1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC 71 }; 72 73 enum rdma_transport_type { 74 RDMA_TRANSPORT_IB, 75 RDMA_TRANSPORT_IWARP 76 }; 77 78 enum rdma_transport_type 79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 80 81 enum rdma_link_layer { 82 IB_LINK_LAYER_UNSPECIFIED, 83 IB_LINK_LAYER_INFINIBAND, 84 IB_LINK_LAYER_ETHERNET, 85 }; 86 87 enum ib_device_cap_flags { 88 IB_DEVICE_RESIZE_MAX_WR = 1, 89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 91 IB_DEVICE_RAW_MULTI = (1<<3), 92 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 96 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 97 IB_DEVICE_INIT_TYPE = (1<<9), 98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 101 IB_DEVICE_SRQ_RESIZE = (1<<13), 102 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 105 IB_DEVICE_MEM_WINDOW = (1<<17), 106 /* 107 * Devices should set IB_DEVICE_UD_IP_SUM if they support 108 * insertion of UDP and TCP checksum on outgoing UD IPoIB 109 * messages and can verify the validity of checksum for 110 * incoming messages. Setting this flag implies that the 111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 112 */ 113 IB_DEVICE_UD_IP_CSUM = (1<<18), 114 IB_DEVICE_UD_TSO = (1<<19), 115 IB_DEVICE_XRC = (1<<20), 116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24), 120 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29) 121 }; 122 123 enum ib_atomic_cap { 124 IB_ATOMIC_NONE, 125 IB_ATOMIC_HCA, 126 IB_ATOMIC_GLOB 127 }; 128 129 struct ib_device_attr { 130 u64 fw_ver; 131 __be64 sys_image_guid; 132 u64 max_mr_size; 133 u64 page_size_cap; 134 u32 vendor_id; 135 u32 vendor_part_id; 136 u32 hw_ver; 137 int max_qp; 138 int max_qp_wr; 139 int device_cap_flags; 140 int max_sge; 141 int max_sge_rd; 142 int max_cq; 143 int max_cqe; 144 int max_mr; 145 int max_pd; 146 int max_qp_rd_atom; 147 int max_ee_rd_atom; 148 int max_res_rd_atom; 149 int max_qp_init_rd_atom; 150 int max_ee_init_rd_atom; 151 enum ib_atomic_cap atomic_cap; 152 enum ib_atomic_cap masked_atomic_cap; 153 int max_ee; 154 int max_rdd; 155 int max_mw; 156 int max_raw_ipv6_qp; 157 int max_raw_ethy_qp; 158 int max_mcast_grp; 159 int max_mcast_qp_attach; 160 int max_total_mcast_qp_attach; 161 int max_ah; 162 int max_fmr; 163 int max_map_per_fmr; 164 int max_srq; 165 int max_srq_wr; 166 int max_srq_sge; 167 unsigned int max_fast_reg_page_list_len; 168 u16 max_pkeys; 169 u8 local_ca_ack_delay; 170 }; 171 172 enum ib_mtu { 173 IB_MTU_256 = 1, 174 IB_MTU_512 = 2, 175 IB_MTU_1024 = 3, 176 IB_MTU_2048 = 4, 177 IB_MTU_4096 = 5 178 }; 179 180 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 181 { 182 switch (mtu) { 183 case IB_MTU_256: return 256; 184 case IB_MTU_512: return 512; 185 case IB_MTU_1024: return 1024; 186 case IB_MTU_2048: return 2048; 187 case IB_MTU_4096: return 4096; 188 default: return -1; 189 } 190 } 191 192 enum ib_port_state { 193 IB_PORT_NOP = 0, 194 IB_PORT_DOWN = 1, 195 IB_PORT_INIT = 2, 196 IB_PORT_ARMED = 3, 197 IB_PORT_ACTIVE = 4, 198 IB_PORT_ACTIVE_DEFER = 5 199 }; 200 201 enum ib_port_cap_flags { 202 IB_PORT_SM = 1 << 1, 203 IB_PORT_NOTICE_SUP = 1 << 2, 204 IB_PORT_TRAP_SUP = 1 << 3, 205 IB_PORT_OPT_IPD_SUP = 1 << 4, 206 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 207 IB_PORT_SL_MAP_SUP = 1 << 6, 208 IB_PORT_MKEY_NVRAM = 1 << 7, 209 IB_PORT_PKEY_NVRAM = 1 << 8, 210 IB_PORT_LED_INFO_SUP = 1 << 9, 211 IB_PORT_SM_DISABLED = 1 << 10, 212 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 213 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 214 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 215 IB_PORT_CM_SUP = 1 << 16, 216 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 217 IB_PORT_REINIT_SUP = 1 << 18, 218 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 219 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 220 IB_PORT_DR_NOTICE_SUP = 1 << 21, 221 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 222 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 223 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 224 IB_PORT_CLIENT_REG_SUP = 1 << 25 225 }; 226 227 enum ib_port_width { 228 IB_WIDTH_1X = 1, 229 IB_WIDTH_4X = 2, 230 IB_WIDTH_8X = 4, 231 IB_WIDTH_12X = 8 232 }; 233 234 static inline int ib_width_enum_to_int(enum ib_port_width width) 235 { 236 switch (width) { 237 case IB_WIDTH_1X: return 1; 238 case IB_WIDTH_4X: return 4; 239 case IB_WIDTH_8X: return 8; 240 case IB_WIDTH_12X: return 12; 241 default: return -1; 242 } 243 } 244 245 enum ib_port_speed { 246 IB_SPEED_SDR = 1, 247 IB_SPEED_DDR = 2, 248 IB_SPEED_QDR = 4, 249 IB_SPEED_FDR10 = 8, 250 IB_SPEED_FDR = 16, 251 IB_SPEED_EDR = 32 252 }; 253 254 struct ib_protocol_stats { 255 /* TBD... */ 256 }; 257 258 struct iw_protocol_stats { 259 u64 ipInReceives; 260 u64 ipInHdrErrors; 261 u64 ipInTooBigErrors; 262 u64 ipInNoRoutes; 263 u64 ipInAddrErrors; 264 u64 ipInUnknownProtos; 265 u64 ipInTruncatedPkts; 266 u64 ipInDiscards; 267 u64 ipInDelivers; 268 u64 ipOutForwDatagrams; 269 u64 ipOutRequests; 270 u64 ipOutDiscards; 271 u64 ipOutNoRoutes; 272 u64 ipReasmTimeout; 273 u64 ipReasmReqds; 274 u64 ipReasmOKs; 275 u64 ipReasmFails; 276 u64 ipFragOKs; 277 u64 ipFragFails; 278 u64 ipFragCreates; 279 u64 ipInMcastPkts; 280 u64 ipOutMcastPkts; 281 u64 ipInBcastPkts; 282 u64 ipOutBcastPkts; 283 284 u64 tcpRtoAlgorithm; 285 u64 tcpRtoMin; 286 u64 tcpRtoMax; 287 u64 tcpMaxConn; 288 u64 tcpActiveOpens; 289 u64 tcpPassiveOpens; 290 u64 tcpAttemptFails; 291 u64 tcpEstabResets; 292 u64 tcpCurrEstab; 293 u64 tcpInSegs; 294 u64 tcpOutSegs; 295 u64 tcpRetransSegs; 296 u64 tcpInErrs; 297 u64 tcpOutRsts; 298 }; 299 300 union rdma_protocol_stats { 301 struct ib_protocol_stats ib; 302 struct iw_protocol_stats iw; 303 }; 304 305 struct ib_port_attr { 306 enum ib_port_state state; 307 enum ib_mtu max_mtu; 308 enum ib_mtu active_mtu; 309 int gid_tbl_len; 310 u32 port_cap_flags; 311 u32 max_msg_sz; 312 u32 bad_pkey_cntr; 313 u32 qkey_viol_cntr; 314 u16 pkey_tbl_len; 315 u16 lid; 316 u16 sm_lid; 317 u8 lmc; 318 u8 max_vl_num; 319 u8 sm_sl; 320 u8 subnet_timeout; 321 u8 init_type_reply; 322 u8 active_width; 323 u8 active_speed; 324 u8 phys_state; 325 }; 326 327 enum ib_device_modify_flags { 328 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 329 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 330 }; 331 332 struct ib_device_modify { 333 u64 sys_image_guid; 334 char node_desc[64]; 335 }; 336 337 enum ib_port_modify_flags { 338 IB_PORT_SHUTDOWN = 1, 339 IB_PORT_INIT_TYPE = (1<<2), 340 IB_PORT_RESET_QKEY_CNTR = (1<<3) 341 }; 342 343 struct ib_port_modify { 344 u32 set_port_cap_mask; 345 u32 clr_port_cap_mask; 346 u8 init_type; 347 }; 348 349 enum ib_event_type { 350 IB_EVENT_CQ_ERR, 351 IB_EVENT_QP_FATAL, 352 IB_EVENT_QP_REQ_ERR, 353 IB_EVENT_QP_ACCESS_ERR, 354 IB_EVENT_COMM_EST, 355 IB_EVENT_SQ_DRAINED, 356 IB_EVENT_PATH_MIG, 357 IB_EVENT_PATH_MIG_ERR, 358 IB_EVENT_DEVICE_FATAL, 359 IB_EVENT_PORT_ACTIVE, 360 IB_EVENT_PORT_ERR, 361 IB_EVENT_LID_CHANGE, 362 IB_EVENT_PKEY_CHANGE, 363 IB_EVENT_SM_CHANGE, 364 IB_EVENT_SRQ_ERR, 365 IB_EVENT_SRQ_LIMIT_REACHED, 366 IB_EVENT_QP_LAST_WQE_REACHED, 367 IB_EVENT_CLIENT_REREGISTER, 368 IB_EVENT_GID_CHANGE, 369 }; 370 371 struct ib_event { 372 struct ib_device *device; 373 union { 374 struct ib_cq *cq; 375 struct ib_qp *qp; 376 struct ib_srq *srq; 377 u8 port_num; 378 } element; 379 enum ib_event_type event; 380 }; 381 382 struct ib_event_handler { 383 struct ib_device *device; 384 void (*handler)(struct ib_event_handler *, struct ib_event *); 385 struct list_head list; 386 }; 387 388 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 389 do { \ 390 (_ptr)->device = _device; \ 391 (_ptr)->handler = _handler; \ 392 INIT_LIST_HEAD(&(_ptr)->list); \ 393 } while (0) 394 395 struct ib_global_route { 396 union ib_gid dgid; 397 u32 flow_label; 398 u8 sgid_index; 399 u8 hop_limit; 400 u8 traffic_class; 401 }; 402 403 struct ib_grh { 404 __be32 version_tclass_flow; 405 __be16 paylen; 406 u8 next_hdr; 407 u8 hop_limit; 408 union ib_gid sgid; 409 union ib_gid dgid; 410 }; 411 412 enum { 413 IB_MULTICAST_QPN = 0xffffff 414 }; 415 416 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 417 418 enum ib_ah_flags { 419 IB_AH_GRH = 1 420 }; 421 422 enum ib_rate { 423 IB_RATE_PORT_CURRENT = 0, 424 IB_RATE_2_5_GBPS = 2, 425 IB_RATE_5_GBPS = 5, 426 IB_RATE_10_GBPS = 3, 427 IB_RATE_20_GBPS = 6, 428 IB_RATE_30_GBPS = 4, 429 IB_RATE_40_GBPS = 7, 430 IB_RATE_60_GBPS = 8, 431 IB_RATE_80_GBPS = 9, 432 IB_RATE_120_GBPS = 10, 433 IB_RATE_14_GBPS = 11, 434 IB_RATE_56_GBPS = 12, 435 IB_RATE_112_GBPS = 13, 436 IB_RATE_168_GBPS = 14, 437 IB_RATE_25_GBPS = 15, 438 IB_RATE_100_GBPS = 16, 439 IB_RATE_200_GBPS = 17, 440 IB_RATE_300_GBPS = 18 441 }; 442 443 /** 444 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 445 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 446 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 447 * @rate: rate to convert. 