1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/types.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/kref.h> 19 #include <linux/list.h> 20 #include <linux/rwsem.h> 21 #include <linux/workqueue.h> 22 #include <linux/irq_poll.h> 23 #include <uapi/linux/if_ether.h> 24 #include <net/ipv6.h> 25 #include <net/ip.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/netdevice.h> 29 #include <linux/refcount.h> 30 #include <linux/if_link.h> 31 #include <linux/atomic.h> 32 #include <linux/mmu_notifier.h> 33 #include <linux/uaccess.h> 34 #include <linux/cgroup_rdma.h> 35 #include <linux/irqflags.h> 36 #include <linux/preempt.h> 37 #include <linux/dim.h> 38 #include <uapi/rdma/ib_user_verbs.h> 39 #include <rdma/rdma_counter.h> 40 #include <rdma/restrack.h> 41 #include <rdma/signature.h> 42 #include <uapi/rdma/rdma_user_ioctl.h> 43 #include <uapi/rdma/ib_user_ioctl_verbs.h> 44 45 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 46 47 struct ib_umem_odp; 48 struct ib_uqp_object; 49 struct ib_usrq_object; 50 struct ib_uwq_object; 51 struct rdma_cm_id; 52 53 extern struct workqueue_struct *ib_wq; 54 extern struct workqueue_struct *ib_comp_wq; 55 extern struct workqueue_struct *ib_comp_unbound_wq; 56 57 struct ib_ucq_object; 58 59 __printf(3, 4) __cold 60 void ibdev_printk(const char *level, const struct ib_device *ibdev, 61 const char *format, ...); 62 __printf(2, 3) __cold 63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 64 __printf(2, 3) __cold 65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 66 __printf(2, 3) __cold 67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 68 __printf(2, 3) __cold 69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 70 __printf(2, 3) __cold 71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 72 __printf(2, 3) __cold 73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 74 __printf(2, 3) __cold 75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 76 77 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 79 #define ibdev_dbg(__dev, format, args...) \ 80 dynamic_ibdev_dbg(__dev, format, ##args) 81 #else 82 __printf(2, 3) __cold 83 static inline 84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 85 #endif 86 87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 88 do { \ 89 static DEFINE_RATELIMIT_STATE(_rs, \ 90 DEFAULT_RATELIMIT_INTERVAL, \ 91 DEFAULT_RATELIMIT_BURST); \ 92 if (__ratelimit(&_rs)) \ 93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 94 } while (0) 95 96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 110 111 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 115 do { \ 116 static DEFINE_RATELIMIT_STATE(_rs, \ 117 DEFAULT_RATELIMIT_INTERVAL, \ 118 DEFAULT_RATELIMIT_BURST); \ 119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 122 ##__VA_ARGS__); \ 123 } while (0) 124 #else 125 __printf(2, 3) __cold 126 static inline 127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 128 #endif 129 130 union ib_gid { 131 u8 raw[16]; 132 struct { 133 __be64 subnet_prefix; 134 __be64 interface_id; 135 } global; 136 }; 137 138 extern union ib_gid zgid; 139 140 enum ib_gid_type { 141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 144 IB_GID_TYPE_SIZE 145 }; 146 147 #define ROCE_V2_UDP_DPORT 4791 148 struct ib_gid_attr { 149 struct net_device __rcu *ndev; 150 struct ib_device *device; 151 union ib_gid gid; 152 enum ib_gid_type gid_type; 153 u16 index; 154 u8 port_num; 155 }; 156 157 enum { 158 /* set the local administered indication */ 159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 160 }; 161 162 enum rdma_transport_type { 163 RDMA_TRANSPORT_IB, 164 RDMA_TRANSPORT_IWARP, 165 RDMA_TRANSPORT_USNIC, 166 RDMA_TRANSPORT_USNIC_UDP, 167 RDMA_TRANSPORT_UNSPECIFIED, 168 }; 169 170 enum rdma_protocol_type { 171 RDMA_PROTOCOL_IB, 172 RDMA_PROTOCOL_IBOE, 173 RDMA_PROTOCOL_IWARP, 174 RDMA_PROTOCOL_USNIC_UDP 175 }; 176 177 __attribute_const__ enum rdma_transport_type 178 rdma_node_get_transport(unsigned int node_type); 179 180 enum rdma_network_type { 181 RDMA_NETWORK_IB, 182 RDMA_NETWORK_ROCE_V1, 183 RDMA_NETWORK_IPV4, 184 RDMA_NETWORK_IPV6 185 }; 186 187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 188 { 189 if (network_type == RDMA_NETWORK_IPV4 || 190 network_type == RDMA_NETWORK_IPV6) 191 return IB_GID_TYPE_ROCE_UDP_ENCAP; 192 else if (network_type == RDMA_NETWORK_ROCE_V1) 193 return IB_GID_TYPE_ROCE; 194 else 195 return IB_GID_TYPE_IB; 196 } 197 198 static inline enum rdma_network_type 199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 200 { 201 if (attr->gid_type == IB_GID_TYPE_IB) 202 return RDMA_NETWORK_IB; 203 204 if (attr->gid_type == IB_GID_TYPE_ROCE) 205 return RDMA_NETWORK_ROCE_V1; 206 207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 208 return RDMA_NETWORK_IPV4; 209 else 210 return RDMA_NETWORK_IPV6; 211 } 212 213 enum rdma_link_layer { 214 IB_LINK_LAYER_UNSPECIFIED, 215 IB_LINK_LAYER_INFINIBAND, 216 IB_LINK_LAYER_ETHERNET, 217 }; 218 219 enum ib_device_cap_flags { 220 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 221 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 222 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 223 IB_DEVICE_RAW_MULTI = (1 << 3), 224 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 225 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 226 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 227 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 228 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 229 /* Not in use, former INIT_TYPE = (1 << 9),*/ 230 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 231 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 232 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 233 IB_DEVICE_SRQ_RESIZE = (1 << 13), 234 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 235 236 /* 237 * This device supports a per-device lkey or stag that can be 238 * used without performing a memory registration for the local 239 * memory. Note that ULPs should never check this flag, but 240 * instead of use the local_dma_lkey flag in the ib_pd structure, 241 * which will always contain a usable lkey. 242 */ 243 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 244 /* Reserved, old SEND_W_INV = (1 << 16),*/ 245 IB_DEVICE_MEM_WINDOW = (1 << 17), 246 /* 247 * Devices should set IB_DEVICE_UD_IP_SUM if they support 248 * insertion of UDP and TCP checksum on outgoing UD IPoIB 249 * messages and can verify the validity of checksum for 250 * incoming messages. Setting this flag implies that the 251 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 252 */ 253 IB_DEVICE_UD_IP_CSUM = (1 << 18), 254 IB_DEVICE_UD_TSO = (1 << 19), 255 IB_DEVICE_XRC = (1 << 20), 256 257 /* 258 * This device supports the IB "base memory management extension", 259 * which includes support for fast registrations (IB_WR_REG_MR, 260 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 261 * also be set by any iWarp device which must support FRs to comply 262 * to the iWarp verbs spec. iWarp devices also support the 263 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 264 * stag. 265 */ 266 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 267 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 268 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 269 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 270 IB_DEVICE_RC_IP_CSUM = (1 << 25), 271 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 272 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 273 /* 274 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 275 * support execution of WQEs that involve synchronization 276 * of I/O operations with single completion queue managed 277 * by hardware. 278 */ 279 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 280 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 281 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 282 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 283 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 284 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 285 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 286 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 287 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 288 /* The device supports padding incoming writes to cacheline. */ 289 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 290 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 291 }; 292 293 enum ib_atomic_cap { 294 IB_ATOMIC_NONE, 295 IB_ATOMIC_HCA, 296 IB_ATOMIC_GLOB 297 }; 298 299 enum ib_odp_general_cap_bits { 300 IB_ODP_SUPPORT = 1 << 0, 301 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 302 }; 303 304 enum ib_odp_transport_cap_bits { 305 IB_ODP_SUPPORT_SEND = 1 << 0, 306 IB_ODP_SUPPORT_RECV = 1 << 1, 307 IB_ODP_SUPPORT_WRITE = 1 << 2, 308 IB_ODP_SUPPORT_READ = 1 << 3, 309 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 310 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 311 }; 312 313 struct ib_odp_caps { 314 uint64_t general_caps; 315 struct { 316 uint32_t rc_odp_caps; 317 uint32_t uc_odp_caps; 318 uint32_t ud_odp_caps; 319 uint32_t xrc_odp_caps; 320 } per_transport_caps; 321 }; 322 323 struct ib_rss_caps { 324 /* Corresponding bit will be set if qp type from 325 * 'enum ib_qp_type' is supported, e.g. 326 * supported_qpts |= 1 << IB_QPT_UD 327 */ 328 u32 supported_qpts; 329 u32 max_rwq_indirection_tables; 330 u32 max_rwq_indirection_table_size; 331 }; 332 333 enum ib_tm_cap_flags { 334 /* Support tag matching with rendezvous offload for RC transport */ 335 IB_TM_CAP_RNDV_RC = 1 << 0, 336 }; 337 338 struct ib_tm_caps { 339 /* Max size of RNDV header */ 340 u32 max_rndv_hdr_size; 341 /* Max number of entries in tag matching list */ 342 u32 max_num_tags; 343 /* From enum ib_tm_cap_flags */ 344 u32 flags; 345 /* Max number of outstanding list operations */ 346 u32 max_ops; 347 /* Max number of SGE in tag matching entry */ 348 u32 max_sge; 349 }; 350 351 struct ib_cq_init_attr { 352 unsigned int cqe; 353 u32 comp_vector; 354 u32 flags; 355 }; 356 357 enum ib_cq_attr_mask { 358 IB_CQ_MODERATE = 1 << 0, 359 }; 360 361 struct ib_cq_caps { 362 u16 max_cq_moderation_count; 363 u16 max_cq_moderation_period; 364 }; 365 366 struct ib_dm_mr_attr { 367 u64 length; 368 u64 offset; 369 u32 access_flags; 370 }; 371 372 struct ib_dm_alloc_attr { 373 u64 length; 374 u32 alignment; 375 u32 flags; 376 }; 377 378 struct ib_device_attr { 379 u64 fw_ver; 380 __be64 sys_image_guid; 381 u64 max_mr_size; 382 u64 page_size_cap; 383 u32 vendor_id; 384 u32 vendor_part_id; 385 u32 hw_ver; 386 int max_qp; 387 int max_qp_wr; 388 u64 device_cap_flags; 389 int max_send_sge; 390 int max_recv_sge; 391 int max_sge_rd; 392 int max_cq; 393 int max_cqe; 394 int max_mr; 395 int max_pd; 396 int max_qp_rd_atom; 397 int max_ee_rd_atom; 398 int max_res_rd_atom; 399 int max_qp_init_rd_atom; 400 int max_ee_init_rd_atom; 401 enum ib_atomic_cap atomic_cap; 402 enum ib_atomic_cap masked_atomic_cap; 403 int max_ee; 404 int max_rdd; 405 int max_mw; 406 int max_raw_ipv6_qp; 407 int max_raw_ethy_qp; 408 int max_mcast_grp; 409 int max_mcast_qp_attach; 410 int max_total_mcast_qp_attach; 411 int max_ah; 412 int max_srq; 413 int max_srq_wr; 414 int max_srq_sge; 415 unsigned int max_fast_reg_page_list_len; 416 unsigned int max_pi_fast_reg_page_list_len; 417 u16 max_pkeys; 418 u8 local_ca_ack_delay; 419 int sig_prot_cap; 420 int sig_guard_cap; 421 struct ib_odp_caps odp_caps; 422 uint64_t timestamp_mask; 423 uint64_t hca_core_clock; /* in KHZ */ 424 struct ib_rss_caps rss_caps; 425 u32 max_wq_type_rq; 426 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 427 struct ib_tm_caps tm_caps; 428 struct ib_cq_caps cq_caps; 429 u64 max_dm_size; 430 /* Max entries for sgl for optimized performance per READ */ 431 u32 max_sgl_rd; 432 }; 433 434 enum ib_mtu { 435 IB_MTU_256 = 1, 436 IB_MTU_512 = 2, 437 IB_MTU_1024 = 3, 438 IB_MTU_2048 = 4, 439 IB_MTU_4096 = 5 440 }; 441 442 enum opa_mtu { 443 OPA_MTU_8192 = 6, 444 OPA_MTU_10240 = 7 445 }; 446 447 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 448 { 449 switch (mtu) { 450 case IB_MTU_256: return 256; 451 case IB_MTU_512: return 512; 452 case IB_MTU_1024: return 1024; 453 case IB_MTU_2048: return 2048; 454 case IB_MTU_4096: return 4096; 455 default: return -1; 456 } 457 } 458 459 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 460 { 461 if (mtu >= 4096) 462 return IB_MTU_4096; 463 else if (mtu >= 2048) 464 return IB_MTU_2048; 465 else if (mtu >= 1024) 466 return IB_MTU_1024; 467 else if (mtu >= 512) 468 return IB_MTU_512; 469 else 470 return IB_MTU_256; 471 } 472 473 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 474 { 475 switch (mtu) { 476 case OPA_MTU_8192: 477 return 8192; 478 case OPA_MTU_10240: 479 return 10240; 480 default: 481 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 482 } 483 } 484 485 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 486 { 487 if (mtu >= 10240) 488 return OPA_MTU_10240; 489 else if (mtu >= 8192) 490 return OPA_MTU_8192; 491 else 492 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 493 } 494 495 enum ib_port_state { 496 IB_PORT_NOP = 0, 497 IB_PORT_DOWN = 1, 498 IB_PORT_INIT = 2, 499 IB_PORT_ARMED = 3, 500 IB_PORT_ACTIVE = 4, 501 IB_PORT_ACTIVE_DEFER = 5 502 }; 503 504 enum ib_port_phys_state { 505 IB_PORT_PHYS_STATE_SLEEP = 1, 506 IB_PORT_PHYS_STATE_POLLING = 2, 507 IB_PORT_PHYS_STATE_DISABLED = 3, 508 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 509 IB_PORT_PHYS_STATE_LINK_UP = 5, 510 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 511 IB_PORT_PHYS_STATE_PHY_TEST = 7, 512 }; 513 514 enum ib_port_width { 515 IB_WIDTH_1X = 1, 516 IB_WIDTH_2X = 16, 517 IB_WIDTH_4X = 2, 518 IB_WIDTH_8X = 4, 519 IB_WIDTH_12X = 8 520 }; 521 522 static inline int ib_width_enum_to_int(enum ib_port_width width) 523 { 524 switch (width) { 525 case IB_WIDTH_1X: return 1; 526 case IB_WIDTH_2X: return 2; 527 case IB_WIDTH_4X: return 4; 528 case IB_WIDTH_8X: return 8; 529 case IB_WIDTH_12X: return 12; 530 default: return -1; 531 } 532 } 533 534 enum ib_port_speed { 535 IB_SPEED_SDR = 1, 536 IB_SPEED_DDR = 2, 537 IB_SPEED_QDR = 4, 538 IB_SPEED_FDR10 = 8, 539 IB_SPEED_FDR = 16, 540 IB_SPEED_EDR = 32, 541 IB_SPEED_HDR = 64, 542 IB_SPEED_NDR = 128, 543 }; 544 545 /** 546 * struct rdma_hw_stats 547 * @lock - Mutex to protect parallel write access to lifespan and values 548 * of counters, which are 64bits and not guaranteeed to be written 549 * atomicaly on 32bits systems. 550 * @timestamp - Used by the core code to track when the last update was 551 * @lifespan - Used by the core code to determine how old the counters 552 * should be before being updated again. Stored in jiffies, defaults 553 * to 10 milliseconds, drivers can override the default be specifying 554 * their own value during their allocation routine. 555 * @name - Array of pointers to static names used for the counters in 556 * directory. 557 * @num_counters - How many hardware counters there are. If name is 558 * shorter than this number, a kernel oops will result. Driver authors 559 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 560 * in their code to prevent this. 561 * @value - Array of u64 counters that are accessed by the sysfs code and 562 * filled in by the drivers get_stats routine 563 */ 564 struct rdma_hw_stats { 565 struct mutex lock; /* Protect lifespan and values[] */ 566 unsigned long timestamp; 567 unsigned long lifespan; 568 const char * const *names; 569 int num_counters; 570 u64 value[]; 571 }; 572 573 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 574 /** 575 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 576 * for drivers. 