1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <asm/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC 71 }; 72 73 enum rdma_transport_type { 74 RDMA_TRANSPORT_IB, 75 RDMA_TRANSPORT_IWARP 76 }; 77 78 enum rdma_transport_type 79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 80 81 enum rdma_link_layer { 82 IB_LINK_LAYER_UNSPECIFIED, 83 IB_LINK_LAYER_INFINIBAND, 84 IB_LINK_LAYER_ETHERNET, 85 }; 86 87 enum ib_device_cap_flags { 88 IB_DEVICE_RESIZE_MAX_WR = 1, 89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 91 IB_DEVICE_RAW_MULTI = (1<<3), 92 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 96 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 97 IB_DEVICE_INIT_TYPE = (1<<9), 98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 101 IB_DEVICE_SRQ_RESIZE = (1<<13), 102 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 105 IB_DEVICE_MEM_WINDOW = (1<<17), 106 /* 107 * Devices should set IB_DEVICE_UD_IP_SUM if they support 108 * insertion of UDP and TCP checksum on outgoing UD IPoIB 109 * messages and can verify the validity of checksum for 110 * incoming messages. Setting this flag implies that the 111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 112 */ 113 IB_DEVICE_UD_IP_CSUM = (1<<18), 114 IB_DEVICE_UD_TSO = (1<<19), 115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 117 }; 118 119 enum ib_atomic_cap { 120 IB_ATOMIC_NONE, 121 IB_ATOMIC_HCA, 122 IB_ATOMIC_GLOB 123 }; 124 125 struct ib_device_attr { 126 u64 fw_ver; 127 __be64 sys_image_guid; 128 u64 max_mr_size; 129 u64 page_size_cap; 130 u32 vendor_id; 131 u32 vendor_part_id; 132 u32 hw_ver; 133 int max_qp; 134 int max_qp_wr; 135 int device_cap_flags; 136 int max_sge; 137 int max_sge_rd; 138 int max_cq; 139 int max_cqe; 140 int max_mr; 141 int max_pd; 142 int max_qp_rd_atom; 143 int max_ee_rd_atom; 144 int max_res_rd_atom; 145 int max_qp_init_rd_atom; 146 int max_ee_init_rd_atom; 147 enum ib_atomic_cap atomic_cap; 148 enum ib_atomic_cap masked_atomic_cap; 149 int max_ee; 150 int max_rdd; 151 int max_mw; 152 int max_raw_ipv6_qp; 153 int max_raw_ethy_qp; 154 int max_mcast_grp; 155 int max_mcast_qp_attach; 156 int max_total_mcast_qp_attach; 157 int max_ah; 158 int max_fmr; 159 int max_map_per_fmr; 160 int max_srq; 161 int max_srq_wr; 162 int max_srq_sge; 163 unsigned int max_fast_reg_page_list_len; 164 u16 max_pkeys; 165 u8 local_ca_ack_delay; 166 }; 167 168 enum ib_mtu { 169 IB_MTU_256 = 1, 170 IB_MTU_512 = 2, 171 IB_MTU_1024 = 3, 172 IB_MTU_2048 = 4, 173 IB_MTU_4096 = 5 174 }; 175 176 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 177 { 178 switch (mtu) { 179 case IB_MTU_256: return 256; 180 case IB_MTU_512: return 512; 181 case IB_MTU_1024: return 1024; 182 case IB_MTU_2048: return 2048; 183 case IB_MTU_4096: return 4096; 184 default: return -1; 185 } 186 } 187 188 enum ib_port_state { 189 IB_PORT_NOP = 0, 190 IB_PORT_DOWN = 1, 191 IB_PORT_INIT = 2, 192 IB_PORT_ARMED = 3, 193 IB_PORT_ACTIVE = 4, 194 IB_PORT_ACTIVE_DEFER = 5 195 }; 196 197 enum ib_port_cap_flags { 198 IB_PORT_SM = 1 << 1, 199 IB_PORT_NOTICE_SUP = 1 << 2, 200 IB_PORT_TRAP_SUP = 1 << 3, 201 IB_PORT_OPT_IPD_SUP = 1 << 4, 202 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 203 IB_PORT_SL_MAP_SUP = 1 << 6, 204 IB_PORT_MKEY_NVRAM = 1 << 7, 205 IB_PORT_PKEY_NVRAM = 1 << 8, 206 IB_PORT_LED_INFO_SUP = 1 << 9, 207 IB_PORT_SM_DISABLED = 1 << 10, 208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 210 IB_PORT_CM_SUP = 1 << 16, 211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 212 IB_PORT_REINIT_SUP = 1 << 18, 213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 215 IB_PORT_DR_NOTICE_SUP = 1 << 21, 216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 217 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 218 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 219 IB_PORT_CLIENT_REG_SUP = 1 << 25 220 }; 221 222 enum ib_port_width { 223 IB_WIDTH_1X = 1, 224 IB_WIDTH_4X = 2, 225 IB_WIDTH_8X = 4, 226 IB_WIDTH_12X = 8 227 }; 228 229 static inline int ib_width_enum_to_int(enum ib_port_width width) 230 { 231 switch (width) { 232 case IB_WIDTH_1X: return 1; 233 case IB_WIDTH_4X: return 4; 234 case IB_WIDTH_8X: return 8; 235 case IB_WIDTH_12X: return 12; 236 default: return -1; 237 } 238 } 239 240 struct ib_protocol_stats { 241 /* TBD... */ 242 }; 243 244 struct iw_protocol_stats { 245 u64 ipInReceives; 246 u64 ipInHdrErrors; 247 u64 ipInTooBigErrors; 248 u64 ipInNoRoutes; 249 u64 ipInAddrErrors; 250 u64 ipInUnknownProtos; 251 u64 ipInTruncatedPkts; 252 u64 ipInDiscards; 253 u64 ipInDelivers; 254 u64 ipOutForwDatagrams; 255 u64 ipOutRequests; 256 u64 ipOutDiscards; 257 u64 ipOutNoRoutes; 258 u64 ipReasmTimeout; 259 u64 ipReasmReqds; 260 u64 ipReasmOKs; 261 u64 ipReasmFails; 262 u64 ipFragOKs; 263 u64 ipFragFails; 264 u64 ipFragCreates; 265 u64 ipInMcastPkts; 266 u64 ipOutMcastPkts; 267 u64 ipInBcastPkts; 268 u64 ipOutBcastPkts; 269 270 u64 tcpRtoAlgorithm; 271 u64 tcpRtoMin; 272 u64 tcpRtoMax; 273 u64 tcpMaxConn; 274 u64 tcpActiveOpens; 275 u64 tcpPassiveOpens; 276 u64 tcpAttemptFails; 277 u64 tcpEstabResets; 278 u64 tcpCurrEstab; 279 u64 tcpInSegs; 280 u64 tcpOutSegs; 281 u64 tcpRetransSegs; 282 u64 tcpInErrs; 283 u64 tcpOutRsts; 284 }; 285 286 union rdma_protocol_stats { 287 struct ib_protocol_stats ib; 288 struct iw_protocol_stats iw; 289 }; 290 291 struct ib_port_attr { 292 enum ib_port_state state; 293 enum ib_mtu max_mtu; 294 enum ib_mtu active_mtu; 295 int gid_tbl_len; 296 u32 port_cap_flags; 297 u32 max_msg_sz; 298 u32 bad_pkey_cntr; 299 u32 qkey_viol_cntr; 300 u16 pkey_tbl_len; 301 u16 lid; 302 u16 sm_lid; 303 u8 lmc; 304 u8 max_vl_num; 305 u8 sm_sl; 306 u8 subnet_timeout; 307 u8 init_type_reply; 308 u8 active_width; 309 u8 active_speed; 310 u8 phys_state; 311 }; 312 313 enum ib_device_modify_flags { 314 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 315 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 316 }; 317 318 struct ib_device_modify { 319 u64 sys_image_guid; 320 char node_desc[64]; 321 }; 322 323 enum ib_port_modify_flags { 324 IB_PORT_SHUTDOWN = 1, 325 IB_PORT_INIT_TYPE = (1<<2), 326 IB_PORT_RESET_QKEY_CNTR = (1<<3) 327 }; 328 329 struct ib_port_modify { 330 u32 set_port_cap_mask; 331 u32 clr_port_cap_mask; 332 u8 init_type; 333 }; 334 335 enum ib_event_type { 336 IB_EVENT_CQ_ERR, 337 IB_EVENT_QP_FATAL, 338 IB_EVENT_QP_REQ_ERR, 339 IB_EVENT_QP_ACCESS_ERR, 340 IB_EVENT_COMM_EST, 341 IB_EVENT_SQ_DRAINED, 342 IB_EVENT_PATH_MIG, 343 IB_EVENT_PATH_MIG_ERR, 344 IB_EVENT_DEVICE_FATAL, 345 IB_EVENT_PORT_ACTIVE, 346 IB_EVENT_PORT_ERR, 347 IB_EVENT_LID_CHANGE, 348 IB_EVENT_PKEY_CHANGE, 349 IB_EVENT_SM_CHANGE, 350 IB_EVENT_SRQ_ERR, 351 IB_EVENT_SRQ_LIMIT_REACHED, 352 IB_EVENT_QP_LAST_WQE_REACHED, 353 IB_EVENT_CLIENT_REREGISTER 354 }; 355 356 struct ib_event { 357 struct ib_device *device; 358 union { 359 struct ib_cq *cq; 360 struct ib_qp *qp; 361 struct ib_srq *srq; 362 u8 port_num; 363 } element; 364 enum ib_event_type event; 365 }; 366 367 struct ib_event_handler { 368 struct ib_device *device; 369 void (*handler)(struct ib_event_handler *, struct ib_event *); 370 struct list_head list; 371 }; 372 373 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 374 do { \ 375 (_ptr)->device = _device; \ 376 (_ptr)->handler = _handler; \ 377 INIT_LIST_HEAD(&(_ptr)->list); \ 378 } while (0) 379 380 struct ib_global_route { 381 union ib_gid dgid; 382 u32 flow_label; 383 u8 sgid_index; 384 u8 hop_limit; 385 u8 traffic_class; 386 }; 387 388 struct ib_grh { 389 __be32 version_tclass_flow; 390 __be16 paylen; 391 u8 next_hdr; 392 u8 hop_limit; 393 union ib_gid sgid; 394 union ib_gid dgid; 395 }; 396 397 enum { 398 IB_MULTICAST_QPN = 0xffffff 399 }; 400 401 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 402 403 enum ib_ah_flags { 404 IB_AH_GRH = 1 405 }; 406 407 enum ib_rate { 408 IB_RATE_PORT_CURRENT = 0, 409 IB_RATE_2_5_GBPS = 2, 410 IB_RATE_5_GBPS = 5, 411 IB_RATE_10_GBPS = 3, 412 IB_RATE_20_GBPS = 6, 413 IB_RATE_30_GBPS = 4, 414 IB_RATE_40_GBPS = 7, 415 IB_RATE_60_GBPS = 8, 416 IB_RATE_80_GBPS = 9, 417 IB_RATE_120_GBPS = 10 418 }; 419 420 /** 421 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 422 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 423 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 424 * @rate: rate to convert. 