448 */ 449 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 450 451 /** 452 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 453 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 454 * @rate: rate to convert. 455 */ 456 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 457 458 /** 459 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 460 * enum. 461 * @mult: multiple to convert. 462 */ 463 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 464 465 struct ib_ah_attr { 466 struct ib_global_route grh; 467 u16 dlid; 468 u8 sl; 469 u8 src_path_bits; 470 u8 static_rate; 471 u8 ah_flags; 472 u8 port_num; 473 }; 474 475 enum ib_wc_status { 476 IB_WC_SUCCESS, 477 IB_WC_LOC_LEN_ERR, 478 IB_WC_LOC_QP_OP_ERR, 479 IB_WC_LOC_EEC_OP_ERR, 480 IB_WC_LOC_PROT_ERR, 481 IB_WC_WR_FLUSH_ERR, 482 IB_WC_MW_BIND_ERR, 483 IB_WC_BAD_RESP_ERR, 484 IB_WC_LOC_ACCESS_ERR, 485 IB_WC_REM_INV_REQ_ERR, 486 IB_WC_REM_ACCESS_ERR, 487 IB_WC_REM_OP_ERR, 488 IB_WC_RETRY_EXC_ERR, 489 IB_WC_RNR_RETRY_EXC_ERR, 490 IB_WC_LOC_RDD_VIOL_ERR, 491 IB_WC_REM_INV_RD_REQ_ERR, 492 IB_WC_REM_ABORT_ERR, 493 IB_WC_INV_EECN_ERR, 494 IB_WC_INV_EEC_STATE_ERR, 495 IB_WC_FATAL_ERR, 496 IB_WC_RESP_TIMEOUT_ERR, 497 IB_WC_GENERAL_ERR 498 }; 499 500 enum ib_wc_opcode { 501 IB_WC_SEND, 502 IB_WC_RDMA_WRITE, 503 IB_WC_RDMA_READ, 504 IB_WC_COMP_SWAP, 505 IB_WC_FETCH_ADD, 506 IB_WC_BIND_MW, 507 IB_WC_LSO, 508 IB_WC_LOCAL_INV, 509 IB_WC_FAST_REG_MR, 510 IB_WC_MASKED_COMP_SWAP, 511 IB_WC_MASKED_FETCH_ADD, 512 /* 513 * Set value of IB_WC_RECV so consumers can test if a completion is a 514 * receive by testing (opcode & IB_WC_RECV). 515 */ 516 IB_WC_RECV = 1 << 7, 517 IB_WC_RECV_RDMA_WITH_IMM 518 }; 519 520 enum ib_wc_flags { 521 IB_WC_GRH = 1, 522 IB_WC_WITH_IMM = (1<<1), 523 IB_WC_WITH_INVALIDATE = (1<<2), 524 IB_WC_IP_CSUM_OK = (1<<3), 525 }; 526 527 struct ib_wc { 528 u64 wr_id; 529 enum ib_wc_status status; 530 enum ib_wc_opcode opcode; 531 u32 vendor_err; 532 u32 byte_len; 533 struct ib_qp *qp; 534 union { 535 __be32 imm_data; 536 u32 invalidate_rkey; 537 } ex; 538 u32 src_qp; 539 int wc_flags; 540 u16 pkey_index; 541 u16 slid; 542 u8 sl; 543 u8 dlid_path_bits; 544 u8 port_num; /* valid only for DR SMPs on switches */ 545 }; 546 547 enum ib_cq_notify_flags { 548 IB_CQ_SOLICITED = 1 << 0, 549 IB_CQ_NEXT_COMP = 1 << 1, 550 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 551 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 552 }; 553 554 enum ib_srq_type { 555 IB_SRQT_BASIC, 556 IB_SRQT_XRC 557 }; 558 559 enum ib_srq_attr_mask { 560 IB_SRQ_MAX_WR = 1 << 0, 561 IB_SRQ_LIMIT = 1 << 1, 562 }; 563 564 struct ib_srq_attr { 565 u32 max_wr; 566 u32 max_sge; 567 u32 srq_limit; 568 }; 569 570 struct ib_srq_init_attr { 571 void (*event_handler)(struct ib_event *, void *); 572 void *srq_context; 573 struct ib_srq_attr attr; 574 enum ib_srq_type srq_type; 575 576 union { 577 struct { 578 struct ib_xrcd *xrcd; 579 struct ib_cq *cq; 580 } xrc; 581 } ext; 582 }; 583 584 struct ib_qp_cap { 585 u32 max_send_wr; 586 u32 max_recv_wr; 587 u32 max_send_sge; 588 u32 max_recv_sge; 589 u32 max_inline_data; 590 }; 591 592 enum ib_sig_type { 593 IB_SIGNAL_ALL_WR, 594 IB_SIGNAL_REQ_WR 595 }; 596 597 enum ib_qp_type { 598 /* 599 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 600 * here (and in that order) since the MAD layer uses them as 601 * indices into a 2-entry table. 602 */ 603 IB_QPT_SMI, 604 IB_QPT_GSI, 605 606 IB_QPT_RC, 607 IB_QPT_UC, 608 IB_QPT_UD, 609 IB_QPT_RAW_IPV6, 610 IB_QPT_RAW_ETHERTYPE, 611 IB_QPT_RAW_PACKET = 8, 612 IB_QPT_XRC_INI = 9, 613 IB_QPT_XRC_TGT, 614 IB_QPT_MAX, 615 /* Reserve a range for qp types internal to the low level driver. 616 * These qp types will not be visible at the IB core layer, so the 617 * IB_QPT_MAX usages should not be affected in the core layer 618 */ 619 IB_QPT_RESERVED1 = 0x1000, 620 IB_QPT_RESERVED2, 621 IB_QPT_RESERVED3, 622 IB_QPT_RESERVED4, 623 IB_QPT_RESERVED5, 624 IB_QPT_RESERVED6, 625 IB_QPT_RESERVED7, 626 IB_QPT_RESERVED8, 627 IB_QPT_RESERVED9, 628 IB_QPT_RESERVED10, 629 }; 630 631 enum ib_qp_create_flags { 632 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 633 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 634 /* reserve bits 26-31 for low level drivers' internal use */ 635 IB_QP_CREATE_RESERVED_START = 1 << 26, 636 IB_QP_CREATE_RESERVED_END = 1 << 31, 637 }; 638 639 640 /* 641 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 642 * callback to destroy the passed in QP. 643 */ 644 645 struct ib_qp_init_attr { 646 void (*event_handler)(struct ib_event *, void *); 647 void *qp_context; 648 struct ib_cq *send_cq; 649 struct ib_cq *recv_cq; 650 struct ib_srq *srq; 651 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 652 struct ib_qp_cap cap; 653 enum ib_sig_type sq_sig_type; 654 enum ib_qp_type qp_type; 655 enum ib_qp_create_flags create_flags; 656 u8 port_num; /* special QP types only */ 657 }; 658 659 struct ib_qp_open_attr { 660 void (*event_handler)(struct ib_event *, void *); 661 void *qp_context; 662 u32 qp_num; 663 enum ib_qp_type qp_type; 664 }; 665 666 enum ib_rnr_timeout { 667 IB_RNR_TIMER_655_36 = 0, 668 IB_RNR_TIMER_000_01 = 1, 669 IB_RNR_TIMER_000_02 = 2, 670 IB_RNR_TIMER_000_03 = 3, 671 IB_RNR_TIMER_000_04 = 4, 672 IB_RNR_TIMER_000_06 = 5, 673 IB_RNR_TIMER_000_08 = 6, 674 IB_RNR_TIMER_000_12 = 7, 675 IB_RNR_TIMER_000_16 = 8, 676 IB_RNR_TIMER_000_24 = 9, 677 IB_RNR_TIMER_000_32 = 10, 678 IB_RNR_TIMER_000_48 = 11, 679 IB_RNR_TIMER_000_64 = 12, 680 IB_RNR_TIMER_000_96 = 13, 681 IB_RNR_TIMER_001_28 = 14, 682 IB_RNR_TIMER_001_92 = 15, 683 IB_RNR_TIMER_002_56 = 16, 684 IB_RNR_TIMER_003_84 = 17, 685 IB_RNR_TIMER_005_12 = 18, 686 IB_RNR_TIMER_007_68 = 19, 687 IB_RNR_TIMER_010_24 = 20, 688 IB_RNR_TIMER_015_36 = 21, 689 IB_RNR_TIMER_020_48 = 22, 690 IB_RNR_TIMER_030_72 = 23, 691 IB_RNR_TIMER_040_96 = 24, 692 IB_RNR_TIMER_061_44 = 25, 693 IB_RNR_TIMER_081_92 = 26, 694 IB_RNR_TIMER_122_88 = 27, 695 IB_RNR_TIMER_163_84 = 28, 696 IB_RNR_TIMER_245_76 = 29, 697 IB_RNR_TIMER_327_68 = 30, 698 IB_RNR_TIMER_491_52 = 31 699 }; 700 701 enum ib_qp_attr_mask { 702 IB_QP_STATE = 1, 703 IB_QP_CUR_STATE = (1<<1), 704 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 705 IB_QP_ACCESS_FLAGS = (1<<3), 706 IB_QP_PKEY_INDEX = (1<<4), 707 IB_QP_PORT = (1<<5), 708 IB_QP_QKEY = (1<<6), 709 IB_QP_AV = (1<<7), 710 IB_QP_PATH_MTU = (1<<8), 711 IB_QP_TIMEOUT = (1<<9), 712 IB_QP_RETRY_CNT = (1<<10), 713 IB_QP_RNR_RETRY = (1<<11), 714 IB_QP_RQ_PSN = (1<<12), 715 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 716 IB_QP_ALT_PATH = (1<<14), 717 IB_QP_MIN_RNR_TIMER = (1<<15), 718 IB_QP_SQ_PSN = (1<<16), 719 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 720 IB_QP_PATH_MIG_STATE = (1<<18), 721 IB_QP_CAP = (1<<19), 722 IB_QP_DEST_QPN = (1<<20) 723 }; 724 725 enum ib_qp_state { 726 IB_QPS_RESET, 727 IB_QPS_INIT, 728 IB_QPS_RTR, 729 IB_QPS_RTS, 730 IB_QPS_SQD, 731 IB_QPS_SQE, 732 IB_QPS_ERR 733 }; 734 735 enum ib_mig_state { 736 IB_MIG_MIGRATED, 737 IB_MIG_REARM, 738 IB_MIG_ARMED 739 }; 740 741 enum ib_mw_type { 742 IB_MW_TYPE_1 = 1, 743 IB_MW_TYPE_2 = 2 744 }; 745 746 struct ib_qp_attr { 747 enum ib_qp_state qp_state; 748 enum ib_qp_state cur_qp_state; 749 enum ib_mtu path_mtu; 750 enum ib_mig_state path_mig_state; 751 u32 qkey; 752 u32 rq_psn; 753 u32 sq_psn; 754 u32 dest_qp_num; 755 int qp_access_flags; 756 struct ib_qp_cap cap; 757 struct ib_ah_attr ah_attr; 758 struct ib_ah_attr alt_ah_attr; 759 u16 pkey_index; 760 u16 alt_pkey_index; 761 u8 en_sqd_async_notify; 762 u8 sq_draining; 763 u8 max_rd_atomic; 764 u8 max_dest_rd_atomic; 765 u8 min_rnr_timer; 766 u8 port_num; 767 u8 timeout; 768 u8 retry_cnt; 769 u8 rnr_retry; 770 u8 alt_port_num; 771 u8 alt_timeout; 772 }; 773 774 enum ib_wr_opcode { 775 IB_WR_RDMA_WRITE, 776 IB_WR_RDMA_WRITE_WITH_IMM, 777 IB_WR_SEND, 778 IB_WR_SEND_WITH_IMM, 779 IB_WR_RDMA_READ, 780 IB_WR_ATOMIC_CMP_AND_SWP, 781 IB_WR_ATOMIC_FETCH_AND_ADD, 782 IB_WR_LSO, 783 IB_WR_SEND_WITH_INV, 784 IB_WR_RDMA_READ_WITH_INV, 785 IB_WR_LOCAL_INV, 786 IB_WR_FAST_REG_MR, 787 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 788 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 789 IB_WR_BIND_MW, 790 /* reserve values for low level drivers' internal use. 791 * These values will not be used at all in the ib core layer. 