889 }
1890 
1891 /**
1892  * ib_get_dma_mr - Returns a memory region for system memory that is
1893  *   usable for DMA.
1894  * @pd: The protection domain associated with the memory region.
1895  * @mr_access_flags: Specifies the memory access rights.
1896  *
1897  * Note that the ib_dma_*() functions defined below must be used
1898  * to create/destroy addresses used with the Lkey or Rkey returned
1899  * by ib_get_dma_mr().
1900  */
1901 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1902 
1903 /**
1904  * ib_dma_mapping_error - check a DMA addr for error
1905  * @dev: The device for which the dma_addr was created
1906  * @dma_addr: The DMA address to check
1907  */
1908 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1909 {
1910 	if (dev->dma_ops)
1911 		return dev->dma_ops->mapping_error(dev, dma_addr);
1912 	return dma_mapping_error(dev->dma_device, dma_addr);
1913 }
1914 
1915 /**
1916  * ib_dma_map_single - Map a kernel virtual address to DMA address
1917  * @dev: The device for which the dma_addr is to be created
1918  * @cpu_addr: The kernel virtual address
1919  * @size: The size of the region in bytes
1920  * @direction: The direction of the DMA
1921  */
1922 static inline u64 ib_dma_map_single(struct ib_device *dev,
1923 				    void *cpu_addr, size_t size,
1924 				    enum dma_data_direction direction)
1925 {
1926 	if (dev->dma_ops)
1927 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1928 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1929 }
1930 
1931 /**
1932  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1933  * @dev: The device for which the DMA address was created
1934  * @addr: The DMA address
1935  * @size: The size of the region in bytes
1936  * @direction: The direction of the DMA
1937  */
1938 static inline void ib_dma_unmap_single(struct ib_device *dev,
1939 				       u64 addr, size_t size,
1940 				       enum dma_data_direction direction)
1941 {
1942 	if (dev->dma_ops)
1943 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1944 	else
1945 		dma_unmap_single(dev->dma_device, addr, size, direction);
1946 }
1947 
1948 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1949 					  void *cpu_addr, size_t size,
1950 					  enum dma_data_direction direction,
1951 					  struct dma_attrs *attrs)
1952 {
1953 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1954 				    direction, attrs);
1955 }
1956 
1957 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1958 					     u64 addr, size_t size,
1959 					     enum dma_data_direction direction,
1960 					     struct dma_attrs *attrs)
1961 {
1962 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1963 				      direction, attrs);
1964 }
1965 
1966 /**
1967  * ib_dma_map_page - Map a physical page to DMA address
1968  * @dev: The device for which the dma_addr is to be created
1969  * @page: The page to be mapped
1970  * @offset: The offset within the page
1971  * @size: The size of the region in bytes
1972  * @direction: The direction of the DMA
1973  */
1974 static inline u64 ib_dma_map_page(struct ib_device *dev,
1975 				  struct page *page,
1976 				  unsigned long offset,
1977 				  size_t size,
1978 					 enum dma_data_direction direction)
1979 {
1980 	if (dev->dma_ops)
1981 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1982 	return dma_map_page(dev->dma_device, page, offset, size, direction);
1983 }
1984 
1985 /**
1986  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1987  * @dev: The device for which the DMA address was created
1988  * @addr: The DMA address
1989  * @size: The size of the region in bytes
1990  * @direction: The direction of the DMA
1991  */
1992 static inline void ib_dma_unmap_page(struct ib_device *dev,
1993 				     u64 addr, size_t size,
1994 				     enum dma_data_direction direction)
1995 {
1996 	if (dev->dma_ops)
1997 		dev->dma_ops->unmap_page(dev, addr, size, direction);
1998 	else
1999 		dma_unmap_page(dev->dma_device, addr, size, direction);
2000 }
2001 
2002 /**
2003  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2004  * @dev: The device for which the DMA addresses are to be created
2005  * @sg: The array of scatter/gather entries
2006  * @nents: The number of scatter/gather entries
2007  * @direction: The direction of the DMA
2008  */
2009 static inline int ib_dma_map_sg(struct ib_device *dev,
2010 				struct scatterlist *sg, int nents,
2011 				enum dma_data_direction direction)
2012 {
2013 	if (dev->dma_ops)
2014 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2015 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2016 }
2017 
2018 /**