425 */ 426 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 427 428 /** 429 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 430 * enum. 431 * @mult: multiple to convert. 432 */ 433 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 434 435 struct ib_ah_attr { 436 struct ib_global_route grh; 437 u16 dlid; 438 u8 sl; 439 u8 src_path_bits; 440 u8 static_rate; 441 u8 ah_flags; 442 u8 port_num; 443 }; 444 445 enum ib_wc_status { 446 IB_WC_SUCCESS, 447 IB_WC_LOC_LEN_ERR, 448 IB_WC_LOC_QP_OP_ERR, 449 IB_WC_LOC_EEC_OP_ERR, 450 IB_WC_LOC_PROT_ERR, 451 IB_WC_WR_FLUSH_ERR, 452 IB_WC_MW_BIND_ERR, 453 IB_WC_BAD_RESP_ERR, 454 IB_WC_LOC_ACCESS_ERR, 455 IB_WC_REM_INV_REQ_ERR, 456 IB_WC_REM_ACCESS_ERR, 457 IB_WC_REM_OP_ERR, 458 IB_WC_RETRY_EXC_ERR, 459 IB_WC_RNR_RETRY_EXC_ERR, 460 IB_WC_LOC_RDD_VIOL_ERR, 461 IB_WC_REM_INV_RD_REQ_ERR, 462 IB_WC_REM_ABORT_ERR, 463 IB_WC_INV_EECN_ERR, 464 IB_WC_INV_EEC_STATE_ERR, 465 IB_WC_FATAL_ERR, 466 IB_WC_RESP_TIMEOUT_ERR, 467 IB_WC_GENERAL_ERR 468 }; 469 470 enum ib_wc_opcode { 471 IB_WC_SEND, 472 IB_WC_RDMA_WRITE, 473 IB_WC_RDMA_READ, 474 IB_WC_COMP_SWAP, 475 IB_WC_FETCH_ADD, 476 IB_WC_BIND_MW, 477 IB_WC_LSO, 478 IB_WC_LOCAL_INV, 479 IB_WC_FAST_REG_MR, 480 IB_WC_MASKED_COMP_SWAP, 481 IB_WC_MASKED_FETCH_ADD, 482 /* 483 * Set value of IB_WC_RECV so consumers can test if a completion is a 484 * receive by testing (opcode & IB_WC_RECV). 485 */ 486 IB_WC_RECV = 1 << 7, 487 IB_WC_RECV_RDMA_WITH_IMM 488 }; 489 490 enum ib_wc_flags { 491 IB_WC_GRH = 1, 492 IB_WC_WITH_IMM = (1<<1), 493 IB_WC_WITH_INVALIDATE = (1<<2), 494 }; 495 496 struct ib_wc { 497 u64 wr_id; 498 enum ib_wc_status status; 499 enum ib_wc_opcode opcode; 500 u32 vendor_err; 501 u32 byte_len; 502 struct ib_qp *qp; 503 union { 504 __be32 imm_data; 505 u32 invalidate_rkey; 506 } ex; 507 u32 src_qp; 508 int wc_flags; 509 u16 pkey_index; 510 u16 slid; 511 u8 sl; 512 u8 dlid_path_bits; 513 u8 port_num; /* valid only for DR SMPs on switches */ 514 int csum_ok; 515 }; 516 517 enum ib_cq_notify_flags { 518 IB_CQ_SOLICITED = 1 << 0, 519 IB_CQ_NEXT_COMP = 1 << 1, 520 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 521 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 522 }; 523 524 enum ib_srq_attr_mask { 525 IB_SRQ_MAX_WR = 1 << 0, 526 IB_SRQ_LIMIT = 1 << 1, 527 }; 528 529 struct ib_srq_attr { 530 u32 max_wr; 531 u32 max_sge; 532 u32 srq_limit; 533 }; 534 535 struct ib_srq_init_attr { 536 void (*event_handler)(struct ib_event *, void *); 537 void *srq_context; 538 struct ib_srq_attr attr; 539 }; 540 541 struct ib_qp_cap { 542 u32 max_send_wr; 543 u32 max_recv_wr; 544 u32 max_send_sge; 545 u32 max_recv_sge; 546 u32 max_inline_data; 547 }; 548 549 enum ib_sig_type { 550 IB_SIGNAL_ALL_WR, 551 IB_SIGNAL_REQ_WR 552 }; 553 554 enum ib_qp_type { 555 /* 556 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 557 * here (and in that order) since the MAD layer uses them as 558 * indices into a 2-entry table. 559 */ 560 IB_QPT_SMI, 561 IB_QPT_GSI, 562 563 IB_QPT_RC, 564 IB_QPT_UC, 565 IB_QPT_UD, 566 IB_QPT_RAW_IPV6, 567 IB_QPT_RAW_ETHERTYPE 568 }; 569 570 enum ib_qp_create_flags { 571 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 572 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 573 }; 574 575 struct ib_qp_init_attr { 576 void (*event_handler)(struct ib_event *, void *); 577 void *qp_context; 578 struct ib_cq *send_cq; 579 struct ib_cq *recv_cq; 580 struct ib_srq *srq; 581 struct ib_qp_cap cap; 582 enum ib_sig_type sq_sig_type; 583 enum ib_qp_type qp_type; 584 enum ib_qp_create_flags create_flags; 585 u8 port_num; /* special QP types only */ 586 }; 587 588 enum ib_rnr_timeout { 589 IB_RNR_TIMER_655_36 = 0, 590 IB_RNR_TIMER_000_01 = 1, 591 IB_RNR_TIMER_000_02 = 2, 592 IB_RNR_TIMER_000_03 = 3, 593 IB_RNR_TIMER_000_04 = 4, 594 IB_RNR_TIMER_000_06 = 5, 595 IB_RNR_TIMER_000_08 = 6, 596 IB_RNR_TIMER_000_12 = 7, 597 IB_RNR_TIMER_000_16 = 8, 598 IB_RNR_TIMER_000_24 = 9, 599 IB_RNR_TIMER_000_32 = 10, 600 IB_RNR_TIMER_000_48 = 11, 601 IB_RNR_TIMER_000_64 = 12, 602 IB_RNR_TIMER_000_96 = 13, 603 IB_RNR_TIMER_001_28 = 14, 604 IB_RNR_TIMER_001_92 = 15, 605 IB_RNR_TIMER_002_56 = 16, 606 IB_RNR_TIMER_003_84 = 17, 607 IB_RNR_TIMER_005_12 = 18, 608 IB_RNR_TIMER_007_68 = 19, 609 IB_RNR_TIMER_010_24 = 20, 610 IB_RNR_TIMER_015_36 = 21, 611 IB_RNR_TIMER_020_48 = 22, 612 IB_RNR_TIMER_030_72 = 23, 613 IB_RNR_TIMER_040_96 = 24, 614 IB_RNR_TIMER_061_44 = 25, 615 IB_RNR_TIMER_081_92 = 26, 616 IB_RNR_TIMER_122_88 = 27, 617 IB_RNR_TIMER_163_84 = 28, 618 IB_RNR_TIMER_245_76 = 29, 619 IB_RNR_TIMER_327_68 = 30, 620 IB_RNR_TIMER_491_52 = 31 621 }; 622 623 enum ib_qp_attr_mask { 624 IB_QP_STATE = 1, 625 IB_QP_CUR_STATE = (1<<1), 626 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 627 IB_QP_ACCESS_FLAGS = (1<<3), 628 IB_QP_PKEY_INDEX = (1<<4), 629 IB_QP_PORT = (1<<5), 630 IB_QP_QKEY = (1<<6), 631 IB_QP_AV = (1<<7), 632 IB_QP_PATH_MTU = (1<<8), 633 IB_QP_TIMEOUT = (1<<9), 634 IB_QP_RETRY_CNT = (1<<10), 635 IB_QP_RNR_RETRY = (1<<11), 636 IB_QP_RQ_PSN = (1<<12), 637 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 638 IB_QP_ALT_PATH = (1<<14), 639 IB_QP_MIN_RNR_TIMER = (1<<15), 640 IB_QP_SQ_PSN = (1<<16), 641 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 642 IB_QP_PATH_MIG_STATE = (1<<18), 643 IB_QP_CAP = (1<<19), 644 IB_QP_DEST_QPN = (1<<20) 645 }; 646 647 enum ib_qp_state { 648 IB_QPS_RESET, 649 IB_QPS_INIT, 650 IB_QPS_RTR, 651 IB_QPS_RTS, 652 IB_QPS_SQD, 653 IB_QPS_SQE, 654 IB_QPS_ERR 655 }; 656 657 enum ib_mig_state { 658 IB_MIG_MIGRATED, 659 IB_MIG_REARM, 660 IB_MIG_ARMED 661 }; 662 663 struct ib_qp_attr { 664 enum ib_qp_state qp_state; 665 enum ib_qp_state cur_qp_state; 666 enum ib_mtu path_mtu; 667 enum ib_mig_state path_mig_state; 668 u32 qkey; 669 u32 rq_psn; 670 u32 sq_psn; 671 u32 dest_qp_num; 672 int qp_access_flags; 673 struct ib_qp_cap cap; 674 struct ib_ah_attr ah_attr; 675 struct ib_ah_attr alt_ah_attr; 676 u16 pkey_index; 677 u16 alt_pkey_index; 678 u8 en_sqd_async_notify; 679 u8 sq_draining; 680 u8 max_rd_atomic; 681 u8 max_dest_rd_atomic; 682 u8 min_rnr_timer; 683 u8 port_num; 684 u8 timeout; 685 u8 retry_cnt; 686 u8 rnr_retry; 687 u8 alt_port_num; 688 u8 alt_timeout; 689 }; 690 691 enum ib_wr_opcode { 692 IB_WR_RDMA_WRITE, 693 IB_WR_RDMA_WRITE_WITH_IMM, 694 IB_WR_SEND, 695 IB_WR_SEND_WITH_IMM, 696 IB_WR_RDMA_READ, 697 IB_WR_ATOMIC_CMP_AND_SWP, 698 IB_WR_ATOMIC_FETCH_AND_ADD, 699 IB_WR_LSO, 700 IB_WR_SEND_WITH_INV, 701 IB_WR_RDMA_READ_WITH_INV, 702 IB_WR_LOCAL_INV, 703 IB_WR_FAST_REG_MR, 704 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 705 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 706 }; 707 708 enum ib_send_flags { 709 IB_SEND_FENCE = 1, 710 IB_SEND_SIGNALED = (1<<1), 711 IB_SEND_SOLICITED = (1<<2), 712 IB_SEND_INLINE = (1<<3), 713 IB_SEND_IP_CSUM = (1<<4) 714 }; 715 716 struct ib_sge { 