577 * @names - Array of static const char * 578 * @num_counters - How many elements in array 579 * @lifespan - How many milliseconds between updates 580 */ 581 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 582 const char * const *names, int num_counters, 583 unsigned long lifespan) 584 { 585 struct rdma_hw_stats *stats; 586 587 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 588 GFP_KERNEL); 589 if (!stats) 590 return NULL; 591 stats->names = names; 592 stats->num_counters = num_counters; 593 stats->lifespan = msecs_to_jiffies(lifespan); 594 595 return stats; 596 } 597 598 599 /* Define bits for the various functionality this port needs to be supported by 600 * the core. 601 */ 602 /* Management 0x00000FFF */ 603 #define RDMA_CORE_CAP_IB_MAD 0x00000001 604 #define RDMA_CORE_CAP_IB_SMI 0x00000002 605 #define RDMA_CORE_CAP_IB_CM 0x00000004 606 #define RDMA_CORE_CAP_IW_CM 0x00000008 607 #define RDMA_CORE_CAP_IB_SA 0x00000010 608 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 609 610 /* Address format 0x000FF000 */ 611 #define RDMA_CORE_CAP_AF_IB 0x00001000 612 #define RDMA_CORE_CAP_ETH_AH 0x00002000 613 #define RDMA_CORE_CAP_OPA_AH 0x00004000 614 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 615 616 /* Protocol 0xFFF00000 */ 617 #define RDMA_CORE_CAP_PROT_IB 0x00100000 618 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 619 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 620 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 621 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 622 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 623 624 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 625 | RDMA_CORE_CAP_PROT_ROCE \ 626 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 627 628 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 629 | RDMA_CORE_CAP_IB_MAD \ 630 | RDMA_CORE_CAP_IB_SMI \ 631 | RDMA_CORE_CAP_IB_CM \ 632 | RDMA_CORE_CAP_IB_SA \ 633 | RDMA_CORE_CAP_AF_IB) 634 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 635 | RDMA_CORE_CAP_IB_MAD \ 636 | RDMA_CORE_CAP_IB_CM \ 637 | RDMA_CORE_CAP_AF_IB \ 638 | RDMA_CORE_CAP_ETH_AH) 639 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 640 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 641 | RDMA_CORE_CAP_IB_MAD \ 642 | RDMA_CORE_CAP_IB_CM \ 643 | RDMA_CORE_CAP_AF_IB \ 644 | RDMA_CORE_CAP_ETH_AH) 645 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 646 | RDMA_CORE_CAP_IW_CM) 647 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 648 | RDMA_CORE_CAP_OPA_MAD) 649 650 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 651 652 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 653 654 struct ib_port_attr { 655 u64 subnet_prefix; 656 enum ib_port_state state; 657 enum ib_mtu max_mtu; 658 enum ib_mtu active_mtu; 659 u32 phys_mtu; 660 int gid_tbl_len; 661 unsigned int ip_gids:1; 662 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 663 u32 port_cap_flags; 664 u32 max_msg_sz; 665 u32 bad_pkey_cntr; 666 u32 qkey_viol_cntr; 667 u16 pkey_tbl_len; 668 u32 sm_lid; 669 u32 lid; 670 u8 lmc; 671 u8 max_vl_num; 672 u8 sm_sl; 673 u8 subnet_timeout; 674 u8 init_type_reply; 675 u8 active_width; 676 u16 active_speed; 677 u8 phys_state; 678 u16 port_cap_flags2; 679 }; 680 681 enum ib_device_modify_flags { 682 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 683 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 684 }; 685 686 #define IB_DEVICE_NODE_DESC_MAX 64 687 688 struct ib_device_modify { 689 u64 sys_image_guid; 690 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 691 }; 692 693 enum ib_port_modify_flags { 694 IB_PORT_SHUTDOWN = 1, 695 IB_PORT_INIT_TYPE = (1<<2), 696 IB_PORT_RESET_QKEY_CNTR = (1<<3), 697 IB_PORT_OPA_MASK_CHG = (1<<4) 698 }; 699 700 struct ib_port_modify { 701 u32 set_port_cap_mask; 702 u32 clr_port_cap_mask; 703 u8 init_type; 704 }; 705 706 enum ib_event_type { 707 IB_EVENT_CQ_ERR, 708 IB_EVENT_QP_FATAL, 709 IB_EVENT_QP_REQ_ERR, 710 IB_EVENT_QP_ACCESS_ERR, 711 IB_EVENT_COMM_EST, 712 IB_EVENT_SQ_DRAINED, 713 IB_EVENT_PATH_MIG, 714 IB_EVENT_PATH_MIG_ERR, 715 IB_EVENT_DEVICE_FATAL, 716 IB_EVENT_PORT_ACTIVE, 717 IB_EVENT_PORT_ERR, 718 IB_EVENT_LID_CHANGE, 719 IB_EVENT_PKEY_CHANGE, 720 IB_EVENT_SM_CHANGE, 721 IB_EVENT_SRQ_ERR, 722 IB_EVENT_SRQ_LIMIT_REACHED, 723 IB_EVENT_QP_LAST_WQE_REACHED, 724 IB_EVENT_CLIENT_REREGISTER, 725 IB_EVENT_GID_CHANGE, 726 IB_EVENT_WQ_FATAL, 727 }; 728 729 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 730 731 struct ib_event { 732 struct ib_device *device; 733 union { 734 struct ib_cq *cq; 735 struct ib_qp *qp; 736 struct ib_srq *srq; 737 struct ib_wq *wq; 738 u8 port_num; 739 } element; 740 enum ib_event_type event; 741 }; 742 743 struct ib_event_handler { 744 struct ib_device *device; 745 void (*handler)(struct ib_event_handler *, struct ib_event *); 746 struct list_head list; 747 }; 748 749 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 750 do { \ 751 (_ptr)->device = _device; \ 752 (_ptr)->handler = _handler; \ 753 INIT_LIST_HEAD(&(_ptr)->list); \ 754 } while (0) 755 756 struct ib_global_route { 757 const struct ib_gid_attr *sgid_attr; 758 union ib_gid dgid; 759 u32 flow_label; 760 u8 sgid_index; 761 u8 hop_limit; 762 u8 traffic_class; 763 }; 764 765 struct ib_grh { 766 __be32 version_tclass_flow; 767 __be16 paylen; 768 u8 next_hdr; 769 u8 hop_limit; 770 union ib_gid sgid; 771 union ib_gid dgid; 772 }; 773 774 union rdma_network_hdr { 775 struct ib_grh ibgrh; 776 struct { 777 /* The IB spec states that if it's IPv4, the header 778 * is located in the last 20 bytes of the header. 779 */ 780 u8 reserved[20]; 781 struct iphdr roce4grh; 782 }; 783 }; 784 785 #define IB_QPN_MASK 0xFFFFFF 786 787 enum { 788 IB_MULTICAST_QPN = 0xffffff 789 }; 790 791 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 792 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 793 794 enum ib_ah_flags { 795 IB_AH_GRH = 1 796 }; 797 798 enum ib_rate { 799 IB_RATE_PORT_CURRENT = 0, 800 IB_RATE_2_5_GBPS = 2, 801 IB_RATE_5_GBPS = 5, 802 IB_RATE_10_GBPS = 3, 803 IB_RATE_20_GBPS = 6, 804 IB_RATE_30_GBPS = 4, 805 IB_RATE_40_GBPS = 7, 806 IB_RATE_60_GBPS = 8, 807 IB_RATE_80_GBPS = 9, 808 IB_RATE_120_GBPS = 10, 809 IB_RATE_14_GBPS = 11, 810 IB_RATE_56_GBPS = 12, 811 IB_RATE_112_GBPS = 13, 812 IB_RATE_168_GBPS = 14, 813 IB_RATE_25_GBPS = 15, 814 IB_RATE_100_GBPS = 16, 815 IB_RATE_200_GBPS = 17, 816 IB_RATE_300_GBPS = 18, 817 IB_RATE_28_GBPS = 19, 818 IB_RATE_50_GBPS = 20, 819 IB_RATE_400_GBPS = 21, 820 IB_RATE_600_GBPS = 22, 821 }; 822 823 /** 824 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 825 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 826 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 827 * @rate: rate to convert. 828 */ 829 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 830 831 /** 832 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 833 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 834 * @rate: rate to convert. 835 */ 836 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 837 838 839 /** 840 * enum ib_mr_type - memory region type 841 * @IB_MR_TYPE_MEM_REG: memory region that is used for 842 * normal registration 843 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 844 * register any arbitrary sg lists (without 845 * the normal mr constraints - see 846 * ib_map_mr_sg) 847 * @IB_MR_TYPE_DM: memory region that is used for device 848 * memory registration 849 * @IB_MR_TYPE_USER: memory region that is used for the user-space 850 * application 851 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 852 * without address translations (VA=PA) 853 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 854 * data integrity operations 855 */ 856 enum ib_mr_type { 857 IB_MR_TYPE_MEM_REG, 858 IB_MR_TYPE_SG_GAPS, 859 IB_MR_TYPE_DM, 860 IB_MR_TYPE_USER, 861 IB_MR_TYPE_DMA, 862 IB_MR_TYPE_INTEGRITY, 863 }; 864 865 enum ib_mr_status_check { 866 IB_MR_CHECK_SIG_STATUS = 1, 867 }; 868 869 /** 870 * struct ib_mr_status - Memory region status container 871 * 872 * @fail_status: Bitmask of MR checks status. For each 873 * failed check a corresponding status bit is set. 874 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 875 * failure. 876 */ 877 struct ib_mr_status { 878 u32 fail_status; 879 struct ib_sig_err sig_err; 880 }; 881 882 /** 883 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 884 * enum. 885 * @mult: multiple to convert. 886 */ 887 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 888 889 struct rdma_ah_init_attr { 890 struct rdma_ah_attr *ah_attr; 891 u32 flags; 892 struct net_device *xmit_slave; 893 }; 894 895 enum rdma_ah_attr_type { 896 RDMA_AH_ATTR_TYPE_UNDEFINED, 897 RDMA_AH_ATTR_TYPE_IB, 898 RDMA_AH_ATTR_TYPE_ROCE, 899 RDMA_AH_ATTR_TYPE_OPA, 900 }; 901 902 struct ib_ah_attr { 903 u16 dlid; 904 u8 src_path_bits; 905 }; 906 907 struct roce_ah_attr { 908 u8 dmac[ETH_ALEN]; 909 }; 910 911 struct opa_ah_attr { 912 u32 dlid; 913 u8 src_path_bits; 914 bool make_grd; 915 }; 916 917 struct rdma_ah_attr { 918 struct ib_global_route grh; 919 u8 sl; 920 u8 static_rate; 921 u8 port_num; 922 u8 ah_flags; 923 enum rdma_ah_attr_type type; 924 union { 925 struct ib_ah_attr ib; 926 struct roce_ah_attr roce; 927 struct opa_ah_attr opa; 928 }; 929 }; 930 931 enum ib_wc_status { 932 IB_WC_SUCCESS, 933 IB_WC_LOC_LEN_ERR, 934 IB_WC_LOC_QP_OP_ERR, 935 IB_WC_LOC_EEC_OP_ERR, 936 IB_WC_LOC_PROT_ERR, 937 IB_WC_WR_FLUSH_ERR, 938 IB_WC_MW_BIND_ERR, 939 IB_WC_BAD_RESP_ERR, 940 IB_WC_LOC_ACCESS_ERR, 941 IB_WC_REM_INV_REQ_ERR, 942 IB_WC_REM_ACCESS_ERR, 943 IB_WC_REM_OP_ERR, 944 IB_WC_RETRY_EXC_ERR, 945 IB_WC_RNR_RETRY_EXC_ERR, 946 IB_WC_LOC_RDD_VIOL_ERR, 947 IB_WC_REM_INV_RD_REQ_ERR, 948 IB_WC_REM_ABORT_ERR, 949 IB_WC_INV_EECN_ERR, 950 IB_WC_INV_EEC_STATE_ERR, 951 IB_WC_FATAL_ERR, 952 IB_WC_RESP_TIMEOUT_ERR, 953 IB_WC_GENERAL_ERR 954 }; 955 956 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 957 958 enum ib_wc_opcode { 959 IB_WC_SEND = IB_UVERBS_WC_SEND, 960 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 961 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 962 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 963 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 964 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 965 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 966 IB_WC_LSO = IB_UVERBS_WC_TSO, 967 IB_WC_REG_MR, 968 IB_WC_MASKED_COMP_SWAP, 969 IB_WC_MASKED_FETCH_ADD, 970 /* 971 * Set value of IB_WC_RECV so consumers can test if a completion is a 972 * receive by testing (opcode & IB_WC_RECV). 973 */ 974 IB_WC_RECV = 1 << 7, 975 IB_WC_RECV_RDMA_WITH_IMM 976 }; 977 978 enum ib_wc_flags { 979 IB_WC_GRH = 1, 980 IB_WC_WITH_IMM = (1<<1), 981 IB_WC_WITH_INVALIDATE = (1<<2), 982 IB_WC_IP_CSUM_OK = (1<<3), 983 IB_WC_WITH_SMAC = (1<<4), 984 IB_WC_WITH_VLAN = (1<<5), 985 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 986 }; 987 988 struct ib_wc { 989 union { 990 u64 wr_id; 991 struct ib_cqe *wr_cqe; 992 }; 993 enum ib_wc_status status; 994 enum ib_wc_opcode opcode; 995 u32 vendor_err; 996 u32 byte_len; 997 struct ib_qp *qp; 998 union { 999 __be32 imm_data; 1000 u32 invalidate_rkey; 1001 } ex; 1002 u32 src_qp; 1003 u32 slid; 1004 int wc_flags; 1005 u16 pkey_index; 1006 u8 sl; 1007 u8 dlid_path_bits; 1008 u8 port_num; /* valid only for DR SMPs on switches */ 1009 u8 smac[ETH_ALEN]; 1010 u16 vlan_id; 1011 u8 network_hdr_type; 1012 }; 1013 1014 enum ib_cq_notify_flags { 1015 IB_CQ_SOLICITED = 1 << 0, 1016 IB_CQ_NEXT_COMP = 1 << 1, 1017 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1018 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1019 }; 1020 1021 enum ib_srq_type { 1022 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1023 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1024 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1025 }; 1026 1027 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1028 { 1029 return srq_type == IB_SRQT_XRC || 1030 srq_type == IB_SRQT_TM; 1031 } 1032 1033 enum ib_srq_attr_mask { 1034 IB_SRQ_MAX_WR = 1 << 0, 1035 IB_SRQ_LIMIT = 1 << 1, 1036 }; 1037 1038 struct ib_srq_attr { 1039 u32 max_wr; 1040 u32 max_sge; 1041 u32 srq_limit; 1042 }; 1043 1044 struct ib_srq_init_attr { 1045 void (*event_handler)(struct ib_event *, void *); 1046 void *srq_context; 1047 struct ib_srq_attr attr; 1048 enum ib_srq_type srq_type; 1049 1050 struct { 1051 struct ib_cq *cq; 1052 union { 1053 struct { 1054 struct ib_xrcd *xrcd; 1055 } xrc; 1056 1057 struct { 1058 u32 max_num_tags; 1059 } tag_matching; 1060 }; 1061 } ext; 1062 }; 1063 1064 struct ib_qp_cap { 1065 u32 max_send_wr; 1066 u32 max_recv_wr; 1067 u32 max_send_sge; 1068 u32 max_recv_sge; 1069 u32 max_inline_data; 1070 1071 /* 1072 * Maximum number of rdma_rw_ctx structures in flight at a time. 1073 * ib_create_qp() will calculate the right amount of neededed WRs 1074 * and MRs based on this. 1075 */ 1076 u32 max_rdma_ctxs; 1077 }; 1078 1079 enum ib_sig_type { 1080 IB_SIGNAL_ALL_WR, 1081 IB_SIGNAL_REQ_WR 1082 }; 1083 1084 enum ib_qp_type { 1085 /* 1086 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1087 * here (and in that order) since the MAD layer uses them as 1088 * indices into a 2-entry table. 1089 */ 1090 IB_QPT_SMI, 1091 IB_QPT_GSI, 1092 1093 IB_QPT_RC = IB_UVERBS_QPT_RC, 1094 IB_QPT_UC = IB_UVERBS_QPT_UC, 1095 IB_QPT_UD = IB_UVERBS_QPT_UD, 1096 IB_QPT_RAW_IPV6, 1097 IB_QPT_RAW_ETHERTYPE, 1098 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1099 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1100 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1101 IB_QPT_MAX, 1102 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1103 /* Reserve a range for qp types internal to the low level driver. 1104 * These qp types will not be visible at the IB core layer, so the 1105 * IB_QPT_MAX usages should not be affected in the core layer 1106 */ 1107 IB_QPT_RESERVED1 = 0x1000, 1108 IB_QPT_RESERVED2, 1109 IB_QPT_RESERVED3, 1110 IB_QPT_RESERVED4, 1111 IB_QPT_RESERVED5, 1112 IB_QPT_RESERVED6, 1113 IB_QPT_RESERVED7, 1114 IB_QPT_RESERVED8, 1115 IB_QPT_RESERVED9, 1116 IB_QPT_RESERVED10, 1117 }; 1118 1119 enum ib_qp_create_flags { 1120 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1121 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1122 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1123 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1124 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1125 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1126 IB_QP_CREATE_NETIF_QP = 1 << 5, 1127 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1128 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1129 IB_QP_CREATE_SCATTER_FCS = 1130 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1131 IB_QP_CREATE_CVLAN_STRIPPING = 1132 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1133 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1134 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1135 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1136 /* reserve bits 26-31 for low level drivers' internal use */ 1137 IB_QP_CREATE_RESERVED_START = 1 << 26, 1138 IB_QP_CREATE_RESERVED_END = 1 << 31, 1139 }; 1140 1141 /* 1142 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1143 * callback to destroy the passed in QP. 1144 */ 1145 1146 struct ib_qp_init_attr { 1147 /* Consumer's event_handler callback must not block */ 1148 void (*event_handler)(struct ib_event *, void *); 1149 1150 void *qp_context; 1151 struct ib_cq *send_cq; 1152 struct ib_cq *recv_cq; 1153 struct ib_srq *srq; 1154 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1155 struct ib_qp_cap cap; 1156 enum ib_sig_type sq_sig_type; 1157 enum ib_qp_type qp_type; 1158 u32 create_flags; 1159 1160 /* 1161 * Only needed for special QP types, or when using the RW API. 1162 */ 1163 u8 port_num; 1164 struct ib_rwq_ind_table *rwq_ind_tbl; 1165 u32 source_qpn; 1166 }; 1167 1168 struct ib_qp_open_attr { 1169 void (*event_handler)(struct ib_event *, void *); 1170 void *qp_context; 1171 u32 qp_num; 1172 enum ib_qp_type qp_type; 1173 }; 1174 1175 enum ib_rnr_timeout { 1176 IB_RNR_TIMER_655_36 = 0, 1177 IB_RNR_TIMER_000_01 = 1, 1178 IB_RNR_TIMER_000_02 = 2, 1179 IB_RNR_TIMER_000_03 = 3, 1180 IB_RNR_TIMER_000_04 = 4, 1181 IB_RNR_TIMER_000_06 = 5, 1182 IB_RNR_TIMER_000_08 = 6, 1183 IB_RNR_TIMER_000_12 = 7, 1184 IB_RNR_TIMER_000_16 = 8, 1185 IB_RNR_TIMER_000_24 = 9, 1186 IB_RNR_TIMER_000_32 = 10, 1187 IB_RNR_TIMER_000_48 = 11, 1188 IB_RNR_TIMER_000_64 = 12, 1189 IB_RNR_TIMER_000_96 = 13, 1190 IB_RNR_TIMER_001_28 = 14, 1191 IB_RNR_TIMER_001_92 = 15, 1192 IB_RNR_TIMER_002_56 = 16, 1193 IB_RNR_TIMER_003_84 = 17, 1194 IB_RNR_TIMER_005_12 = 18, 1195 IB_RNR_TIMER_007_68 = 19, 1196 IB_RNR_TIMER_010_24 = 20, 1197 IB_RNR_TIMER_015_36 = 21, 1198 IB_RNR_TIMER_020_48 = 22, 1199 IB_RNR_TIMER_030_72 = 23, 1200 IB_RNR_TIMER_040_96 = 24, 1201 IB_RNR_TIMER_061_44 = 25, 1202 IB_RNR_TIMER_081_92 = 26, 1203 IB_RNR_TIMER_122_88 = 27, 1204 IB_RNR_TIMER_163_84 = 28, 1205 IB_RNR_TIMER_245_76 = 29, 1206 IB_RNR_TIMER_327_68 = 30, 1207 IB_RNR_TIMER_491_52 = 31 1208 }; 1209 1210 enum ib_qp_attr_mask { 1211 IB_QP_STATE = 1, 1212 IB_QP_CUR_STATE = (1<<1), 1213 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1214 IB_QP_ACCESS_FLAGS = (1<<3), 1215 IB_QP_PKEY_INDEX = (1<<4), 1216 IB_QP_PORT = (1<<5), 1217 IB_QP_QKEY = (1<<6), 1218 IB_QP_AV = (1<<7), 1219 IB_QP_PATH_MTU = (1<<8), 1220 IB_QP_TIMEOUT = (1<<9), 1221 IB_QP_RETRY_CNT = (1<<10), 1222 IB_QP_RNR_RETRY = (1<<11), 1223 IB_QP_RQ_PSN = (1<<12), 1224 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1225 IB_QP_ALT_PATH = (1<<14), 1226 IB_QP_MIN_RNR_TIMER = (1<<15), 1227 IB_QP_SQ_PSN = (1<<16), 1228 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1229 IB_QP_PATH_MIG_STATE = (1<<18), 1230 IB_QP_CAP = (1<<19), 1231 IB_QP_DEST_QPN = (1<<20), 1232 IB_QP_RESERVED1 = (1<<21), 1233 IB_QP_RESERVED2 = (1<<22), 1234 IB_QP_RESERVED3 = (1<<23), 1235 IB_QP_RESERVED4 = (1<<24), 1236 IB_QP_RATE_LIMIT = (1<<25), 1237 }; 1238 1239 enum ib_qp_state { 1240 IB_QPS_RESET, 1241 IB_QPS_INIT, 1242 IB_QPS_RTR, 1243 IB_QPS_RTS, 1244 IB_QPS_SQD, 1245 IB_QPS_SQE, 1246 IB_QPS_ERR 1247 }; 1248 1249 enum ib_mig_state { 1250 IB_MIG_MIGRATED, 1251 IB_MIG_REARM, 1252 IB_MIG_ARMED 1253 }; 1254 1255 enum ib_mw_type { 1256 IB_MW_TYPE_1 = 1, 1257 IB_MW_TYPE_2 = 2 1258 }; 1259 1260 struct ib_qp_attr { 1261 enum ib_qp_state qp_state; 1262 enum ib_qp_state cur_qp_state; 1263 enum ib_mtu path_mtu; 1264 enum ib_mig_state path_mig_state; 1265 u32 qkey; 1266 u32 rq_psn; 1267 u32 sq_psn; 1268 u32 dest_qp_num; 1269 int qp_access_flags; 1270 struct ib_qp_cap cap; 1271 struct rdma_ah_attr ah_attr; 1272 struct rdma_ah_attr alt_ah_attr; 1273 u16 pkey_index; 1274 u16 alt_pkey_index; 1275 u8 en_sqd_async_notify; 1276 u8 sq_draining; 1277 u8 max_rd_atomic; 1278 u8 max_dest_rd_atomic; 1279 u8 min_rnr_timer; 1280 u8 port_num; 1281 u8 timeout; 1282 u8 retry_cnt; 1283 u8 rnr_retry; 1284 u8 alt_port_num; 1285 u8 alt_timeout; 1286 u32 rate_limit; 1287 struct net_device *xmit_slave; 1288 }; 1289 1290 enum ib_wr_opcode { 1291 /* These are shared with userspace */ 1292 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1293 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1294 IB_WR_SEND = IB_UVERBS_WR_SEND, 1295 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1296 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1297 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1298 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1299 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1300 IB_WR_LSO = IB_UVERBS_WR_TSO, 1301 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1302 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1303 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1304 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1305 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1306 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1307 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1308 1309 /* These are kernel only and can not be issued by userspace */ 1310 IB_WR_REG_MR = 0x20, 1311 IB_WR_REG_MR_INTEGRITY, 1312 1313 /* reserve values for low level drivers' internal use. 1314 * These values will not be used at all in the ib core layer. 