792 */ 793 IB_WR_RESERVED1 = 0xf0, 794 IB_WR_RESERVED2, 795 IB_WR_RESERVED3, 796 IB_WR_RESERVED4, 797 IB_WR_RESERVED5, 798 IB_WR_RESERVED6, 799 IB_WR_RESERVED7, 800 IB_WR_RESERVED8, 801 IB_WR_RESERVED9, 802 IB_WR_RESERVED10, 803 }; 804 805 enum ib_send_flags { 806 IB_SEND_FENCE = 1, 807 IB_SEND_SIGNALED = (1<<1), 808 IB_SEND_SOLICITED = (1<<2), 809 IB_SEND_INLINE = (1<<3), 810 IB_SEND_IP_CSUM = (1<<4), 811 812 /* reserve bits 26-31 for low level drivers' internal use */ 813 IB_SEND_RESERVED_START = (1 << 26), 814 IB_SEND_RESERVED_END = (1 << 31), 815 }; 816 817 struct ib_sge { 818 u64 addr; 819 u32 length; 820 u32 lkey; 821 }; 822 823 struct ib_fast_reg_page_list { 824 struct ib_device *device; 825 u64 *page_list; 826 unsigned int max_page_list_len; 827 }; 828 829 /** 830 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 831 * @mr: A memory region to bind the memory window to. 832 * @addr: The address where the memory window should begin. 833 * @length: The length of the memory window, in bytes. 834 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 835 * 836 * This struct contains the shared parameters for type 1 and type 2 837 * memory window bind operations. 838 */ 839 struct ib_mw_bind_info { 840 struct ib_mr *mr; 841 u64 addr; 842 u64 length; 843 int mw_access_flags; 844 }; 845 846 struct ib_send_wr { 847 struct ib_send_wr *next; 848 u64 wr_id; 849 struct ib_sge *sg_list; 850 int num_sge; 851 enum ib_wr_opcode opcode; 852 int send_flags; 853 union { 854 __be32 imm_data; 855 u32 invalidate_rkey; 856 } ex; 857 union { 858 struct { 859 u64 remote_addr; 860 u32 rkey; 861 } rdma; 862 struct { 863 u64 remote_addr; 864 u64 compare_add; 865 u64 swap; 866 u64 compare_add_mask; 867 u64 swap_mask; 868 u32 rkey; 869 } atomic; 870 struct { 871 struct ib_ah *ah; 872 void *header; 873 int hlen; 874 int mss; 875 u32 remote_qpn; 876 u32 remote_qkey; 877 u16 pkey_index; /* valid for GSI only */ 878 u8 port_num; /* valid for DR SMPs on switch only */ 879 } ud; 880 struct { 881 u64 iova_start; 882 struct ib_fast_reg_page_list *page_list; 883 unsigned int page_shift; 884 unsigned int page_list_len; 885 u32 length; 886 int access_flags; 887 u32 rkey; 888 } fast_reg; 889 struct { 890 struct ib_mw *mw; 891 /* The new rkey for the memory window. */ 892 u32 rkey; 893 struct ib_mw_bind_info bind_info; 894 } bind_mw; 895 } wr; 896 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 897 }; 898 899 struct ib_recv_wr { 900 struct ib_recv_wr *next; 901 u64 wr_id; 902 struct ib_sge *sg_list; 903 int num_sge; 904 }; 905 906 enum ib_access_flags { 907 IB_ACCESS_LOCAL_WRITE = 1, 908 IB_ACCESS_REMOTE_WRITE = (1<<1), 909 IB_ACCESS_REMOTE_READ = (1<<2), 910 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 911 IB_ACCESS_MW_BIND = (1<<4), 912 IB_ZERO_BASED = (1<<5) 913 }; 914 915 struct ib_phys_buf { 916 u64 addr; 917 u64 size; 918 }; 919 920 struct ib_mr_attr { 921 struct ib_pd *pd; 922 u64 device_virt_addr; 923 u64 size; 924 int mr_access_flags; 925 u32 lkey; 926 u32 rkey; 927 }; 928 929 enum ib_mr_rereg_flags { 930 IB_MR_REREG_TRANS = 1, 931 IB_MR_REREG_PD = (1<<1), 932 IB_MR_REREG_ACCESS = (1<<2) 933 }; 934 935 /** 936 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 937 * @wr_id: Work request id. 938 * @send_flags: Flags from ib_send_flags enum. 939 * @bind_info: More parameters of the bind operation. 940 */ 941 struct ib_mw_bind { 942 u64 wr_id; 943 int send_flags; 944 struct ib_mw_bind_info bind_info; 945 }; 946 947 struct ib_fmr_attr { 948 int max_pages; 949 int max_maps; 950 u8 page_shift; 951 }; 952 953 struct ib_ucontext { 954 struct ib_device *device; 955 struct list_head pd_list; 956 struct list_head mr_list; 957 struct list_head mw_list; 958 struct list_head cq_list; 959 struct list_head qp_list; 960 struct list_head srq_list; 961 struct list_head ah_list; 962 struct list_head xrcd_list; 963 struct list_head rule_list; 964 int closing; 965 }; 966 967 struct ib_uobject { 968 u64 user_handle; /* handle given to us by userspace */ 969 struct ib_ucontext *context; /* associated user context */ 970 void *object; /* containing object */ 971 struct list_head list; /* link to context's list */ 972 int id; /* index into kernel idr */ 973 struct kref ref; 974 struct rw_semaphore mutex; /* protects .live */ 975 int live; 976 }; 977 978 struct ib_udata { 979 void __user *inbuf; 980 void __user *outbuf; 981 size_t inlen; 982 size_t outlen; 983 }; 984 985 struct ib_pd { 986 struct ib_device *device; 987 struct ib_uobject *uobject; 988 atomic_t usecnt; /* count all resources */ 989 }; 990 991 struct ib_xrcd { 992 struct ib_device *device; 993 atomic_t usecnt; /* count all exposed resources */ 994 struct inode *inode; 995 996 struct mutex tgt_qp_mutex; 997 struct list_head tgt_qp_list; 998 }; 999 1000 struct ib_ah { 1001 struct ib_device *device; 1002 struct ib_pd *pd; 1003 struct ib_uobject *uobject; 1004 }; 1005 1006 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1007 1008 struct ib_cq { 1009 struct ib_device *device; 1010 struct ib_uobject *uobject; 1011 ib_comp_handler comp_handler; 1012 void (*event_handler)(struct ib_event *, void *); 1013 void *cq_context; 1014 int cqe; 1015 atomic_t usecnt; /* count number of work queues */ 1016 }; 1017 1018 struct ib_srq { 1019 struct ib_device *device; 1020 struct ib_pd *pd; 1021 struct ib_uobject *uobject; 1022 void (*event_handler)(struct ib_event *, void *); 1023 void *srq_context; 1024 enum ib_srq_type srq_type; 1025 atomic_t usecnt; 1026 1027 union { 1028 struct { 1029 struct ib_xrcd *xrcd; 1030 struct ib_cq *cq; 1031 u32 srq_num; 1032 } xrc; 1033 } ext; 1034 }; 1035 1036 struct ib_qp { 1037 struct ib_device *device; 1038 struct ib_pd *pd; 1039 struct ib_cq *send_cq; 1040 struct ib_cq *recv_cq; 1041 struct ib_srq *srq; 1042 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1043 struct list_head xrcd_list; 1044 /* count times opened, mcast attaches, flow attaches */ 1045 atomic_t usecnt; 1046 struct list_head open_list; 1047 struct ib_qp *real_qp; 1048 struct ib_uobject *uobject; 1049 void (*event_handler)(struct ib_event *, void *); 1050 void *qp_context; 1051 u32 qp_num; 1052 enum ib_qp_type qp_type; 1053 }; 1054 1055 struct ib_mr { 1056 struct ib_device *device; 1057 struct ib_pd *pd; 1058 struct ib_uobject *uobject; 1059 u32 lkey; 1060 u32 rkey; 1061 atomic_t usecnt; /* count number of MWs */ 1062 }; 1063 1064 struct ib_mw { 1065 struct ib_device *device; 1066 struct ib_pd *pd; 1067 struct ib_uobject *uobject; 1068 u32 rkey; 1069 enum ib_mw_type type; 1070 }; 1071 1072 struct ib_fmr { 1073 struct ib_device *device; 1074 struct ib_pd *pd; 1075 struct list_head list; 1076 u32 lkey; 1077 u32 rkey; 1078 }; 1079 1080 /* Supported steering options */ 1081 enum ib_flow_attr_type { 1082 /* steering according to rule specifications */ 1083 IB_FLOW_ATTR_NORMAL = 0x0, 1084 /* default unicast and multicast rule - 1085 * receive all Eth traffic which isn't steered to any QP 1086 */ 1087 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1088 /* default multicast rule - 1089 * receive all Eth multicast traffic which isn't steered to any QP 1090 */ 1091 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1092 /* sniffer rule - receive all port traffic */ 1093 IB_FLOW_ATTR_SNIFFER = 0x3 1094 }; 1095 1096 /* Supported steering header types */ 1097 enum ib_flow_spec_type { 1098 /* L2 headers*/ 1099 IB_FLOW_SPEC_ETH = 0x20, 1100 /* L3 header*/ 1101 IB_FLOW_SPEC_IPV4 = 0x30, 1102 /* L4 headers*/ 1103 IB_FLOW_SPEC_TCP = 0x40, 1104 IB_FLOW_SPEC_UDP = 0x41 1105 }; 1106 1107 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1108 1109 /* Flow steering rule priority is set according to it's domain. 1110 * Lower domain value means higher priority. 