717 u64 addr; 718 u32 length; 719 u32 lkey; 720 }; 721 722 struct ib_fast_reg_page_list { 723 struct ib_device *device; 724 u64 *page_list; 725 unsigned int max_page_list_len; 726 }; 727 728 struct ib_send_wr { 729 struct ib_send_wr *next; 730 u64 wr_id; 731 struct ib_sge *sg_list; 732 int num_sge; 733 enum ib_wr_opcode opcode; 734 int send_flags; 735 union { 736 __be32 imm_data; 737 u32 invalidate_rkey; 738 } ex; 739 union { 740 struct { 741 u64 remote_addr; 742 u32 rkey; 743 } rdma; 744 struct { 745 u64 remote_addr; 746 u64 compare_add; 747 u64 swap; 748 u64 compare_add_mask; 749 u64 swap_mask; 750 u32 rkey; 751 } atomic; 752 struct { 753 struct ib_ah *ah; 754 void *header; 755 int hlen; 756 int mss; 757 u32 remote_qpn; 758 u32 remote_qkey; 759 u16 pkey_index; /* valid for GSI only */ 760 u8 port_num; /* valid for DR SMPs on switch only */ 761 } ud; 762 struct { 763 u64 iova_start; 764 struct ib_fast_reg_page_list *page_list; 765 unsigned int page_shift; 766 unsigned int page_list_len; 767 u32 length; 768 int access_flags; 769 u32 rkey; 770 } fast_reg; 771 } wr; 772 }; 773 774 struct ib_recv_wr { 775 struct ib_recv_wr *next; 776 u64 wr_id; 777 struct ib_sge *sg_list; 778 int num_sge; 779 }; 780 781 enum ib_access_flags { 782 IB_ACCESS_LOCAL_WRITE = 1, 783 IB_ACCESS_REMOTE_WRITE = (1<<1), 784 IB_ACCESS_REMOTE_READ = (1<<2), 785 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 786 IB_ACCESS_MW_BIND = (1<<4) 787 }; 788 789 struct ib_phys_buf { 790 u64 addr; 791 u64 size; 792 }; 793 794 struct ib_mr_attr { 795 struct ib_pd *pd; 796 u64 device_virt_addr; 797 u64 size; 798 int mr_access_flags; 799 u32 lkey; 800 u32 rkey; 801 }; 802 803 enum ib_mr_rereg_flags { 804 IB_MR_REREG_TRANS = 1, 805 IB_MR_REREG_PD = (1<<1), 806 IB_MR_REREG_ACCESS = (1<<2) 807 }; 808 809 struct ib_mw_bind { 810 struct ib_mr *mr; 811 u64 wr_id; 812 u64 addr; 813 u32 length; 814 int send_flags; 815 int mw_access_flags; 816 }; 817 818 struct ib_fmr_attr { 819 int max_pages; 820 int max_maps; 821 u8 page_shift; 822 }; 823 824 struct ib_ucontext { 825 struct ib_device *device; 826 struct list_head pd_list; 827 struct list_head mr_list; 828 struct list_head mw_list; 829 struct list_head cq_list; 830 struct list_head qp_list; 831 struct list_head srq_list; 832 struct list_head ah_list; 833 int closing; 834 }; 835 836 struct ib_uobject { 837 u64 user_handle; /* handle given to us by userspace */ 838 struct ib_ucontext *context; /* associated user context */ 839 void *object; /* containing object */ 840 struct list_head list; /* link to context's list */ 841 int id; /* index into kernel idr */ 842 struct kref ref; 843 struct rw_semaphore mutex; /* protects .live */ 844 int live; 845 }; 846 847 struct ib_udata { 848 void __user *inbuf; 849 void __user *outbuf; 850 size_t inlen; 851 size_t outlen; 852 }; 853 854 struct ib_pd { 855 struct ib_device *device; 856 struct ib_uobject *uobject; 857 atomic_t usecnt; /* count all resources */ 858 }; 859 860 struct ib_ah { 861 struct ib_device *device; 862 struct ib_pd *pd; 863 struct ib_uobject *uobject; 864 }; 865 866 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 867 868 struct ib_cq { 869 struct ib_device *device; 870 struct ib_uobject *uobject; 871 ib_comp_handler comp_handler; 872 void (*event_handler)(struct ib_event *, void *); 873 void *cq_context; 874 int cqe; 875 atomic_t usecnt; /* count number of work queues */ 876 }; 877 878 struct ib_srq { 879 struct ib_device *device; 880 struct ib_pd *pd; 881 struct ib_uobject *uobject; 882 void (*event_handler)(struct ib_event *, void *); 883 void *srq_context; 884 atomic_t usecnt; 885 }; 886 887 struct ib_qp { 888 struct ib_device *device; 889 struct ib_pd *pd; 890 struct ib_cq *send_cq; 891 struct ib_cq *recv_cq; 892 struct ib_srq *srq; 893 struct ib_uobject *uobject; 894 void (*event_handler)(struct ib_event *, void *); 895 void *qp_context; 896 u32 qp_num; 897 enum ib_qp_type qp_type; 898 }; 899 900 struct ib_mr { 901 struct ib_device *device; 902 struct ib_pd *pd; 903 struct ib_uobject *uobject; 904 u32 lkey; 905 u32 rkey; 906 atomic_t usecnt; /* count number of MWs */ 907 }; 908 909 struct ib_mw { 910 struct ib_device *device; 911 struct ib_pd *pd; 912 struct ib_uobject *uobject; 913 u32 rkey; 914 }; 915 916 struct ib_fmr { 917 struct ib_device *device; 918 struct ib_pd *pd; 919 struct list_head list; 920 u32 lkey; 921 u32 rkey; 922 }; 923 924 struct ib_mad; 925 struct ib_grh; 926 927 enum ib_process_mad_flags { 928 IB_MAD_IGNORE_MKEY = 1, 929 IB_MAD_IGNORE_BKEY = 2, 930 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 931 }; 932 933 enum ib_mad_result { 934 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 935 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 936 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 937 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 938 }; 939 940 #define IB_DEVICE_NAME_MAX 64 941 942 struct ib_cache { 943 rwlock_t lock; 944 struct ib_event_handler event_handler; 945 struct ib_pkey_cache **pkey_cache; 946 struct ib_gid_cache **gid_cache; 947 u8 *lmc_cache; 948 }; 949 950 struct ib_dma_mapping_ops { 951 int (*mapping_error)(struct ib_device *dev, 952 u64 dma_addr); 953 u64 (*map_single)(struct ib_device *dev, 954 void *ptr, size_t size, 955 enum dma_data_direction direction); 956 void (*unmap_single)(struct ib_device *dev, 957 u64 addr, size_t size, 958 enum dma_data_direction direction); 959 u64 (*map_page)(struct ib_device *dev, 960 struct page *page, unsigned long offset, 961 size_t size, 962 enum dma_data_direction direction); 963 void (*unmap_page)(struct ib_device *dev, 964 u64 addr, size_t size, 965 enum dma_data_direction direction); 966 int (*map_sg)(struct ib_device *dev, 967 struct scatterlist *sg, int nents, 968 enum dma_data_direction direction); 969 void (*unmap_sg)(struct ib_device *dev, 970 struct scatterlist *sg, int nents, 971 enum dma_data_direction direction); 972 u64 (*dma_address)(struct ib_device *dev, 973 struct scatterlist *sg); 974 unsigned int (*dma_len)(struct ib_device *dev, 975 struct scatterlist *sg); 976 void (*sync_single_for_cpu)(struct ib_device *dev, 977 u64 dma_handle, 978 size_t size, 979 enum dma_data_direction dir); 980 void (*sync_single_for_device)(struct ib_device *dev, 981 u64 dma_handle, 982 size_t size, 983 enum dma_data_direction dir); 984 void *(*alloc_coherent)(struct ib_device *dev, 985 size_t size, 986 u64 *dma_handle, 987 gfp_t flag); 988 void (*free_coherent)(struct ib_device *dev, 989 size_t size, void *cpu_addr, 990 u64 dma_handle); 991 }; 992 993 struct iw_cm_verbs; 994 995 struct ib_device { 996 struct device *dma_device; 997 998 char name[IB_DEVICE_NAME_MAX]; 999 1000 struct list_head event_handler_list; 1001 spinlock_t event_handler_lock; 1002 1003 spinlock_t client_data_lock; 1004 struct list_head core_list; 1005 struct list_head client_data_list; 1006 1007 struct ib_cache cache; 1008 int *pkey_tbl_len; 1009 int *gid_tbl_len; 1010 1011 int num_comp_vectors; 1012 1013 struct iw_cm_verbs *iwcm; 1014 1015 int (*get_protocol_stats)(struct ib_device *device, 1016 union rdma_protocol_stats *stats); 1017 int (*query_device)(struct ib_device *device, 1018 struct ib_device_attr *device_attr); 1019 int (*query_port)(struct ib_device *device, 1020 u8 port_num, 1021 struct ib_port_attr *port_attr); 1022 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1023 u8 port_num); 1024 int (*query_gid)(struct ib_device *device, 1025 u8 port_num, int index, 1026 union ib_gid *gid); 1027 int (*query_pkey)(struct ib_device *device, 1028 u8 port_num, u16 index, u16 *pkey); 1029 int (*modify_device)(struct ib_device *device, 1030 int device_modify_mask, 1031 struct ib_device_modify *device_modify); 1032 int (*modify_port)(struct ib_device *device, 1033 u8 port_num, int port_modify_mask, 1034 struct ib_port_modify *port_modify); 1035 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1036 struct ib_udata *udata); 1037 int (*dealloc_ucontext)(struct ib_ucontext *context); 1038 int (*mmap)(struct ib_ucontext *context, 1039 struct vm_area_struct *vma); 1040 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1041 struct ib_ucontext *context, 1042 struct ib_udata *udata); 1043 int (*dealloc_pd)(struct ib_pd *pd); 1044 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1045 struct ib_ah_attr *ah_attr); 1046 int (*modify_ah)(struct ib_ah *ah, 1047 struct ib_ah_attr *ah_attr); 1048 int (*query_ah)(struct ib_ah *ah, 1049 struct ib_ah_attr *ah_attr); 1050 int (*destroy_ah)(struct ib_ah *ah); 1051 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1052 struct ib_srq_init_attr *srq_init_attr, 1053 struct ib_udata *udata); 1054 int (*modify_srq)(struct ib_srq *srq, 1055 struct ib_srq_attr *srq_attr, 1056 enum ib_srq_attr_mask srq_attr_mask, 1057 struct ib_udata *udata); 1058 int (*query_srq)(struct ib_srq *srq, 1059 struct ib_srq_attr *srq_attr); 1060 int (*destroy_srq)(struct ib_srq *srq); 1061 int (*post_srq_recv)(struct ib_srq *srq, 1062 struct ib_recv_wr *recv_wr, 1063 struct ib_recv_wr **bad_recv_wr); 1064 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1065 struct ib_qp_init_attr *qp_init_attr, 1066 struct ib_udata *udata); 1067 int (*modify_qp)(struct ib_qp *qp, 1068 struct ib_qp_attr *qp_attr, 1069 int qp_attr_mask, 1070 struct ib_udata *udata); 1071 int (*query_qp)(struct ib_qp *qp, 1072 struct ib_qp_attr *qp_attr, 1073 int qp_attr_mask, 1074 struct ib_qp_init_attr *qp_init_attr); 1075 int (*destroy_qp)(struct ib_qp *qp); 1076 int (*post_send)(struct ib_qp *qp, 1077 struct ib_send_wr *send_wr, 1078 struct ib_send_wr **bad_send_wr); 1079 int (*post_recv)(struct ib_qp *qp, 1080 struct ib_recv_wr *recv_wr, 1081 struct ib_recv_wr **bad_recv_wr); 1082 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1083 int comp_vector, 1084 struct ib_ucontext *context, 1085 struct ib_udata *udata); 1086 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1087 u16 cq_period); 1088 int (*destroy_cq)(struct ib_cq *cq); 1089 int (*resize_cq)(struct ib_cq *cq, int cqe, 1090 struct ib_udata *udata); 1091 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1092 struct ib_wc *wc); 1093 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1094 int (*req_notify_cq)(struct ib_cq *cq, 1095 enum ib_cq_notify_flags flags); 1096 int (*req_ncomp_notif)(struct ib_cq *cq, 1097 int wc_cnt); 1098 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1099 int mr_access_flags); 1100 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1101 struct ib_phys_buf *phys_buf_array, 1102 int num_phys_buf, 1103 int mr_access_flags, 1104 u64 *iova_start); 1105 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1106 u64 start, u64 length, 1107 u64 virt_addr, 1108 int mr_access_flags, 1109 struct ib_udata *udata); 1110 int (*query_mr)(struct ib_mr *mr, 1111 struct ib_mr_attr *mr_attr); 1112 int (*dereg_mr)(struct ib_mr *mr); 1113 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1114 int max_page_list_len); 1115 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1116 int page_list_len); 1117 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1118 int (*rereg_phys_mr)(struct ib_mr *mr, 1119 int mr_rereg_mask, 1120 struct ib_pd *pd, 1121 struct ib_phys_buf *phys_buf_array, 1122 int num_phys_buf, 1123 int mr_access_flags, 1124 u64 *iova_start); 1125 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1126 int (*bind_mw)(struct ib_qp *qp, 1127 struct ib_mw *mw, 1128 struct ib_mw_bind *mw_bind); 1129 int (*dealloc_mw)(struct ib_mw *mw); 1130 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1131 int mr_access_flags, 1132 struct ib_fmr_attr *fmr_attr); 1133 int (*map_phys_fmr)(struct ib_fmr *fmr, 1134 u64 *page_list, int list_len, 1135 u64 iova); 1136 int (*unmap_fmr)(struct list_head *fmr_list); 1137 int (*dealloc_fmr)(struct ib_fmr *fmr); 1138 int (*attach_mcast)(struct ib_qp *qp, 1139 union ib_gid *gid, 1140 u16 lid); 1141 int (*detach_mcast)(struct ib_qp *qp, 1142 union ib_gid *gid, 1143 u16 lid); 1144 int (*process_mad)(struct ib_device *device, 1145 int process_mad_flags, 1146 u8 port_num, 1147 struct ib_wc *in_wc, 1148 struct ib_grh *in_grh, 1149 struct ib_mad *in_mad, 1150 struct ib_mad *out_mad); 1151 1152 struct ib_dma_mapping_ops *dma_ops; 1153 1154 struct module *owner; 1155 struct device dev; 1156 struct kobject *ports_parent; 1157 struct list_head port_list; 1158 1159 enum { 1160 IB_DEV_UNINITIALIZED, 1161 IB_DEV_REGISTERED, 1162 IB_DEV_UNREGISTERED 1163 } reg_state; 1164 1165 int uverbs_abi_ver; 1166 u64 uverbs_cmd_mask; 1167 1168 char node_desc[64]; 1169 __be64 node_guid; 1170 u32 local_dma_lkey; 1171 u8 node_type; 1172 u8 phys_port_cnt; 1173 }; 1174 1175 struct ib_client { 1176 char *name; 1177 void (*add) (struct ib_device *); 1178 void (*remove)(struct ib_device *); 1179 1180 struct list_head list; 1181 }; 1182 1183 struct ib_device *ib_alloc_device(size_t size); 1184 void ib_dealloc_device(struct ib_device *device); 1185 1186 int ib_register_device(struct ib_device *device, 1187 int (*port_callback)(struct ib_device *, 1188 u8, struct kobject *)); 1189 void ib_unregister_device(struct ib_device *device); 1190 1191 int ib_register_client (struct ib_client *client); 1192 void ib_unregister_client(struct ib_client *client); 1193 1194 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1195 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1196 void *data); 1197 1198 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1199 { 1200 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1201 } 1202 1203 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1204 { 1205 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1206 } 1207 1208 /** 1209 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1210 * contains all required attributes and no attributes not allowed for 1211 * the given QP state transition. 1212 * @cur_state: Current QP state 1213 * @next_state: Next QP state 1214 * @type: QP type 1215 * @mask: Mask of supplied QP attributes 1216 * 1217 * This function is a helper function that a low-level driver's 1218 * modify_qp method can use to validate the consumer's input. It 1219 * checks that cur_state and next_state are valid QP states, that a 1220 * transition from cur_state to next_state is allowed by the IB spec, 1221 * and that the attribute mask supplied is allowed for the transition. 1222 */ 1223 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1224 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1225 1226 int ib_register_event_handler (struct ib_event_handler *event_handler); 1227 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1228 void ib_dispatch_event(struct ib_event *event); 1229 1230 int ib_query_device(struct ib_device *device, 1231 struct ib_device_attr *device_attr); 1232 1233 int ib_query_port(struct ib_device *device, 1234 u8 port_num, struct ib_port_attr *port_attr); 1235 1236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1237 u8 port_num); 1238 1239 int ib_query_gid(struct ib_device *device, 1240 u8 port_num, int index, union ib_gid *gid); 1241 1242 int ib_query_pkey(struct ib_device *device, 1243 u8 port_num, u16 index, u16 *pkey); 1244 1245 int ib_modify_device(struct ib_device *device, 1246 int device_modify_mask, 1247 struct ib_device_modify *device_modify); 1248 1249 int ib_modify_port(struct ib_device *device, 1250 u8 port_num, int port_modify_mask, 1251 struct ib_port_modify *port_modify); 1252 1253 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1254 u8 *port_num, u16 *index); 1255 1256 int ib_find_pkey(struct ib_device *device, 1257 u8 port_num, u16 pkey, u16 *index); 1258 1259 /** 1260 * ib_alloc_pd - Allocates an unused protection domain. 