xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 37be287c)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52 
53 #include <linux/atomic.h>
54 #include <asm/uaccess.h>
55 
56 extern struct workqueue_struct *ib_wq;
57 
58 union ib_gid {
59 	u8	raw[16];
60 	struct {
61 		__be64	subnet_prefix;
62 		__be64	interface_id;
63 	} global;
64 };
65 
66 enum rdma_node_type {
67 	/* IB values map to NodeInfo:NodeType. */
68 	RDMA_NODE_IB_CA 	= 1,
69 	RDMA_NODE_IB_SWITCH,
70 	RDMA_NODE_IB_ROUTER,
71 	RDMA_NODE_RNIC,
72 	RDMA_NODE_USNIC,
73 	RDMA_NODE_USNIC_UDP,
74 };
75 
76 enum rdma_transport_type {
77 	RDMA_TRANSPORT_IB,
78 	RDMA_TRANSPORT_IWARP,
79 	RDMA_TRANSPORT_USNIC,
80 	RDMA_TRANSPORT_USNIC_UDP
81 };
82 
83 enum rdma_transport_type
84 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85 
86 enum rdma_link_layer {
87 	IB_LINK_LAYER_UNSPECIFIED,
88 	IB_LINK_LAYER_INFINIBAND,
89 	IB_LINK_LAYER_ETHERNET,
90 };
91 
92 enum ib_device_cap_flags {
93 	IB_DEVICE_RESIZE_MAX_WR		= 1,
94 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
95 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
96 	IB_DEVICE_RAW_MULTI		= (1<<3),
97 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
98 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
99 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
100 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
101 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
102 	IB_DEVICE_INIT_TYPE		= (1<<9),
103 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
104 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
105 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
106 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
107 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
108 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
109 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
110 	IB_DEVICE_MEM_WINDOW		= (1<<17),
111 	/*
112 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 	 * messages and can verify the validity of checksum for
115 	 * incoming messages.  Setting this flag implies that the
116 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 	 */
118 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
119 	IB_DEVICE_UD_TSO		= (1<<19),
120 	IB_DEVICE_XRC			= (1<<20),
121 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
122 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
124 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
125 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
126 };
127 
128 enum ib_atomic_cap {
129 	IB_ATOMIC_NONE,
130 	IB_ATOMIC_HCA,
131 	IB_ATOMIC_GLOB
132 };
133 
134 struct ib_device_attr {
135 	u64			fw_ver;
136 	__be64			sys_image_guid;
137 	u64			max_mr_size;
138 	u64			page_size_cap;
139 	u32			vendor_id;
140 	u32			vendor_part_id;
141 	u32			hw_ver;
142 	int			max_qp;
143 	int			max_qp_wr;
144 	int			device_cap_flags;
145 	int			max_sge;
146 	int			max_sge_rd;
147 	int			max_cq;
148 	int			max_cqe;
149 	int			max_mr;
150 	int			max_pd;
151 	int			max_qp_rd_atom;
152 	int			max_ee_rd_atom;
153 	int			max_res_rd_atom;
154 	int			max_qp_init_rd_atom;
155 	int			max_ee_init_rd_atom;
156 	enum ib_atomic_cap	atomic_cap;
157 	enum ib_atomic_cap	masked_atomic_cap;
158 	int			max_ee;
159 	int			max_rdd;
160 	int			max_mw;
161 	int			max_raw_ipv6_qp;
162 	int			max_raw_ethy_qp;
163 	int			max_mcast_grp;
164 	int			max_mcast_qp_attach;
165 	int			max_total_mcast_qp_attach;
166 	int			max_ah;
167 	int			max_fmr;
168 	int			max_map_per_fmr;
169 	int			max_srq;
170 	int			max_srq_wr;
171 	int			max_srq_sge;
172 	unsigned int		max_fast_reg_page_list_len;
173 	u16			max_pkeys;
174 	u8			local_ca_ack_delay;
175 };
176 
177 enum ib_mtu {
178 	IB_MTU_256  = 1,
179 	IB_MTU_512  = 2,
180 	IB_MTU_1024 = 3,
181 	IB_MTU_2048 = 4,
182 	IB_MTU_4096 = 5
183 };
184 
185 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
186 {
187 	switch (mtu) {
188 	case IB_MTU_256:  return  256;
189 	case IB_MTU_512:  return  512;
190 	case IB_MTU_1024: return 1024;
191 	case IB_MTU_2048: return 2048;
192 	case IB_MTU_4096: return 4096;
193 	default: 	  return -1;
194 	}
195 }
196 
197 enum ib_port_state {
198 	IB_PORT_NOP		= 0,
199 	IB_PORT_DOWN		= 1,
200 	IB_PORT_INIT		= 2,
201 	IB_PORT_ARMED		= 3,
202 	IB_PORT_ACTIVE		= 4,
203 	IB_PORT_ACTIVE_DEFER	= 5
204 };
205 
206 enum ib_port_cap_flags {
207 	IB_PORT_SM				= 1 <<  1,
208 	IB_PORT_NOTICE_SUP			= 1 <<  2,
209 	IB_PORT_TRAP_SUP			= 1 <<  3,
210 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
211 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
212 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
213 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
214 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
215 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
216 	IB_PORT_SM_DISABLED			= 1 << 10,
217 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
218 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
219 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
220 	IB_PORT_CM_SUP				= 1 << 16,
221 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
222 	IB_PORT_REINIT_SUP			= 1 << 18,
223 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
224 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
225 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
226 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
227 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
228 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
229 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
230 };
231 
232 enum ib_port_width {
233 	IB_WIDTH_1X	= 1,
234 	IB_WIDTH_4X	= 2,
235 	IB_WIDTH_8X	= 4,
236 	IB_WIDTH_12X	= 8
237 };
238 
239 static inline int ib_width_enum_to_int(enum ib_port_width width)
240 {
241 	switch (width) {
242 	case IB_WIDTH_1X:  return  1;
243 	case IB_WIDTH_4X:  return  4;
244 	case IB_WIDTH_8X:  return  8;
245 	case IB_WIDTH_12X: return 12;
246 	default: 	  return -1;
247 	}
248 }
249 
250 enum ib_port_speed {
251 	IB_SPEED_SDR	= 1,
252 	IB_SPEED_DDR	= 2,
253 	IB_SPEED_QDR	= 4,
254 	IB_SPEED_FDR10	= 8,
255 	IB_SPEED_FDR	= 16,
256 	IB_SPEED_EDR	= 32
257 };
258 
259 struct ib_protocol_stats {
260 	/* TBD... */
261 };
262 
263 struct iw_protocol_stats {
264 	u64	ipInReceives;
265 	u64	ipInHdrErrors;
266 	u64	ipInTooBigErrors;
267 	u64	ipInNoRoutes;
268 	u64	ipInAddrErrors;
269 	u64	ipInUnknownProtos;
270 	u64	ipInTruncatedPkts;
271 	u64	ipInDiscards;
272 	u64	ipInDelivers;
273 	u64	ipOutForwDatagrams;
274 	u64	ipOutRequests;
275 	u64	ipOutDiscards;
276 	u64	ipOutNoRoutes;
277 	u64	ipReasmTimeout;
278 	u64	ipReasmReqds;
279 	u64	ipReasmOKs;
280 	u64	ipReasmFails;
281 	u64	ipFragOKs;
282 	u64	ipFragFails;
283 	u64	ipFragCreates;
284 	u64	ipInMcastPkts;
285 	u64	ipOutMcastPkts;
286 	u64	ipInBcastPkts;
287 	u64	ipOutBcastPkts;
288 
289 	u64	tcpRtoAlgorithm;
290 	u64	tcpRtoMin;
291 	u64	tcpRtoMax;
292 	u64	tcpMaxConn;
293 	u64	tcpActiveOpens;
294 	u64	tcpPassiveOpens;
295 	u64	tcpAttemptFails;
296 	u64	tcpEstabResets;
297 	u64	tcpCurrEstab;
298 	u64	tcpInSegs;
299 	u64	tcpOutSegs;
300 	u64	tcpRetransSegs;
301 	u64	tcpInErrs;
302 	u64	tcpOutRsts;
303 };
304 
305 union rdma_protocol_stats {
306 	struct ib_protocol_stats	ib;
307 	struct iw_protocol_stats	iw;
308 };
309 
310 struct ib_port_attr {
311 	enum ib_port_state	state;
312 	enum ib_mtu		max_mtu;
313 	enum ib_mtu		active_mtu;
314 	int			gid_tbl_len;
315 	u32			port_cap_flags;
316 	u32			max_msg_sz;
317 	u32			bad_pkey_cntr;
318 	u32			qkey_viol_cntr;
319 	u16			pkey_tbl_len;
320 	u16			lid;
321 	u16			sm_lid;
322 	u8			lmc;
323 	u8			max_vl_num;
324 	u8			sm_sl;
325 	u8			subnet_timeout;
326 	u8			init_type_reply;
327 	u8			active_width;
328 	u8			active_speed;
329 	u8                      phys_state;
330 };
331 
332 enum ib_device_modify_flags {