1315 */ 1316 IB_WR_RESERVED1 = 0xf0, 1317 IB_WR_RESERVED2, 1318 IB_WR_RESERVED3, 1319 IB_WR_RESERVED4, 1320 IB_WR_RESERVED5, 1321 IB_WR_RESERVED6, 1322 IB_WR_RESERVED7, 1323 IB_WR_RESERVED8, 1324 IB_WR_RESERVED9, 1325 IB_WR_RESERVED10, 1326 }; 1327 1328 enum ib_send_flags { 1329 IB_SEND_FENCE = 1, 1330 IB_SEND_SIGNALED = (1<<1), 1331 IB_SEND_SOLICITED = (1<<2), 1332 IB_SEND_INLINE = (1<<3), 1333 IB_SEND_IP_CSUM = (1<<4), 1334 1335 /* reserve bits 26-31 for low level drivers' internal use */ 1336 IB_SEND_RESERVED_START = (1 << 26), 1337 IB_SEND_RESERVED_END = (1 << 31), 1338 }; 1339 1340 struct ib_sge { 1341 u64 addr; 1342 u32 length; 1343 u32 lkey; 1344 }; 1345 1346 struct ib_cqe { 1347 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1348 }; 1349 1350 struct ib_send_wr { 1351 struct ib_send_wr *next; 1352 union { 1353 u64 wr_id; 1354 struct ib_cqe *wr_cqe; 1355 }; 1356 struct ib_sge *sg_list; 1357 int num_sge; 1358 enum ib_wr_opcode opcode; 1359 int send_flags; 1360 union { 1361 __be32 imm_data; 1362 u32 invalidate_rkey; 1363 } ex; 1364 }; 1365 1366 struct ib_rdma_wr { 1367 struct ib_send_wr wr; 1368 u64 remote_addr; 1369 u32 rkey; 1370 }; 1371 1372 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1373 { 1374 return container_of(wr, struct ib_rdma_wr, wr); 1375 } 1376 1377 struct ib_atomic_wr { 1378 struct ib_send_wr wr; 1379 u64 remote_addr; 1380 u64 compare_add; 1381 u64 swap; 1382 u64 compare_add_mask; 1383 u64 swap_mask; 1384 u32 rkey; 1385 }; 1386 1387 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1388 { 1389 return container_of(wr, struct ib_atomic_wr, wr); 1390 } 1391 1392 struct ib_ud_wr { 1393 struct ib_send_wr wr; 1394 struct ib_ah *ah; 1395 void *header; 1396 int hlen; 1397 int mss; 1398 u32 remote_qpn; 1399 u32 remote_qkey; 1400 u16 pkey_index; /* valid for GSI only */ 1401 u8 port_num; /* valid for DR SMPs on switch only */ 1402 }; 1403 1404 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1405 { 1406 return container_of(wr, struct ib_ud_wr, wr); 1407 } 1408 1409 struct ib_reg_wr { 1410 struct ib_send_wr wr; 1411 struct ib_mr *mr; 1412 u32 key; 1413 int access; 1414 }; 1415 1416 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1417 { 1418 return container_of(wr, struct ib_reg_wr, wr); 1419 } 1420 1421 struct ib_recv_wr { 1422 struct ib_recv_wr *next; 1423 union { 1424 u64 wr_id; 1425 struct ib_cqe *wr_cqe; 1426 }; 1427 struct ib_sge *sg_list; 1428 int num_sge; 1429 }; 1430 1431 enum ib_access_flags { 1432 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1433 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1434 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1435 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1436 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1437 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1438 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1439 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1440 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1441 1442 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1443 IB_ACCESS_SUPPORTED = 1444 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1445 }; 1446 1447 /* 1448 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1449 * are hidden here instead of a uapi header! 1450 */ 1451 enum ib_mr_rereg_flags { 1452 IB_MR_REREG_TRANS = 1, 1453 IB_MR_REREG_PD = (1<<1), 1454 IB_MR_REREG_ACCESS = (1<<2), 1455 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1456 }; 1457 1458 struct ib_umem; 1459 1460 enum rdma_remove_reason { 1461 /* 1462 * Userspace requested uobject deletion or initial try 1463 * to remove uobject via cleanup. Call could fail 1464 */ 1465 RDMA_REMOVE_DESTROY, 1466 /* Context deletion. This call should delete the actual object itself */ 1467 RDMA_REMOVE_CLOSE, 1468 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1469 RDMA_REMOVE_DRIVER_REMOVE, 1470 /* uobj is being cleaned-up before being committed */ 1471 RDMA_REMOVE_ABORT, 1472 }; 1473 1474 struct ib_rdmacg_object { 1475 #ifdef CONFIG_CGROUP_RDMA 1476 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1477 #endif 1478 }; 1479 1480 struct ib_ucontext { 1481 struct ib_device *device; 1482 struct ib_uverbs_file *ufile; 1483 1484 bool cleanup_retryable; 1485 1486 struct ib_rdmacg_object cg_obj; 1487 /* 1488 * Implementation details of the RDMA core, don't use in drivers: 1489 */ 1490 struct rdma_restrack_entry res; 1491 struct xarray mmap_xa; 1492 }; 1493 1494 struct ib_uobject { 1495 u64 user_handle; /* handle given to us by userspace */ 1496 /* ufile & ucontext owning this object */ 1497 struct ib_uverbs_file *ufile; 1498 /* FIXME, save memory: ufile->context == context */ 1499 struct ib_ucontext *context; /* associated user context */ 1500 void *object; /* containing object */ 1501 struct list_head list; /* link to context's list */ 1502 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1503 int id; /* index into kernel idr */ 1504 struct kref ref; 1505 atomic_t usecnt; /* protects exclusive access */ 1506 struct rcu_head rcu; /* kfree_rcu() overhead */ 1507 1508 const struct uverbs_api_object *uapi_object; 1509 }; 1510 1511 struct ib_udata { 1512 const void __user *inbuf; 1513 void __user *outbuf; 1514 size_t inlen; 1515 size_t outlen; 1516 }; 1517 1518 struct ib_pd { 1519 u32 local_dma_lkey; 1520 u32 flags; 1521 struct ib_device *device; 1522 struct ib_uobject *uobject; 1523 atomic_t usecnt; /* count all resources */ 1524 1525 u32 unsafe_global_rkey; 1526 1527 /* 1528 * Implementation details of the RDMA core, don't use in drivers: 1529 */ 1530 struct ib_mr *__internal_mr; 1531 struct rdma_restrack_entry res; 1532 }; 1533 1534 struct ib_xrcd { 1535 struct ib_device *device; 1536 atomic_t usecnt; /* count all exposed resources */ 1537 struct inode *inode; 1538 struct rw_semaphore tgt_qps_rwsem; 1539 struct xarray tgt_qps; 1540 }; 1541 1542 struct ib_ah { 1543 struct ib_device *device; 1544 struct ib_pd *pd; 1545 struct ib_uobject *uobject; 1546 const struct ib_gid_attr *sgid_attr; 1547 enum rdma_ah_attr_type type; 1548 }; 1549 1550 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1551 1552 enum ib_poll_context { 1553 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1554 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1555 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1556 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1557 1558 IB_POLL_DIRECT, /* caller context, no hw completions */ 1559 }; 1560 1561 struct ib_cq { 1562 struct ib_device *device; 1563 struct ib_ucq_object *uobject; 1564 ib_comp_handler comp_handler; 1565 void (*event_handler)(struct ib_event *, void *); 1566 void *cq_context; 1567 int cqe; 1568 unsigned int cqe_used; 1569 atomic_t usecnt; /* count number of work queues */ 1570 enum ib_poll_context poll_ctx; 1571 struct ib_wc *wc; 1572 struct list_head pool_entry; 1573 union { 1574 struct irq_poll iop; 1575 struct work_struct work; 1576 }; 1577 struct workqueue_struct *comp_wq; 1578 struct dim *dim; 1579 1580 /* updated only by trace points */ 1581 ktime_t timestamp; 1582 u8 interrupt:1; 1583 u8 shared:1; 1584 unsigned int comp_vector; 1585 1586 /* 1587 * Implementation details of the RDMA core, don't use in drivers: 1588 */ 1589 struct rdma_restrack_entry res; 1590 }; 1591 1592 struct ib_srq { 1593 struct ib_device *device; 1594 struct ib_pd *pd; 1595 struct ib_usrq_object *uobject; 1596 void (*event_handler)(struct ib_event *, void *); 1597 void *srq_context; 1598 enum ib_srq_type srq_type; 1599 atomic_t usecnt; 1600 1601 struct { 1602 struct ib_cq *cq; 1603 union { 1604 struct { 1605 struct ib_xrcd *xrcd; 1606 u32 srq_num; 1607 } xrc; 1608 }; 1609 } ext; 1610 }; 1611 1612 enum ib_raw_packet_caps { 1613 /* Strip cvlan from incoming packet and report it in the matching work 1614 * completion is supported. 1615 */ 1616 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1617 /* Scatter FCS field of an incoming packet to host memory is supported. 1618 */ 1619 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1620 /* Checksum offloads are supported (for both send and receive). */ 1621 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1622 /* When a packet is received for an RQ with no receive WQEs, the 1623 * packet processing is delayed. 1624 */ 1625 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1626 }; 1627 1628 enum ib_wq_type { 1629 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1630 }; 1631 1632 enum ib_wq_state { 1633 IB_WQS_RESET, 1634 IB_WQS_RDY, 1635 IB_WQS_ERR 1636 }; 1637 1638 struct ib_wq { 1639 struct ib_device *device; 1640 struct ib_uwq_object *uobject; 1641 void *wq_context; 1642 void (*event_handler)(struct ib_event *, void *); 1643 struct ib_pd *pd; 1644 struct ib_cq *cq; 1645 u32 wq_num; 1646 enum ib_wq_state state; 1647 enum ib_wq_type wq_type; 1648 atomic_t usecnt; 1649 }; 1650 1651 enum ib_wq_flags { 1652 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1653 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1654 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1655 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1656 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1657 }; 1658 1659 struct ib_wq_init_attr { 1660 void *wq_context; 1661 enum ib_wq_type wq_type; 1662 u32 max_wr; 1663 u32 max_sge; 1664 struct ib_cq *cq; 1665 void (*event_handler)(struct ib_event *, void *); 1666 u32 create_flags; /* Use enum ib_wq_flags */ 1667 }; 1668 1669 enum ib_wq_attr_mask { 1670 IB_WQ_STATE = 1 << 0, 1671 IB_WQ_CUR_STATE = 1 << 1, 1672 IB_WQ_FLAGS = 1 << 2, 1673 }; 1674 1675 struct ib_wq_attr { 1676 enum ib_wq_state wq_state; 1677 enum ib_wq_state curr_wq_state; 1678 u32 flags; /* Use enum ib_wq_flags */ 1679 u32 flags_mask; /* Use enum ib_wq_flags */ 1680 }; 1681 1682 struct ib_rwq_ind_table { 1683 struct ib_device *device; 1684 struct ib_uobject *uobject; 1685 atomic_t usecnt; 1686 u32 ind_tbl_num; 1687 u32 log_ind_tbl_size; 1688 struct ib_wq **ind_tbl; 1689 }; 1690 1691 struct ib_rwq_ind_table_init_attr { 1692 u32 log_ind_tbl_size; 1693 /* Each entry is a pointer to Receive Work Queue */ 1694 struct ib_wq **ind_tbl; 1695 }; 1696 1697 enum port_pkey_state { 1698 IB_PORT_PKEY_NOT_VALID = 0, 1699 IB_PORT_PKEY_VALID = 1, 1700 IB_PORT_PKEY_LISTED = 2, 1701 }; 1702 1703 struct ib_qp_security; 1704 1705 struct ib_port_pkey { 1706 enum port_pkey_state state; 1707 u16 pkey_index; 1708 u8 port_num; 1709 struct list_head qp_list; 1710 struct list_head to_error_list; 1711 struct ib_qp_security *sec; 1712 }; 1713 1714 struct ib_ports_pkeys { 1715 struct ib_port_pkey main; 1716 struct ib_port_pkey alt; 1717 }; 1718 1719 struct ib_qp_security { 1720 struct ib_qp *qp; 1721 struct ib_device *dev; 1722 /* Hold this mutex when changing port and pkey settings. */ 1723 struct mutex mutex; 1724 struct ib_ports_pkeys *ports_pkeys; 1725 /* A list of all open shared QP handles. Required to enforce security 1726 * properly for all users of a shared QP. 1727 */ 1728 struct list_head shared_qp_list; 1729 void *security; 1730 bool destroying; 1731 atomic_t error_list_count; 1732 struct completion error_complete; 1733 int error_comps_pending; 1734 }; 1735 1736 /* 1737 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1738 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1739 */ 1740 struct ib_qp { 1741 struct ib_device *device; 1742 struct ib_pd *pd; 1743 struct ib_cq *send_cq; 1744 struct ib_cq *recv_cq; 1745 spinlock_t mr_lock; 1746 int mrs_used; 1747 struct list_head rdma_mrs; 1748 struct list_head sig_mrs; 1749 struct ib_srq *srq; 1750 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1751 struct list_head xrcd_list; 1752 1753 /* count times opened, mcast attaches, flow attaches */ 1754 atomic_t usecnt; 1755 struct list_head open_list; 1756 struct ib_qp *real_qp; 1757 struct ib_uqp_object *uobject; 1758 void (*event_handler)(struct ib_event *, void *); 1759 void *qp_context; 1760 /* sgid_attrs associated with the AV's */ 1761 const struct ib_gid_attr *av_sgid_attr; 1762 const struct ib_gid_attr *alt_path_sgid_attr; 1763 u32 qp_num; 1764 u32 max_write_sge; 1765 u32 max_read_sge; 1766 enum ib_qp_type qp_type; 1767 struct ib_rwq_ind_table *rwq_ind_tbl; 1768 struct ib_qp_security *qp_sec; 1769 u8 port; 1770 1771 bool integrity_en; 1772 /* 1773 * Implementation details of the RDMA core, don't use in drivers: 1774 */ 1775 struct rdma_restrack_entry res; 1776 1777 /* The counter the qp is bind to */ 1778 struct rdma_counter *counter; 1779 }; 1780 1781 struct ib_dm { 1782 struct ib_device *device; 1783 u32 length; 1784 u32 flags; 1785 struct ib_uobject *uobject; 1786 atomic_t usecnt; 1787 }; 1788 1789 struct ib_mr { 1790 struct ib_device *device; 1791 struct ib_pd *pd; 1792 u32 lkey; 1793 u32 rkey; 1794 u64 iova; 1795 u64 length; 1796 unsigned int page_size; 1797 enum ib_mr_type type; 1798 bool need_inval; 1799 union { 1800 struct ib_uobject *uobject; /* user */ 1801 struct list_head qp_entry; /* FR */ 1802 }; 1803 1804 struct ib_dm *dm; 1805 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1806 /* 1807 * Implementation details of the RDMA core, don't use in drivers: 1808 */ 1809 struct rdma_restrack_entry res; 1810 }; 1811 1812 struct ib_mw { 1813 struct ib_device *device; 1814 struct ib_pd *pd; 1815 struct ib_uobject *uobject; 1816 u32 rkey; 1817 enum ib_mw_type type; 1818 }; 1819 1820 /* Supported steering options */ 1821 enum ib_flow_attr_type { 1822 /* steering according to rule specifications */ 1823 IB_FLOW_ATTR_NORMAL = 0x0, 1824 /* default unicast and multicast rule - 1825 * receive all Eth traffic which isn't steered to any QP 1826 */ 1827 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1828 /* default multicast rule - 1829 * receive all Eth multicast traffic which isn't steered to any QP 1830 */ 1831 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1832 /* sniffer rule - receive all port traffic */ 1833 IB_FLOW_ATTR_SNIFFER = 0x3 1834 }; 1835 1836 /* Supported steering header types */ 1837 enum ib_flow_spec_type { 1838 /* L2 headers*/ 1839 IB_FLOW_SPEC_ETH = 0x20, 1840 IB_FLOW_SPEC_IB = 0x22, 1841 /* L3 header*/ 1842 IB_FLOW_SPEC_IPV4 = 0x30, 1843 IB_FLOW_SPEC_IPV6 = 0x31, 1844 IB_FLOW_SPEC_ESP = 0x34, 1845 /* L4 headers*/ 1846 IB_FLOW_SPEC_TCP = 0x40, 1847 IB_FLOW_SPEC_UDP = 0x41, 1848 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1849 IB_FLOW_SPEC_GRE = 0x51, 1850 IB_FLOW_SPEC_MPLS = 0x60, 1851 IB_FLOW_SPEC_INNER = 0x100, 1852 /* Actions */ 1853 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1854 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1855 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1856 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1857 }; 1858 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1859 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1860 1861 enum ib_flow_flags { 1862 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1863 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1864 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1865 }; 1866 1867 struct ib_flow_eth_filter { 1868 u8 dst_mac[6]; 1869 u8 src_mac[6]; 1870 __be16 ether_type; 1871 __be16 vlan_tag; 1872 /* Must be last */ 1873 u8 real_sz[]; 1874 }; 1875 1876 struct ib_flow_spec_eth { 1877 u32 type; 1878 u16 size; 1879 struct ib_flow_eth_filter val; 1880 struct ib_flow_eth_filter mask; 1881 }; 1882 1883 struct ib_flow_ib_filter { 1884 __be16 dlid; 1885 __u8 sl; 1886 /* Must be last */ 1887 u8 real_sz[]; 1888 }; 1889 1890 struct ib_flow_spec_ib { 1891 u32 type; 1892 u16 size; 1893 struct ib_flow_ib_filter val; 1894 struct ib_flow_ib_filter mask; 1895 }; 1896 1897 /* IPv4 header flags */ 1898 enum ib_ipv4_flags { 1899 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1900 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1901 last have this flag set */ 1902 }; 1903 1904 struct ib_flow_ipv4_filter { 1905 __be32 src_ip; 1906 __be32 dst_ip; 1907 u8 proto; 1908 u8 tos; 1909 u8 ttl; 1910 u8 flags; 1911 /* Must be last */ 1912 u8 real_sz[]; 1913 }; 1914 1915 struct ib_flow_spec_ipv4 { 1916 u32 type; 1917 u16 size; 1918 struct ib_flow_ipv4_filter val; 1919 struct ib_flow_ipv4_filter mask; 1920 }; 1921 1922 struct ib_flow_ipv6_filter { 1923 u8 src_ip[16]; 1924 u8 dst_ip[16]; 1925 __be32 flow_label; 1926 u8 next_hdr; 1927 u8 traffic_class; 1928 u8 hop_limit; 1929 /* Must be last */ 1930 u8 real_sz[]; 1931 }; 1932 1933 struct ib_flow_spec_ipv6 { 1934 u32 type; 1935 u16 size; 1936 struct ib_flow_ipv6_filter val; 1937 struct ib_flow_ipv6_filter mask; 1938 }; 1939 1940 struct ib_flow_tcp_udp_filter { 1941 __be16 dst_port; 1942 __be16 src_port; 1943 /* Must be last */ 1944 u8 real_sz[]; 1945 }; 1946 1947 struct ib_flow_spec_tcp_udp { 1948 u32 type; 1949 u16 size; 1950 struct ib_flow_tcp_udp_filter val; 1951 struct ib_flow_tcp_udp_filter mask; 1952 }; 1953 1954 struct ib_flow_tunnel_filter { 1955 __be32 tunnel_id; 1956 u8 real_sz[]; 1957 }; 1958 1959 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1960 * the tunnel_id from val has the vni value 1961 */ 1962 struct ib_flow_spec_tunnel { 1963 u32 type; 1964 u16 size; 1965 struct ib_flow_tunnel_filter val; 1966 struct ib_flow_tunnel_filter mask; 1967 }; 1968 1969 struct ib_flow_esp_filter { 1970 __be32 spi; 1971 __be32 seq; 1972 /* Must be last */ 1973 u8 real_sz[]; 1974 }; 1975 1976 struct ib_flow_spec_esp { 1977 u32 type; 1978 u16 size; 1979 struct ib_flow_esp_filter val; 1980 struct ib_flow_esp_filter mask; 1981 }; 1982 1983 struct ib_flow_gre_filter { 1984 __be16 c_ks_res0_ver; 1985 __be16 protocol; 1986 __be32 key; 1987 /* Must be last */ 1988 u8 real_sz[]; 1989 }; 1990 1991 struct ib_flow_spec_gre { 1992 u32 type; 1993 u16 size; 1994 struct ib_flow_gre_filter val; 1995 struct ib_flow_gre_filter mask; 1996 }; 1997 1998 struct ib_flow_mpls_filter { 1999 __be32 tag; 2000 /* Must be last */ 2001 u8 real_sz[]; 2002 }; 2003 2004 struct ib_flow_spec_mpls { 2005 u32 type; 2006 u16 size; 2007 struct ib_flow_mpls_filter val; 2008 struct ib_flow_mpls_filter mask; 2009 }; 2010 2011 struct ib_flow_spec_action_tag { 2012 enum ib_flow_spec_type type; 2013 u16 size; 2014 u32 tag_id; 2015 }; 2016 2017 struct ib_flow_spec_action_drop { 2018 enum ib_flow_spec_type type; 2019 u16 size; 2020 }; 2021 2022 struct ib_flow_spec_action_handle { 2023 enum ib_flow_spec_type type; 2024 u16 size; 2025 struct ib_flow_action *act; 2026 }; 2027 2028 enum ib_counters_description { 2029 IB_COUNTER_PACKETS, 2030 IB_COUNTER_BYTES, 2031 }; 2032 2033 struct ib_flow_spec_action_count { 2034 enum ib_flow_spec_type type; 2035 u16 size; 2036 struct ib_counters *counters; 2037 }; 2038 2039 union ib_flow_spec { 2040 struct { 2041 u32 type; 2042 u16 size; 2043 }; 2044 struct ib_flow_spec_eth eth; 2045 struct ib_flow_spec_ib ib; 2046 struct ib_flow_spec_ipv4 ipv4; 2047 struct ib_flow_spec_tcp_udp tcp_udp; 2048 struct ib_flow_spec_ipv6 ipv6; 2049 struct ib_flow_spec_tunnel tunnel; 2050 struct ib_flow_spec_esp esp; 2051 struct ib_flow_spec_gre gre; 2052 struct ib_flow_spec_mpls mpls; 2053 struct ib_flow_spec_action_tag flow_tag; 2054 struct ib_flow_spec_action_drop drop; 2055 struct ib_flow_spec_action_handle action; 2056 struct ib_flow_spec_action_count flow_count; 2057 }; 2058 2059 struct ib_flow_attr { 2060 enum ib_flow_attr_type type; 2061 u16 size; 2062 u16 priority; 2063 u32 flags; 2064 u8 num_of_specs; 2065 u8 port; 2066 union ib_flow_spec flows[]; 2067 }; 2068 2069 struct ib_flow { 2070 struct ib_qp *qp; 2071 struct ib_device *device; 2072 struct ib_uobject *uobject; 2073 }; 2074 2075 enum ib_flow_action_type { 2076 IB_FLOW_ACTION_UNSPECIFIED, 2077 IB_FLOW_ACTION_ESP = 1, 2078 }; 2079 2080 struct ib_flow_action_attrs_esp_keymats { 2081 enum ib_uverbs_flow_action_esp_keymat protocol; 2082 union { 2083 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2084 } keymat; 2085 }; 2086 2087 struct ib_flow_action_attrs_esp_replays { 2088 enum ib_uverbs_flow_action_esp_replay protocol; 2089 union { 2090 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2091 } replay; 2092 }; 2093 2094 enum ib_flow_action_attrs_esp_flags { 2095 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2096 * This is done in order to share the same flags between user-space and 2097 * kernel and spare an unnecessary translation. 