1261 * @device: The device on which to allocate the protection domain. 1262 * 1263 * A protection domain object provides an association between QPs, shared 1264 * receive queues, address handles, memory regions, and memory windows. 1265 */ 1266 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1267 1268 /** 1269 * ib_dealloc_pd - Deallocates a protection domain. 1270 * @pd: The protection domain to deallocate. 1271 */ 1272 int ib_dealloc_pd(struct ib_pd *pd); 1273 1274 /** 1275 * ib_create_ah - Creates an address handle for the given address vector. 1276 * @pd: The protection domain associated with the address handle. 1277 * @ah_attr: The attributes of the address vector. 1278 * 1279 * The address handle is used to reference a local or global destination 1280 * in all UD QP post sends. 1281 */ 1282 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1283 1284 /** 1285 * ib_init_ah_from_wc - Initializes address handle attributes from a 1286 * work completion. 1287 * @device: Device on which the received message arrived. 1288 * @port_num: Port on which the received message arrived. 1289 * @wc: Work completion associated with the received message. 1290 * @grh: References the received global route header. This parameter is 1291 * ignored unless the work completion indicates that the GRH is valid. 1292 * @ah_attr: Returned attributes that can be used when creating an address 1293 * handle for replying to the message. 1294 */ 1295 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1296 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1297 1298 /** 1299 * ib_create_ah_from_wc - Creates an address handle associated with the 1300 * sender of the specified work completion. 1301 * @pd: The protection domain associated with the address handle. 1302 * @wc: Work completion information associated with a received message. 1303 * @grh: References the received global route header. This parameter is 1304 * ignored unless the work completion indicates that the GRH is valid. 1305 * @port_num: The outbound port number to associate with the address. 1306 * 1307 * The address handle is used to reference a local or global destination 1308 * in all UD QP post sends. 1309 */ 1310 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1311 struct ib_grh *grh, u8 port_num); 1312 1313 /** 1314 * ib_modify_ah - Modifies the address vector associated with an address 1315 * handle. 1316 * @ah: The address handle to modify. 1317 * @ah_attr: The new address vector attributes to associate with the 1318 * address handle. 1319 */ 1320 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1321 1322 /** 1323 * ib_query_ah - Queries the address vector associated with an address 1324 * handle. 1325 * @ah: The address handle to query. 1326 * @ah_attr: The address vector attributes associated with the address 1327 * handle. 1328 */ 1329 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1330 1331 /** 1332 * ib_destroy_ah - Destroys an address handle. 1333 * @ah: The address handle to destroy. 1334 */ 1335 int ib_destroy_ah(struct ib_ah *ah); 1336 1337 /** 1338 * ib_create_srq - Creates a SRQ associated with the specified protection 1339 * domain. 1340 * @pd: The protection domain associated with the SRQ. 1341 * @srq_init_attr: A list of initial attributes required to create the 1342 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1343 * the actual capabilities of the created SRQ. 1344 * 1345 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1346 * requested size of the SRQ, and set to the actual values allocated 1347 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1348 * will always be at least as large as the requested values. 1349 */ 1350 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1351 struct ib_srq_init_attr *srq_init_attr); 1352 1353 /** 1354 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1355 * @srq: The SRQ to modify. 1356 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1357 * the current values of selected SRQ attributes are returned. 1358 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1359 * are being modified. 1360 * 1361 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1362 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1363 * the number of receives queued drops below the limit. 1364 */ 1365 int ib_modify_srq(struct ib_srq *srq, 1366 struct ib_srq_attr *srq_attr, 1367 enum ib_srq_attr_mask srq_attr_mask); 1368 1369 /** 1370 * ib_query_srq - Returns the attribute list and current values for the 1371 * specified SRQ. 1372 * @srq: The SRQ to query. 1373 * @srq_attr: The attributes of the specified SRQ. 1374 */ 1375 int ib_query_srq(struct ib_srq *srq, 1376 struct ib_srq_attr *srq_attr); 1377 1378 /** 1379 * ib_destroy_srq - Destroys the specified SRQ. 1380 * @srq: The SRQ to destroy. 1381 */ 1382 int ib_destroy_srq(struct ib_srq *srq); 1383 1384 /** 1385 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1386 * @srq: The SRQ to post the work request on. 1387 * @recv_wr: A list of work requests to post on the receive queue. 1388 * @bad_recv_wr: On an immediate failure, this parameter will reference 1389 * the work request that failed to be posted on the QP. 1390 */ 1391 static inline int ib_post_srq_recv(struct ib_srq *srq, 1392 struct ib_recv_wr *recv_wr, 1393 struct ib_recv_wr **bad_recv_wr) 1394 { 1395 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1396 } 1397 1398 /** 1399 * ib_create_qp - Creates a QP associated with the specified protection 1400 * domain. 1401 * @pd: The protection domain associated with the QP. 1402 * @qp_init_attr: A list of initial attributes required to create the 1403 * QP. If QP creation succeeds, then the attributes are updated to 1404 * the actual capabilities of the created QP. 1405 */ 1406 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1407 struct ib_qp_init_attr *qp_init_attr); 1408 1409 /** 1410 * ib_modify_qp - Modifies the attributes for the specified QP and then 1411 * transitions the QP to the given state. 1412 * @qp: The QP to modify. 1413 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1414 * the current values of selected QP attributes are returned. 1415 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1416 * are being modified. 1417 */ 1418 int ib_modify_qp(struct ib_qp *qp, 1419 struct ib_qp_attr *qp_attr, 1420 int qp_attr_mask); 1421 1422 /** 1423 * ib_query_qp - Returns the attribute list and current values for the 1424 * specified QP. 1425 * @qp: The QP to query. 1426 * @qp_attr: The attributes of the specified QP. 1427 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1428 * @qp_init_attr: Additional attributes of the selected QP. 1429 * 1430 * The qp_attr_mask may be used to limit the query to gathering only the 1431 * selected attributes. 1432 */ 1433 int ib_query_qp(struct ib_qp *qp, 1434 struct ib_qp_attr *qp_attr, 1435 int qp_attr_mask, 1436 struct ib_qp_init_attr *qp_init_attr); 1437 1438 /** 1439 * ib_destroy_qp - Destroys the specified QP. 1440 * @qp: The QP to destroy. 