333 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
334 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
335 };
336 
337 struct ib_device_modify {
338 	u64	sys_image_guid;
339 	char	node_desc[64];
340 };
341 
342 enum ib_port_modify_flags {
343 	IB_PORT_SHUTDOWN		= 1,
344 	IB_PORT_INIT_TYPE		= (1<<2),
345 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
346 };
347 
348 struct ib_port_modify {
349 	u32	set_port_cap_mask;
350 	u32	clr_port_cap_mask;
351 	u8	init_type;
352 };
353 
354 enum ib_event_type {
355 	IB_EVENT_CQ_ERR,
356 	IB_EVENT_QP_FATAL,
357 	IB_EVENT_QP_REQ_ERR,
358 	IB_EVENT_QP_ACCESS_ERR,
359 	IB_EVENT_COMM_EST,
360 	IB_EVENT_SQ_DRAINED,
361 	IB_EVENT_PATH_MIG,
362 	IB_EVENT_PATH_MIG_ERR,
363 	IB_EVENT_DEVICE_FATAL,
364 	IB_EVENT_PORT_ACTIVE,
365 	IB_EVENT_PORT_ERR,
366 	IB_EVENT_LID_CHANGE,
367 	IB_EVENT_PKEY_CHANGE,
368 	IB_EVENT_SM_CHANGE,
369 	IB_EVENT_SRQ_ERR,
370 	IB_EVENT_SRQ_LIMIT_REACHED,
371 	IB_EVENT_QP_LAST_WQE_REACHED,
372 	IB_EVENT_CLIENT_REREGISTER,
373 	IB_EVENT_GID_CHANGE,
374 };
375 
376 struct ib_event {
377 	struct ib_device	*device;
378 	union {
379 		struct ib_cq	*cq;
380 		struct ib_qp	*qp;
381 		struct ib_srq	*srq;
382 		u8		port_num;
383 	} element;
384 	enum ib_event_type	event;
385 };
386 
387 struct ib_event_handler {
388 	struct ib_device *device;
389 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
390 	struct list_head  list;
391 };
392 
393 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
394 	do {							\
395 		(_ptr)->device  = _device;			\
396 		(_ptr)->handler = _handler;			\
397 		INIT_LIST_HEAD(&(_ptr)->list);			\
398 	} while (0)
399 
400 struct ib_global_route {
401 	union ib_gid	dgid;
402 	u32		flow_label;
403 	u8		sgid_index;
404 	u8		hop_limit;
405 	u8		traffic_class;
406 };
407 
408 struct ib_grh {
409 	__be32		version_tclass_flow;
410 	__be16		paylen;
411 	u8		next_hdr;
412 	u8		hop_limit;
413 	union ib_gid	sgid;
414 	union ib_gid	dgid;
415 };
416 
417 enum {
418 	IB_MULTICAST_QPN = 0xffffff
419 };
420 
421 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
422 
423 enum ib_ah_flags {
424 	IB_AH_GRH	= 1
425 };
426 
427 enum ib_rate {
428 	IB_RATE_PORT_CURRENT = 0,
429 	IB_RATE_2_5_GBPS = 2,
430 	IB_RATE_5_GBPS   = 5,
431 	IB_RATE_10_GBPS  = 3,
432 	IB_RATE_20_GBPS  = 6,
433 	IB_RATE_30_GBPS  = 4,
434 	IB_RATE_40_GBPS  = 7,
435 	IB_RATE_60_GBPS  = 8,
436 	IB_RATE_80_GBPS  = 9,
437 	IB_RATE_120_GBPS = 10,
438 	IB_RATE_14_GBPS  = 11,
439 	IB_RATE_56_GBPS  = 12,
440 	IB_RATE_112_GBPS = 13,
441 	IB_RATE_168_GBPS = 14,
442 	IB_RATE_25_GBPS  = 15,
443 	IB_RATE_100_GBPS = 16,
444 	IB_RATE_200_GBPS = 17,
445 	IB_RATE_300_GBPS = 18
446 };
447 
448 /**
449  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
450  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
451  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
452  * @rate: rate to convert.
453  */
454 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
455 
456 /**
457  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
458  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
459  * @rate: rate to convert.
460  */
461 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
462 
463 /**
464  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
465  * enum.
466  * @mult: multiple to convert.
467  */
468 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
469 
470 struct ib_ah_attr {
471 	struct ib_global_route	grh;
472 	u16			dlid;
473 	u8			sl;
474 	u8			src_path_bits;
475 	u8			static_rate;
476 	u8			ah_flags;
477 	u8			port_num;
478 	u8			dmac[ETH_ALEN];
479 	u16			vlan_id;
480 };
481 
482 enum ib_wc_status {
483 	IB_WC_SUCCESS,
484 	IB_WC_LOC_LEN_ERR,
485 	IB_WC_LOC_QP_OP_ERR,
486 	IB_WC_LOC_EEC_OP_ERR,
487 	IB_WC_LOC_PROT_ERR,
488 	IB_WC_WR_FLUSH_ERR,
489 	IB_WC_MW_BIND_ERR,
490 	IB_WC_BAD_RESP_ERR,
491 	IB_WC_LOC_ACCESS_ERR,
492 	IB_WC_REM_INV_REQ_ERR,
493 	IB_WC_REM_ACCESS_ERR,
494 	IB_WC_REM_OP_ERR,
495 	IB_WC_RETRY_EXC_ERR,
496 	IB_WC_RNR_RETRY_EXC_ERR,
497 	IB_WC_LOC_RDD_VIOL_ERR,
498 	IB_WC_REM_INV_RD_REQ_ERR,
499 	IB_WC_REM_ABORT_ERR,
500 	IB_WC_INV_EECN_ERR,
501 	IB_WC_INV_EEC_STATE_ERR,
502 	IB_WC_FATAL_ERR,
503 	IB_WC_RESP_TIMEOUT_ERR,
504 	IB_WC_GENERAL_ERR
505 };
506 
507 enum ib_wc_opcode {
508 	IB_WC_SEND,
509 	IB_WC_RDMA_WRITE,
510 	IB_WC_RDMA_READ,
511 	IB_WC_COMP_SWAP,
512 	IB_WC_FETCH_ADD,
513 	IB_WC_BIND_MW,
514 	IB_WC_LSO,
515 	IB_WC_LOCAL_INV,
516 	IB_WC_FAST_REG_MR,
517 	IB_WC_MASKED_COMP_SWAP,
518 	IB_WC_MASKED_FETCH_ADD,
519 /*
520  * Set value of IB_WC_RECV so consumers can test if a completion is a
521  * receive by testing (opcode & IB_WC_RECV).
522  */
523 	IB_WC_RECV			= 1 << 7,
524 	IB_WC_RECV_RDMA_WITH_IMM
525 };
526 
527 enum ib_wc_flags {
528 	IB_WC_GRH		= 1,
529 	IB_WC_WITH_IMM		= (1<<1),
530 	IB_WC_WITH_INVALIDATE	= (1<<2),
531 	IB_WC_IP_CSUM_OK	= (1<<3),
532 	IB_WC_WITH_SMAC		= (1<<4),
533 	IB_WC_WITH_VLAN		= (1<<5),
534 };
535 
536 struct ib_wc {
537 	u64			wr_id;
538 	enum ib_wc_status	status;
539 	enum ib_wc_opcode	opcode;
540 	u32			vendor_err;
541 	u32			byte_len;
542 	struct ib_qp	       *qp;
543 	union {
544 		__be32		imm_data;
545 		u32		invalidate_rkey;
546 	} ex;
547 	u32			src_qp;
548 	int			wc_flags;
549 	u16			pkey_index;
550 	u16			slid;
551 	u8			sl;
552 	u8			dlid_path_bits;
553 	u8			port_num;	/* valid only for DR SMPs on switches */
554 	u8			smac[ETH_ALEN];
555 	u16			vlan_id;
556 };
557 
558 enum ib_cq_notify_flags {
559 	IB_CQ_SOLICITED			= 1 << 0,
560 	IB_CQ_NEXT_COMP			= 1 << 1,
561 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
562 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
563 };
564 
565 enum ib_srq_type {
566 	IB_SRQT_BASIC,
567 	IB_SRQT_XRC
568 };
569 
570 enum ib_srq_attr_mask {
571 	IB_SRQ_MAX_WR	= 1 << 0,
572 	IB_SRQ_LIMIT	= 1 << 1,
573 };
574 
575 struct ib_srq_attr {
576 	u32	max_wr;
577 	u32	max_sge;
578 	u32	srq_limit;
579 };
580 
581 struct ib_srq_init_attr {
582 	void		      (*event_handler)(struct ib_event *, void *);
583 	void		       *srq_context;
584 	struct ib_srq_attr	attr;
585 	enum ib_srq_type	srq_type;
586 
587 	union {
588 		struct {
589 			struct ib_xrcd *xrcd;
590 			struct ib_cq   *cq;
591 		} xrc;
592 	} ext;
593 };
594 
595 struct ib_qp_cap {
596 	u32	max_send_wr;
597 	u32	max_recv_wr;
598 	u32	max_send_sge;
599 	u32	max_recv_sge;
600 	u32	max_inline_data;
601 };
602 
603 enum ib_sig_type {
604 	IB_SIGNAL_ALL_WR,
605 	IB_SIGNAL_REQ_WR
606 };
607 
608 enum ib_qp_type {
609 	/*
610 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
611 	 * here (and in that order) since the MAD layer uses them as
612 	 * indices into a 2-entry table.
613 	 */
614 	IB_QPT_SMI,
615 	IB_QPT_GSI,
616 
617 	IB_QPT_RC,
618 	IB_QPT_UC,
619 	IB_QPT_UD,
620 	IB_QPT_RAW_IPV6,
621 	IB_QPT_RAW_ETHERTYPE,
622 	IB_QPT_RAW_PACKET = 8,
623 	IB_QPT_XRC_INI = 9,
624 	IB_QPT_XRC_TGT,
625 	IB_QPT_MAX,
626 	/* Reserve a range for qp types internal to the low level driver.
627 	 * These qp types will not be visible at the IB core layer, so the
628 	 * IB_QPT_MAX usages should not be affected in the core layer
629 	 */
630 	IB_QPT_RESERVED1 = 0x1000,
631 	IB_QPT_RESERVED2,
632 	IB_QPT_RESERVED3,
633 	IB_QPT_RESERVED4,
634 	IB_QPT_RESERVED5,
635 	IB_QPT_RESERVED6,
636 	IB_QPT_RESERVED7,
637 	IB_QPT_RESERVED8,
638 	IB_QPT_RESERVED9,
639 	IB_QPT_RESERVED10,
640 };
641 
642 enum ib_qp_create_flags {
643 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
644 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
645 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
646 	/* reserve bits 26-31 for low level drivers' internal use */
647 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
648 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
649 };
650 
651 
652 /*
653  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
654  * callback to destroy the passed in QP.