2098 */ 2099 2100 /* Kernel flags */ 2101 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2102 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2103 }; 2104 2105 struct ib_flow_spec_list { 2106 struct ib_flow_spec_list *next; 2107 union ib_flow_spec spec; 2108 }; 2109 2110 struct ib_flow_action_attrs_esp { 2111 struct ib_flow_action_attrs_esp_keymats *keymat; 2112 struct ib_flow_action_attrs_esp_replays *replay; 2113 struct ib_flow_spec_list *encap; 2114 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2115 * Value of 0 is a valid value. 2116 */ 2117 u32 esn; 2118 u32 spi; 2119 u32 seq; 2120 u32 tfc_pad; 2121 /* Use enum ib_flow_action_attrs_esp_flags */ 2122 u64 flags; 2123 u64 hard_limit_pkts; 2124 }; 2125 2126 struct ib_flow_action { 2127 struct ib_device *device; 2128 struct ib_uobject *uobject; 2129 enum ib_flow_action_type type; 2130 atomic_t usecnt; 2131 }; 2132 2133 struct ib_mad; 2134 struct ib_grh; 2135 2136 enum ib_process_mad_flags { 2137 IB_MAD_IGNORE_MKEY = 1, 2138 IB_MAD_IGNORE_BKEY = 2, 2139 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2140 }; 2141 2142 enum ib_mad_result { 2143 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2144 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2145 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2146 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2147 }; 2148 2149 struct ib_port_cache { 2150 u64 subnet_prefix; 2151 struct ib_pkey_cache *pkey; 2152 struct ib_gid_table *gid; 2153 u8 lmc; 2154 enum ib_port_state port_state; 2155 }; 2156 2157 struct ib_port_immutable { 2158 int pkey_tbl_len; 2159 int gid_tbl_len; 2160 u32 core_cap_flags; 2161 u32 max_mad_size; 2162 }; 2163 2164 struct ib_port_data { 2165 struct ib_device *ib_dev; 2166 2167 struct ib_port_immutable immutable; 2168 2169 spinlock_t pkey_list_lock; 2170 struct list_head pkey_list; 2171 2172 struct ib_port_cache cache; 2173 2174 spinlock_t netdev_lock; 2175 struct net_device __rcu *netdev; 2176 struct hlist_node ndev_hash_link; 2177 struct rdma_port_counter port_counter; 2178 struct rdma_hw_stats *hw_stats; 2179 }; 2180 2181 /* rdma netdev type - specifies protocol type */ 2182 enum rdma_netdev_t { 2183 RDMA_NETDEV_OPA_VNIC, 2184 RDMA_NETDEV_IPOIB, 2185 }; 2186 2187 /** 2188 * struct rdma_netdev - rdma netdev 2189 * For cases where netstack interfacing is required. 2190 */ 2191 struct rdma_netdev { 2192 void *clnt_priv; 2193 struct ib_device *hca; 2194 u8 port_num; 2195 int mtu; 2196 2197 /* 2198 * cleanup function must be specified. 2199 * FIXME: This is only used for OPA_VNIC and that usage should be 2200 * removed too. 2201 */ 2202 void (*free_rdma_netdev)(struct net_device *netdev); 2203 2204 /* control functions */ 2205 void (*set_id)(struct net_device *netdev, int id); 2206 /* send packet */ 2207 int (*send)(struct net_device *dev, struct sk_buff *skb, 2208 struct ib_ah *address, u32 dqpn); 2209 /* multicast */ 2210 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2211 union ib_gid *gid, u16 mlid, 2212 int set_qkey, u32 qkey); 2213 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2214 union ib_gid *gid, u16 mlid); 2215 }; 2216 2217 struct rdma_netdev_alloc_params { 2218 size_t sizeof_priv; 2219 unsigned int txqs; 2220 unsigned int rxqs; 2221 void *param; 2222 2223 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2224 struct net_device *netdev, void *param); 2225 }; 2226 2227 struct ib_odp_counters { 2228 atomic64_t faults; 2229 atomic64_t invalidations; 2230 atomic64_t prefetch; 2231 }; 2232 2233 struct ib_counters { 2234 struct ib_device *device; 2235 struct ib_uobject *uobject; 2236 /* num of objects attached */ 2237 atomic_t usecnt; 2238 }; 2239 2240 struct ib_counters_read_attr { 2241 u64 *counters_buff; 2242 u32 ncounters; 2243 u32 flags; /* use enum ib_read_counters_flags */ 2244 }; 2245 2246 struct uverbs_attr_bundle; 2247 struct iw_cm_id; 2248 struct iw_cm_conn_param; 2249 2250 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2251 .size_##ib_struct = \ 2252 (sizeof(struct drv_struct) + \ 2253 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2254 BUILD_BUG_ON_ZERO( \ 2255 !__same_type(((struct drv_struct *)NULL)->member, \ 2256 struct ib_struct))) 2257 2258 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2259 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2260 2261 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2262 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2263 2264 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2265 2266 struct rdma_user_mmap_entry { 2267 struct kref ref; 2268 struct ib_ucontext *ucontext; 2269 unsigned long start_pgoff; 2270 size_t npages; 2271 bool driver_removed; 2272 }; 2273 2274 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2275 static inline u64 2276 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2277 { 2278 return (u64)entry->start_pgoff << PAGE_SHIFT; 2279 } 2280 2281 /** 2282 * struct ib_device_ops - InfiniBand device operations 2283 * This structure defines all the InfiniBand device operations, providers will 2284 * need to define the supported operations, otherwise they will be set to null. 2285 */ 2286 struct ib_device_ops { 2287 struct module *owner; 2288 enum rdma_driver_id driver_id; 2289 u32 uverbs_abi_ver; 2290 unsigned int uverbs_no_driver_id_binding:1; 2291 2292 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2293 const struct ib_send_wr **bad_send_wr); 2294 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2295 const struct ib_recv_wr **bad_recv_wr); 2296 void (*drain_rq)(struct ib_qp *qp); 2297 void (*drain_sq)(struct ib_qp *qp); 2298 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2299 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2300 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2301 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2302 int (*post_srq_recv)(struct ib_srq *srq, 2303 const struct ib_recv_wr *recv_wr, 2304 const struct ib_recv_wr **bad_recv_wr); 2305 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2306 u8 port_num, const struct ib_wc *in_wc, 2307 const struct ib_grh *in_grh, 2308 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2309 size_t *out_mad_size, u16 *out_mad_pkey_index); 2310 int (*query_device)(struct ib_device *device, 2311 struct ib_device_attr *device_attr, 2312 struct ib_udata *udata); 2313 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2314 struct ib_device_modify *device_modify); 2315 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2316 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2317 int comp_vector); 2318 int (*query_port)(struct ib_device *device, u8 port_num, 2319 struct ib_port_attr *port_attr); 2320 int (*modify_port)(struct ib_device *device, u8 port_num, 2321 int port_modify_mask, 2322 struct ib_port_modify *port_modify); 2323 /** 2324 * The following mandatory functions are used only at device 2325 * registration. Keep functions such as these at the end of this 2326 * structure to avoid cache line misses when accessing struct ib_device 2327 * in fast paths. 2328 */ 2329 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2330 struct ib_port_immutable *immutable); 2331 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2332 u8 port_num); 2333 /** 2334 * When calling get_netdev, the HW vendor's driver should return the 2335 * net device of device @device at port @port_num or NULL if such 2336 * a net device doesn't exist. The vendor driver should call dev_hold 2337 * on this net device. The HW vendor's device driver must guarantee 2338 * that this function returns NULL before the net device has finished 2339 * NETDEV_UNREGISTER state. 2340 */ 2341 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2342 /** 2343 * rdma netdev operation 2344 * 2345 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2346 * must return -EOPNOTSUPP if it doesn't support the specified type. 2347 */ 2348 struct net_device *(*alloc_rdma_netdev)( 2349 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2350 const char *name, unsigned char name_assign_type, 2351 void (*setup)(struct net_device *)); 2352 2353 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2354 enum rdma_netdev_t type, 2355 struct rdma_netdev_alloc_params *params); 2356 /** 2357 * query_gid should be return GID value for @device, when @port_num 2358 * link layer is either IB or iWarp. It is no-op if @port_num port 2359 * is RoCE link layer. 2360 */ 2361 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2362 union ib_gid *gid); 2363 /** 2364 * When calling add_gid, the HW vendor's driver should add the gid 2365 * of device of port at gid index available at @attr. Meta-info of 2366 * that gid (for example, the network device related to this gid) is 2367 * available at @attr. @context allows the HW vendor driver to store 2368 * extra information together with a GID entry. The HW vendor driver may 2369 * allocate memory to contain this information and store it in @context 2370 * when a new GID entry is written to. Params are consistent until the 2371 * next call of add_gid or delete_gid. The function should return 0 on 2372 * success or error otherwise. The function could be called 2373 * concurrently for different ports. This function is only called when 2374 * roce_gid_table is used. 2375 */ 2376 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2377 /** 2378 * When calling del_gid, the HW vendor's driver should delete the 2379 * gid of device @device at gid index gid_index of port port_num 2380 * available in @attr. 2381 * Upon the deletion of a GID entry, the HW vendor must free any 2382 * allocated memory. The caller will clear @context afterwards. 2383 * This function is only called when roce_gid_table is used. 2384 */ 2385 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2386 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2387 u16 *pkey); 2388 int (*alloc_ucontext)(struct ib_ucontext *context, 2389 struct ib_udata *udata); 2390 void (*dealloc_ucontext)(struct ib_ucontext *context); 2391 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2392 /** 2393 * This will be called once refcount of an entry in mmap_xa reaches 2394 * zero. The type of the memory that was mapped may differ between 2395 * entries and is opaque to the rdma_user_mmap interface. 2396 * Therefore needs to be implemented by the driver in mmap_free. 2397 */ 2398 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2399 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2400 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2401 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2402 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2403 struct ib_udata *udata); 2404 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2405 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2406 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2407 int (*create_srq)(struct ib_srq *srq, 2408 struct ib_srq_init_attr *srq_init_attr, 2409 struct ib_udata *udata); 2410 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2411 enum ib_srq_attr_mask srq_attr_mask, 2412 struct ib_udata *udata); 2413 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2414 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2415 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2416 struct ib_qp_init_attr *qp_init_attr, 2417 struct ib_udata *udata); 2418 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2419 int qp_attr_mask, struct ib_udata *udata); 2420 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2421 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2422 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2423 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2424 struct ib_udata *udata); 2425 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2426 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2427 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2428 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2429 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2430 u64 virt_addr, int mr_access_flags, 2431 struct ib_udata *udata); 2432 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2433 u64 virt_addr, int mr_access_flags, 2434 struct ib_pd *pd, struct ib_udata *udata); 2435 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2436 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2437 u32 max_num_sg); 2438 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2439 u32 max_num_data_sg, 2440 u32 max_num_meta_sg); 2441 int (*advise_mr)(struct ib_pd *pd, 2442 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2443 struct ib_sge *sg_list, u32 num_sge, 2444 struct uverbs_attr_bundle *attrs); 2445 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2446 unsigned int *sg_offset); 2447 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2448 struct ib_mr_status *mr_status); 2449 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2450 int (*dealloc_mw)(struct ib_mw *mw); 2451 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2452 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2453 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2454 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2455 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2456 struct ib_flow_attr *flow_attr, 2457 struct ib_udata *udata); 2458 int (*destroy_flow)(struct ib_flow *flow_id); 2459 struct ib_flow_action *(*create_flow_action_esp)( 2460 struct ib_device *device, 2461 const struct ib_flow_action_attrs_esp *attr, 2462 struct uverbs_attr_bundle *attrs); 2463 int (*destroy_flow_action)(struct ib_flow_action *action); 2464 int (*modify_flow_action_esp)( 2465 struct ib_flow_action *action, 2466 const struct ib_flow_action_attrs_esp *attr, 2467 struct uverbs_attr_bundle *attrs); 2468 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2469 int state); 2470 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2471 struct ifla_vf_info *ivf); 2472 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2473 struct ifla_vf_stats *stats); 2474 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2475 struct ifla_vf_guid *node_guid, 2476 struct ifla_vf_guid *port_guid); 2477 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2478 int type); 2479 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2480 struct ib_wq_init_attr *init_attr, 2481 struct ib_udata *udata); 2482 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2483 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2484 u32 wq_attr_mask, struct ib_udata *udata); 2485 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2486 struct ib_rwq_ind_table_init_attr *init_attr, 2487 struct ib_udata *udata); 2488 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2489 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2490 struct ib_ucontext *context, 2491 struct ib_dm_alloc_attr *attr, 2492 struct uverbs_attr_bundle *attrs); 2493 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2494 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2495 struct ib_dm_mr_attr *attr, 2496 struct uverbs_attr_bundle *attrs); 2497 int (*create_counters)(struct ib_counters *counters, 2498 struct uverbs_attr_bundle *attrs); 2499 int (*destroy_counters)(struct ib_counters *counters); 2500 int (*read_counters)(struct ib_counters *counters, 2501 struct ib_counters_read_attr *counters_read_attr, 2502 struct uverbs_attr_bundle *attrs); 2503 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2504 int data_sg_nents, unsigned int *data_sg_offset, 2505 struct scatterlist *meta_sg, int meta_sg_nents, 2506 unsigned int *meta_sg_offset); 2507 2508 /** 2509 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2510 * driver initialized data. The struct is kfree()'ed by the sysfs 2511 * core when the device is removed. A lifespan of -1 in the return 2512 * struct tells the core to set a default lifespan. 2513 */ 2514 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2515 u8 port_num); 2516 /** 2517 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2518 * @index - The index in the value array we wish to have updated, or 2519 * num_counters if we want all stats updated 2520 * Return codes - 2521 * < 0 - Error, no counters updated 2522 * index - Updated the single counter pointed to by index 2523 * num_counters - Updated all counters (will reset the timestamp 2524 * and prevent further calls for lifespan milliseconds) 2525 * Drivers are allowed to update all counters in leiu of just the 2526 * one given in index at their option 2527 */ 2528 int (*get_hw_stats)(struct ib_device *device, 2529 struct rdma_hw_stats *stats, u8 port, int index); 2530 /* 2531 * This function is called once for each port when a ib device is 2532 * registered. 2533 */ 2534 int (*init_port)(struct ib_device *device, u8 port_num, 2535 struct kobject *port_sysfs); 2536 /** 2537 * Allows rdma drivers to add their own restrack attributes. 