1441 */ 1442 int ib_destroy_qp(struct ib_qp *qp); 1443 1444 /** 1445 * ib_post_send - Posts a list of work requests to the send queue of 1446 * the specified QP. 1447 * @qp: The QP to post the work request on. 1448 * @send_wr: A list of work requests to post on the send queue. 1449 * @bad_send_wr: On an immediate failure, this parameter will reference 1450 * the work request that failed to be posted on the QP. 1451 * 1452 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1453 * error is returned, the QP state shall not be affected, 1454 * ib_post_send() will return an immediate error after queueing any 1455 * earlier work requests in the list. 1456 */ 1457 static inline int ib_post_send(struct ib_qp *qp, 1458 struct ib_send_wr *send_wr, 1459 struct ib_send_wr **bad_send_wr) 1460 { 1461 return qp->device->post_send(qp, send_wr, bad_send_wr); 1462 } 1463 1464 /** 1465 * ib_post_recv - Posts a list of work requests to the receive queue of 1466 * the specified QP. 1467 * @qp: The QP to post the work request on. 1468 * @recv_wr: A list of work requests to post on the receive queue. 1469 * @bad_recv_wr: On an immediate failure, this parameter will reference 1470 * the work request that failed to be posted on the QP. 1471 */ 1472 static inline int ib_post_recv(struct ib_qp *qp, 1473 struct ib_recv_wr *recv_wr, 1474 struct ib_recv_wr **bad_recv_wr) 1475 { 1476 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1477 } 1478 1479 /** 1480 * ib_create_cq - Creates a CQ on the specified device. 1481 * @device: The device on which to create the CQ. 1482 * @comp_handler: A user-specified callback that is invoked when a 1483 * completion event occurs on the CQ. 1484 * @event_handler: A user-specified callback that is invoked when an 1485 * asynchronous event not associated with a completion occurs on the CQ. 1486 * @cq_context: Context associated with the CQ returned to the user via 1487 * the associated completion and event handlers. 1488 * @cqe: The minimum size of the CQ. 1489 * @comp_vector - Completion vector used to signal completion events. 1490 * Must be >= 0 and < context->num_comp_vectors. 1491 * 1492 * Users can examine the cq structure to determine the actual CQ size. 1493 */ 1494 struct ib_cq *ib_create_cq(struct ib_device *device, 1495 ib_comp_handler comp_handler, 1496 void (*event_handler)(struct ib_event *, void *), 1497 void *cq_context, int cqe, int comp_vector); 1498 1499 /** 1500 * ib_resize_cq - Modifies the capacity of the CQ. 1501 * @cq: The CQ to resize. 1502 * @cqe: The minimum size of the CQ. 1503 * 1504 * Users can examine the cq structure to determine the actual CQ size. 1505 */ 1506 int ib_resize_cq(struct ib_cq *cq, int cqe); 1507 1508 /** 1509 * ib_modify_cq - Modifies moderation params of the CQ 1510 * @cq: The CQ to modify. 1511 * @cq_count: number of CQEs that will trigger an event 1512 * @cq_period: max period of time in usec before triggering an event 1513 * 1514 */ 1515 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1516 1517 /** 1518 * ib_destroy_cq - Destroys the specified CQ. 1519 * @cq: The CQ to destroy. 1520 */ 1521 int ib_destroy_cq(struct ib_cq *cq); 1522 1523 /** 1524 * ib_poll_cq - poll a CQ for completion(s) 1525 * @cq:the CQ being polled 1526 * @num_entries:maximum number of completions to return 1527 * @wc:array of at least @num_entries &struct ib_wc where completions 1528 * will be returned 1529 * 1530 * Poll a CQ for (possibly multiple) completions. If the return value 1531 * is < 0, an error occurred. If the return value is >= 0, it is the 1532 * number of completions returned. If the return value is 1533 * non-negative and < num_entries, then the CQ was emptied. 1534 */ 1535 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1536 struct ib_wc *wc) 1537 { 1538 return cq->device->poll_cq(cq, num_entries, wc); 1539 } 1540 1541 /** 1542 * ib_peek_cq - Returns the number of unreaped completions currently 1543 * on the specified CQ. 1544 * @cq: The CQ to peek. 1545 * @wc_cnt: A minimum number of unreaped completions to check for. 1546 * 1547 * If the number of unreaped completions is greater than or equal to wc_cnt, 1548 * this function returns wc_cnt, otherwise, it returns the actual number of 1549 * unreaped completions. 1550 */ 1551 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1552 1553 /** 1554 * ib_req_notify_cq - Request completion notification on a CQ. 1555 * @cq: The CQ to generate an event for. 1556 * @flags: 1557 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1558 * to request an event on the next solicited event or next work 1559 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1560 * may also be |ed in to request a hint about missed events, as 1561 * described below. 1562 * 1563 * Return Value: 1564 * < 0 means an error occurred while requesting notification 1565 * == 0 means notification was requested successfully, and if 1566 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1567 * were missed and it is safe to wait for another event. In 1568 * this case is it guaranteed that any work completions added 1569 * to the CQ since the last CQ poll will trigger a completion 1570 * notification event. 1571 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1572 * in. It means that the consumer must poll the CQ again to 1573 * make sure it is empty to avoid missing an event because of a 1574 * race between requesting notification and an entry being 1575 * added to the CQ. This return value means it is possible 1576 * (but not guaranteed) that a work completion has been added 1577 * to the CQ since the last poll without triggering a 1578 * completion notification event. 1579 */ 1580 static inline int ib_req_notify_cq(struct ib_cq *cq, 1581 enum ib_cq_notify_flags flags) 1582 { 1583 return cq->device->req_notify_cq(cq, flags); 1584 } 1585 1586 /** 1587 * ib_req_ncomp_notif - Request completion notification when there are 1588 * at least the specified number of unreaped completions on the CQ. 1589 * @cq: The CQ to generate an event for. 1590 * @wc_cnt: The number of unreaped completions that should be on the 1591 * CQ before an event is generated. 1592 */ 1593 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1594 { 1595 return cq->device->req_ncomp_notif ? 1596 cq->device->req_ncomp_notif(cq, wc_cnt) : 1597 -ENOSYS; 1598 } 1599 1600 /** 1601 * ib_get_dma_mr - Returns a memory region for system memory that is 1602 * usable for DMA. 1603 * @pd: The protection domain associated with the memory region. 1604 * @mr_access_flags: Specifies the memory access rights. 1605 * 1606 * Note that the ib_dma_*() functions defined below must be used 1607 * to create/destroy addresses used with the Lkey or Rkey returned 1608 * by ib_get_dma_mr(). 