655  */
656 
657 struct ib_qp_init_attr {
658 	void                  (*event_handler)(struct ib_event *, void *);
659 	void		       *qp_context;
660 	struct ib_cq	       *send_cq;
661 	struct ib_cq	       *recv_cq;
662 	struct ib_srq	       *srq;
663 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
664 	struct ib_qp_cap	cap;
665 	enum ib_sig_type	sq_sig_type;
666 	enum ib_qp_type		qp_type;
667 	enum ib_qp_create_flags	create_flags;
668 	u8			port_num; /* special QP types only */
669 };
670 
671 struct ib_qp_open_attr {
672 	void                  (*event_handler)(struct ib_event *, void *);
673 	void		       *qp_context;
674 	u32			qp_num;
675 	enum ib_qp_type		qp_type;
676 };
677 
678 enum ib_rnr_timeout {
679 	IB_RNR_TIMER_655_36 =  0,
680 	IB_RNR_TIMER_000_01 =  1,
681 	IB_RNR_TIMER_000_02 =  2,
682 	IB_RNR_TIMER_000_03 =  3,
683 	IB_RNR_TIMER_000_04 =  4,
684 	IB_RNR_TIMER_000_06 =  5,
685 	IB_RNR_TIMER_000_08 =  6,
686 	IB_RNR_TIMER_000_12 =  7,
687 	IB_RNR_TIMER_000_16 =  8,
688 	IB_RNR_TIMER_000_24 =  9,
689 	IB_RNR_TIMER_000_32 = 10,
690 	IB_RNR_TIMER_000_48 = 11,
691 	IB_RNR_TIMER_000_64 = 12,
692 	IB_RNR_TIMER_000_96 = 13,
693 	IB_RNR_TIMER_001_28 = 14,
694 	IB_RNR_TIMER_001_92 = 15,
695 	IB_RNR_TIMER_002_56 = 16,
696 	IB_RNR_TIMER_003_84 = 17,
697 	IB_RNR_TIMER_005_12 = 18,
698 	IB_RNR_TIMER_007_68 = 19,
699 	IB_RNR_TIMER_010_24 = 20,
700 	IB_RNR_TIMER_015_36 = 21,
701 	IB_RNR_TIMER_020_48 = 22,
702 	IB_RNR_TIMER_030_72 = 23,
703 	IB_RNR_TIMER_040_96 = 24,
704 	IB_RNR_TIMER_061_44 = 25,
705 	IB_RNR_TIMER_081_92 = 26,
706 	IB_RNR_TIMER_122_88 = 27,
707 	IB_RNR_TIMER_163_84 = 28,
708 	IB_RNR_TIMER_245_76 = 29,
709 	IB_RNR_TIMER_327_68 = 30,
710 	IB_RNR_TIMER_491_52 = 31
711 };
712 
713 enum ib_qp_attr_mask {
714 	IB_QP_STATE			= 1,
715 	IB_QP_CUR_STATE			= (1<<1),
716 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
717 	IB_QP_ACCESS_FLAGS		= (1<<3),
718 	IB_QP_PKEY_INDEX		= (1<<4),
719 	IB_QP_PORT			= (1<<5),
720 	IB_QP_QKEY			= (1<<6),
721 	IB_QP_AV			= (1<<7),
722 	IB_QP_PATH_MTU			= (1<<8),
723 	IB_QP_TIMEOUT			= (1<<9),
724 	IB_QP_RETRY_CNT			= (1<<10),
725 	IB_QP_RNR_RETRY			= (1<<11),
726 	IB_QP_RQ_PSN			= (1<<12),
727 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
728 	IB_QP_ALT_PATH			= (1<<14),
729 	IB_QP_MIN_RNR_TIMER		= (1<<15),
730 	IB_QP_SQ_PSN			= (1<<16),
731 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
732 	IB_QP_PATH_MIG_STATE		= (1<<18),
733 	IB_QP_CAP			= (1<<19),
734 	IB_QP_DEST_QPN			= (1<<20),
735 	IB_QP_SMAC			= (1<<21),
736 	IB_QP_ALT_SMAC			= (1<<22),
737 	IB_QP_VID			= (1<<23),
738 	IB_QP_ALT_VID			= (1<<24),
739 };
740 
741 enum ib_qp_state {
742 	IB_QPS_RESET,
743 	IB_QPS_INIT,
744 	IB_QPS_RTR,
745 	IB_QPS_RTS,
746 	IB_QPS_SQD,
747 	IB_QPS_SQE,
748 	IB_QPS_ERR
749 };
750 
751 enum ib_mig_state {
752 	IB_MIG_MIGRATED,
753 	IB_MIG_REARM,
754 	IB_MIG_ARMED
755 };
756 
757 enum ib_mw_type {
758 	IB_MW_TYPE_1 = 1,
759 	IB_MW_TYPE_2 = 2
760 };
761 
762 struct ib_qp_attr {
763 	enum ib_qp_state	qp_state;
764 	enum ib_qp_state	cur_qp_state;
765 	enum ib_mtu		path_mtu;
766 	enum ib_mig_state	path_mig_state;
767 	u32			qkey;
768 	u32			rq_psn;
769 	u32			sq_psn;
770 	u32			dest_qp_num;
771 	int			qp_access_flags;
772 	struct ib_qp_cap	cap;
773 	struct ib_ah_attr	ah_attr;
774 	struct ib_ah_attr	alt_ah_attr;
775 	u16			pkey_index;
776 	u16			alt_pkey_index;
777 	u8			en_sqd_async_notify;
778 	u8			sq_draining;
779 	u8			max_rd_atomic;
780 	u8			max_dest_rd_atomic;
781 	u8			min_rnr_timer;
782 	u8			port_num;
783 	u8			timeout;
784 	u8			retry_cnt;
785 	u8			rnr_retry;
786 	u8			alt_port_num;
787 	u8			alt_timeout;
788 	u8			smac[ETH_ALEN];
789 	u8			alt_smac[ETH_ALEN];
790 	u16			vlan_id;
791 	u16			alt_vlan_id;
792 };
793 
794 enum ib_wr_opcode {
795 	IB_WR_RDMA_WRITE,
796 	IB_WR_RDMA_WRITE_WITH_IMM,
797 	IB_WR_SEND,
798 	IB_WR_SEND_WITH_IMM,
799 	IB_WR_RDMA_READ,
800 	IB_WR_ATOMIC_CMP_AND_SWP,
801 	IB_WR_ATOMIC_FETCH_AND_ADD,
802 	IB_WR_LSO,
803 	IB_WR_SEND_WITH_INV,
804 	IB_WR_RDMA_READ_WITH_INV,
805 	IB_WR_LOCAL_INV,
806 	IB_WR_FAST_REG_MR,
807 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
808 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
809 	IB_WR_BIND_MW,
810 	/* reserve values for low level drivers' internal use.
811 	 * These values will not be used at all in the ib core layer.
812 	 */
813 	IB_WR_RESERVED1 = 0xf0,
814 	IB_WR_RESERVED2,
815 	IB_WR_RESERVED3,
816 	IB_WR_RESERVED4,
817 	IB_WR_RESERVED5,
818 	IB_WR_RESERVED6,
819 	IB_WR_RESERVED7,
820 	IB_WR_RESERVED8,
821 	IB_WR_RESERVED9,
822 	IB_WR_RESERVED10,
823 };
824 
825 enum ib_send_flags {
826 	IB_SEND_FENCE		= 1,
827 	IB_SEND_SIGNALED	= (1<<1),
828 	IB_SEND_SOLICITED	= (1<<2),
829 	IB_SEND_INLINE		= (1<<3),
830 	IB_SEND_IP_CSUM		= (1<<4),
831 
832 	/* reserve bits 26-31 for low level drivers' internal use */
833 	IB_SEND_RESERVED_START	= (1 << 26),
834 	IB_SEND_RESERVED_END	= (1 << 31),
835 };
836 
837 struct ib_sge {
838 	u64	addr;
839 	u32	length;
840 	u32	lkey;
841 };
842 
843 struct ib_fast_reg_page_list {
844 	struct ib_device       *device;
845 	u64		       *page_list;
846 	unsigned int		max_page_list_len;
847 };
848 
849 /**
850  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
851  * @mr: A memory region to bind the memory window to.
852  * @addr: The address where the memory window should begin.
853  * @length: The length of the memory window, in bytes.
854  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
855  *
856  * This struct contains the shared parameters for type 1 and type 2
857  * memory window bind operations.