2538 */ 2539 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2540 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2541 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2542 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2543 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2544 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2545 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2546 2547 /* Device lifecycle callbacks */ 2548 /* 2549 * Called after the device becomes registered, before clients are 2550 * attached 2551 */ 2552 int (*enable_driver)(struct ib_device *dev); 2553 /* 2554 * This is called as part of ib_dealloc_device(). 2555 */ 2556 void (*dealloc_driver)(struct ib_device *dev); 2557 2558 /* iWarp CM callbacks */ 2559 void (*iw_add_ref)(struct ib_qp *qp); 2560 void (*iw_rem_ref)(struct ib_qp *qp); 2561 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2562 int (*iw_connect)(struct iw_cm_id *cm_id, 2563 struct iw_cm_conn_param *conn_param); 2564 int (*iw_accept)(struct iw_cm_id *cm_id, 2565 struct iw_cm_conn_param *conn_param); 2566 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2567 u8 pdata_len); 2568 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2569 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2570 /** 2571 * counter_bind_qp - Bind a QP to a counter. 2572 * @counter - The counter to be bound. If counter->id is zero then 2573 * the driver needs to allocate a new counter and set counter->id 2574 */ 2575 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2576 /** 2577 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2578 * counter and bind it onto the default one 2579 */ 2580 int (*counter_unbind_qp)(struct ib_qp *qp); 2581 /** 2582 * counter_dealloc -De-allocate the hw counter 2583 */ 2584 int (*counter_dealloc)(struct rdma_counter *counter); 2585 /** 2586 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2587 * the driver initialized data. 2588 */ 2589 struct rdma_hw_stats *(*counter_alloc_stats)( 2590 struct rdma_counter *counter); 2591 /** 2592 * counter_update_stats - Query the stats value of this counter 2593 */ 2594 int (*counter_update_stats)(struct rdma_counter *counter); 2595 2596 /** 2597 * Allows rdma drivers to add their own restrack attributes 2598 * dumped via 'rdma stat' iproute2 command. 2599 */ 2600 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2601 2602 /* query driver for its ucontext properties */ 2603 int (*query_ucontext)(struct ib_ucontext *context, 2604 struct uverbs_attr_bundle *attrs); 2605 2606 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2607 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2608 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2609 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2610 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2611 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2612 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2613 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2614 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2615 }; 2616 2617 struct ib_core_device { 2618 /* device must be the first element in structure until, 2619 * union of ib_core_device and device exists in ib_device. 2620 */ 2621 struct device dev; 2622 possible_net_t rdma_net; 2623 struct kobject *ports_kobj; 2624 struct list_head port_list; 2625 struct ib_device *owner; /* reach back to owner ib_device */ 2626 }; 2627 2628 struct rdma_restrack_root; 2629 struct ib_device { 2630 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2631 struct device *dma_device; 2632 struct ib_device_ops ops; 2633 char name[IB_DEVICE_NAME_MAX]; 2634 struct rcu_head rcu_head; 2635 2636 struct list_head event_handler_list; 2637 /* Protects event_handler_list */ 2638 struct rw_semaphore event_handler_rwsem; 2639 2640 /* Protects QP's event_handler calls and open_qp list */ 2641 spinlock_t qp_open_list_lock; 2642 2643 struct rw_semaphore client_data_rwsem; 2644 struct xarray client_data; 2645 struct mutex unregistration_lock; 2646 2647 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2648 rwlock_t cache_lock; 2649 /** 2650 * port_data is indexed by port number 2651 */ 2652 struct ib_port_data *port_data; 2653 2654 int num_comp_vectors; 2655 2656 union { 2657 struct device dev; 2658 struct ib_core_device coredev; 2659 }; 2660 2661 /* First group for device attributes, 2662 * Second group for driver provided attributes (optional). 2663 * It is NULL terminated array. 2664 */ 2665 const struct attribute_group *groups[3]; 2666 2667 u64 uverbs_cmd_mask; 2668 u64 uverbs_ex_cmd_mask; 2669 2670 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2671 __be64 node_guid; 2672 u32 local_dma_lkey; 2673 u16 is_switch:1; 2674 /* Indicates kernel verbs support, should not be used in drivers */ 2675 u16 kverbs_provider:1; 2676 /* CQ adaptive moderation (RDMA DIM) */ 2677 u16 use_cq_dim:1; 2678 u8 node_type; 2679 u8 phys_port_cnt; 2680 struct ib_device_attr attrs; 2681 struct attribute_group *hw_stats_ag; 2682 struct rdma_hw_stats *hw_stats; 2683 2684 #ifdef CONFIG_CGROUP_RDMA 2685 struct rdmacg_device cg_device; 2686 #endif 2687 2688 u32 index; 2689 2690 spinlock_t cq_pools_lock; 2691 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2692 2693 struct rdma_restrack_root *res; 2694 2695 const struct uapi_definition *driver_def; 2696 2697 /* 2698 * Positive refcount indicates that the device is currently 2699 * registered and cannot be unregistered. 2700 */ 2701 refcount_t refcount; 2702 struct completion unreg_completion; 2703 struct work_struct unregistration_work; 2704 2705 const struct rdma_link_ops *link_ops; 2706 2707 /* Protects compat_devs xarray modifications */ 2708 struct mutex compat_devs_mutex; 2709 /* Maintains compat devices for each net namespace */ 2710 struct xarray compat_devs; 2711 2712 /* Used by iWarp CM */ 2713 char iw_ifname[IFNAMSIZ]; 2714 u32 iw_driver_flags; 2715 u32 lag_flags; 2716 }; 2717 2718 struct ib_client_nl_info; 2719 struct ib_client { 2720 const char *name; 2721 int (*add)(struct ib_device *ibdev); 2722 void (*remove)(struct ib_device *, void *client_data); 2723 void (*rename)(struct ib_device *dev, void *client_data); 2724 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2725 struct ib_client_nl_info *res); 2726 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2727 2728 /* Returns the net_dev belonging to this ib_client and matching the 2729 * given parameters. 2730 * @dev: An RDMA device that the net_dev use for communication. 2731 * @port: A physical port number on the RDMA device. 2732 * @pkey: P_Key that the net_dev uses if applicable. 2733 * @gid: A GID that the net_dev uses to communicate. 2734 * @addr: An IP address the net_dev is configured with. 2735 * @client_data: The device's client data set by ib_set_client_data(). 2736 * 2737 * An ib_client that implements a net_dev on top of RDMA devices 2738 * (such as IP over IB) should implement this callback, allowing the 2739 * rdma_cm module to find the right net_dev for a given request. 2740 * 2741 * The caller is responsible for calling dev_put on the returned 2742 * netdev. */ 2743 struct net_device *(*get_net_dev_by_params)( 2744 struct ib_device *dev, 2745 u8 port, 2746 u16 pkey, 2747 const union ib_gid *gid, 2748 const struct sockaddr *addr, 2749 void *client_data); 2750 2751 refcount_t uses; 2752 struct completion uses_zero; 2753 u32 client_id; 2754 2755 /* kverbs are not required by the client */ 2756 u8 no_kverbs_req:1; 2757 }; 2758 2759 /* 2760 * IB block DMA iterator 2761 * 2762 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2763 * to a HW supported page size. 2764 */ 2765 struct ib_block_iter { 2766 /* internal states */ 2767 struct scatterlist *__sg; /* sg holding the current aligned block */ 2768 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2769 unsigned int __sg_nents; /* number of SG entries */ 2770 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2771 unsigned int __pg_bit; /* alignment of current block */ 2772 }; 2773 2774 struct ib_device *_ib_alloc_device(size_t size); 2775 #define ib_alloc_device(drv_struct, member) \ 2776 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2777 BUILD_BUG_ON_ZERO(offsetof( \ 2778 struct drv_struct, member))), \ 2779 struct drv_struct, member) 2780 2781 void ib_dealloc_device(struct ib_device *device); 2782 2783 void ib_get_device_fw_str(struct ib_device *device, char *str); 2784 2785 int ib_register_device(struct ib_device *device, const char *name, 2786 struct device *dma_device); 2787 void ib_unregister_device(struct ib_device *device); 2788 void ib_unregister_driver(enum rdma_driver_id driver_id); 2789 void ib_unregister_device_and_put(struct ib_device *device); 2790 void ib_unregister_device_queued(struct ib_device *ib_dev); 2791 2792 int ib_register_client (struct ib_client *client); 2793 void ib_unregister_client(struct ib_client *client); 2794 2795 void __rdma_block_iter_start(struct ib_block_iter *biter, 2796 struct scatterlist *sglist, 2797 unsigned int nents, 2798 unsigned long pgsz); 2799 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2800 2801 /** 2802 * rdma_block_iter_dma_address - get the aligned dma address of the current 2803 * block held by the block iterator. 2804 * @biter: block iterator holding the memory block 2805 */ 2806 static inline dma_addr_t 2807 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2808 { 2809 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2810 } 2811 2812 /** 2813 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2814 * @sglist: sglist to iterate over 2815 * @biter: block iterator holding the memory block 2816 * @nents: maximum number of sg entries to iterate over 2817 * @pgsz: best HW supported page size to use 2818 * 2819 * Callers may use rdma_block_iter_dma_address() to get each 2820 * blocks aligned DMA address. 2821 */ 2822 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2823 for (__rdma_block_iter_start(biter, sglist, nents, \ 2824 pgsz); \ 2825 __rdma_block_iter_next(biter);) 2826 2827 /** 2828 * ib_get_client_data - Get IB client context 2829 * @device:Device to get context for 2830 * @client:Client to get context for 2831 * 2832 * ib_get_client_data() returns the client context data set with 2833 * ib_set_client_data(). This can only be called while the client is 2834 * registered to the device, once the ib_client remove() callback returns this 2835 * cannot be called. 2836 */ 2837 static inline void *ib_get_client_data(struct ib_device *device, 2838 struct ib_client *client) 2839 { 2840 return xa_load(&device->client_data, client->client_id); 2841 } 2842 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2843 void *data); 2844 void ib_set_device_ops(struct ib_device *device, 2845 const struct ib_device_ops *ops); 2846 2847 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2848 unsigned long pfn, unsigned long size, pgprot_t prot, 2849 struct rdma_user_mmap_entry *entry); 2850 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2851 struct rdma_user_mmap_entry *entry, 2852 size_t length); 2853 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2854 struct rdma_user_mmap_entry *entry, 2855 size_t length, u32 min_pgoff, 2856 u32 max_pgoff); 2857 2858 struct rdma_user_mmap_entry * 2859 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2860 unsigned long pgoff); 2861 struct rdma_user_mmap_entry * 2862 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2863 struct vm_area_struct *vma); 2864 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2865 2866 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2867 2868 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2869 { 2870 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2871 } 2872 2873 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2874 { 2875 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2876 } 2877 2878 static inline bool ib_is_buffer_cleared(const void __user *p, 2879 size_t len) 2880 { 2881 bool ret; 2882 u8 *buf; 2883 2884 if (len > USHRT_MAX) 2885 return false; 2886 2887 buf = memdup_user(p, len); 2888 if (IS_ERR(buf)) 2889 return false; 2890 2891 ret = !memchr_inv(buf, 0, len); 2892 kfree(buf); 2893 return ret; 2894 } 2895 2896 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2897 size_t offset, 2898 size_t len) 2899 { 2900 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2901 } 2902 2903 /** 2904 * ib_is_destroy_retryable - Check whether the uobject destruction 2905 * is retryable. 2906 * @ret: The initial destruction return code 2907 * @why: remove reason 2908 * @uobj: The uobject that is destroyed 2909 * 2910 * This function is a helper function that IB layer and low-level drivers 2911 * can use to consider whether the destruction of the given uobject is 2912 * retry-able. 2913 * It checks the original return code, if it wasn't success the destruction 2914 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2915 * the remove reason. (i.e. why). 2916 * Must be called with the object locked for destroy. 2917 */ 2918 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2919 struct ib_uobject *uobj) 2920 { 2921 return ret && (why == RDMA_REMOVE_DESTROY || 2922 uobj->context->cleanup_retryable); 2923 } 2924 2925 /** 2926 * ib_destroy_usecnt - Called during destruction to check the usecnt 2927 * @usecnt: The usecnt atomic 2928 * @why: remove reason 2929 * @uobj: The uobject that is destroyed 2930 * 2931 * Non-zero usecnts will block destruction unless destruction was triggered by 2932 * a ucontext cleanup. 2933 */ 2934 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2935 enum rdma_remove_reason why, 2936 struct ib_uobject *uobj) 2937 { 2938 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2939 return -EBUSY; 2940 return 0; 2941 } 2942 2943 /** 2944 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2945 * contains all required attributes and no attributes not allowed for 2946 * the given QP state transition. 2947 * @cur_state: Current QP state 2948 * @next_state: Next QP state 2949 * @type: QP type 2950 * @mask: Mask of supplied QP attributes 2951 * 2952 * This function is a helper function that a low-level driver's 2953 * modify_qp method can use to validate the consumer's input. It 2954 * checks that cur_state and next_state are valid QP states, that a 2955 * transition from cur_state to next_state is allowed by the IB spec, 2956 * and that the attribute mask supplied is allowed for the transition. 2957 */ 2958 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2959 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2960 2961 void ib_register_event_handler(struct ib_event_handler *event_handler); 2962 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2963 void ib_dispatch_event(const struct ib_event *event); 2964 2965 int ib_query_port(struct ib_device *device, 2966 u8 port_num, struct ib_port_attr *port_attr); 2967 2968 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2969 u8 port_num); 2970 2971 /** 2972 * rdma_cap_ib_switch - Check if the device is IB switch 2973 * @device: Device to check 2974 * 2975 * Device driver is responsible for setting is_switch bit on 2976 * in ib_device structure at init time. 2977 * 2978 * Return: true if the device is IB switch. 2979 */ 2980 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2981 { 2982 return device->is_switch; 2983 } 2984 2985 /** 2986 * rdma_start_port - Return the first valid port number for the device 2987 * specified 2988 * 2989 * @device: Device to be checked 2990 * 2991 * Return start port number 2992 */ 2993 static inline u8 rdma_start_port(const struct ib_device *device) 2994 { 2995 return rdma_cap_ib_switch(device) ? 0 : 1; 2996 } 2997 2998 /** 2999 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3000 * @device - The struct ib_device * to iterate over 3001 * @iter - The unsigned int to store the port number 3002 */ 3003 #define rdma_for_each_port(device, iter) \ 3004 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 3005 unsigned int, iter))); \ 3006 iter <= rdma_end_port(device); (iter)++) 3007 3008 /** 3009 * rdma_end_port - Return the last valid port number for the device 3010 * specified 3011 * 3012 * @device: Device to be checked 3013 * 3014 * Return last port number 3015 */ 3016 static inline u8 rdma_end_port(const struct ib_device *device) 3017 { 3018 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3019 } 3020 3021 static inline int rdma_is_port_valid(const struct ib_device *device, 3022 unsigned int port) 3023 { 3024 return (port >= rdma_start_port(device) && 3025 port <= rdma_end_port(device)); 3026 } 3027 3028 static inline bool rdma_is_grh_required(const struct ib_device *device, 3029 u8 port_num) 3030 { 3031 return device->port_data[port_num].immutable.core_cap_flags & 3032 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3033 } 3034 3035 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3036 { 3037 return device->port_data[port_num].immutable.core_cap_flags & 3038 RDMA_CORE_CAP_PROT_IB; 3039 } 3040 3041 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3042 { 3043 return device->port_data[port_num].immutable.core_cap_flags & 3044 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3045 } 3046 3047 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3048 { 3049 return device->port_data[port_num].immutable.core_cap_flags & 3050 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3051 } 3052 3053 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3054 { 3055 return device->port_data[port_num].immutable.core_cap_flags & 3056 RDMA_CORE_CAP_PROT_ROCE; 3057 } 3058 3059 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3060 { 3061 return device->port_data[port_num].immutable.core_cap_flags & 3062 RDMA_CORE_CAP_PROT_IWARP; 3063 } 3064 3065 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3066 { 3067 return rdma_protocol_ib(device, port_num) || 3068 rdma_protocol_roce(device, port_num); 3069 } 3070 3071 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3072 { 3073 return device->port_data[port_num].immutable.core_cap_flags & 3074 RDMA_CORE_CAP_PROT_RAW_PACKET; 3075 } 3076 3077 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3078 { 3079 return device->port_data[port_num].immutable.core_cap_flags & 3080 RDMA_CORE_CAP_PROT_USNIC; 3081 } 3082 3083 /** 3084 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3085 * Management Datagrams. 