1609 */ 1610 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1611 1612 /** 1613 * ib_dma_mapping_error - check a DMA addr for error 1614 * @dev: The device for which the dma_addr was created 1615 * @dma_addr: The DMA address to check 1616 */ 1617 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1618 { 1619 if (dev->dma_ops) 1620 return dev->dma_ops->mapping_error(dev, dma_addr); 1621 return dma_mapping_error(dev->dma_device, dma_addr); 1622 } 1623 1624 /** 1625 * ib_dma_map_single - Map a kernel virtual address to DMA address 1626 * @dev: The device for which the dma_addr is to be created 1627 * @cpu_addr: The kernel virtual address 1628 * @size: The size of the region in bytes 1629 * @direction: The direction of the DMA 1630 */ 1631 static inline u64 ib_dma_map_single(struct ib_device *dev, 1632 void *cpu_addr, size_t size, 1633 enum dma_data_direction direction) 1634 { 1635 if (dev->dma_ops) 1636 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1637 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1638 } 1639 1640 /** 1641 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1642 * @dev: The device for which the DMA address was created 1643 * @addr: The DMA address 1644 * @size: The size of the region in bytes 1645 * @direction: The direction of the DMA 1646 */ 1647 static inline void ib_dma_unmap_single(struct ib_device *dev, 1648 u64 addr, size_t size, 1649 enum dma_data_direction direction) 1650 { 1651 if (dev->dma_ops) 1652 dev->dma_ops->unmap_single(dev, addr, size, direction); 1653 else 1654 dma_unmap_single(dev->dma_device, addr, size, direction); 1655 } 1656 1657 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1658 void *cpu_addr, size_t size, 1659 enum dma_data_direction direction, 1660 struct dma_attrs *attrs) 1661 { 1662 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1663 direction, attrs); 1664 } 1665 1666 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1667 u64 addr, size_t size, 1668 enum dma_data_direction direction, 1669 struct dma_attrs *attrs) 1670 { 1671 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1672 direction, attrs); 1673 } 1674 1675 /** 1676 * ib_dma_map_page - Map a physical page to DMA address 1677 * @dev: The device for which the dma_addr is to be created 1678 * @page: The page to be mapped 1679 * @offset: The offset within the page 1680 * @size: The size of the region in bytes 1681 * @direction: The direction of the DMA 1682 */ 1683 static inline u64 ib_dma_map_page(struct ib_device *dev, 1684 struct page *page, 1685 unsigned long offset, 1686 size_t size, 1687 enum dma_data_direction direction) 1688 { 1689 if (dev->dma_ops) 1690 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1691 return dma_map_page(dev->dma_device, page, offset, size, direction); 1692 } 1693 1694 /** 1695 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1696 * @dev: The device for which the DMA address was created 1697 * @addr: The DMA address 1698 * @size: The size of the region in bytes 1699 * @direction: The direction of the DMA 1700 */ 1701 static inline void ib_dma_unmap_page(struct ib_device *dev, 1702 u64 addr, size_t size, 1703 enum dma_data_direction direction) 1704 { 1705 if (dev->dma_ops) 1706 dev->dma_ops->unmap_page(dev, addr, size, direction); 1707 else 1708 dma_unmap_page(dev->dma_device, addr, size, direction); 1709 } 1710 1711 /** 1712 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1713 * @dev: The device for which the DMA addresses are to be created 1714 * @sg: The array of scatter/gather entries 1715 * @nents: The number of scatter/gather entries 1716 * @direction: The direction of the DMA 1717 */ 1718 static inline int ib_dma_map_sg(struct ib_device *dev, 1719 struct scatterlist *sg, int nents, 1720 enum dma_data_direction direction) 1721 { 1722 if (dev->dma_ops) 1723 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1724 return dma_map_sg(dev->dma_device, sg, nents, direction); 1725 } 1726 1727 /** 1728 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1729 * @dev: The device for which the DMA addresses were created 1730 * @sg: The array of scatter/gather entries 1731 * @nents: The number of scatter/gather entries 1732 * @direction: The direction of the DMA 1733 */ 1734 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1735 struct scatterlist *sg, int nents, 1736 enum dma_data_direction direction) 1737 { 1738 if (dev->dma_ops) 1739 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1740 else 1741 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1742 } 1743 1744 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1745 struct scatterlist *sg, int nents, 1746 enum dma_data_direction direction, 1747 struct dma_attrs *attrs) 1748 { 1749 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1750 } 1751 1752 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1753 struct scatterlist *sg, int nents, 1754 enum dma_data_direction direction, 1755 struct dma_attrs *attrs) 1756 { 1757 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1758 } 1759 /** 1760 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1761 * @dev: The device for which the DMA addresses were created 1762 * @sg: The scatter/gather entry 1763 */ 1764 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1765 struct scatterlist *sg) 1766 { 1767 if (dev->dma_ops) 1768 return dev->dma_ops->dma_address(dev, sg); 1769 return sg_dma_address(sg); 1770 } 1771 1772 /** 1773 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1774 * @dev: The device for which the DMA addresses were created 1775 * @sg: The scatter/gather entry 1776 */ 1777 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1778 struct scatterlist *sg) 1779 { 1780 if (dev->dma_ops) 1781 return dev->dma_ops->dma_len(dev, sg); 1782 return sg_dma_len(sg); 1783 } 1784 1785 /** 1786 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1787 * @dev: The device for which the DMA address was created 1788 * @addr: The DMA address 1789 * @size: The size of the region in bytes 1790 * @dir: The direction of the DMA 1791 */ 1792 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1793 u64 addr, 1794 size_t size, 1795 enum dma_data_direction dir) 1796 { 1797 if (dev->dma_ops) 1798 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1799 else 1800 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1801 } 1802 1803 /** 1804 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1805 * @dev: The device for which the DMA address was created 1806 * @addr: The DMA address 1807 * @size: The size of the region in bytes 1808 * @dir: The direction of the DMA 1809 */ 1810 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1811 u64 addr, 1812 size_t size, 1813 enum dma_data_direction dir) 1814 { 1815 if (dev->dma_ops) 1816 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1817 else 1818 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1819 } 1820 1821 /** 1822 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1823 * @dev: The device for which the DMA address is requested 1824 * @size: The size of the region to allocate in bytes 1825 * @dma_handle: A pointer for returning the DMA address of the region 1826 * @flag: memory allocator flags 1827 */ 1828 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1829 size_t size, 1830 u64 *dma_handle, 1831 gfp_t flag) 1832 { 1833 if (dev->dma_ops) 1834 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1835 else { 1836 dma_addr_t handle; 1837 void *ret; 1838 1839 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1840 *dma_handle = handle; 1841 return ret; 1842 } 1843 } 1844 1845 /** 1846 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1847 * @dev: The device for which the DMA addresses were allocated 1848 * @size: The size of the region 1849 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1850 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1851 */ 1852 static inline void ib_dma_free_coherent(struct ib_device *dev, 1853 size_t size, void *cpu_addr, 1854 u64 dma_handle) 1855 { 1856 if (dev->dma_ops) 1857 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1858 else 1859 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1860 } 1861 1862 /** 1863 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1864 * by an HCA. 1865 * @pd: The protection domain associated assigned to the registered region. 1866 * @phys_buf_array: Specifies a list of physical buffers to use in the 1867 * memory region. 1868 * @num_phys_buf: Specifies the size of the phys_buf_array. 