1111 */ 1112 enum ib_flow_domain { 1113 IB_FLOW_DOMAIN_USER, 1114 IB_FLOW_DOMAIN_ETHTOOL, 1115 IB_FLOW_DOMAIN_RFS, 1116 IB_FLOW_DOMAIN_NIC, 1117 IB_FLOW_DOMAIN_NUM /* Must be last */ 1118 }; 1119 1120 struct ib_flow_eth_filter { 1121 u8 dst_mac[6]; 1122 u8 src_mac[6]; 1123 __be16 ether_type; 1124 __be16 vlan_tag; 1125 }; 1126 1127 struct ib_flow_spec_eth { 1128 enum ib_flow_spec_type type; 1129 u16 size; 1130 struct ib_flow_eth_filter val; 1131 struct ib_flow_eth_filter mask; 1132 }; 1133 1134 struct ib_flow_ipv4_filter { 1135 __be32 src_ip; 1136 __be32 dst_ip; 1137 }; 1138 1139 struct ib_flow_spec_ipv4 { 1140 enum ib_flow_spec_type type; 1141 u16 size; 1142 struct ib_flow_ipv4_filter val; 1143 struct ib_flow_ipv4_filter mask; 1144 }; 1145 1146 struct ib_flow_tcp_udp_filter { 1147 __be16 dst_port; 1148 __be16 src_port; 1149 }; 1150 1151 struct ib_flow_spec_tcp_udp { 1152 enum ib_flow_spec_type type; 1153 u16 size; 1154 struct ib_flow_tcp_udp_filter val; 1155 struct ib_flow_tcp_udp_filter mask; 1156 }; 1157 1158 union ib_flow_spec { 1159 struct { 1160 enum ib_flow_spec_type type; 1161 u16 size; 1162 }; 1163 struct ib_flow_spec_eth eth; 1164 struct ib_flow_spec_ipv4 ipv4; 1165 struct ib_flow_spec_tcp_udp tcp_udp; 1166 }; 1167 1168 struct ib_flow_attr { 1169 enum ib_flow_attr_type type; 1170 u16 size; 1171 u16 priority; 1172 u32 flags; 1173 u8 num_of_specs; 1174 u8 port; 1175 /* Following are the optional layers according to user request 1176 * struct ib_flow_spec_xxx 1177 * struct ib_flow_spec_yyy 1178 */ 1179 }; 1180 1181 struct ib_flow { 1182 struct ib_qp *qp; 1183 struct ib_uobject *uobject; 1184 }; 1185 1186 struct ib_mad; 1187 struct ib_grh; 1188 1189 enum ib_process_mad_flags { 1190 IB_MAD_IGNORE_MKEY = 1, 1191 IB_MAD_IGNORE_BKEY = 2, 1192 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1193 }; 1194 1195 enum ib_mad_result { 1196 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1197 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1198 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1199 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1200 }; 1201 1202 #define IB_DEVICE_NAME_MAX 64 1203 1204 struct ib_cache { 1205 rwlock_t lock; 1206 struct ib_event_handler event_handler; 1207 struct ib_pkey_cache **pkey_cache; 1208 struct ib_gid_cache **gid_cache; 1209 u8 *lmc_cache; 1210 }; 1211 1212 struct ib_dma_mapping_ops { 1213 int (*mapping_error)(struct ib_device *dev, 1214 u64 dma_addr); 1215 u64 (*map_single)(struct ib_device *dev, 1216 void *ptr, size_t size, 1217 enum dma_data_direction direction); 1218 void (*unmap_single)(struct ib_device *dev, 1219 u64 addr, size_t size, 1220 enum dma_data_direction direction); 1221 u64 (*map_page)(struct ib_device *dev, 1222 struct page *page, unsigned long offset, 1223 size_t size, 1224 enum dma_data_direction direction); 1225 void (*unmap_page)(struct ib_device *dev, 1226 u64 addr, size_t size, 1227 enum dma_data_direction direction); 1228 int (*map_sg)(struct ib_device *dev, 1229 struct scatterlist *sg, int nents, 1230 enum dma_data_direction direction); 1231 void (*unmap_sg)(struct ib_device *dev, 1232 struct scatterlist *sg, int nents, 1233 enum dma_data_direction direction); 1234 u64 (*dma_address)(struct ib_device *dev, 1235 struct scatterlist *sg); 1236 unsigned int (*dma_len)(struct ib_device *dev, 1237 struct scatterlist *sg); 1238 void (*sync_single_for_cpu)(struct ib_device *dev, 1239 u64 dma_handle, 1240 size_t size, 1241 enum dma_data_direction dir); 1242 void (*sync_single_for_device)(struct ib_device *dev, 1243 u64 dma_handle, 1244 size_t size, 1245 enum dma_data_direction dir); 1246 void *(*alloc_coherent)(struct ib_device *dev, 1247 size_t size, 1248 u64 *dma_handle, 1249 gfp_t flag); 1250 void (*free_coherent)(struct ib_device *dev, 1251 size_t size, void *cpu_addr, 1252 u64 dma_handle); 1253 }; 1254 1255 struct iw_cm_verbs; 1256 1257 struct ib_device { 1258 struct device *dma_device; 1259 1260 char name[IB_DEVICE_NAME_MAX]; 1261 1262 struct list_head event_handler_list; 1263 spinlock_t event_handler_lock; 1264 1265 spinlock_t client_data_lock; 1266 struct list_head core_list; 1267 struct list_head client_data_list; 1268 1269 struct ib_cache cache; 1270 int *pkey_tbl_len; 1271 int *gid_tbl_len; 1272 1273 int num_comp_vectors; 1274 1275 struct iw_cm_verbs *iwcm; 1276 1277 int (*get_protocol_stats)(struct ib_device *device, 1278 union rdma_protocol_stats *stats); 1279 int (*query_device)(struct ib_device *device, 1280 struct ib_device_attr *device_attr); 1281 int (*query_port)(struct ib_device *device, 1282 u8 port_num, 1283 struct ib_port_attr *port_attr); 1284 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1285 u8 port_num); 1286 int (*query_gid)(struct ib_device *device, 1287 u8 port_num, int index, 1288 union ib_gid *gid); 1289 int (*query_pkey)(struct ib_device *device, 1290 u8 port_num, u16 index, u16 *pkey); 1291 int (*modify_device)(struct ib_device *device, 1292 int device_modify_mask, 1293 struct ib_device_modify *device_modify); 1294 int (*modify_port)(struct ib_device *device, 1295 u8 port_num, int port_modify_mask, 1296 struct ib_port_modify *port_modify); 1297 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1298 struct ib_udata *udata); 1299 int (*dealloc_ucontext)(struct ib_ucontext *context); 1300 int (*mmap)(struct ib_ucontext *context, 1301 struct vm_area_struct *vma); 1302 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1303 struct ib_ucontext *context, 1304 struct ib_udata *udata); 1305 int (*dealloc_pd)(struct ib_pd *pd); 1306 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1307 struct ib_ah_attr *ah_attr); 1308 int (*modify_ah)(struct ib_ah *ah, 1309 struct ib_ah_attr *ah_attr); 1310 int (*query_ah)(struct ib_ah *ah, 1311 struct ib_ah_attr *ah_attr); 1312 int (*destroy_ah)(struct ib_ah *ah); 1313 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1314 struct ib_srq_init_attr *srq_init_attr, 1315 struct ib_udata *udata); 1316 int (*modify_srq)(struct ib_srq *srq, 1317 struct ib_srq_attr *srq_attr, 1318 enum ib_srq_attr_mask srq_attr_mask, 1319 struct ib_udata *udata); 1320 int (*query_srq)(struct ib_srq *srq, 1321 struct ib_srq_attr *srq_attr); 1322 int (*destroy_srq)(struct ib_srq *srq); 1323 int (*post_srq_recv)(struct ib_srq *srq, 1324 struct ib_recv_wr *recv_wr, 1325 struct ib_recv_wr **bad_recv_wr); 1326 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1327 struct ib_qp_init_attr *qp_init_attr, 1328 struct ib_udata *udata); 1329 int (*modify_qp)(struct ib_qp *qp, 1330 struct ib_qp_attr *qp_attr, 1331 int qp_attr_mask, 1332 struct ib_udata *udata); 1333 int (*query_qp)(struct ib_qp *qp, 1334 struct ib_qp_attr *qp_attr, 1335 int qp_attr_mask, 1336 struct ib_qp_init_attr *qp_init_attr); 1337 int (*destroy_qp)(struct ib_qp *qp); 1338 int (*post_send)(struct ib_qp *qp, 1339 struct ib_send_wr *send_wr, 1340 struct ib_send_wr **bad_send_wr); 1341 int (*post_recv)(struct ib_qp *qp, 1342 struct ib_recv_wr *recv_wr, 1343 struct ib_recv_wr **bad_recv_wr); 1344 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1345 int comp_vector, 1346 struct ib_ucontext *context, 1347 struct ib_udata *udata); 1348 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1349 u16 cq_period); 1350 int (*destroy_cq)(struct ib_cq *cq); 1351 int (*resize_cq)(struct ib_cq *cq, int cqe, 1352 struct ib_udata *udata); 1353 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1354 struct ib_wc *wc); 1355 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1356 int (*req_notify_cq)(struct ib_cq *cq, 1357 enum ib_cq_notify_flags flags); 1358 int (*req_ncomp_notif)(struct ib_cq *cq, 1359 int wc_cnt); 1360 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1361 int mr_access_flags); 1362 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1363 struct ib_phys_buf *phys_buf_array, 1364 int num_phys_buf, 1365 int mr_access_flags, 1366 u64 *iova_start); 1367 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1368 u64 start, u64 length, 1369 u64 virt_addr, 1370 int mr_access_flags, 1371 struct ib_udata *udata); 1372 int (*query_mr)(struct ib_mr *mr, 1373 struct ib_mr_attr *mr_attr); 1374 int (*dereg_mr)(struct ib_mr *mr); 1375 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1376 int max_page_list_len); 1377 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1378 int page_list_len); 1379 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1380 int (*rereg_phys_mr)(struct ib_mr *mr, 1381 int mr_rereg_mask, 1382 struct ib_pd *pd, 1383 struct ib_phys_buf *phys_buf_array, 1384 int num_phys_buf, 1385 int mr_access_flags, 1386 u64 *iova_start); 1387 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1388 enum ib_mw_type type); 1389 int (*bind_mw)(struct ib_qp *qp, 1390 struct ib_mw *mw, 1391 struct ib_mw_bind *mw_bind); 1392 int (*dealloc_mw)(struct ib_mw *mw); 1393 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1394 int mr_access_flags, 1395 struct ib_fmr_attr *fmr_attr); 1396 int (*map_phys_fmr)(struct ib_fmr *fmr, 1397 u64 *page_list, int list_len, 1398 u64 iova); 1399 int (*unmap_fmr)(struct list_head *fmr_list); 1400 int (*dealloc_fmr)(struct ib_fmr *fmr); 1401 int (*attach_mcast)(struct ib_qp *qp, 1402 union ib_gid *gid, 1403 u16 lid); 1404 int (*detach_mcast)(struct ib_qp *qp, 1405 union ib_gid *gid, 1406 u16 lid); 1407 int (*process_mad)(struct ib_device *device, 1408 int process_mad_flags, 1409 u8 port_num, 1410 struct ib_wc *in_wc, 1411 struct ib_grh *in_grh, 1412 struct ib_mad *in_mad, 1413 struct ib_mad *out_mad); 1414 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1415 struct ib_ucontext *ucontext, 1416 struct ib_udata *udata); 1417 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1418 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1419 struct ib_flow_attr 1420 *flow_attr, 1421 int domain); 1422 int (*destroy_flow)(struct ib_flow *flow_id); 1423 1424 struct ib_dma_mapping_ops *dma_ops; 1425 1426 struct module *owner; 1427 struct device dev; 1428 struct kobject *ports_parent; 1429 struct list_head port_list; 1430 1431 enum { 1432 IB_DEV_UNINITIALIZED, 1433 IB_DEV_REGISTERED, 1434 IB_DEV_UNREGISTERED 1435 } reg_state; 1436 1437 int uverbs_abi_ver; 1438 u64 uverbs_cmd_mask; 1439 1440 char node_desc[64]; 1441 __be64 node_guid; 1442 u32 local_dma_lkey; 1443 u8 node_type; 1444 u8 phys_port_cnt; 1445 }; 1446 1447 struct ib_client { 1448 char *name; 1449 void (*add) (struct ib_device *); 1450 void (*remove)(struct ib_device *); 1451 1452 struct list_head list; 1453 }; 1454 1455 struct ib_device *ib_alloc_device(size_t size); 1456 void ib_dealloc_device(struct ib_device *device); 1457 1458 int ib_register_device(struct ib_device *device, 1459 int (*port_callback)(struct ib_device *, 1460 u8, struct kobject *)); 1461 void ib_unregister_device(struct ib_device *device); 1462 1463 int ib_register_client (struct ib_client *client); 1464 void ib_unregister_client(struct ib_client *client); 1465 1466 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1467 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1468 void *data); 1469 1470 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1471 { 1472 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1473 } 1474 1475 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1476 { 1477 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1478 } 1479 1480 /** 1481 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1482 * contains all required attributes and no attributes not allowed for 1483 * the given QP state transition. 1484 * @cur_state: Current QP state 1485 * @next_state: Next QP state 1486 * @type: QP type 1487 * @mask: Mask of supplied QP attributes 1488 * 1489 * This function is a helper function that a low-level driver's 1490 * modify_qp method can use to validate the consumer's input. It 1491 * checks that cur_state and next_state are valid QP states, that a 1492 * transition from cur_state to next_state is allowed by the IB spec, 1493 * and that the attribute mask supplied is allowed for the transition. 1494 */ 1495 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1496 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1497 1498 int ib_register_event_handler (struct ib_event_handler *event_handler); 1499 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1500 void ib_dispatch_event(struct ib_event *event); 1501 1502 int ib_query_device(struct ib_device *device, 1503 struct ib_device_attr *device_attr); 1504 1505 int ib_query_port(struct ib_device *device, 1506 u8 port_num, struct ib_port_attr *port_attr); 1507 1508 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1509 u8 port_num); 1510 1511 int ib_query_gid(struct ib_device *device, 1512 u8 port_num, int index, union ib_gid *gid); 1513 1514 int ib_query_pkey(struct ib_device *device, 1515 u8 port_num, u16 index, u16 *pkey); 1516 1517 int ib_modify_device(struct ib_device *device, 1518 int device_modify_mask, 1519 struct ib_device_modify *device_modify); 1520 1521 int ib_modify_port(struct ib_device *device, 1522 u8 port_num, int port_modify_mask, 1523 struct ib_port_modify *port_modify); 1524 1525 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1526 u8 *port_num, u16 *index); 1527 1528 int ib_find_pkey(struct ib_device *device, 1529 u8 port_num, u16 pkey, u16 *index); 1530 1531 /** 1532 * ib_alloc_pd - Allocates an unused protection domain. 1533 * @device: The device on which to allocate the protection domain. 1534 * 1535 * A protection domain object provides an association between QPs, shared 1536 * receive queues, address handles, memory regions, and memory windows. 1537 */ 1538 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1539 1540 /** 1541 * ib_dealloc_pd - Deallocates a protection domain. 1542 * @pd: The protection domain to deallocate. 1543 */ 1544 int ib_dealloc_pd(struct ib_pd *pd); 1545 1546 /** 1547 * ib_create_ah - Creates an address handle for the given address vector. 1548 * @pd: The protection domain associated with the address handle. 1549 * @ah_attr: The attributes of the address vector. 1550 * 1551 * The address handle is used to reference a local or global destination 1552 * in all UD QP post sends. 1553 */ 1554 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1555 1556 /** 1557 * ib_init_ah_from_wc - Initializes address handle attributes from a 1558 * work completion. 1559 * @device: Device on which the received message arrived. 1560 * @port_num: Port on which the received message arrived. 1561 * @wc: Work completion associated with the received message. 1562 * @grh: References the received global route header. This parameter is 1563 * ignored unless the work completion indicates that the GRH is valid. 1564 * @ah_attr: Returned attributes that can be used when creating an address 1565 * handle for replying to the message. 1566 */ 1567 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1568 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1569 1570 /** 1571 * ib_create_ah_from_wc - Creates an address handle associated with the 1572 * sender of the specified work completion. 1573 * @pd: The protection domain associated with the address handle. 1574 * @wc: Work completion information associated with a received message. 1575 * @grh: References the received global route header. This parameter is 1576 * ignored unless the work completion indicates that the GRH is valid. 1577 * @port_num: The outbound port number to associate with the address. 1578 * 1579 * The address handle is used to reference a local or global destination 1580 * in all UD QP post sends. 1581 */ 1582 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1583 struct ib_grh *grh, u8 port_num); 1584 1585 /** 1586 * ib_modify_ah - Modifies the address vector associated with an address 1587 * handle. 1588 * @ah: The address handle to modify. 1589 * @ah_attr: The new address vector attributes to associate with the 1590 * address handle. 1591 */ 1592 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1593 1594 /** 1595 * ib_query_ah - Queries the address vector associated with an address 1596 * handle. 1597 * @ah: The address handle to query. 1598 * @ah_attr: The address vector attributes associated with the address 1599 * handle. 1600 */ 1601 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1602 1603 /** 1604 * ib_destroy_ah - Destroys an address handle. 1605 * @ah: The address handle to destroy. 1606 */ 1607 int ib_destroy_ah(struct ib_ah *ah); 1608 1609 /** 1610 * ib_create_srq - Creates a SRQ associated with the specified protection 1611 * domain. 1612 * @pd: The protection domain associated with the SRQ. 1613 * @srq_init_attr: A list of initial attributes required to create the 1614 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1615 * the actual capabilities of the created SRQ. 1616 * 1617 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1618 * requested size of the SRQ, and set to the actual values allocated 1619 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1620 * will always be at least as large as the requested values. 1621 */ 1622 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1623 struct ib_srq_init_attr *srq_init_attr); 1624 1625 /** 1626 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1627 * @srq: The SRQ to modify. 1628 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1629 * the current values of selected SRQ attributes are returned. 1630 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1631 * are being modified. 1632 * 1633 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1634 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1635 * the number of receives queued drops below the limit. 1636 */ 1637 int ib_modify_srq(struct ib_srq *srq, 1638 struct ib_srq_attr *srq_attr, 1639 enum ib_srq_attr_mask srq_attr_mask); 1640 1641 /** 1642 * ib_query_srq - Returns the attribute list and current values for the 1643 * specified SRQ. 1644 * @srq: The SRQ to query. 1645 * @srq_attr: The attributes of the specified SRQ. 1646 */ 1647 int ib_query_srq(struct ib_srq *srq, 1648 struct ib_srq_attr *srq_attr); 1649 1650 /** 1651 * ib_destroy_srq - Destroys the specified SRQ. 1652 * @srq: The SRQ to destroy. 1653 */ 1654 int ib_destroy_srq(struct ib_srq *srq); 1655 1656 /** 1657 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1658 * @srq: The SRQ to post the work request on. 1659 * @recv_wr: A list of work requests to post on the receive queue. 1660 * @bad_recv_wr: On an immediate failure, this parameter will reference 1661 * the work request that failed to be posted on the QP. 1662 */ 1663 static inline int ib_post_srq_recv(struct ib_srq *srq, 1664 struct ib_recv_wr *recv_wr, 1665 struct ib_recv_wr **bad_recv_wr) 1666 { 1667 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1668 } 1669 1670 /** 1671 * ib_create_qp - Creates a QP associated with the specified protection 1672 * domain. 