3086 * @device: Device to check 3087 * @port_num: Port number to check 3088 * 3089 * Management Datagrams (MAD) are a required part of the InfiniBand 3090 * specification and are supported on all InfiniBand devices. A slightly 3091 * extended version are also supported on OPA interfaces. 3092 * 3093 * Return: true if the port supports sending/receiving of MAD packets. 3094 */ 3095 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3096 { 3097 return device->port_data[port_num].immutable.core_cap_flags & 3098 RDMA_CORE_CAP_IB_MAD; 3099 } 3100 3101 /** 3102 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3103 * Management Datagrams. 3104 * @device: Device to check 3105 * @port_num: Port number to check 3106 * 3107 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3108 * datagrams with their own versions. These OPA MADs share many but not all of 3109 * the characteristics of InfiniBand MADs. 3110 * 3111 * OPA MADs differ in the following ways: 3112 * 3113 * 1) MADs are variable size up to 2K 3114 * IBTA defined MADs remain fixed at 256 bytes 3115 * 2) OPA SMPs must carry valid PKeys 3116 * 3) OPA SMP packets are a different format 3117 * 3118 * Return: true if the port supports OPA MAD packet formats. 3119 */ 3120 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3121 { 3122 return device->port_data[port_num].immutable.core_cap_flags & 3123 RDMA_CORE_CAP_OPA_MAD; 3124 } 3125 3126 /** 3127 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3128 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3129 * @device: Device to check 3130 * @port_num: Port number to check 3131 * 3132 * Each InfiniBand node is required to provide a Subnet Management Agent 3133 * that the subnet manager can access. Prior to the fabric being fully 3134 * configured by the subnet manager, the SMA is accessed via a well known 3135 * interface called the Subnet Management Interface (SMI). This interface 3136 * uses directed route packets to communicate with the SM to get around the 3137 * chicken and egg problem of the SM needing to know what's on the fabric 3138 * in order to configure the fabric, and needing to configure the fabric in 3139 * order to send packets to the devices on the fabric. These directed 3140 * route packets do not need the fabric fully configured in order to reach 3141 * their destination. The SMI is the only method allowed to send 3142 * directed route packets on an InfiniBand fabric. 3143 * 3144 * Return: true if the port provides an SMI. 3145 */ 3146 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3147 { 3148 return device->port_data[port_num].immutable.core_cap_flags & 3149 RDMA_CORE_CAP_IB_SMI; 3150 } 3151 3152 /** 3153 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3154 * Communication Manager. 3155 * @device: Device to check 3156 * @port_num: Port number to check 3157 * 3158 * The InfiniBand Communication Manager is one of many pre-defined General 3159 * Service Agents (GSA) that are accessed via the General Service 3160 * Interface (GSI). It's role is to facilitate establishment of connections 3161 * between nodes as well as other management related tasks for established 3162 * connections. 3163 * 3164 * Return: true if the port supports an IB CM (this does not guarantee that 3165 * a CM is actually running however). 3166 */ 3167 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3168 { 3169 return device->port_data[port_num].immutable.core_cap_flags & 3170 RDMA_CORE_CAP_IB_CM; 3171 } 3172 3173 /** 3174 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3175 * Communication Manager. 3176 * @device: Device to check 3177 * @port_num: Port number to check 3178 * 3179 * Similar to above, but specific to iWARP connections which have a different 3180 * managment protocol than InfiniBand. 3181 * 3182 * Return: true if the port supports an iWARP CM (this does not guarantee that 3183 * a CM is actually running however). 3184 */ 3185 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3186 { 3187 return device->port_data[port_num].immutable.core_cap_flags & 3188 RDMA_CORE_CAP_IW_CM; 3189 } 3190 3191 /** 3192 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3193 * Subnet Administration. 3194 * @device: Device to check 3195 * @port_num: Port number to check 3196 * 3197 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3198 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3199 * fabrics, devices should resolve routes to other hosts by contacting the 3200 * SA to query the proper route. 3201 * 3202 * Return: true if the port should act as a client to the fabric Subnet 3203 * Administration interface. This does not imply that the SA service is 3204 * running locally. 3205 */ 3206 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3207 { 3208 return device->port_data[port_num].immutable.core_cap_flags & 3209 RDMA_CORE_CAP_IB_SA; 3210 } 3211 3212 /** 3213 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3214 * Multicast. 3215 * @device: Device to check 3216 * @port_num: Port number to check 3217 * 3218 * InfiniBand multicast registration is more complex than normal IPv4 or 3219 * IPv6 multicast registration. Each Host Channel Adapter must register 3220 * with the Subnet Manager when it wishes to join a multicast group. It 3221 * should do so only once regardless of how many queue pairs it subscribes 3222 * to this group. And it should leave the group only after all queue pairs 3223 * attached to the group have been detached. 3224 * 3225 * Return: true if the port must undertake the additional adminstrative 3226 * overhead of registering/unregistering with the SM and tracking of the 3227 * total number of queue pairs attached to the multicast group. 3228 */ 3229 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3230 { 3231 return rdma_cap_ib_sa(device, port_num); 3232 } 3233 3234 /** 3235 * rdma_cap_af_ib - Check if the port of device has the capability 3236 * Native Infiniband Address. 3237 * @device: Device to check 3238 * @port_num: Port number to check 3239 * 3240 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3241 * GID. RoCE uses a different mechanism, but still generates a GID via 3242 * a prescribed mechanism and port specific data. 3243 * 3244 * Return: true if the port uses a GID address to identify devices on the 3245 * network. 3246 */ 3247 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3248 { 3249 return device->port_data[port_num].immutable.core_cap_flags & 3250 RDMA_CORE_CAP_AF_IB; 3251 } 3252 3253 /** 3254 * rdma_cap_eth_ah - Check if the port of device has the capability 3255 * Ethernet Address Handle. 3256 * @device: Device to check 3257 * @port_num: Port number to check 3258 * 3259 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3260 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3261 * port. Normally, packet headers are generated by the sending host 3262 * adapter, but when sending connectionless datagrams, we must manually 3263 * inject the proper headers for the fabric we are communicating over. 3264 * 3265 * Return: true if we are running as a RoCE port and must force the 3266 * addition of a Global Route Header built from our Ethernet Address 3267 * Handle into our header list for connectionless packets. 3268 */ 3269 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3270 { 3271 return device->port_data[port_num].immutable.core_cap_flags & 3272 RDMA_CORE_CAP_ETH_AH; 3273 } 3274 3275 /** 3276 * rdma_cap_opa_ah - Check if the port of device supports 3277 * OPA Address handles 3278 * @device: Device to check 3279 * @port_num: Port number to check 3280 * 3281 * Return: true if we are running on an OPA device which supports 3282 * the extended OPA addressing. 3283 */ 3284 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3285 { 3286 return (device->port_data[port_num].immutable.core_cap_flags & 3287 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3288 } 3289 3290 /** 3291 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3292 * 3293 * @device: Device 3294 * @port_num: Port number 3295 * 3296 * This MAD size includes the MAD headers and MAD payload. No other headers 3297 * are included. 3298 * 3299 * Return the max MAD size required by the Port. Will return 0 if the port 3300 * does not support MADs 3301 */ 3302 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3303 { 3304 return device->port_data[port_num].immutable.max_mad_size; 3305 } 3306 3307 /** 3308 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3309 * @device: Device to check 3310 * @port_num: Port number to check 3311 * 3312 * RoCE GID table mechanism manages the various GIDs for a device. 3313 * 3314 * NOTE: if allocating the port's GID table has failed, this call will still 3315 * return true, but any RoCE GID table API will fail. 3316 * 3317 * Return: true if the port uses RoCE GID table mechanism in order to manage 3318 * its GIDs. 3319 */ 3320 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3321 u8 port_num) 3322 { 3323 return rdma_protocol_roce(device, port_num) && 3324 device->ops.add_gid && device->ops.del_gid; 3325 } 3326 3327 /* 3328 * Check if the device supports READ W/ INVALIDATE. 3329 */ 3330 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3331 { 3332 /* 3333 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3334 * has support for it yet. 3335 */ 3336 return rdma_protocol_iwarp(dev, port_num); 3337 } 3338 3339 /** 3340 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3341 * @device: Device 3342 * @port_num: 1 based Port number 3343 * 3344 * Return true if port is an Intel OPA port , false if not 3345 */ 3346 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3347 u32 port_num) 3348 { 3349 return (device->port_data[port_num].immutable.core_cap_flags & 3350 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3351 } 3352 3353 /** 3354 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3355 * @device: Device 3356 * @port_num: Port number 3357 * @mtu: enum value of MTU 3358 * 3359 * Return the MTU size supported by the port as an integer value. Will return 3360 * -1 if enum value of mtu is not supported. 3361 */ 3362 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port, 3363 int mtu) 3364 { 3365 if (rdma_core_cap_opa_port(device, port)) 3366 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3367 else 3368 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3369 } 3370 3371 /** 3372 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3373 * @device: Device 3374 * @port_num: Port number 3375 * @attr: port attribute 3376 * 3377 * Return the MTU size supported by the port as an integer value. 3378 */ 3379 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port, 3380 struct ib_port_attr *attr) 3381 { 3382 if (rdma_core_cap_opa_port(device, port)) 3383 return attr->phys_mtu; 3384 else 3385 return ib_mtu_enum_to_int(attr->max_mtu); 3386 } 3387 3388 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3389 int state); 3390 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3391 struct ifla_vf_info *info); 3392 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3393 struct ifla_vf_stats *stats); 3394 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3395 struct ifla_vf_guid *node_guid, 3396 struct ifla_vf_guid *port_guid); 3397 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3398 int type); 3399 3400 int ib_query_pkey(struct ib_device *device, 3401 u8 port_num, u16 index, u16 *pkey); 3402 3403 int ib_modify_device(struct ib_device *device, 3404 int device_modify_mask, 3405 struct ib_device_modify *device_modify); 3406 3407 int ib_modify_port(struct ib_device *device, 3408 u8 port_num, int port_modify_mask, 3409 struct ib_port_modify *port_modify); 3410 3411 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3412 u8 *port_num, u16 *index); 3413 3414 int ib_find_pkey(struct ib_device *device, 3415 u8 port_num, u16 pkey, u16 *index); 3416 3417 enum ib_pd_flags { 3418 /* 3419 * Create a memory registration for all memory in the system and place 3420 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3421 * ULPs to avoid the overhead of dynamic MRs. 3422 * 3423 * This flag is generally considered unsafe and must only be used in 3424 * extremly trusted environments. Every use of it will log a warning 3425 * in the kernel log. 3426 */ 3427 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3428 }; 3429 3430 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3431 const char *caller); 3432 3433 #define ib_alloc_pd(device, flags) \ 3434 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3435 3436 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3437 3438 /** 3439 * ib_dealloc_pd - Deallocate kernel PD 3440 * @pd: The protection domain 3441 * 3442 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3443 */ 3444 static inline void ib_dealloc_pd(struct ib_pd *pd) 3445 { 3446 int ret = ib_dealloc_pd_user(pd, NULL); 3447 3448 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3449 } 3450 3451 enum rdma_create_ah_flags { 3452 /* In a sleepable context */ 3453 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3454 }; 3455 3456 /** 3457 * rdma_create_ah - Creates an address handle for the given address vector. 3458 * @pd: The protection domain associated with the address handle. 3459 * @ah_attr: The attributes of the address vector. 3460 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3461 * 3462 * The address handle is used to reference a local or global destination 3463 * in all UD QP post sends. 3464 */ 3465 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3466 u32 flags); 3467 3468 /** 3469 * rdma_create_user_ah - Creates an address handle for the given address vector. 3470 * It resolves destination mac address for ah attribute of RoCE type. 3471 * @pd: The protection domain associated with the address handle. 3472 * @ah_attr: The attributes of the address vector. 3473 * @udata: pointer to user's input output buffer information need by 3474 * provider driver. 3475 * 3476 * It returns 0 on success and returns appropriate error code on error. 3477 * The address handle is used to reference a local or global destination 3478 * in all UD QP post sends. 3479 */ 3480 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3481 struct rdma_ah_attr *ah_attr, 3482 struct ib_udata *udata); 3483 /** 3484 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3485 * work completion. 3486 * @hdr: the L3 header to parse 3487 * @net_type: type of header to parse 3488 * @sgid: place to store source gid 3489 * @dgid: place to store destination gid 3490 */ 3491 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3492 enum rdma_network_type net_type, 3493 union ib_gid *sgid, union ib_gid *dgid); 3494 3495 /** 3496 * ib_get_rdma_header_version - Get the header version 3497 * @hdr: the L3 header to parse 3498 */ 3499 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3500 3501 /** 3502 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3503 * work completion. 3504 * @device: Device on which the received message arrived. 3505 * @port_num: Port on which the received message arrived. 3506 * @wc: Work completion associated with the received message. 3507 * @grh: References the received global route header. This parameter is 3508 * ignored unless the work completion indicates that the GRH is valid. 3509 * @ah_attr: Returned attributes that can be used when creating an address 3510 * handle for replying to the message. 3511 * When ib_init_ah_attr_from_wc() returns success, 3512 * (a) for IB link layer it optionally contains a reference to SGID attribute 3513 * when GRH is present for IB link layer. 3514 * (b) for RoCE link layer it contains a reference to SGID attribute. 3515 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3516 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3517 * 3518 */ 3519 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3520 const struct ib_wc *wc, const struct ib_grh *grh, 3521 struct rdma_ah_attr *ah_attr); 3522 3523 /** 3524 * ib_create_ah_from_wc - Creates an address handle associated with the 3525 * sender of the specified work completion. 3526 * @pd: The protection domain associated with the address handle. 3527 * @wc: Work completion information associated with a received message. 3528 * @grh: References the received global route header. This parameter is 3529 * ignored unless the work completion indicates that the GRH is valid. 3530 * @port_num: The outbound port number to associate with the address. 3531 * 3532 * The address handle is used to reference a local or global destination 3533 * in all UD QP post sends. 3534 */ 3535 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3536 const struct ib_grh *grh, u8 port_num); 3537 3538 /** 3539 * rdma_modify_ah - Modifies the address vector associated with an address 3540 * handle. 3541 * @ah: The address handle to modify. 3542 * @ah_attr: The new address vector attributes to associate with the 3543 * address handle. 3544 */ 3545 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3546 3547 /** 3548 * rdma_query_ah - Queries the address vector associated with an address 3549 * handle. 3550 * @ah: The address handle to query. 3551 * @ah_attr: The address vector attributes associated with the address 3552 * handle. 3553 */ 3554 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3555 3556 enum rdma_destroy_ah_flags { 3557 /* In a sleepable context */ 3558 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3559 }; 3560 3561 /** 3562 * rdma_destroy_ah_user - Destroys an address handle. 3563 * @ah: The address handle to destroy. 3564 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3565 * @udata: Valid user data or NULL for kernel objects 3566 */ 3567 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3568 3569 /** 3570 * rdma_destroy_ah - Destroys an kernel address handle. 3571 * @ah: The address handle to destroy. 3572 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3573 * 3574 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3575 */ 3576 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3577 { 3578 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3579 3580 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3581 } 3582 3583 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3584 struct ib_srq_init_attr *srq_init_attr, 3585 struct ib_usrq_object *uobject, 3586 struct ib_udata *udata); 3587 static inline struct ib_srq * 3588 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3589 { 3590 if (!pd->device->ops.create_srq) 3591 return ERR_PTR(-EOPNOTSUPP); 3592 3593 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3594 } 3595 3596 /** 3597 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3598 * @srq: The SRQ to modify. 