858  */
859 struct ib_mw_bind_info {
860 	struct ib_mr   *mr;
861 	u64		addr;
862 	u64		length;
863 	int		mw_access_flags;
864 };
865 
866 struct ib_send_wr {
867 	struct ib_send_wr      *next;
868 	u64			wr_id;
869 	struct ib_sge	       *sg_list;
870 	int			num_sge;
871 	enum ib_wr_opcode	opcode;
872 	int			send_flags;
873 	union {
874 		__be32		imm_data;
875 		u32		invalidate_rkey;
876 	} ex;
877 	union {
878 		struct {
879 			u64	remote_addr;
880 			u32	rkey;
881 		} rdma;
882 		struct {
883 			u64	remote_addr;
884 			u64	compare_add;
885 			u64	swap;
886 			u64	compare_add_mask;
887 			u64	swap_mask;
888 			u32	rkey;
889 		} atomic;
890 		struct {
891 			struct ib_ah *ah;
892 			void   *header;
893 			int     hlen;
894 			int     mss;
895 			u32	remote_qpn;
896 			u32	remote_qkey;
897 			u16	pkey_index; /* valid for GSI only */
898 			u8	port_num;   /* valid for DR SMPs on switch only */
899 		} ud;
900 		struct {
901 			u64				iova_start;
902 			struct ib_fast_reg_page_list   *page_list;
903 			unsigned int			page_shift;
904 			unsigned int			page_list_len;
905 			u32				length;
906 			int				access_flags;
907 			u32				rkey;
908 		} fast_reg;
909 		struct {
910 			struct ib_mw            *mw;
911 			/* The new rkey for the memory window. */
912 			u32                      rkey;
913 			struct ib_mw_bind_info   bind_info;
914 		} bind_mw;
915 	} wr;
916 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
917 };
918 
919 struct ib_recv_wr {
920 	struct ib_recv_wr      *next;
921 	u64			wr_id;
922 	struct ib_sge	       *sg_list;
923 	int			num_sge;
924 };
925 
926 enum ib_access_flags {
927 	IB_ACCESS_LOCAL_WRITE	= 1,
928 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
929 	IB_ACCESS_REMOTE_READ	= (1<<2),
930 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
931 	IB_ACCESS_MW_BIND	= (1<<4),
932 	IB_ZERO_BASED		= (1<<5)
933 };
934 
935 struct ib_phys_buf {
936 	u64      addr;
937 	u64      size;
938 };
939 
940 struct ib_mr_attr {
941 	struct ib_pd	*pd;
942 	u64		device_virt_addr;
943 	u64		size;
944 	int		mr_access_flags;
945 	u32		lkey;
946 	u32		rkey;
947 };
948 
949 enum ib_mr_rereg_flags {
950 	IB_MR_REREG_TRANS	= 1,
951 	IB_MR_REREG_PD		= (1<<1),
952 	IB_MR_REREG_ACCESS	= (1<<2)
953 };
954 
955 /**
956  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
957  * @wr_id:      Work request id.
958  * @send_flags: Flags from ib_send_flags enum.
959  * @bind_info:  More parameters of the bind operation.
960  */
961 struct ib_mw_bind {
962 	u64                    wr_id;
963 	int                    send_flags;
964 	struct ib_mw_bind_info bind_info;
965 };
966 
967 struct ib_fmr_attr {
968 	int	max_pages;
969 	int	max_maps;
970 	u8	page_shift;
971 };
972 
973 struct ib_ucontext {
974 	struct ib_device       *device;
975 	struct list_head	pd_list;
976 	struct list_head	mr_list;
977 	struct list_head	mw_list;
978 	struct list_head	cq_list;
979 	struct list_head	qp_list;
980 	struct list_head	srq_list;
981 	struct list_head	ah_list;
982 	struct list_head	xrcd_list;
983 	struct list_head	rule_list;
984 	int			closing;
985 };
986 
987 struct ib_uobject {
988 	u64			user_handle;	/* handle given to us by userspace */
989 	struct ib_ucontext     *context;	/* associated user context */
990 	void		       *object;		/* containing object */
991 	struct list_head	list;		/* link to context's list */
992 	int			id;		/* index into kernel idr */
993 	struct kref		ref;
994 	struct rw_semaphore	mutex;		/* protects .live */
995 	int			live;
996 };
997 
998 struct ib_udata {
999 	const void __user *inbuf;
1000 	void __user *outbuf;
1001 	size_t       inlen;
1002 	size_t       outlen;
1003 };
1004 
1005 struct ib_pd {
1006 	struct ib_device       *device;
1007 	struct ib_uobject      *uobject;
1008 	atomic_t          	usecnt; /* count all resources */
1009 };
1010 
1011 struct ib_xrcd {
1012 	struct ib_device       *device;
1013 	atomic_t		usecnt; /* count all exposed resources */
1014 	struct inode	       *inode;
1015 
1016 	struct mutex		tgt_qp_mutex;
1017 	struct list_head	tgt_qp_list;
1018 };
1019 
1020 struct ib_ah {
1021 	struct ib_device	*device;
1022 	struct ib_pd		*pd;
1023 	struct ib_uobject	*uobject;
1024 };
1025 
1026 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1027 
1028 struct ib_cq {
1029 	struct ib_device       *device;
1030 	struct ib_uobject      *uobject;
1031 	ib_comp_handler   	comp_handler;
1032 	void                  (*event_handler)(struct ib_event *, void *);
1033 	void                   *cq_context;
1034 	int               	cqe;
1035 	atomic_t          	usecnt; /* count number of work queues */
1036 };
1037 
1038 struct ib_srq {
1039 	struct ib_device       *device;
1040 	struct ib_pd	       *pd;
1041 	struct ib_uobject      *uobject;
1042 	void		      (*event_handler)(struct ib_event *, void *);
1043 	void		       *srq_context;
1044 	enum ib_srq_type	srq_type;
1045 	atomic_t		usecnt;
1046 
1047 	union {
1048 		struct {
1049 			struct ib_xrcd *xrcd;
1050 			struct ib_cq   *cq;
1051 			u32		srq_num;
1052 		} xrc;
1053 	} ext;
1054 };
1055 
1056 struct ib_qp {
1057 	struct ib_device       *device;
1058 	struct ib_pd	       *pd;
1059 	struct ib_cq	       *send_cq;
1060 	struct ib_cq	       *recv_cq;
1061 	struct ib_srq	       *srq;
1062 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1063 	struct list_head	xrcd_list;
1064 	/* count times opened, mcast attaches, flow attaches */
1065 	atomic_t		usecnt;
1066 	struct list_head	open_list;
1067 	struct ib_qp           *real_qp;
1068 	struct ib_uobject      *uobject;
1069 	void                  (*event_handler)(struct ib_event *, void *);
1070 	void		       *qp_context;
1071 	u32			qp_num;
1072 	enum ib_qp_type		qp_type;
1073 };
1074 
1075 struct ib_mr {
1076 	struct ib_device  *device;
1077 	struct ib_pd	  *pd;
1078 	struct ib_uobject *uobject;
1079 	u32		   lkey;
1080 	u32		   rkey;
1081 	atomic_t	   usecnt; /* count number of MWs */
1082 };
1083 
1084 struct ib_mw {
1085 	struct ib_device	*device;
1086 	struct ib_pd		*pd;
1087 	struct ib_uobject	*uobject;
1088 	u32			rkey;
1089 	enum ib_mw_type         type;
1090 };
1091 
1092 struct ib_fmr {
1093 	struct ib_device	*device;
1094 	struct ib_pd		*pd;
1095 	struct list_head	list;
1096 	u32			lkey;
1097 	u32			rkey;
1098 };
1099 
1100 /* Supported steering options */
1101 enum ib_flow_attr_type {
1102 	/* steering according to rule specifications */
1103 	IB_FLOW_ATTR_NORMAL		= 0x0,
1104 	/* default unicast and multicast rule -
1105 	 * receive all Eth traffic which isn't steered to any QP
1106 	 */
1107 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1108 	/* default multicast rule -
1109 	 * receive all Eth multicast traffic which isn't steered to any QP
1110 	 */
1111 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1112 	/* sniffer rule - receive all port traffic */
1113 	IB_FLOW_ATTR_SNIFFER		= 0x3
1114 };
1115 
1116 /* Supported steering header types */
1117 enum ib_flow_spec_type {
1118 	/* L2 headers*/
1119 	IB_FLOW_SPEC_ETH	= 0x20,
1120 	IB_FLOW_SPEC_IB		= 0x22,
1121 	/* L3 header*/
1122 	IB_FLOW_SPEC_IPV4	= 0x30,
1123 	/* L4 headers*/
1124 	IB_FLOW_SPEC_TCP	= 0x40,
1125 	IB_FLOW_SPEC_UDP	= 0x41
1126 };
1127 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1128 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1129 
1130 /* Flow steering rule priority is set according to it's domain.
1131  * Lower domain value means higher priority.