1673 * @pd: The protection domain associated with the QP. 1674 * @qp_init_attr: A list of initial attributes required to create the 1675 * QP. If QP creation succeeds, then the attributes are updated to 1676 * the actual capabilities of the created QP. 1677 */ 1678 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1679 struct ib_qp_init_attr *qp_init_attr); 1680 1681 /** 1682 * ib_modify_qp - Modifies the attributes for the specified QP and then 1683 * transitions the QP to the given state. 1684 * @qp: The QP to modify. 1685 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1686 * the current values of selected QP attributes are returned. 1687 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1688 * are being modified. 1689 */ 1690 int ib_modify_qp(struct ib_qp *qp, 1691 struct ib_qp_attr *qp_attr, 1692 int qp_attr_mask); 1693 1694 /** 1695 * ib_query_qp - Returns the attribute list and current values for the 1696 * specified QP. 1697 * @qp: The QP to query. 1698 * @qp_attr: The attributes of the specified QP. 1699 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1700 * @qp_init_attr: Additional attributes of the selected QP. 1701 * 1702 * The qp_attr_mask may be used to limit the query to gathering only the 1703 * selected attributes. 1704 */ 1705 int ib_query_qp(struct ib_qp *qp, 1706 struct ib_qp_attr *qp_attr, 1707 int qp_attr_mask, 1708 struct ib_qp_init_attr *qp_init_attr); 1709 1710 /** 1711 * ib_destroy_qp - Destroys the specified QP. 1712 * @qp: The QP to destroy. 1713 */ 1714 int ib_destroy_qp(struct ib_qp *qp); 1715 1716 /** 1717 * ib_open_qp - Obtain a reference to an existing sharable QP. 1718 * @xrcd - XRC domain 1719 * @qp_open_attr: Attributes identifying the QP to open. 1720 * 1721 * Returns a reference to a sharable QP. 1722 */ 1723 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1724 struct ib_qp_open_attr *qp_open_attr); 1725 1726 /** 1727 * ib_close_qp - Release an external reference to a QP. 1728 * @qp: The QP handle to release 1729 * 1730 * The opened QP handle is released by the caller. The underlying 1731 * shared QP is not destroyed until all internal references are released. 1732 */ 1733 int ib_close_qp(struct ib_qp *qp); 1734 1735 /** 1736 * ib_post_send - Posts a list of work requests to the send queue of 1737 * the specified QP. 1738 * @qp: The QP to post the work request on. 1739 * @send_wr: A list of work requests to post on the send queue. 1740 * @bad_send_wr: On an immediate failure, this parameter will reference 1741 * the work request that failed to be posted on the QP. 1742 * 1743 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1744 * error is returned, the QP state shall not be affected, 1745 * ib_post_send() will return an immediate error after queueing any 1746 * earlier work requests in the list. 1747 */ 1748 static inline int ib_post_send(struct ib_qp *qp, 1749 struct ib_send_wr *send_wr, 1750 struct ib_send_wr **bad_send_wr) 1751 { 1752 return qp->device->post_send(qp, send_wr, bad_send_wr); 1753 } 1754 1755 /** 1756 * ib_post_recv - Posts a list of work requests to the receive queue of 1757 * the specified QP. 1758 * @qp: The QP to post the work request on. 1759 * @recv_wr: A list of work requests to post on the receive queue. 1760 * @bad_recv_wr: On an immediate failure, this parameter will reference 1761 * the work request that failed to be posted on the QP. 1762 */ 1763 static inline int ib_post_recv(struct ib_qp *qp, 1764 struct ib_recv_wr *recv_wr, 1765 struct ib_recv_wr **bad_recv_wr) 1766 { 1767 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1768 } 1769 1770 /** 1771 * ib_create_cq - Creates a CQ on the specified device. 1772 * @device: The device on which to create the CQ. 1773 * @comp_handler: A user-specified callback that is invoked when a 1774 * completion event occurs on the CQ. 1775 * @event_handler: A user-specified callback that is invoked when an 1776 * asynchronous event not associated with a completion occurs on the CQ. 1777 * @cq_context: Context associated with the CQ returned to the user via 1778 * the associated completion and event handlers. 1779 * @cqe: The minimum size of the CQ. 1780 * @comp_vector - Completion vector used to signal completion events. 1781 * Must be >= 0 and < context->num_comp_vectors. 1782 * 1783 * Users can examine the cq structure to determine the actual CQ size. 1784 */ 1785 struct ib_cq *ib_create_cq(struct ib_device *device, 1786 ib_comp_handler comp_handler, 1787 void (*event_handler)(struct ib_event *, void *), 1788 void *cq_context, int cqe, int comp_vector); 1789 1790 /** 1791 * ib_resize_cq - Modifies the capacity of the CQ. 1792 * @cq: The CQ to resize. 1793 * @cqe: The minimum size of the CQ. 1794 * 1795 * Users can examine the cq structure to determine the actual CQ size. 1796 */ 1797 int ib_resize_cq(struct ib_cq *cq, int cqe); 1798 1799 /** 1800 * ib_modify_cq - Modifies moderation params of the CQ 1801 * @cq: The CQ to modify. 1802 * @cq_count: number of CQEs that will trigger an event 1803 * @cq_period: max period of time in usec before triggering an event 1804 * 1805 */ 1806 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1807 1808 /** 1809 * ib_destroy_cq - Destroys the specified CQ. 1810 * @cq: The CQ to destroy. 1811 */ 1812 int ib_destroy_cq(struct ib_cq *cq); 1813 1814 /** 1815 * ib_poll_cq - poll a CQ for completion(s) 1816 * @cq:the CQ being polled 1817 * @num_entries:maximum number of completions to return 1818 * @wc:array of at least @num_entries &struct ib_wc where completions 1819 * will be returned 1820 * 1821 * Poll a CQ for (possibly multiple) completions. If the return value 1822 * is < 0, an error occurred. If the return value is >= 0, it is the 1823 * number of completions returned. If the return value is 1824 * non-negative and < num_entries, then the CQ was emptied. 1825 */ 1826 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1827 struct ib_wc *wc) 1828 { 1829 return cq->device->poll_cq(cq, num_entries, wc); 1830 } 1831 1832 /** 1833 * ib_peek_cq - Returns the number of unreaped completions currently 1834 * on the specified CQ. 1835 * @cq: The CQ to peek. 1836 * @wc_cnt: A minimum number of unreaped completions to check for. 1837 * 1838 * If the number of unreaped completions is greater than or equal to wc_cnt, 1839 * this function returns wc_cnt, otherwise, it returns the actual number of 1840 * unreaped completions. 1841 */ 1842 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1843 1844 /** 1845 * ib_req_notify_cq - Request completion notification on a CQ. 1846 * @cq: The CQ to generate an event for. 1847 * @flags: 1848 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1849 * to request an event on the next solicited event or next work 1850 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1851 * may also be |ed in to request a hint about missed events, as 1852 * described below. 1853 * 1854 * Return Value: 1855 * < 0 means an error occurred while requesting notification 1856 * == 0 means notification was requested successfully, and if 1857 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1858 * were missed and it is safe to wait for another event. In 1859 * this case is it guaranteed that any work completions added 1860 * to the CQ since the last CQ poll will trigger a completion 1861 * notification event. 1862 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1863 * in. It means that the consumer must poll the CQ again to 1864 * make sure it is empty to avoid missing an event because of a 1865 * race between requesting notification and an entry being 1866 * added to the CQ. This return value means it is possible 1867 * (but not guaranteed) that a work completion has been added 1868 * to the CQ since the last poll without triggering a 1869 * completion notification event. 1870 */ 1871 static inline int ib_req_notify_cq(struct ib_cq *cq, 1872 enum ib_cq_notify_flags flags) 1873 { 1874 return cq->device->req_notify_cq(cq, flags); 1875 } 1876 1877 /** 1878 * ib_req_ncomp_notif - Request completion notification when there are 1879 * at least the specified number of unreaped completions on the CQ. 1880 * @cq: The CQ to generate an event for. 1881 * @wc_cnt: The number of unreaped completions that should be on the 1882 * CQ before an event is generated. 1883 */ 1884 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1885 { 1886 return cq->device->req_ncomp_notif ? 1887 cq->device->req_ncomp_notif(cq, wc_cnt) : 1888 -ENOSYS; 1889 } 1890 1891 /** 1892 * ib_get_dma_mr - Returns a memory region for system memory that is 1893 * usable for DMA. 1894 * @pd: The protection domain associated with the memory region. 