3599 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3600 * the current values of selected SRQ attributes are returned. 3601 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3602 * are being modified. 3603 * 3604 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3605 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3606 * the number of receives queued drops below the limit. 3607 */ 3608 int ib_modify_srq(struct ib_srq *srq, 3609 struct ib_srq_attr *srq_attr, 3610 enum ib_srq_attr_mask srq_attr_mask); 3611 3612 /** 3613 * ib_query_srq - Returns the attribute list and current values for the 3614 * specified SRQ. 3615 * @srq: The SRQ to query. 3616 * @srq_attr: The attributes of the specified SRQ. 3617 */ 3618 int ib_query_srq(struct ib_srq *srq, 3619 struct ib_srq_attr *srq_attr); 3620 3621 /** 3622 * ib_destroy_srq_user - Destroys the specified SRQ. 3623 * @srq: The SRQ to destroy. 3624 * @udata: Valid user data or NULL for kernel objects 3625 */ 3626 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3627 3628 /** 3629 * ib_destroy_srq - Destroys the specified kernel SRQ. 3630 * @srq: The SRQ to destroy. 3631 * 3632 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3633 */ 3634 static inline void ib_destroy_srq(struct ib_srq *srq) 3635 { 3636 int ret = ib_destroy_srq_user(srq, NULL); 3637 3638 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3639 } 3640 3641 /** 3642 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3643 * @srq: The SRQ to post the work request on. 3644 * @recv_wr: A list of work requests to post on the receive queue. 3645 * @bad_recv_wr: On an immediate failure, this parameter will reference 3646 * the work request that failed to be posted on the QP. 3647 */ 3648 static inline int ib_post_srq_recv(struct ib_srq *srq, 3649 const struct ib_recv_wr *recv_wr, 3650 const struct ib_recv_wr **bad_recv_wr) 3651 { 3652 const struct ib_recv_wr *dummy; 3653 3654 return srq->device->ops.post_srq_recv(srq, recv_wr, 3655 bad_recv_wr ? : &dummy); 3656 } 3657 3658 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3659 struct ib_qp_init_attr *qp_init_attr); 3660 3661 /** 3662 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3663 * @qp: The QP to modify. 3664 * @attr: On input, specifies the QP attributes to modify. On output, 3665 * the current values of selected QP attributes are returned. 3666 * @attr_mask: A bit-mask used to specify which attributes of the QP 3667 * are being modified. 3668 * @udata: pointer to user's input output buffer information 3669 * are being modified. 3670 * It returns 0 on success and returns appropriate error code on error. 3671 */ 3672 int ib_modify_qp_with_udata(struct ib_qp *qp, 3673 struct ib_qp_attr *attr, 3674 int attr_mask, 3675 struct ib_udata *udata); 3676 3677 /** 3678 * ib_modify_qp - Modifies the attributes for the specified QP and then 3679 * transitions the QP to the given state. 3680 * @qp: The QP to modify. 3681 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3682 * the current values of selected QP attributes are returned. 3683 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3684 * are being modified. 3685 */ 3686 int ib_modify_qp(struct ib_qp *qp, 3687 struct ib_qp_attr *qp_attr, 3688 int qp_attr_mask); 3689 3690 /** 3691 * ib_query_qp - Returns the attribute list and current values for the 3692 * specified QP. 3693 * @qp: The QP to query. 3694 * @qp_attr: The attributes of the specified QP. 3695 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3696 * @qp_init_attr: Additional attributes of the selected QP. 3697 * 3698 * The qp_attr_mask may be used to limit the query to gathering only the 3699 * selected attributes. 3700 */ 3701 int ib_query_qp(struct ib_qp *qp, 3702 struct ib_qp_attr *qp_attr, 3703 int qp_attr_mask, 3704 struct ib_qp_init_attr *qp_init_attr); 3705 3706 /** 3707 * ib_destroy_qp - Destroys the specified QP. 3708 * @qp: The QP to destroy. 3709 * @udata: Valid udata or NULL for kernel objects 3710 */ 3711 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3712 3713 /** 3714 * ib_destroy_qp - Destroys the specified kernel QP. 3715 * @qp: The QP to destroy. 3716 * 3717 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3718 */ 3719 static inline int ib_destroy_qp(struct ib_qp *qp) 3720 { 3721 return ib_destroy_qp_user(qp, NULL); 3722 } 3723 3724 /** 3725 * ib_open_qp - Obtain a reference to an existing sharable QP. 3726 * @xrcd - XRC domain 3727 * @qp_open_attr: Attributes identifying the QP to open. 3728 * 3729 * Returns a reference to a sharable QP. 3730 */ 3731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3732 struct ib_qp_open_attr *qp_open_attr); 3733 3734 /** 3735 * ib_close_qp - Release an external reference to a QP. 3736 * @qp: The QP handle to release 3737 * 3738 * The opened QP handle is released by the caller. The underlying 3739 * shared QP is not destroyed until all internal references are released. 3740 */ 3741 int ib_close_qp(struct ib_qp *qp); 3742 3743 /** 3744 * ib_post_send - Posts a list of work requests to the send queue of 3745 * the specified QP. 3746 * @qp: The QP to post the work request on. 3747 * @send_wr: A list of work requests to post on the send queue. 3748 * @bad_send_wr: On an immediate failure, this parameter will reference 3749 * the work request that failed to be posted on the QP. 3750 * 3751 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3752 * error is returned, the QP state shall not be affected, 3753 * ib_post_send() will return an immediate error after queueing any 3754 * earlier work requests in the list. 3755 */ 3756 static inline int ib_post_send(struct ib_qp *qp, 3757 const struct ib_send_wr *send_wr, 3758 const struct ib_send_wr **bad_send_wr) 3759 { 3760 const struct ib_send_wr *dummy; 3761 3762 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3763 } 3764 3765 /** 3766 * ib_post_recv - Posts a list of work requests to the receive queue of 3767 * the specified QP. 3768 * @qp: The QP to post the work request on. 3769 * @recv_wr: A list of work requests to post on the receive queue. 3770 * @bad_recv_wr: On an immediate failure, this parameter will reference 3771 * the work request that failed to be posted on the QP. 3772 */ 3773 static inline int ib_post_recv(struct ib_qp *qp, 3774 const struct ib_recv_wr *recv_wr, 3775 const struct ib_recv_wr **bad_recv_wr) 3776 { 3777 const struct ib_recv_wr *dummy; 3778 3779 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3780 } 3781 3782 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3783 int comp_vector, enum ib_poll_context poll_ctx, 3784 const char *caller); 3785 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3786 int nr_cqe, int comp_vector, 3787 enum ib_poll_context poll_ctx) 3788 { 3789 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3790 KBUILD_MODNAME); 3791 } 3792 3793 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3794 int nr_cqe, enum ib_poll_context poll_ctx, 3795 const char *caller); 3796 3797 /** 3798 * ib_alloc_cq_any: Allocate kernel CQ 3799 * @dev: The IB device 3800 * @private: Private data attached to the CQE 3801 * @nr_cqe: Number of CQEs in the CQ 3802 * @poll_ctx: Context used for polling the CQ 3803 */ 3804 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3805 void *private, int nr_cqe, 3806 enum ib_poll_context poll_ctx) 3807 { 3808 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3809 KBUILD_MODNAME); 3810 } 3811 3812 void ib_free_cq(struct ib_cq *cq); 3813 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3814 3815 /** 3816 * ib_create_cq - Creates a CQ on the specified device. 3817 * @device: The device on which to create the CQ. 3818 * @comp_handler: A user-specified callback that is invoked when a 3819 * completion event occurs on the CQ. 3820 * @event_handler: A user-specified callback that is invoked when an 3821 * asynchronous event not associated with a completion occurs on the CQ. 3822 * @cq_context: Context associated with the CQ returned to the user via 3823 * the associated completion and event handlers. 3824 * @cq_attr: The attributes the CQ should be created upon. 3825 * 3826 * Users can examine the cq structure to determine the actual CQ size. 3827 */ 3828 struct ib_cq *__ib_create_cq(struct ib_device *device, 3829 ib_comp_handler comp_handler, 3830 void (*event_handler)(struct ib_event *, void *), 3831 void *cq_context, 3832 const struct ib_cq_init_attr *cq_attr, 3833 const char *caller); 3834 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3835 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3836 3837 /** 3838 * ib_resize_cq - Modifies the capacity of the CQ. 3839 * @cq: The CQ to resize. 3840 * @cqe: The minimum size of the CQ. 3841 * 3842 * Users can examine the cq structure to determine the actual CQ size. 3843 */ 3844 int ib_resize_cq(struct ib_cq *cq, int cqe); 3845 3846 /** 3847 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3848 * @cq: The CQ to modify. 3849 * @cq_count: number of CQEs that will trigger an event 3850 * @cq_period: max period of time in usec before triggering an event 3851 * 3852 */ 3853 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3854 3855 /** 3856 * ib_destroy_cq_user - Destroys the specified CQ. 3857 * @cq: The CQ to destroy. 3858 * @udata: Valid user data or NULL for kernel objects 3859 */ 3860 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3861 3862 /** 3863 * ib_destroy_cq - Destroys the specified kernel CQ. 3864 * @cq: The CQ to destroy. 3865 * 3866 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3867 */ 3868 static inline void ib_destroy_cq(struct ib_cq *cq) 3869 { 3870 int ret = ib_destroy_cq_user(cq, NULL); 3871 3872 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3873 } 3874 3875 /** 3876 * ib_poll_cq - poll a CQ for completion(s) 3877 * @cq:the CQ being polled 3878 * @num_entries:maximum number of completions to return 3879 * @wc:array of at least @num_entries &struct ib_wc where completions 3880 * will be returned 3881 * 3882 * Poll a CQ for (possibly multiple) completions. If the return value 3883 * is < 0, an error occurred. If the return value is >= 0, it is the 3884 * number of completions returned. If the return value is 3885 * non-negative and < num_entries, then the CQ was emptied. 3886 */ 3887 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3888 struct ib_wc *wc) 3889 { 3890 return cq->device->ops.poll_cq(cq, num_entries, wc); 3891 } 3892 3893 /** 3894 * ib_req_notify_cq - Request completion notification on a CQ. 3895 * @cq: The CQ to generate an event for. 3896 * @flags: 3897 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3898 * to request an event on the next solicited event or next work 3899 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3900 * may also be |ed in to request a hint about missed events, as 3901 * described below. 3902 * 3903 * Return Value: 3904 * < 0 means an error occurred while requesting notification 3905 * == 0 means notification was requested successfully, and if 3906 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3907 * were missed and it is safe to wait for another event. In 3908 * this case is it guaranteed that any work completions added 3909 * to the CQ since the last CQ poll will trigger a completion 3910 * notification event. 3911 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3912 * in. It means that the consumer must poll the CQ again to 3913 * make sure it is empty to avoid missing an event because of a 3914 * race between requesting notification and an entry being 3915 * added to the CQ. This return value means it is possible 3916 * (but not guaranteed) that a work completion has been added 3917 * to the CQ since the last poll without triggering a 3918 * completion notification event. 3919 */ 3920 static inline int ib_req_notify_cq(struct ib_cq *cq, 3921 enum ib_cq_notify_flags flags) 3922 { 3923 return cq->device->ops.req_notify_cq(cq, flags); 3924 } 3925 3926 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 3927 int comp_vector_hint, 3928 enum ib_poll_context poll_ctx); 3929 3930 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 3931 3932 /** 3933 * ib_req_ncomp_notif - Request completion notification when there are 3934 * at least the specified number of unreaped completions on the CQ. 3935 * @cq: The CQ to generate an event for. 3936 * @wc_cnt: The number of unreaped completions that should be on the 3937 * CQ before an event is generated. 3938 */ 3939 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3940 { 3941 return cq->device->ops.req_ncomp_notif ? 3942 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3943 -ENOSYS; 3944 } 3945 3946 /** 3947 * ib_dma_mapping_error - check a DMA addr for error 3948 * @dev: The device for which the dma_addr was created 3949 * @dma_addr: The DMA address to check 3950 */ 3951 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3952 { 3953 return dma_mapping_error(dev->dma_device, dma_addr); 3954 } 3955 3956 /** 3957 * ib_dma_map_single - Map a kernel virtual address to DMA address 3958 * @dev: The device for which the dma_addr is to be created 3959 * @cpu_addr: The kernel virtual address 3960 * @size: The size of the region in bytes 3961 * @direction: The direction of the DMA 3962 */ 3963 static inline u64 ib_dma_map_single(struct ib_device *dev, 3964 void *cpu_addr, size_t size, 3965 enum dma_data_direction direction) 3966 { 3967 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3968 } 3969 3970 /** 3971 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3972 * @dev: The device for which the DMA address was created 3973 * @addr: The DMA address 3974 * @size: The size of the region in bytes 3975 * @direction: The direction of the DMA 3976 */ 3977 static inline void ib_dma_unmap_single(struct ib_device *dev, 3978 u64 addr, size_t size, 3979 enum dma_data_direction direction) 3980 { 3981 dma_unmap_single(dev->dma_device, addr, size, direction); 3982 } 3983 3984 /** 3985 * ib_dma_map_page - Map a physical page to DMA address 3986 * @dev: The device for which the dma_addr is to be created 3987 * @page: The page to be mapped 3988 * @offset: The offset within the page 3989 * @size: The size of the region in bytes 3990 * @direction: The direction of the DMA 3991 */ 3992 static inline u64 ib_dma_map_page(struct ib_device *dev, 3993 struct page *page, 3994 unsigned long offset, 3995 size_t size, 3996 enum dma_data_direction direction) 3997 { 3998 return dma_map_page(dev->dma_device, page, offset, size, direction); 3999 } 4000 4001 /** 4002 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4003 * @dev: The device for which the DMA address was created 4004 * @addr: The DMA address 4005 * @size: The size of the region in bytes 4006 * @direction: The direction of the DMA 4007 */ 4008 static inline void ib_dma_unmap_page(struct ib_device *dev, 4009 u64 addr, size_t size, 4010 enum dma_data_direction direction) 4011 { 4012 dma_unmap_page(dev->dma_device, addr, size, direction); 4013 } 4014 4015 /** 4016 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4017 * @dev: The device for which the DMA addresses are to be created 4018 * @sg: The array of scatter/gather entries 4019 * @nents: The number of scatter/gather entries 4020 * @direction: The direction of the DMA 4021 */ 4022 static inline int ib_dma_map_sg(struct ib_device *dev, 4023 struct scatterlist *sg, int nents, 4024 enum dma_data_direction direction) 4025 { 4026 return dma_map_sg(dev->dma_device, sg, nents, direction); 4027 } 4028 4029 /** 4030 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4031 * @dev: The device for which the DMA addresses were created 4032 * @sg: The array of scatter/gather entries 4033 * @nents: The number of scatter/gather entries 4034 * @direction: The direction of the DMA 4035 */ 4036 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4037 struct scatterlist *sg, int nents, 4038 enum dma_data_direction direction) 4039 { 4040 dma_unmap_sg(dev->dma_device, sg, nents, direction); 4041 } 4042 4043 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4044 struct scatterlist *sg, int nents, 4045 enum dma_data_direction direction, 4046 unsigned long dma_attrs) 4047 { 4048 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4049 dma_attrs); 4050 } 4051 4052 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4053 struct scatterlist *sg, int nents, 4054 enum dma_data_direction direction, 4055 unsigned long dma_attrs) 4056 { 4057 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 4058 } 4059 4060 /** 4061 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4062 * @dev: The device to query 4063 * 4064 * The returned value represents a size in bytes. 4065 */ 4066 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4067 { 4068 return dma_get_max_seg_size(dev->dma_device); 4069 } 4070 4071 /** 4072 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4073 * @dev: The device for which the DMA address was created 4074 * @addr: The DMA address 4075 * @size: The size of the region in bytes 4076 * @dir: The direction of the DMA 4077 */ 4078 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4079 u64 addr, 4080 size_t size, 4081 enum dma_data_direction dir) 4082 { 4083 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4084 } 4085 4086 /** 4087 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4088 * @dev: The device for which the DMA address was created 4089 * @addr: The DMA address 4090 * @size: The size of the region in bytes 4091 * @dir: The direction of the DMA 4092 */ 4093 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4094 u64 addr, 4095 size_t size, 4096 enum dma_data_direction dir) 4097 { 4098 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4099 } 4100 4101 /** 4102 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4103 * @dev: The device for which the DMA address is requested 4104 * @size: The size of the region to allocate in bytes 4105 * @dma_handle: A pointer for returning the DMA address of the region 4106 * @flag: memory allocator flags 4107 */ 4108 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4109 size_t size, 4110 dma_addr_t *dma_handle, 4111 gfp_t flag) 4112 { 4113 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4114 } 4115 4116 /** 4117 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4118 * @dev: The device for which the DMA addresses were allocated 4119 * @size: The size of the region 4120 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4121 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4122 */ 4123 static inline void ib_dma_free_coherent(struct ib_device *dev, 4124 size_t size, void *cpu_addr, 4125 dma_addr_t dma_handle) 4126 { 4127 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4128 } 4129 4130 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4131 * space. This function should be called when 'current' is the owning MM. 4132 */ 4133 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4134 u64 virt_addr, int mr_access_flags); 4135 4136 /* ib_advise_mr - give an advice about an address range in a memory region */ 4137 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4138 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4139 /** 4140 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4141 * HCA translation table. 