1132  */
1133 enum ib_flow_domain {
1134 	IB_FLOW_DOMAIN_USER,
1135 	IB_FLOW_DOMAIN_ETHTOOL,
1136 	IB_FLOW_DOMAIN_RFS,
1137 	IB_FLOW_DOMAIN_NIC,
1138 	IB_FLOW_DOMAIN_NUM /* Must be last */
1139 };
1140 
1141 struct ib_flow_eth_filter {
1142 	u8	dst_mac[6];
1143 	u8	src_mac[6];
1144 	__be16	ether_type;
1145 	__be16	vlan_tag;
1146 };
1147 
1148 struct ib_flow_spec_eth {
1149 	enum ib_flow_spec_type	  type;
1150 	u16			  size;
1151 	struct ib_flow_eth_filter val;
1152 	struct ib_flow_eth_filter mask;
1153 };
1154 
1155 struct ib_flow_ib_filter {
1156 	__be16 dlid;
1157 	__u8   sl;
1158 };
1159 
1160 struct ib_flow_spec_ib {
1161 	enum ib_flow_spec_type	 type;
1162 	u16			 size;
1163 	struct ib_flow_ib_filter val;
1164 	struct ib_flow_ib_filter mask;
1165 };
1166 
1167 struct ib_flow_ipv4_filter {
1168 	__be32	src_ip;
1169 	__be32	dst_ip;
1170 };
1171 
1172 struct ib_flow_spec_ipv4 {
1173 	enum ib_flow_spec_type	   type;
1174 	u16			   size;
1175 	struct ib_flow_ipv4_filter val;
1176 	struct ib_flow_ipv4_filter mask;
1177 };
1178 
1179 struct ib_flow_tcp_udp_filter {
1180 	__be16	dst_port;
1181 	__be16	src_port;
1182 };
1183 
1184 struct ib_flow_spec_tcp_udp {
1185 	enum ib_flow_spec_type	      type;
1186 	u16			      size;
1187 	struct ib_flow_tcp_udp_filter val;
1188 	struct ib_flow_tcp_udp_filter mask;
1189 };
1190 
1191 union ib_flow_spec {
1192 	struct {
1193 		enum ib_flow_spec_type	type;
1194 		u16			size;
1195 	};
1196 	struct ib_flow_spec_eth		eth;
1197 	struct ib_flow_spec_ib		ib;
1198 	struct ib_flow_spec_ipv4        ipv4;
1199 	struct ib_flow_spec_tcp_udp	tcp_udp;
1200 };
1201 
1202 struct ib_flow_attr {
1203 	enum ib_flow_attr_type type;
1204 	u16	     size;
1205 	u16	     priority;
1206 	u32	     flags;
1207 	u8	     num_of_specs;
1208 	u8	     port;
1209 	/* Following are the optional layers according to user request
1210 	 * struct ib_flow_spec_xxx
1211 	 * struct ib_flow_spec_yyy
1212 	 */
1213 };
1214 
1215 struct ib_flow {
1216 	struct ib_qp		*qp;
1217 	struct ib_uobject	*uobject;
1218 };
1219 
1220 struct ib_mad;
1221 struct ib_grh;
1222 
1223 enum ib_process_mad_flags {
1224 	IB_MAD_IGNORE_MKEY	= 1,
1225 	IB_MAD_IGNORE_BKEY	= 2,
1226 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1227 };
1228 
1229 enum ib_mad_result {
1230 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1231 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1232 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1233 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1234 };
1235 
1236 #define IB_DEVICE_NAME_MAX 64
1237 
1238 struct ib_cache {
1239 	rwlock_t                lock;
1240 	struct ib_event_handler event_handler;
1241 	struct ib_pkey_cache  **pkey_cache;
1242 	struct ib_gid_cache   **gid_cache;
1243 	u8                     *lmc_cache;
1244 };
1245 
1246 struct ib_dma_mapping_ops {
1247 	int		(*mapping_error)(struct ib_device *dev,
1248 					 u64 dma_addr);
1249 	u64		(*map_single)(struct ib_device *dev,
1250 				      void *ptr, size_t size,
1251 				      enum dma_data_direction direction);
1252 	void		(*unmap_single)(struct ib_device *dev,
1253 					u64 addr, size_t size,
1254 					enum dma_data_direction direction);
1255 	u64		(*map_page)(struct ib_device *dev,
1256 				    struct page *page, unsigned long offset,
1257 				    size_t size,
1258 				    enum dma_data_direction direction);
1259 	void		(*unmap_page)(struct ib_device *dev,
1260 				      u64 addr, size_t size,
1261 				      enum dma_data_direction direction);
1262 	int		(*map_sg)(struct ib_device *dev,
1263 				  struct scatterlist *sg, int nents,
1264 				  enum dma_data_direction direction);
1265 	void		(*unmap_sg)(struct ib_device *dev,
1266 				    struct scatterlist *sg, int nents,
1267 				    enum dma_data_direction direction);
1268 	u64		(*dma_address)(struct ib_device *dev,
1269 				       struct scatterlist *sg);
1270 	unsigned int	(*dma_len)(struct ib_device *dev,
1271 				   struct scatterlist *sg);
1272 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1273 					       u64 dma_handle,
1274 					       size_t size,
1275 					       enum dma_data_direction dir);
1276 	void		(*sync_single_for_device)(struct ib_device *dev,
1277 						  u64 dma_handle,
1278 						  size_t size,
1279 						  enum dma_data_direction dir);
1280 	void		*(*alloc_coherent)(struct ib_device *dev,
1281 					   size_t size,
1282 					   u64 *dma_handle,
1283 					   gfp_t flag);
1284 	void		(*free_coherent)(struct ib_device *dev,
1285 					 size_t size, void *cpu_addr,
1286 					 u64 dma_handle);
1287 };
1288 
1289 struct iw_cm_verbs;
1290 
1291 struct ib_device {
1292 	struct device                *dma_device;
1293 
1294 	char                          name[IB_DEVICE_NAME_MAX];
1295 
1296 	struct list_head              event_handler_list;
1297 	spinlock_t                    event_handler_lock;
1298 
1299 	spinlock_t                    client_data_lock;
1300 	struct list_head              core_list;
1301 	struct list_head              client_data_list;
1302 
1303 	struct ib_cache               cache;
1304 	int                          *pkey_tbl_len;
1305 	int                          *gid_tbl_len;
1306 
1307 	int			      num_comp_vectors;
1308 
1309 	struct iw_cm_verbs	     *iwcm;
1310 
1311 	int		           (*get_protocol_stats)(struct ib_device *device,
1312 							 union rdma_protocol_stats *stats);
1313 	int		           (*query_device)(struct ib_device *device,
1314 						   struct ib_device_attr *device_attr);
1315 	int		           (*query_port)(struct ib_device *device,
1316 						 u8 port_num,
1317 						 struct ib_port_attr *port_attr);
1318 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1319 						     u8 port_num);
1320 	int		           (*query_gid)(struct ib_device *device,
1321 						u8 port_num, int index,
1322 						union ib_gid *gid);
1323 	int		           (*query_pkey)(struct ib_device *device,
1324 						 u8 port_num, u16 index, u16 *pkey);
1325 	int		           (*modify_device)(struct ib_device *device,
1326 						    int device_modify_mask,
1327 						    struct ib_device_modify *device_modify);
1328 	int		           (*modify_port)(struct ib_device *device,
1329 						  u8 port_num, int port_modify_mask,
1330 						  struct ib_port_modify *port_modify);
1331 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1332 						     struct ib_udata *udata);
1333 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1334 	int                        (*mmap)(struct ib_ucontext *context,
1335 					   struct vm_area_struct *vma);
1336 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1337 					       struct ib_ucontext *context,
1338 					       struct ib_udata *udata);
1339 	int                        (*dealloc_pd)(struct ib_pd *pd);
1340 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1341 						struct ib_ah_attr *ah_attr);
1342 	int                        (*modify_ah)(struct ib_ah *ah,
1343 						struct ib_ah_attr *ah_attr);
1344 	int                        (*query_ah)(struct ib_ah *ah,
1345 					       struct ib_ah_attr *ah_attr);
1346 	int                        (*destroy_ah)(struct ib_ah *ah);
1347 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1348 						 struct ib_srq_init_attr *srq_init_attr,
1349 						 struct ib_udata *udata);
1350 	int                        (*modify_srq)(struct ib_srq *srq,
1351 						 struct ib_srq_attr *srq_attr,
1352 						 enum ib_srq_attr_mask srq_attr_mask,
1353 						 struct ib_udata *udata);
1354 	int                        (*query_srq)(struct ib_srq *srq,
1355 						struct ib_srq_attr *srq_attr);
1356 	int                        (*destroy_srq)(struct ib_srq *srq);
1357 	int                        (*post_srq_recv)(struct ib_srq *srq,
1358 						    struct ib_recv_wr *recv_wr,
1359 						    struct ib_recv_wr **bad_recv_wr);
1360 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1361 						struct ib_qp_init_attr *qp_init_attr,
1362 						struct ib_udata *udata);
1363 	int                        (*modify_qp)(struct ib_qp *qp,
1364 						struct ib_qp_attr *qp_attr,
1365 						int qp_attr_mask,
1366 						struct ib_udata *udata);
1367 	int                        (*query_qp)(struct ib_qp *qp,
1368 					       struct ib_qp_attr *qp_attr,
1369 					       int qp_attr_mask,
1370 					       struct ib_qp_init_attr *qp_init_attr);
1371 	int                        (*destroy_qp)(struct ib_qp *qp);
1372 	int                        (*post_send)(struct ib_qp *qp,
1373 						struct ib_send_wr *send_wr,
1374 						struct ib_send_wr **bad_send_wr);
1375 	int                        (*post_recv)(struct ib_qp *qp,
1376 						struct ib_recv_wr *recv_wr,
1377 						struct ib_recv_wr **bad_recv_wr);
1378 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1379 						int comp_vector,
1380 						struct ib_ucontext *context,
1381 						struct ib_udata *udata);
1382 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1383 						u16 cq_period);
1384 	int                        (*destroy_cq)(struct ib_cq *cq);
1385 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1386 						struct ib_udata *udata);
1387 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1388 					      struct ib_wc *wc);
1389 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1390 	int                        (*req_notify_cq)(struct ib_cq *cq,
1391 						    enum ib_cq_notify_flags flags);
1392 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1393 						      int wc_cnt);
1394 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1395 						 int mr_access_flags);
1396 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1397 						  struct ib_phys_buf *phys_buf_array,
1398 						  int num_phys_buf,
1399 						  int mr_access_flags,
1400 						  u64 *iova_start);
1401 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1402 						  u64 start, u64 length,
1403 						  u64 virt_addr,
1404 						  int mr_access_flags,
1405 						  struct ib_udata *udata);
1406 	int                        (*query_mr)(struct ib_mr *mr,
1407 					       struct ib_mr_attr *mr_attr);
1408 	int                        (*dereg_mr)(struct ib_mr *mr);
1409 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1410 					       int max_page_list_len);
1411 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1412 								   int page_list_len);
1413 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1414 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1415 						    int mr_rereg_mask,
1416 						    struct ib_pd *pd,
1417 						    struct ib_phys_buf *phys_buf_array,
1418 						    int num_phys_buf,
1419 						    int mr_access_flags,
1420 						    u64 *iova_start);
1421 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1422 					       enum ib_mw_type type);
1423 	int                        (*bind_mw)(struct ib_qp *qp,
1424 					      struct ib_mw *mw,
1425 					      struct ib_mw_bind *mw_bind);
1426 	int                        (*dealloc_mw)(struct ib_mw *mw);
1427 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1428 						int mr_access_flags,
1429 						struct ib_fmr_attr *fmr_attr);
1430 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1431 						   u64 *page_list, int list_len,
1432 						   u64 iova);
1433 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1434 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1435 	int                        (*attach_mcast)(struct ib_qp *qp,
1436 						   union ib_gid *gid,
1437 						   u16 lid);
1438 	int                        (*detach_mcast)(struct ib_qp *qp,
1439 						   union ib_gid *gid,
1440 						   u16 lid);
1441 	int                        (*process_mad)(struct ib_device *device,
1442 						  int process_mad_flags,
1443 						  u8 port_num,
1444 						  struct ib_wc *in_wc,
1445 						  struct ib_grh *in_grh,
1446 						  struct ib_mad *in_mad,
1447 						  struct ib_mad *out_mad);
1448 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1449 						 struct ib_ucontext *ucontext,
1450 						 struct ib_udata *udata);
1451 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1452 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1453 						  struct ib_flow_attr
1454 						  *flow_attr,
1455 						  int domain);
1456 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1457 
1458 	struct ib_dma_mapping_ops   *dma_ops;
1459 
1460 	struct module               *owner;
1461 	struct device                dev;
1462 	struct kobject               *ports_parent;
1463 	struct list_head             port_list;
1464 
1465 	enum {
1466 		IB_DEV_UNINITIALIZED,
1467 		IB_DEV_REGISTERED,
1468 		IB_DEV_UNREGISTERED
1469 	}                            reg_state;
1470 
1471 	int			     uverbs_abi_ver;
1472 	u64			     uverbs_cmd_mask;
1473 	u64			     uverbs_ex_cmd_mask;
1474 
1475 	char			     node_desc[64];
1476 	__be64			     node_guid;
1477 	u32			     local_dma_lkey;
1478 	u8                           node_type;
1479 	u8                           phys_port_cnt;
1480 };
1481 
1482 struct ib_client {
1483 	char  *name;
1484 	void (*add)   (struct ib_device *);
1485 	void (*remove)(struct ib_device *);
1486 
1487 	struct list_head list;
1488 };
1489 
1490 struct ib_device *ib_alloc_device(size_t size);
1491 void ib_dealloc_device(struct ib_device *device);
1492 
1493 int ib_register_device(struct ib_device *device,
1494 		       int (*port_callback)(struct ib_device *,
1495 					    u8, struct kobject *));
1496 void ib_unregister_device(struct ib_device *device);
1497 
1498 int ib_register_client   (struct ib_client *client);
1499 void ib_unregister_client(struct ib_client *client);
1500 
1501 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1502 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1503 			 void *data);
1504 
1505 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1506 {
1507 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1508 }
1509 
1510 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1511 {
1512 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1513 }
1514 
1515 /**
1516  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1517  * contains all required attributes and no attributes not allowed for
1518  * the given QP state transition.