2019  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2020  * @dev: The device for which the DMA addresses were created
2021  * @sg: The array of scatter/gather entries
2022  * @nents: The number of scatter/gather entries
2023  * @direction: The direction of the DMA
2024  */
2025 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2026 				   struct scatterlist *sg, int nents,
2027 				   enum dma_data_direction direction)
2028 {
2029 	if (dev->dma_ops)
2030 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2031 	else
2032 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2033 }
2034 
2035 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2036 				      struct scatterlist *sg, int nents,
2037 				      enum dma_data_direction direction,
2038 				      struct dma_attrs *attrs)
2039 {
2040 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2041 }
2042 
2043 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2044 					 struct scatterlist *sg, int nents,
2045 					 enum dma_data_direction direction,
2046 					 struct dma_attrs *attrs)
2047 {
2048 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2049 }
2050 /**
2051  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2052  * @dev: The device for which the DMA addresses were created
2053  * @sg: The scatter/gather entry
2054  */
2055 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2056 				    struct scatterlist *sg)
2057 {
2058 	if (dev->dma_ops)
2059 		return dev->dma_ops->dma_address(dev, sg);
2060 	return sg_dma_address(sg);
2061 }
2062 
2063 /**
2064  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2065  * @dev: The device for which the DMA addresses were created
2066  * @sg: The scatter/gather entry
2067  */
2068 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2069 					 struct scatterlist *sg)
2070 {
2071 	if (dev->dma_ops)
2072 		return dev->dma_ops->dma_len(dev, sg);
2073 	return sg_dma_len(sg);
2074 }
2075 
2076 /**
2077  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2078  * @dev: The device for which the DMA address was created
2079  * @addr: The DMA address
2080  * @size: The size of the region in bytes
2081  * @dir: The direction of the DMA
2082  */
2083 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2084 					      u64 addr,
2085 					      size_t size,
2086 					      enum dma_data_direction dir)
2087 {
2088 	if (dev->dma_ops)
2089 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2090 	else
2091 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2092 }
2093 
2094 /**
2095  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2096  * @dev: The device for which the DMA address was created
2097  * @addr: The DMA address
2098  * @size: The size of the region in bytes
2099  * @dir: The direction of the DMA
2100  */
2101 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2102 						 u64 addr,
2103 						 size_t size,
2104 						 enum dma_data_direction dir)
2105 {
2106 	if (dev->dma_ops)
2107 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2108 	else
2109 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2110 }
2111 
2112 /**
2113  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2114  * @dev: The device for which the DMA address is requested
2115  * @size: The size of the region to allocate in bytes
2116  * @dma_handle: A pointer for returning the DMA address of the region
2117  * @flag: memory allocator flags
2118  */
2119 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2120 					   size_t size,
2121 					   u64 *dma_handle,
2122 					   gfp_t flag)
2123 {
2124 	if (dev->dma_ops)
2125 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2126 	else {
2127 		dma_addr_t handle;
2128 		void *ret;
2129 
2130 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2131 		*dma_handle = handle;
2132 		return ret;
2133 	}
2134 }
2135 
2136 /**
2137  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2138  * @dev: The device for which the DMA addresses were allocated
2139  * @size: The size of the region
2140  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2141  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2142  */
2143 static inline void ib_dma_free_coherent(struct ib_device *dev,
2144 					size_t size, void *cpu_addr,
2145 					u64 dma_handle)
2146 {
2147 	if (dev->dma_ops)
2148 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2149 	else
2150 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2151 }
2152 
2153 /**
2154  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2155  *   by an HCA.
2156  * @pd: The protection domain associated assigned to the registered region.
2157  * @phys_buf_array: Specifies a list of physical buffers to use in the
2158  *   memory region.