1869 * @mr_access_flags: Specifies the memory access rights. 1870 * @iova_start: The offset of the region's starting I/O virtual address. 1871 */ 1872 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1873 struct ib_phys_buf *phys_buf_array, 1874 int num_phys_buf, 1875 int mr_access_flags, 1876 u64 *iova_start); 1877 1878 /** 1879 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1880 * Conceptually, this call performs the functions deregister memory region 1881 * followed by register physical memory region. Where possible, 1882 * resources are reused instead of deallocated and reallocated. 1883 * @mr: The memory region to modify. 1884 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1885 * properties of the memory region are being modified. 1886 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1887 * the new protection domain to associated with the memory region, 1888 * otherwise, this parameter is ignored. 1889 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1890 * field specifies a list of physical buffers to use in the new 1891 * translation, otherwise, this parameter is ignored. 1892 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1893 * field specifies the size of the phys_buf_array, otherwise, this 1894 * parameter is ignored. 1895 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1896 * field specifies the new memory access rights, otherwise, this 1897 * parameter is ignored. 1898 * @iova_start: The offset of the region's starting I/O virtual address. 1899 */ 1900 int ib_rereg_phys_mr(struct ib_mr *mr, 1901 int mr_rereg_mask, 1902 struct ib_pd *pd, 1903 struct ib_phys_buf *phys_buf_array, 1904 int num_phys_buf, 1905 int mr_access_flags, 1906 u64 *iova_start); 1907 1908 /** 1909 * ib_query_mr - Retrieves information about a specific memory region. 1910 * @mr: The memory region to retrieve information about. 1911 * @mr_attr: The attributes of the specified memory region. 1912 */ 1913 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1914 1915 /** 1916 * ib_dereg_mr - Deregisters a memory region and removes it from the 1917 * HCA translation table. 1918 * @mr: The memory region to deregister. 1919 */ 1920 int ib_dereg_mr(struct ib_mr *mr); 1921 1922 /** 1923 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 1924 * IB_WR_FAST_REG_MR send work request. 1925 * @pd: The protection domain associated with the region. 1926 * @max_page_list_len: requested max physical buffer list length to be 1927 * used with fast register work requests for this MR. 1928 */ 1929 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 1930 1931 /** 1932 * ib_alloc_fast_reg_page_list - Allocates a page list array 1933 * @device - ib device pointer. 1934 * @page_list_len - size of the page list array to be allocated. 1935 * 1936 * This allocates and returns a struct ib_fast_reg_page_list * and a 1937 * page_list array that is at least page_list_len in size. The actual 1938 * size is returned in max_page_list_len. The caller is responsible 1939 * for initializing the contents of the page_list array before posting 1940 * a send work request with the IB_WC_FAST_REG_MR opcode. 1941 * 1942 * The page_list array entries must be translated using one of the 1943 * ib_dma_*() functions just like the addresses passed to 1944 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 1945 * ib_fast_reg_page_list must not be modified by the caller until the 1946 * IB_WC_FAST_REG_MR work request completes. 1947 */ 1948 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 1949 struct ib_device *device, int page_list_len); 1950 1951 /** 1952 * ib_free_fast_reg_page_list - Deallocates a previously allocated 1953 * page list array. 1954 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 1955 */ 1956 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 1957 1958 /** 1959 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 1960 * R_Key and L_Key. 1961 * @mr - struct ib_mr pointer to be updated. 1962 * @newkey - new key to be used. 1963 */ 1964 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 1965 { 1966 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 1967 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 1968 } 1969 1970 /** 1971 * ib_alloc_mw - Allocates a memory window. 1972 * @pd: The protection domain associated with the memory window. 1973 */ 1974 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1975 1976 /** 1977 * ib_bind_mw - Posts a work request to the send queue of the specified 1978 * QP, which binds the memory window to the given address range and 1979 * remote access attributes. 1980 * @qp: QP to post the bind work request on. 1981 * @mw: The memory window to bind. 1982 * @mw_bind: Specifies information about the memory window, including 1983 * its address range, remote access rights, and associated memory region. 1984 */ 1985 static inline int ib_bind_mw(struct ib_qp *qp, 1986 struct ib_mw *mw, 1987 struct ib_mw_bind *mw_bind) 1988 { 1989 /* XXX reference counting in corresponding MR? */ 1990 return mw->device->bind_mw ? 1991 mw->device->bind_mw(qp, mw, mw_bind) : 1992 -ENOSYS; 1993 } 1994 1995 /** 1996 * ib_dealloc_mw - Deallocates a memory window. 1997 * @mw: The memory window to deallocate. 1998 */ 1999 int ib_dealloc_mw(struct ib_mw *mw); 2000 2001 /** 2002 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2003 * @pd: The protection domain associated with the unmapped region. 2004 * @mr_access_flags: Specifies the memory access rights. 2005 * @fmr_attr: Attributes of the unmapped region. 2006 * 2007 * A fast memory region must be mapped before it can be used as part of 2008 * a work request. 2009 */ 2010 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2011 int mr_access_flags, 2012 struct ib_fmr_attr *fmr_attr); 2013 2014 /** 2015 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2016 * @fmr: The fast memory region to associate with the pages. 2017 * @page_list: An array of physical pages to map to the fast memory region. 2018 * @list_len: The number of pages in page_list. 2019 * @iova: The I/O virtual address to use with the mapped region. 2020 */ 2021 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2022 u64 *page_list, int list_len, 2023 u64 iova) 2024 { 2025 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2026 } 2027 2028 /** 2029 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2030 * @fmr_list: A linked list of fast memory regions to unmap. 2031 */ 2032 int ib_unmap_fmr(struct list_head *fmr_list); 2033 2034 /** 2035 * ib_dealloc_fmr - Deallocates a fast memory region. 2036 * @fmr: The fast memory region to deallocate. 2037 */ 2038 int ib_dealloc_fmr(struct ib_fmr *fmr); 2039 2040 /** 2041 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2042 * @qp: QP to attach to the multicast group. The QP must be type 2043 * IB_QPT_UD. 2044 * @gid: Multicast group GID. 2045 * @lid: Multicast group LID in host byte order. 2046 * 2047 * In order to send and receive multicast packets, subnet 2048 * administration must have created the multicast group and configured 2049 * the fabric appropriately. The port associated with the specified 2050 * QP must also be a member of the multicast group. 2051 */ 2052 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2053 2054 /** 2055 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2056 * @qp: QP to detach from the multicast group. 2057 * @gid: Multicast group GID. 2058 * @lid: Multicast group LID in host byte order. 2059 */ 2060 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2061 2062 #endif /* IB_VERBS_H */ 2063