1519  * @cur_state: Current QP state
1520  * @next_state: Next QP state
1521  * @type: QP type
1522  * @mask: Mask of supplied QP attributes
1523  * @ll : link layer of port
1524  *
1525  * This function is a helper function that a low-level driver's
1526  * modify_qp method can use to validate the consumer's input.  It
1527  * checks that cur_state and next_state are valid QP states, that a
1528  * transition from cur_state to next_state is allowed by the IB spec,
1529  * and that the attribute mask supplied is allowed for the transition.
1530  */
1531 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1532 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1533 		       enum rdma_link_layer ll);
1534 
1535 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1536 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1537 void ib_dispatch_event(struct ib_event *event);
1538 
1539 int ib_query_device(struct ib_device *device,
1540 		    struct ib_device_attr *device_attr);
1541 
1542 int ib_query_port(struct ib_device *device,
1543 		  u8 port_num, struct ib_port_attr *port_attr);
1544 
1545 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1546 					       u8 port_num);
1547 
1548 int ib_query_gid(struct ib_device *device,
1549 		 u8 port_num, int index, union ib_gid *gid);
1550 
1551 int ib_query_pkey(struct ib_device *device,
1552 		  u8 port_num, u16 index, u16 *pkey);
1553 
1554 int ib_modify_device(struct ib_device *device,
1555 		     int device_modify_mask,
1556 		     struct ib_device_modify *device_modify);
1557 
1558 int ib_modify_port(struct ib_device *device,
1559 		   u8 port_num, int port_modify_mask,
1560 		   struct ib_port_modify *port_modify);
1561 
1562 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1563 		u8 *port_num, u16 *index);
1564 
1565 int ib_find_pkey(struct ib_device *device,
1566 		 u8 port_num, u16 pkey, u16 *index);
1567 
1568 /**
1569  * ib_alloc_pd - Allocates an unused protection domain.
1570  * @device: The device on which to allocate the protection domain.
1571  *
1572  * A protection domain object provides an association between QPs, shared
1573  * receive queues, address handles, memory regions, and memory windows.
1574  */
1575 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1576 
1577 /**
1578  * ib_dealloc_pd - Deallocates a protection domain.
1579  * @pd: The protection domain to deallocate.
1580  */
1581 int ib_dealloc_pd(struct ib_pd *pd);
1582 
1583 /**
1584  * ib_create_ah - Creates an address handle for the given address vector.
1585  * @pd: The protection domain associated with the address handle.
1586  * @ah_attr: The attributes of the address vector.
1587  *
1588  * The address handle is used to reference a local or global destination
1589  * in all UD QP post sends.
1590  */
1591 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1592 
1593 /**
1594  * ib_init_ah_from_wc - Initializes address handle attributes from a
1595  *   work completion.
1596  * @device: Device on which the received message arrived.
1597  * @port_num: Port on which the received message arrived.
1598  * @wc: Work completion associated with the received message.
1599  * @grh: References the received global route header.  This parameter is
1600  *   ignored unless the work completion indicates that the GRH is valid.
1601  * @ah_attr: Returned attributes that can be used when creating an address
1602  *   handle for replying to the message.
1603  */
1604 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1605 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1606 
1607 /**
1608  * ib_create_ah_from_wc - Creates an address handle associated with the
1609  *   sender of the specified work completion.
1610  * @pd: The protection domain associated with the address handle.
1611  * @wc: Work completion information associated with a received message.
1612  * @grh: References the received global route header.  This parameter is
1613  *   ignored unless the work completion indicates that the GRH is valid.
1614  * @port_num: The outbound port number to associate with the address.
1615  *
1616  * The address handle is used to reference a local or global destination
1617  * in all UD QP post sends.
1618  */
1619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1620 				   struct ib_grh *grh, u8 port_num);
1621 
1622 /**
1623  * ib_modify_ah - Modifies the address vector associated with an address
1624  *   handle.
1625  * @ah: The address handle to modify.
1626  * @ah_attr: The new address vector attributes to associate with the
1627  *   address handle.
1628  */
1629 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1630 
1631 /**
1632  * ib_query_ah - Queries the address vector associated with an address
1633  *   handle.
1634  * @ah: The address handle to query.
1635  * @ah_attr: The address vector attributes associated with the address
1636  *   handle.
1637  */
1638 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1639 
1640 /**
1641  * ib_destroy_ah - Destroys an address handle.
1642  * @ah: The address handle to destroy.
1643  */
1644 int ib_destroy_ah(struct ib_ah *ah);
1645 
1646 /**
1647  * ib_create_srq - Creates a SRQ associated with the specified protection
1648  *   domain.
1649  * @pd: The protection domain associated with the SRQ.
1650  * @srq_init_attr: A list of initial attributes required to create the
1651  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1652  *   the actual capabilities of the created SRQ.
1653  *
1654  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1655  * requested size of the SRQ, and set to the actual values allocated
1656  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1657  * will always be at least as large as the requested values.
1658  */
1659 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1660 			     struct ib_srq_init_attr *srq_init_attr);
1661 
1662 /**
1663  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1664  * @srq: The SRQ to modify.
1665  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1666  *   the current values of selected SRQ attributes are returned.
1667  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1668  *   are being modified.
1669  *
1670  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1671  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1672  * the number of receives queued drops below the limit.
1673  */
1674 int ib_modify_srq(struct ib_srq *srq,
1675 		  struct ib_srq_attr *srq_attr,
1676 		  enum ib_srq_attr_mask srq_attr_mask);
1677 
1678 /**
1679  * ib_query_srq - Returns the attribute list and current values for the
1680  *   specified SRQ.
1681  * @srq: The SRQ to query.
1682  * @srq_attr: The attributes of the specified SRQ.
1683  */
1684 int ib_query_srq(struct ib_srq *srq,
1685 		 struct ib_srq_attr *srq_attr);
1686 
1687 /**
1688  * ib_destroy_srq - Destroys the specified SRQ.
1689  * @srq: The SRQ to destroy.
1690  */
1691 int ib_destroy_srq(struct ib_srq *srq);
1692 
1693 /**
1694  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1695  * @srq: The SRQ to post the work request on.
1696  * @recv_wr: A list of work requests to post on the receive queue.
1697  * @bad_recv_wr: On an immediate failure, this parameter will reference
1698  *   the work request that failed to be posted on the QP.
1699  */
1700 static inline int ib_post_srq_recv(struct ib_srq *srq,
1701 				   struct ib_recv_wr *recv_wr,
1702 				   struct ib_recv_wr **bad_recv_wr)
1703 {
1704 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1705 }
1706 
1707 /**
1708  * ib_create_qp - Creates a QP associated with the specified protection
1709  *   domain.
1710  * @pd: The protection domain associated with the QP.
1711  * @qp_init_attr: A list of initial attributes required to create the
1712  *   QP.  If QP creation succeeds, then the attributes are updated to
1713  *   the actual capabilities of the created QP.
1714  */
1715 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1716 			   struct ib_qp_init_attr *qp_init_attr);
1717 
1718 /**
1719  * ib_modify_qp - Modifies the attributes for the specified QP and then
1720  *   transitions the QP to the given state.