2159  * @num_phys_buf: Specifies the size of the phys_buf_array.
2160  * @mr_access_flags: Specifies the memory access rights.
2161  * @iova_start: The offset of the region's starting I/O virtual address.
2162  */
2163 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2164 			     struct ib_phys_buf *phys_buf_array,
2165 			     int num_phys_buf,
2166 			     int mr_access_flags,
2167 			     u64 *iova_start);
2168 
2169 /**
2170  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2171  *   Conceptually, this call performs the functions deregister memory region
2172  *   followed by register physical memory region.  Where possible,
2173  *   resources are reused instead of deallocated and reallocated.
2174  * @mr: The memory region to modify.
2175  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2176  *   properties of the memory region are being modified.
2177  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2178  *   the new protection domain to associated with the memory region,
2179  *   otherwise, this parameter is ignored.
2180  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2181  *   field specifies a list of physical buffers to use in the new
2182  *   translation, otherwise, this parameter is ignored.
2183  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2184  *   field specifies the size of the phys_buf_array, otherwise, this
2185  *   parameter is ignored.
2186  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2187  *   field specifies the new memory access rights, otherwise, this
2188  *   parameter is ignored.
2189  * @iova_start: The offset of the region's starting I/O virtual address.
2190  */
2191 int ib_rereg_phys_mr(struct ib_mr *mr,
2192 		     int mr_rereg_mask,
2193 		     struct ib_pd *pd,
2194 		     struct ib_phys_buf *phys_buf_array,
2195 		     int num_phys_buf,
2196 		     int mr_access_flags,
2197 		     u64 *iova_start);
2198 
2199 /**
2200  * ib_query_mr - Retrieves information about a specific memory region.
2201  * @mr: The memory region to retrieve information about.
2202  * @mr_attr: The attributes of the specified memory region.
2203  */
2204 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2205 
2206 /**
2207  * ib_dereg_mr - Deregisters a memory region and removes it from the
2208  *   HCA translation table.
2209  * @mr: The memory region to deregister.
2210  *
2211  * This function can fail, if the memory region has memory windows bound to it.
2212  */
2213 int ib_dereg_mr(struct ib_mr *mr);
2214 
2215 /**
2216  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2217  *   IB_WR_FAST_REG_MR send work request.
2218  * @pd: The protection domain associated with the region.
2219  * @max_page_list_len: requested max physical buffer list length to be
2220  *   used with fast register work requests for this MR.
2221  */
2222 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2223 
2224 /**
2225  * ib_alloc_fast_reg_page_list - Allocates a page list array
2226  * @device - ib device pointer.
2227  * @page_list_len - size of the page list array to be allocated.
2228  *
2229  * This allocates and returns a struct ib_fast_reg_page_list * and a
2230  * page_list array that is at least page_list_len in size.  The actual
2231  * size is returned in max_page_list_len.  The caller is responsible
2232  * for initializing the contents of the page_list array before posting
2233  * a send work request with the IB_WC_FAST_REG_MR opcode.
2234  *
2235  * The page_list array entries must be translated using one of the
2236  * ib_dma_*() functions just like the addresses passed to
2237  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2238  * ib_fast_reg_page_list must not be modified by the caller until the
2239  * IB_WC_FAST_REG_MR work request completes.
2240  */
2241 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2242 				struct ib_device *device, int page_list_len);
2243 
2244 /**
2245  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2246  *   page list array.
2247  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2248  */
2249 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2250 
2251 /**
2252  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2253  *   R_Key and L_Key.
2254  * @mr - struct ib_mr pointer to be updated.
2255  * @newkey - new key to be used.
2256  */
2257 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2258 {
2259 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2260 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2261 }
2262 
2263 /**
2264  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2265  * for calculating a new rkey for type 2 memory windows.
2266  * @rkey - the rkey to increment.
2267  */
2268 static inline u32 ib_inc_rkey(u32 rkey)
2269 {
2270 	const u32 mask = 0x000000ff;
2271 	return ((rkey + 1) & mask) | (rkey & ~mask);
2272 }
2273 
2274 /**
2275  * ib_alloc_mw - Allocates a memory window.