4142 * @mr: The memory region to deregister. 4143 * @udata: Valid user data or NULL for kernel object 4144 * 4145 * This function can fail, if the memory region has memory windows bound to it. 4146 */ 4147 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4148 4149 /** 4150 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4151 * HCA translation table. 4152 * @mr: The memory region to deregister. 4153 * 4154 * This function can fail, if the memory region has memory windows bound to it. 4155 * 4156 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4157 */ 4158 static inline int ib_dereg_mr(struct ib_mr *mr) 4159 { 4160 return ib_dereg_mr_user(mr, NULL); 4161 } 4162 4163 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4164 u32 max_num_sg); 4165 4166 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4167 u32 max_num_data_sg, 4168 u32 max_num_meta_sg); 4169 4170 /** 4171 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4172 * R_Key and L_Key. 4173 * @mr - struct ib_mr pointer to be updated. 4174 * @newkey - new key to be used. 4175 */ 4176 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4177 { 4178 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4179 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4180 } 4181 4182 /** 4183 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4184 * for calculating a new rkey for type 2 memory windows. 4185 * @rkey - the rkey to increment. 4186 */ 4187 static inline u32 ib_inc_rkey(u32 rkey) 4188 { 4189 const u32 mask = 0x000000ff; 4190 return ((rkey + 1) & mask) | (rkey & ~mask); 4191 } 4192 4193 /** 4194 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4195 * @qp: QP to attach to the multicast group. The QP must be type 4196 * IB_QPT_UD. 4197 * @gid: Multicast group GID. 4198 * @lid: Multicast group LID in host byte order. 4199 * 4200 * In order to send and receive multicast packets, subnet 4201 * administration must have created the multicast group and configured 4202 * the fabric appropriately. The port associated with the specified 4203 * QP must also be a member of the multicast group. 4204 */ 4205 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4206 4207 /** 4208 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4209 * @qp: QP to detach from the multicast group. 4210 * @gid: Multicast group GID. 4211 * @lid: Multicast group LID in host byte order. 4212 */ 4213 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4214 4215 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4216 struct inode *inode, struct ib_udata *udata); 4217 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4218 4219 static inline int ib_check_mr_access(int flags) 4220 { 4221 /* 4222 * Local write permission is required if remote write or 4223 * remote atomic permission is also requested. 4224 */ 4225 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4226 !(flags & IB_ACCESS_LOCAL_WRITE)) 4227 return -EINVAL; 4228 4229 if (flags & ~IB_ACCESS_SUPPORTED) 4230 return -EINVAL; 4231 4232 return 0; 4233 } 4234 4235 static inline bool ib_access_writable(int access_flags) 4236 { 4237 /* 4238 * We have writable memory backing the MR if any of the following 4239 * access flags are set. "Local write" and "remote write" obviously 4240 * require write access. "Remote atomic" can do things like fetch and 4241 * add, which will modify memory, and "MW bind" can change permissions 4242 * by binding a window. 4243 */ 4244 return access_flags & 4245 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4246 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4247 } 4248 4249 /** 4250 * ib_check_mr_status: lightweight check of MR status. 4251 * This routine may provide status checks on a selected 4252 * ib_mr. first use is for signature status check. 4253 * 4254 * @mr: A memory region. 4255 * @check_mask: Bitmask of which checks to perform from 4256 * ib_mr_status_check enumeration. 4257 * @mr_status: The container of relevant status checks. 4258 * failed checks will be indicated in the status bitmask 4259 * and the relevant info shall be in the error item. 4260 */ 4261 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4262 struct ib_mr_status *mr_status); 4263 4264 /** 4265 * ib_device_try_get: Hold a registration lock 4266 * device: The device to lock 4267 * 4268 * A device under an active registration lock cannot become unregistered. It 4269 * is only possible to obtain a registration lock on a device that is fully 4270 * registered, otherwise this function returns false. 4271 * 4272 * The registration lock is only necessary for actions which require the 4273 * device to still be registered. Uses that only require the device pointer to 4274 * be valid should use get_device(&ibdev->dev) to hold the memory. 4275 * 4276 */ 4277 static inline bool ib_device_try_get(struct ib_device *dev) 4278 { 4279 return refcount_inc_not_zero(&dev->refcount); 4280 } 4281 4282 void ib_device_put(struct ib_device *device); 4283 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4284 enum rdma_driver_id driver_id); 4285 struct ib_device *ib_device_get_by_name(const char *name, 4286 enum rdma_driver_id driver_id); 4287 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4288 u16 pkey, const union ib_gid *gid, 4289 const struct sockaddr *addr); 4290 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4291 unsigned int port); 4292 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4293 4294 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4295 struct ib_wq_init_attr *init_attr); 4296 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4297 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4298 u32 wq_attr_mask); 4299 4300 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4301 unsigned int *sg_offset, unsigned int page_size); 4302 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4303 int data_sg_nents, unsigned int *data_sg_offset, 4304 struct scatterlist *meta_sg, int meta_sg_nents, 4305 unsigned int *meta_sg_offset, unsigned int page_size); 4306 4307 static inline int 4308 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4309 unsigned int *sg_offset, unsigned int page_size) 4310 { 4311 int n; 4312 4313 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4314 mr->iova = 0; 4315 4316 return n; 4317 } 4318 4319 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4320 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4321 4322 void ib_drain_rq(struct ib_qp *qp); 4323 void ib_drain_sq(struct ib_qp *qp); 4324 void ib_drain_qp(struct ib_qp *qp); 4325 4326 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width); 4327 4328 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4329 { 4330 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4331 return attr->roce.dmac; 4332 return NULL; 4333 } 4334 4335 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4336 { 4337 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4338 attr->ib.dlid = (u16)dlid; 4339 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4340 attr->opa.dlid = dlid; 4341 } 4342 4343 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4344 { 4345 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4346 return attr->ib.dlid; 4347 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4348 return attr->opa.dlid; 4349 return 0; 4350 } 4351 4352 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4353 { 4354 attr->sl = sl; 4355 } 4356 4357 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4358 { 4359 return attr->sl; 4360 } 4361 4362 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4363 u8 src_path_bits) 4364 { 4365 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4366 attr->ib.src_path_bits = src_path_bits; 4367 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4368 attr->opa.src_path_bits = src_path_bits; 4369 } 4370 4371 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4372 { 4373 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4374 return attr->ib.src_path_bits; 4375 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4376 return attr->opa.src_path_bits; 4377 return 0; 4378 } 4379 4380 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4381 bool make_grd) 4382 { 4383 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4384 attr->opa.make_grd = make_grd; 4385 } 4386 4387 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4388 { 4389 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4390 return attr->opa.make_grd; 4391 return false; 4392 } 4393 4394 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4395 { 4396 attr->port_num = port_num; 4397 } 4398 4399 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4400 { 4401 return attr->port_num; 4402 } 4403 4404 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4405 u8 static_rate) 4406 { 4407 attr->static_rate = static_rate; 4408 } 4409 4410 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4411 { 4412 return attr->static_rate; 4413 } 4414 4415 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4416 enum ib_ah_flags flag) 4417 { 4418 attr->ah_flags = flag; 4419 } 4420 4421 static inline enum ib_ah_flags 4422 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4423 { 4424 return attr->ah_flags; 4425 } 4426 4427 static inline const struct ib_global_route 4428 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4429 { 4430 return &attr->grh; 4431 } 4432 4433 /*To retrieve and modify the grh */ 4434 static inline struct ib_global_route 4435 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4436 { 4437 return &attr->grh; 4438 } 4439 4440 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4441 { 4442 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4443 4444 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4445 } 4446 4447 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4448 __be64 prefix) 4449 { 4450 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4451 4452 grh->dgid.global.subnet_prefix = prefix; 4453 } 4454 4455 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4456 __be64 if_id) 4457 { 4458 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4459 4460 grh->dgid.global.interface_id = if_id; 4461 } 4462 4463 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4464 union ib_gid *dgid, u32 flow_label, 4465 u8 sgid_index, u8 hop_limit, 4466 u8 traffic_class) 4467 { 4468 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4469 4470 attr->ah_flags = IB_AH_GRH; 4471 if (dgid) 4472 grh->dgid = *dgid; 4473 grh->flow_label = flow_label; 4474 grh->sgid_index = sgid_index; 4475 grh->hop_limit = hop_limit; 4476 grh->traffic_class = traffic_class; 4477 grh->sgid_attr = NULL; 4478 } 4479 4480 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4481 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4482 u32 flow_label, u8 hop_limit, u8 traffic_class, 4483 const struct ib_gid_attr *sgid_attr); 4484 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4485 const struct rdma_ah_attr *src); 4486 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4487 const struct rdma_ah_attr *new); 4488 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4489 4490 /** 4491 * rdma_ah_find_type - Return address handle type. 4492 * 4493 * @dev: Device to be checked 4494 * @port_num: Port number 4495 */ 4496 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4497 u8 port_num) 4498 { 4499 if (rdma_protocol_roce(dev, port_num)) 4500 return RDMA_AH_ATTR_TYPE_ROCE; 4501 if (rdma_protocol_ib(dev, port_num)) { 4502 if (rdma_cap_opa_ah(dev, port_num)) 4503 return RDMA_AH_ATTR_TYPE_OPA; 4504 return RDMA_AH_ATTR_TYPE_IB; 4505 } 4506 4507 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4508 } 4509 4510 /** 4511 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4512 * In the current implementation the only way to get 4513 * get the 32bit lid is from other sources for OPA. 4514 * For IB, lids will always be 16bits so cast the 4515 * value accordingly. 4516 * 4517 * @lid: A 32bit LID 4518 */ 4519 static inline u16 ib_lid_cpu16(u32 lid) 4520 { 4521 WARN_ON_ONCE(lid & 0xFFFF0000); 4522 return (u16)lid; 4523 } 4524 4525 /** 4526 * ib_lid_be16 - Return lid in 16bit BE encoding. 4527 * 4528 * @lid: A 32bit LID 4529 */ 4530 static inline __be16 ib_lid_be16(u32 lid) 4531 { 4532 WARN_ON_ONCE(lid & 0xFFFF0000); 4533 return cpu_to_be16((u16)lid); 4534 } 4535 4536 /** 4537 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4538 * vector 4539 * @device: the rdma device 4540 * @comp_vector: index of completion vector 4541 * 4542 * Returns NULL on failure, otherwise a corresponding cpu map of the 4543 * completion vector (returns all-cpus map if the device driver doesn't 4544 * implement get_vector_affinity). 4545 */ 4546 static inline const struct cpumask * 4547 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4548 { 4549 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4550 !device->ops.get_vector_affinity) 4551 return NULL; 4552 4553 return device->ops.get_vector_affinity(device, comp_vector); 4554 4555 } 4556 4557 /** 4558 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4559 * and add their gids, as needed, to the relevant RoCE devices. 4560 * 4561 * @device: the rdma device 4562 */ 4563 void rdma_roce_rescan_device(struct ib_device *ibdev); 4564 4565 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4566 4567 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4568 4569 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4570 enum rdma_netdev_t type, const char *name, 4571 unsigned char name_assign_type, 4572 void (*setup)(struct net_device *)); 4573 4574 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4575 enum rdma_netdev_t type, const char *name, 4576 unsigned char name_assign_type, 4577 void (*setup)(struct net_device *), 4578 struct net_device *netdev); 4579 4580 /** 4581 * rdma_set_device_sysfs_group - Set device attributes group to have 4582 * driver specific sysfs entries at 4583 * for infiniband class. 4584 * 4585 * @device: device pointer for which attributes to be created 4586 * @group: Pointer to group which should be added when device 4587 * is registered with sysfs. 4588 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4589 * group per device to have sysfs attributes. 4590 * 4591 * NOTE: New drivers should not make use of this API; instead new device 4592 * parameter should be exposed via netlink command. This API and mechanism 4593 * exist only for existing drivers. 4594 */ 4595 static inline void 4596 rdma_set_device_sysfs_group(struct ib_device *dev, 4597 const struct attribute_group *group) 4598 { 4599 dev->groups[1] = group; 4600 } 4601 4602 /** 4603 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4604 * 4605 * @device: device pointer for which ib_device pointer to retrieve 4606 * 4607 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4608 * 4609 */ 4610 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4611 { 4612 struct ib_core_device *coredev = 4613 container_of(device, struct ib_core_device, dev); 4614 4615 return coredev->owner; 4616 } 4617 4618 /** 4619 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4620 * ib_device holder structure from device pointer. 4621 * 4622 * NOTE: New drivers should not make use of this API; This API is only for 4623 * existing drivers who have exposed sysfs entries using 4624 * rdma_set_device_sysfs_group(). 4625 */ 4626 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4627 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4628 4629 bool rdma_dev_access_netns(const struct ib_device *device, 4630 const struct net *net); 4631 4632 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4633 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4634 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4635 4636 /** 4637 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4638 * on the flow_label 4639 * 4640 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4641 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4642 * convention. 4643 */ 4644 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4645 { 4646 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4647 4648 fl_low ^= fl_high >> 14; 4649 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4650 } 4651 4652 /** 4653 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4654 * local and remote qpn values 4655 * 4656 * This function folded the multiplication results of two qpns, 24 bit each, 4657 * fields, and converts it to a 20 bit results. 4658 * 4659 * This function will create symmetric flow_label value based on the local 4660 * and remote qpn values. this will allow both the requester and responder 4661 * to calculate the same flow_label for a given connection. 4662 * 4663 * This helper function should be used by driver in case the upper layer 4664 * provide a zero flow_label value. This is to improve entropy of RDMA 4665 * traffic in the network. 4666 */ 4667 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4668 { 4669 u64 v = (u64)lqpn * rqpn; 4670 4671 v ^= v >> 20; 4672 v ^= v >> 40; 4673 4674 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4675 } 4676 #endif /* IB_VERBS_H */ 4677