1721  * @qp: The QP to modify.
1722  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1723  *   the current values of selected QP attributes are returned.
1724  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1725  *   are being modified.
1726  */
1727 int ib_modify_qp(struct ib_qp *qp,
1728 		 struct ib_qp_attr *qp_attr,
1729 		 int qp_attr_mask);
1730 
1731 /**
1732  * ib_query_qp - Returns the attribute list and current values for the
1733  *   specified QP.
1734  * @qp: The QP to query.
1735  * @qp_attr: The attributes of the specified QP.
1736  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1737  * @qp_init_attr: Additional attributes of the selected QP.
1738  *
1739  * The qp_attr_mask may be used to limit the query to gathering only the
1740  * selected attributes.
1741  */
1742 int ib_query_qp(struct ib_qp *qp,
1743 		struct ib_qp_attr *qp_attr,
1744 		int qp_attr_mask,
1745 		struct ib_qp_init_attr *qp_init_attr);
1746 
1747 /**
1748  * ib_destroy_qp - Destroys the specified QP.
1749  * @qp: The QP to destroy.
1750  */
1751 int ib_destroy_qp(struct ib_qp *qp);
1752 
1753 /**
1754  * ib_open_qp - Obtain a reference to an existing sharable QP.
1755  * @xrcd - XRC domain
1756  * @qp_open_attr: Attributes identifying the QP to open.
1757  *
1758  * Returns a reference to a sharable QP.
1759  */
1760 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1761 			 struct ib_qp_open_attr *qp_open_attr);
1762 
1763 /**
1764  * ib_close_qp - Release an external reference to a QP.
1765  * @qp: The QP handle to release
1766  *
1767  * The opened QP handle is released by the caller.  The underlying
1768  * shared QP is not destroyed until all internal references are released.
1769  */
1770 int ib_close_qp(struct ib_qp *qp);
1771 
1772 /**
1773  * ib_post_send - Posts a list of work requests to the send queue of
1774  *   the specified QP.
1775  * @qp: The QP to post the work request on.
1776  * @send_wr: A list of work requests to post on the send queue.
1777  * @bad_send_wr: On an immediate failure, this parameter will reference
1778  *   the work request that failed to be posted on the QP.
1779  *
1780  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1781  * error is returned, the QP state shall not be affected,
1782  * ib_post_send() will return an immediate error after queueing any
1783  * earlier work requests in the list.
1784  */
1785 static inline int ib_post_send(struct ib_qp *qp,
1786 			       struct ib_send_wr *send_wr,
1787 			       struct ib_send_wr **bad_send_wr)
1788 {
1789 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1790 }
1791 
1792 /**
1793  * ib_post_recv - Posts a list of work requests to the receive queue of
1794  *   the specified QP.
1795  * @qp: The QP to post the work request on.
1796  * @recv_wr: A list of work requests to post on the receive queue.
1797  * @bad_recv_wr: On an immediate failure, this parameter will reference
1798  *   the work request that failed to be posted on the QP.
1799  */
1800 static inline int ib_post_recv(struct ib_qp *qp,
1801 			       struct ib_recv_wr *recv_wr,
1802 			       struct ib_recv_wr **bad_recv_wr)
1803 {
1804 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1805 }
1806 
1807 /**
1808  * ib_create_cq - Creates a CQ on the specified device.
1809  * @device: The device on which to create the CQ.
1810  * @comp_handler: A user-specified callback that is invoked when a
1811  *   completion event occurs on the CQ.
1812  * @event_handler: A user-specified callback that is invoked when an
1813  *   asynchronous event not associated with a completion occurs on the CQ.
1814  * @cq_context: Context associated with the CQ returned to the user via
1815  *   the associated completion and event handlers.
1816  * @cqe: The minimum size of the CQ.
1817  * @comp_vector - Completion vector used to signal completion events.
1818  *     Must be >= 0 and < context->num_comp_vectors.
1819  *
1820  * Users can examine the cq structure to determine the actual CQ size.
1821  */
1822 struct ib_cq *ib_create_cq(struct ib_device *device,
1823 			   ib_comp_handler comp_handler,
1824 			   void (*event_handler)(struct ib_event *, void *),
1825 			   void *cq_context, int cqe, int comp_vector);
1826 
1827 /**
1828  * ib_resize_cq - Modifies the capacity of the CQ.
1829  * @cq: The CQ to resize.
1830  * @cqe: The minimum size of the CQ.
1831  *
1832  * Users can examine the cq structure to determine the actual CQ size.
1833  */
1834 int ib_resize_cq(struct ib_cq *cq, int cqe);
1835 
1836 /**
1837  * ib_modify_cq - Modifies moderation params of the CQ
1838  * @cq: The CQ to modify.
1839  * @cq_count: number of CQEs that will trigger an event
1840  * @cq_period: max period of time in usec before triggering an event
1841  *
1842  */
1843 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1844 
1845 /**
1846  * ib_destroy_cq - Destroys the specified CQ.
1847  * @cq: The CQ to destroy.
1848  */
1849 int ib_destroy_cq(struct ib_cq *cq);
1850 
1851 /**
1852  * ib_poll_cq - poll a CQ for completion(s)
1853  * @cq:the CQ being polled
1854  * @num_entries:maximum number of completions to return
1855  * @wc:array of at least @num_entries &struct ib_wc where completions
1856  *   will be returned
1857  *
1858  * Poll a CQ for (possibly multiple) completions.  If the return value
1859  * is < 0, an error occurred.  If the return value is >= 0, it is the
1860  * number of completions returned.  If the return value is
1861  * non-negative and < num_entries, then the CQ was emptied.
1862  */
1863 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1864 			     struct ib_wc *wc)
1865 {
1866 	return cq->device->poll_cq(cq, num_entries, wc);
1867 }
1868 
1869 /**
1870  * ib_peek_cq - Returns the number of unreaped completions currently
1871  *   on the specified CQ.
1872  * @cq: The CQ to peek.
1873  * @wc_cnt: A minimum number of unreaped completions to check for.
1874  *
1875  * If the number of unreaped completions is greater than or equal to wc_cnt,
1876  * this function returns wc_cnt, otherwise, it returns the actual number of
1877  * unreaped completions.
1878  */
1879 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1880 
1881 /**
1882  * ib_req_notify_cq - Request completion notification on a CQ.
1883  * @cq: The CQ to generate an event for.
1884  * @flags:
1885  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1886  *   to request an event on the next solicited event or next work
1887  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1888  *   may also be |ed in to request a hint about missed events, as
1889  *   described below.
1890  *
1891  * Return Value:
1892  *    < 0 means an error occurred while requesting notification
1893  *   == 0 means notification was requested successfully, and if
1894  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1895  *        were missed and it is safe to wait for another event.  In
1896  *        this case is it guaranteed that any work completions added
1897  *        to the CQ since the last CQ poll will trigger a completion
1898  *        notification event.
1899  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1900  *        in.  It means that the consumer must poll the CQ again to
1901  *        make sure it is empty to avoid missing an event because of a
1902  *        race between requesting notification and an entry being
1903  *        added to the CQ.  This return value means it is possible
1904  *        (but not guaranteed) that a work completion has been added
1905  *        to the CQ since the last poll without triggering a
1906  *        completion notification event.
1907  */
1908 static inline int ib_req_notify_cq(struct ib_cq *cq,
1909 				   enum ib_cq_notify_flags flags)
1910 {
1911 	return cq->device->req_notify_cq(cq, flags);
1912 }
1913 
1914 /**
1915  * ib_req_ncomp_notif - Request completion notification when there are
1916  *   at least the specified number of unreaped completions on the CQ.
1917  * @cq: The CQ to generate an event for.
1918  * @wc_cnt: The number of unreaped completions that should be on the
1919  *   CQ before an event is generated.
1920  */
1921 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1922 {
1923 	return cq->device->req_ncomp_notif ?
1924 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1925 		-ENOSYS;
1926 }
1927 
1928 /**
1929  * ib_get_dma_mr - Returns a memory region for system memory that is
1930  *   usable for DMA.
1931  * @pd: The protection domain associated with the memory region.
1932  * @mr_access_flags: Specifies the memory access rights.
1933  *
1934  * Note that the ib_dma_*() functions defined below must be used
1935  * to create/destroy addresses used with the Lkey or Rkey returned
1936  * by ib_get_dma_mr().