2276  * @pd: The protection domain associated with the memory window.
2277  * @type: The type of the memory window (1 or 2).
2278  */
2279 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2280 
2281 /**
2282  * ib_bind_mw - Posts a work request to the send queue of the specified
2283  *   QP, which binds the memory window to the given address range and
2284  *   remote access attributes.
2285  * @qp: QP to post the bind work request on.
2286  * @mw: The memory window to bind.
2287  * @mw_bind: Specifies information about the memory window, including
2288  *   its address range, remote access rights, and associated memory region.
2289  *
2290  * If there is no immediate error, the function will update the rkey member
2291  * of the mw parameter to its new value. The bind operation can still fail
2292  * asynchronously.
2293  */
2294 static inline int ib_bind_mw(struct ib_qp *qp,
2295 			     struct ib_mw *mw,
2296 			     struct ib_mw_bind *mw_bind)
2297 {
2298 	/* XXX reference counting in corresponding MR? */
2299 	return mw->device->bind_mw ?
2300 		mw->device->bind_mw(qp, mw, mw_bind) :
2301 		-ENOSYS;
2302 }
2303 
2304 /**
2305  * ib_dealloc_mw - Deallocates a memory window.
2306  * @mw: The memory window to deallocate.
2307  */
2308 int ib_dealloc_mw(struct ib_mw *mw);
2309 
2310 /**
2311  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2312  * @pd: The protection domain associated with the unmapped region.
2313  * @mr_access_flags: Specifies the memory access rights.
2314  * @fmr_attr: Attributes of the unmapped region.
2315  *
2316  * A fast memory region must be mapped before it can be used as part of
2317  * a work request.
2318  */
2319 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2320 			    int mr_access_flags,
2321 			    struct ib_fmr_attr *fmr_attr);
2322 
2323 /**
2324  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2325  * @fmr: The fast memory region to associate with the pages.
2326  * @page_list: An array of physical pages to map to the fast memory region.
2327  * @list_len: The number of pages in page_list.
2328  * @iova: The I/O virtual address to use with the mapped region.
2329  */
2330 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2331 				  u64 *page_list, int list_len,
2332 				  u64 iova)
2333 {
2334 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2335 }
2336 
2337 /**
2338  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2339  * @fmr_list: A linked list of fast memory regions to unmap.
2340  */
2341 int ib_unmap_fmr(struct list_head *fmr_list);
2342 
2343 /**
2344  * ib_dealloc_fmr - Deallocates a fast memory region.
2345  * @fmr: The fast memory region to deallocate.
2346  */
2347 int ib_dealloc_fmr(struct ib_fmr *fmr);
2348 
2349 /**
2350  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2351  * @qp: QP to attach to the multicast group.  The QP must be type
2352  *   IB_QPT_UD.
2353  * @gid: Multicast group GID.
2354  * @lid: Multicast group LID in host byte order.
2355  *
2356  * In order to send and receive multicast packets, subnet
2357  * administration must have created the multicast group and configured
2358  * the fabric appropriately.  The port associated with the specified
2359  * QP must also be a member of the multicast group.
2360  */
2361 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2362 
2363 /**
2364  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2365  * @qp: QP to detach from the multicast group.
2366  * @gid: Multicast group GID.
2367  * @lid: Multicast group LID in host byte order.
2368  */
2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2370 
2371 /**
2372  * ib_alloc_xrcd - Allocates an XRC domain.
2373  * @device: The device on which to allocate the XRC domain.
2374  */
2375 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2376 
2377 /**
2378  * ib_dealloc_xrcd - Deallocates an XRC domain.
2379  * @xrcd: The XRC domain to deallocate.
2380  */
2381 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2382 
2383 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2384 			       struct ib_flow_attr *flow_attr, int domain);
2385 int ib_destroy_flow(struct ib_flow *flow_id);
2386 
2387 #endif /* IB_VERBS_H */
2388