1895 * @mr_access_flags: Specifies the memory access rights. 1896 * 1897 * Note that the ib_dma_*() functions defined below must be used 1898 * to create/destroy addresses used with the Lkey or Rkey returned 1899 * by ib_get_dma_mr(). 1900 */ 1901 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1902 1903 /** 1904 * ib_dma_mapping_error - check a DMA addr for error 1905 * @dev: The device for which the dma_addr was created 1906 * @dma_addr: The DMA address to check 1907 */ 1908 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1909 { 1910 if (dev->dma_ops) 1911 return dev->dma_ops->mapping_error(dev, dma_addr); 1912 return dma_mapping_error(dev->dma_device, dma_addr); 1913 } 1914 1915 /** 1916 * ib_dma_map_single - Map a kernel virtual address to DMA address 1917 * @dev: The device for which the dma_addr is to be created 1918 * @cpu_addr: The kernel virtual address 1919 * @size: The size of the region in bytes 1920 * @direction: The direction of the DMA 1921 */ 1922 static inline u64 ib_dma_map_single(struct ib_device *dev, 1923 void *cpu_addr, size_t size, 1924 enum dma_data_direction direction) 1925 { 1926 if (dev->dma_ops) 1927 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1928 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1929 } 1930 1931 /** 1932 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1933 * @dev: The device for which the DMA address was created 1934 * @addr: The DMA address 1935 * @size: The size of the region in bytes 1936 * @direction: The direction of the DMA 1937 */ 1938 static inline void ib_dma_unmap_single(struct ib_device *dev, 1939 u64 addr, size_t size, 1940 enum dma_data_direction direction) 1941 { 1942 if (dev->dma_ops) 1943 dev->dma_ops->unmap_single(dev, addr, size, direction); 1944 else 1945 dma_unmap_single(dev->dma_device, addr, size, direction); 1946 } 1947 1948 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1949 void *cpu_addr, size_t size, 1950 enum dma_data_direction direction, 1951 struct dma_attrs *attrs) 1952 { 1953 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1954 direction, attrs); 1955 } 1956 1957 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1958 u64 addr, size_t size, 1959 enum dma_data_direction direction, 1960 struct dma_attrs *attrs) 1961 { 1962 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1963 direction, attrs); 1964 } 1965 1966 /** 1967 * ib_dma_map_page - Map a physical page to DMA address 1968 * @dev: The device for which the dma_addr is to be created 1969 * @page: The page to be mapped 1970 * @offset: The offset within the page 1971 * @size: The size of the region in bytes 1972 * @direction: The direction of the DMA 1973 */ 1974 static inline u64 ib_dma_map_page(struct ib_device *dev, 1975 struct page *page, 1976 unsigned long offset, 1977 size_t size, 1978 enum dma_data_direction direction) 1979 { 1980 if (dev->dma_ops) 1981 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1982 return dma_map_page(dev->dma_device, page, offset, size, direction); 1983 } 1984 1985 /** 1986 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1987 * @dev: The device for which the DMA address was created 1988 * @addr: The DMA address 1989 * @size: The size of the region in bytes 1990 * @direction: The direction of the DMA 1991 */ 1992 static inline void ib_dma_unmap_page(struct ib_device *dev, 1993 u64 addr, size_t size, 1994 enum dma_data_direction direction) 1995 { 1996 if (dev->dma_ops) 1997 dev->dma_ops->unmap_page(dev, addr, size, direction); 1998 else 1999 dma_unmap_page(dev->dma_device, addr, size, direction); 2000 } 2001 2002 /** 2003 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2004 * @dev: The device for which the DMA addresses are to be created 2005 * @sg: The array of scatter/gather entries 2006 * @nents: The number of scatter/gather entries 2007 * @direction: The direction of the DMA 2008 */ 2009 static inline int ib_dma_map_sg(struct ib_device *dev, 2010 struct scatterlist *sg, int nents, 2011 enum dma_data_direction direction) 2012 { 2013 if (dev->dma_ops) 2014 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2015 return dma_map_sg(dev->dma_device, sg, nents, direction); 2016 } 2017 2018 /** 2019 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2020 * @dev: The device for which the DMA addresses were created 2021 * @sg: The array of scatter/gather entries 2022 * @nents: The number of scatter/gather entries 2023 * @direction: The direction of the DMA 2024 */ 2025 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2026 struct scatterlist *sg, int nents, 2027 enum dma_data_direction direction) 2028 { 2029 if (dev->dma_ops) 2030 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2031 else 2032 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2033 } 2034 2035 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2036 struct scatterlist *sg, int nents, 2037 enum dma_data_direction direction, 2038 struct dma_attrs *attrs) 2039 { 2040 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2041 } 2042 2043 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2044 struct scatterlist *sg, int nents, 2045 enum dma_data_direction direction, 2046 struct dma_attrs *attrs) 2047 { 2048 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2049 } 2050 /** 2051 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2052 * @dev: The device for which the DMA addresses were created 2053 * @sg: The scatter/gather entry 2054 */ 2055 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2056 struct scatterlist *sg) 2057 { 2058 if (dev->dma_ops) 2059 return dev->dma_ops->dma_address(dev, sg); 2060 return sg_dma_address(sg); 2061 } 2062 2063 /** 2064 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2065 * @dev: The device for which the DMA addresses were created 2066 * @sg: The scatter/gather entry 2067 */ 2068 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2069 struct scatterlist *sg) 2070 { 2071 if (dev->dma_ops) 2072 return dev->dma_ops->dma_len(dev, sg); 2073 return sg_dma_len(sg); 2074 } 2075 2076 /** 2077 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2078 * @dev: The device for which the DMA address was created 2079 * @addr: The DMA address 2080 * @size: The size of the region in bytes 2081 * @dir: The direction of the DMA 2082 */ 2083 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2084 u64 addr, 2085 size_t size, 2086 enum dma_data_direction dir) 2087 { 2088 if (dev->dma_ops) 2089 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2090 else 2091 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2092 } 2093 2094 /** 2095 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2096 * @dev: The device for which the DMA address was created 2097 * @addr: The DMA address 2098 * @size: The size of the region in bytes 2099 * @dir: The direction of the DMA 2100 */ 2101 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2102 u64 addr, 2103 size_t size, 2104 enum dma_data_direction dir) 2105 { 2106 if (dev->dma_ops) 2107 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2108 else 2109 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2110 } 2111 2112 /** 2113 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2114 * @dev: The device for which the DMA address is requested 2115 * @size: The size of the region to allocate in bytes 2116 * @dma_handle: A pointer for returning the DMA address of the region 2117 * @flag: memory allocator flags 2118 */ 2119 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2120 size_t size, 2121 u64 *dma_handle, 2122 gfp_t flag) 2123 { 2124 if (dev->dma_ops) 2125 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2126 else { 2127 dma_addr_t handle; 2128 void *ret; 2129 2130 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2131 *dma_handle = handle; 2132 return ret; 2133 } 2134 } 2135 2136 /** 2137 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2138 * @dev: The device for which the DMA addresses were allocated 2139 * @size: The size of the region 2140 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2141 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2142 */ 2143 static inline void ib_dma_free_coherent(struct ib_device *dev, 2144 size_t size, void *cpu_addr, 2145 u64 dma_handle) 2146 { 2147 if (dev->dma_ops) 2148 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2149 else 2150 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2151 } 2152 2153 /** 2154 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2155 * by an HCA. 2156 * @pd: The protection domain associated assigned to the registered region. 2157 * @phys_buf_array: Specifies a list of physical buffers to use in the 2158 * memory region. 2159 * @num_phys_buf: Specifies the size of the phys_buf_array. 2160 * @mr_access_flags: Specifies the memory access rights. 2161 * @iova_start: The offset of the region's starting I/O virtual address. 2162 */ 2163 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2164 struct ib_phys_buf *phys_buf_array, 2165 int num_phys_buf, 2166 int mr_access_flags, 2167 u64 *iova_start); 2168 2169 /** 2170 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2171 * Conceptually, this call performs the functions deregister memory region 2172 * followed by register physical memory region. Where possible, 2173 * resources are reused instead of deallocated and reallocated. 2174 * @mr: The memory region to modify. 2175 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2176 * properties of the memory region are being modified. 2177 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2178 * the new protection domain to associated with the memory region, 2179 * otherwise, this parameter is ignored. 2180 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2181 * field specifies a list of physical buffers to use in the new 2182 * translation, otherwise, this parameter is ignored. 2183 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2184 * field specifies the size of the phys_buf_array, otherwise, this 2185 * parameter is ignored. 2186 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2187 * field specifies the new memory access rights, otherwise, this 2188 * parameter is ignored. 2189 * @iova_start: The offset of the region's starting I/O virtual address. 2190 */ 2191 int ib_rereg_phys_mr(struct ib_mr *mr, 2192 int mr_rereg_mask, 2193 struct ib_pd *pd, 2194 struct ib_phys_buf *phys_buf_array, 2195 int num_phys_buf, 2196 int mr_access_flags, 2197 u64 *iova_start); 2198 2199 /** 2200 * ib_query_mr - Retrieves information about a specific memory region. 2201 * @mr: The memory region to retrieve information about. 2202 * @mr_attr: The attributes of the specified memory region. 2203 */ 2204 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2205 2206 /** 2207 * ib_dereg_mr - Deregisters a memory region and removes it from the 2208 * HCA translation table. 2209 * @mr: The memory region to deregister. 2210 * 2211 * This function can fail, if the memory region has memory windows bound to it. 2212 */ 2213 int ib_dereg_mr(struct ib_mr *mr); 2214 2215 /** 2216 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2217 * IB_WR_FAST_REG_MR send work request. 2218 * @pd: The protection domain associated with the region. 2219 * @max_page_list_len: requested max physical buffer list length to be 2220 * used with fast register work requests for this MR. 2221 */ 2222 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2223 2224 /** 2225 * ib_alloc_fast_reg_page_list - Allocates a page list array 2226 * @device - ib device pointer. 2227 * @page_list_len - size of the page list array to be allocated. 2228 * 2229 * This allocates and returns a struct ib_fast_reg_page_list * and a 2230 * page_list array that is at least page_list_len in size. The actual 2231 * size is returned in max_page_list_len. The caller is responsible 2232 * for initializing the contents of the page_list array before posting 2233 * a send work request with the IB_WC_FAST_REG_MR opcode. 2234 * 2235 * The page_list array entries must be translated using one of the 2236 * ib_dma_*() functions just like the addresses passed to 2237 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2238 * ib_fast_reg_page_list must not be modified by the caller until the 2239 * IB_WC_FAST_REG_MR work request completes. 2240 */ 2241 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2242 struct ib_device *device, int page_list_len); 2243 2244 /** 2245 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2246 * page list array. 2247 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2248 */ 2249 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2250 2251 /** 2252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2253 * R_Key and L_Key. 2254 * @mr - struct ib_mr pointer to be updated. 2255 * @newkey - new key to be used. 2256 */ 2257 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2258 { 2259 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2260 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2261 } 2262 2263 /** 2264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2265 * for calculating a new rkey for type 2 memory windows. 2266 * @rkey - the rkey to increment. 2267 */ 2268 static inline u32 ib_inc_rkey(u32 rkey) 2269 { 2270 const u32 mask = 0x000000ff; 2271 return ((rkey + 1) & mask) | (rkey & ~mask); 2272 } 2273 2274 /** 2275 * ib_alloc_mw - Allocates a memory window. 2276 * @pd: The protection domain associated with the memory window. 2277 * @type: The type of the memory window (1 or 2). 2278 */ 2279 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2280 2281 /** 2282 * ib_bind_mw - Posts a work request to the send queue of the specified 2283 * QP, which binds the memory window to the given address range and 2284 * remote access attributes. 2285 * @qp: QP to post the bind work request on. 2286 * @mw: The memory window to bind. 2287 * @mw_bind: Specifies information about the memory window, including 2288 * its address range, remote access rights, and associated memory region. 2289 * 2290 * If there is no immediate error, the function will update the rkey member 2291 * of the mw parameter to its new value. The bind operation can still fail 2292 * asynchronously. 2293 */ 2294 static inline int ib_bind_mw(struct ib_qp *qp, 2295 struct ib_mw *mw, 2296 struct ib_mw_bind *mw_bind) 2297 { 2298 /* XXX reference counting in corresponding MR? */ 2299 return mw->device->bind_mw ? 2300 mw->device->bind_mw(qp, mw, mw_bind) : 2301 -ENOSYS; 2302 } 2303 2304 /** 2305 * ib_dealloc_mw - Deallocates a memory window. 2306 * @mw: The memory window to deallocate. 2307 */ 2308 int ib_dealloc_mw(struct ib_mw *mw); 2309 2310 /** 2311 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2312 * @pd: The protection domain associated with the unmapped region. 2313 * @mr_access_flags: Specifies the memory access rights. 2314 * @fmr_attr: Attributes of the unmapped region. 2315 * 2316 * A fast memory region must be mapped before it can be used as part of 2317 * a work request. 2318 */ 2319 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2320 int mr_access_flags, 2321 struct ib_fmr_attr *fmr_attr); 2322 2323 /** 2324 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2325 * @fmr: The fast memory region to associate with the pages. 2326 * @page_list: An array of physical pages to map to the fast memory region. 2327 * @list_len: The number of pages in page_list. 2328 * @iova: The I/O virtual address to use with the mapped region. 2329 */ 2330 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2331 u64 *page_list, int list_len, 2332 u64 iova) 2333 { 2334 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2335 } 2336 2337 /** 2338 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2339 * @fmr_list: A linked list of fast memory regions to unmap. 2340 */ 2341 int ib_unmap_fmr(struct list_head *fmr_list); 2342 2343 /** 2344 * ib_dealloc_fmr - Deallocates a fast memory region. 2345 * @fmr: The fast memory region to deallocate. 2346 */ 2347 int ib_dealloc_fmr(struct ib_fmr *fmr); 2348 2349 /** 2350 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2351 * @qp: QP to attach to the multicast group. The QP must be type 2352 * IB_QPT_UD. 2353 * @gid: Multicast group GID. 2354 * @lid: Multicast group LID in host byte order. 2355 * 2356 * In order to send and receive multicast packets, subnet 2357 * administration must have created the multicast group and configured 2358 * the fabric appropriately. The port associated with the specified 2359 * QP must also be a member of the multicast group. 2360 */ 2361 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2362 2363 /** 2364 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2365 * @qp: QP to detach from the multicast group. 2366 * @gid: Multicast group GID. 2367 * @lid: Multicast group LID in host byte order. 2368 */ 2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2370 2371 /** 2372 * ib_alloc_xrcd - Allocates an XRC domain. 2373 * @device: The device on which to allocate the XRC domain. 2374 */ 2375 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2376 2377 /** 2378 * ib_dealloc_xrcd - Deallocates an XRC domain. 2379 * @xrcd: The XRC domain to deallocate. 2380 */ 2381 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2382 2383 struct ib_flow *ib_create_flow(struct ib_qp *qp, 2384 struct ib_flow_attr *flow_attr, int domain); 2385 int ib_destroy_flow(struct ib_flow *flow_id); 2386 2387 #endif /* IB_VERBS_H */ 2388