1937  */
1938 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1939 
1940 /**
1941  * ib_dma_mapping_error - check a DMA addr for error
1942  * @dev: The device for which the dma_addr was created
1943  * @dma_addr: The DMA address to check
1944  */
1945 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1946 {
1947 	if (dev->dma_ops)
1948 		return dev->dma_ops->mapping_error(dev, dma_addr);
1949 	return dma_mapping_error(dev->dma_device, dma_addr);
1950 }
1951 
1952 /**
1953  * ib_dma_map_single - Map a kernel virtual address to DMA address
1954  * @dev: The device for which the dma_addr is to be created
1955  * @cpu_addr: The kernel virtual address
1956  * @size: The size of the region in bytes
1957  * @direction: The direction of the DMA
1958  */
1959 static inline u64 ib_dma_map_single(struct ib_device *dev,
1960 				    void *cpu_addr, size_t size,
1961 				    enum dma_data_direction direction)
1962 {
1963 	if (dev->dma_ops)
1964 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1965 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1966 }
1967 
1968 /**
1969  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1970  * @dev: The device for which the DMA address was created
1971  * @addr: The DMA address
1972  * @size: The size of the region in bytes
1973  * @direction: The direction of the DMA
1974  */
1975 static inline void ib_dma_unmap_single(struct ib_device *dev,
1976 				       u64 addr, size_t size,
1977 				       enum dma_data_direction direction)
1978 {
1979 	if (dev->dma_ops)
1980 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1981 	else
1982 		dma_unmap_single(dev->dma_device, addr, size, direction);
1983 }
1984 
1985 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1986 					  void *cpu_addr, size_t size,
1987 					  enum dma_data_direction direction,
1988 					  struct dma_attrs *attrs)
1989 {
1990 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1991 				    direction, attrs);
1992 }
1993 
1994 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1995 					     u64 addr, size_t size,
1996 					     enum dma_data_direction direction,
1997 					     struct dma_attrs *attrs)
1998 {
1999 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2000 				      direction, attrs);
2001 }
2002 
2003 /**
2004  * ib_dma_map_page - Map a physical page to DMA address
2005  * @dev: The device for which the dma_addr is to be created
2006  * @page: The page to be mapped
2007  * @offset: The offset within the page
2008  * @size: The size of the region in bytes
2009  * @direction: The direction of the DMA
2010  */
2011 static inline u64 ib_dma_map_page(struct ib_device *dev,
2012 				  struct page *page,
2013 				  unsigned long offset,
2014 				  size_t size,
2015 					 enum dma_data_direction direction)
2016 {
2017 	if (dev->dma_ops)
2018 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2019 	return dma_map_page(dev->dma_device, page, offset, size, direction);
2020 }
2021 
2022 /**
2023  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2024  * @dev: The device for which the DMA address was created
2025  * @addr: The DMA address
2026  * @size: The size of the region in bytes
2027  * @direction: The direction of the DMA
2028  */
2029 static inline void ib_dma_unmap_page(struct ib_device *dev,
2030 				     u64 addr, size_t size,
2031 				     enum dma_data_direction direction)
2032 {
2033 	if (dev->dma_ops)
2034 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2035 	else
2036 		dma_unmap_page(dev->dma_device, addr, size, direction);
2037 }
2038 
2039 /**
2040  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2041  * @dev: The device for which the DMA addresses are to be created
2042  * @sg: The array of scatter/gather entries
2043  * @nents: The number of scatter/gather entries
2044  * @direction: The direction of the DMA
2045  */
2046 static inline int ib_dma_map_sg(struct ib_device *dev,
2047 				struct scatterlist *sg, int nents,
2048 				enum dma_data_direction direction)
2049 {
2050 	if (dev->dma_ops)
2051 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2052 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2053 }
2054 
2055 /**
2056  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2057  * @dev: The device for which the DMA addresses were created
2058  * @sg: The array of scatter/gather entries
2059  * @nents: The number of scatter/gather entries
2060  * @direction: The direction of the DMA
2061  */
2062 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2063 				   struct scatterlist *sg, int nents,
2064 				   enum dma_data_direction direction)
2065 {
2066 	if (dev->dma_ops)
2067 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2068 	else
2069 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2070 }
2071 
2072 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2073 				      struct scatterlist *sg, int nents,
2074 				      enum dma_data_direction direction,
2075 				      struct dma_attrs *attrs)
2076 {
2077 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2078 }
2079 
2080 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2081 					 struct scatterlist *sg, int nents,
2082 					 enum dma_data_direction direction,
2083 					 struct dma_attrs *attrs)
2084 {
2085 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2086 }
2087 /**
2088  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2089  * @dev: The device for which the DMA addresses were created
2090  * @sg: The scatter/gather entry
2091  */
2092 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2093 				    struct scatterlist *sg)
2094 {
2095 	if (dev->dma_ops)
2096 		return dev->dma_ops->dma_address(dev, sg);
2097 	return sg_dma_address(sg);
2098 }
2099 
2100 /**
2101  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2102  * @dev: The device for which the DMA addresses were created
2103  * @sg: The scatter/gather entry
2104  */
2105 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2106 					 struct scatterlist *sg)
2107 {
2108 	if (dev->dma_ops)
2109 		return dev->dma_ops->dma_len(dev, sg);
2110 	return sg_dma_len(sg);
2111 }
2112 
2113 /**
2114  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2115  * @dev: The device for which the DMA address was created
2116  * @addr: The DMA address
2117  * @size: The size of the region in bytes
2118  * @dir: The direction of the DMA
2119  */
2120 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2121 					      u64 addr,
2122 					      size_t size,
2123 					      enum dma_data_direction dir)
2124 {
2125 	if (dev->dma_ops)
2126 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2127 	else
2128 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2129 }
2130 
2131 /**
2132  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2133  * @dev: The device for which the DMA address was created
2134  * @addr: The DMA address
2135  * @size: The size of the region in bytes
2136  * @dir: The direction of the DMA
2137  */
2138 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2139 						 u64 addr,
2140 						 size_t size,
2141 						 enum dma_data_direction dir)
2142 {
2143 	if (dev->dma_ops)
2144 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2145 	else
2146 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2147 }
2148 
2149 /**
2150  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2151  * @dev: The device for which the DMA address is requested
2152  * @size: The size of the region to allocate in bytes
2153  * @dma_handle: A pointer for returning the DMA address of the region
2154  * @flag: memory allocator flags
2155  */
2156 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2157 					   size_t size,
2158 					   u64 *dma_handle,
2159 					   gfp_t flag)
2160 {
2161 	if (dev->dma_ops)
2162 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2163 	else {
2164 		dma_addr_t handle;
2165 		void *ret;
2166 
2167 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2168 		*dma_handle = handle;
2169 		return ret;
2170 	}
2171 }
2172 
2173 /**
2174  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2175  * @dev: The device for which the DMA addresses were allocated
2176  * @size: The size of the region
2177  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2178  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2179  */
2180 static inline void ib_dma_free_coherent(struct ib_device *dev,
2181 					size_t size, void *cpu_addr,
2182 					u64 dma_handle)
2183 {
2184 	if (dev->dma_ops)
2185 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2186 	else
2187 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2188 }
2189 
2190 /**
2191  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2192  *   by an HCA.
2193  * @pd: The protection domain associated assigned to the registered region.
2194  * @phys_buf_array: Specifies a list of physical buffers to use in the
2195  *   memory region.
2196  * @num_phys_buf: Specifies the size of the phys_buf_array.
2197  * @mr_access_flags: Specifies the memory access rights.
2198  * @iova_start: The offset of the region's starting I/O virtual address.
2199  */
2200 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2201 			     struct ib_phys_buf *phys_buf_array,
2202 			     int num_phys_buf,
2203 			     int mr_access_flags,
2204 			     u64 *iova_start);
2205 
2206 /**
2207  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2208  *   Conceptually, this call performs the functions deregister memory region
2209  *   followed by register physical memory region.  Where possible,
2210  *   resources are reused instead of deallocated and reallocated.
2211  * @mr: The memory region to modify.
2212  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2213  *   properties of the memory region are being modified.
2214  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2215  *   the new protection domain to associated with the memory region,
2216  *   otherwise, this parameter is ignored.
2217  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2218  *   field specifies a list of physical buffers to use in the new
2219  *   translation, otherwise, this parameter is ignored.
2220  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2221  *   field specifies the size of the phys_buf_array, otherwise, this
2222  *   parameter is ignored.
2223  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2224  *   field specifies the new memory access rights, otherwise, this
2225  *   parameter is ignored.
2226  * @iova_start: The offset of the region's starting I/O virtual address.
2227  */
2228 int ib_rereg_phys_mr(struct ib_mr *mr,
2229 		     int mr_rereg_mask,
2230 		     struct ib_pd *pd,
2231 		     struct ib_phys_buf *phys_buf_array,
2232 		     int num_phys_buf,
2233 		     int mr_access_flags,
2234 		     u64 *iova_start);
2235 
2236 /**
2237  * ib_query_mr - Retrieves information about a specific memory region.
2238  * @mr: The memory region to retrieve information about.
2239  * @mr_attr: The attributes of the specified memory region.
2240  */
2241 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2242 
2243 /**
2244  * ib_dereg_mr - Deregisters a memory region and removes it from the
2245  *   HCA translation table.
2246  * @mr: The memory region to deregister.
2247  *
2248  * This function can fail, if the memory region has memory windows bound to it.
2249  */
2250 int ib_dereg_mr(struct ib_mr *mr);
2251 
2252 /**
2253  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2254  *   IB_WR_FAST_REG_MR send work request.
2255  * @pd: The protection domain associated with the region.
2256  * @max_page_list_len: requested max physical buffer list length to be
2257  *   used with fast register work requests for this MR.
2258  */
2259 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2260 
2261 /**
2262  * ib_alloc_fast_reg_page_list - Allocates a page list array
2263  * @device - ib device pointer.
2264  * @page_list_len - size of the page list array to be allocated.
2265  *
2266  * This allocates and returns a struct ib_fast_reg_page_list * and a
2267  * page_list array that is at least page_list_len in size.  The actual
2268  * size is returned in max_page_list_len.  The caller is responsible
2269  * for initializing the contents of the page_list array before posting
2270  * a send work request with the IB_WC_FAST_REG_MR opcode.
2271  *
2272  * The page_list array entries must be translated using one of the
2273  * ib_dma_*() functions just like the addresses passed to
2274  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2275  * ib_fast_reg_page_list must not be modified by the caller until the
2276  * IB_WC_FAST_REG_MR work request completes.
2277  */
2278 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2279 				struct ib_device *device, int page_list_len);
2280 
2281 /**
2282  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2283  *   page list array.
2284  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2285  */
2286 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2287 
2288 /**
2289  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2290  *   R_Key and L_Key.
2291  * @mr - struct ib_mr pointer to be updated.
2292  * @newkey - new key to be used.
2293  */
2294 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2295 {
2296 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2297 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2298 }
2299 
2300 /**
2301  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2302  * for calculating a new rkey for type 2 memory windows.
2303  * @rkey - the rkey to increment.
2304  */
2305 static inline u32 ib_inc_rkey(u32 rkey)
2306 {
2307 	const u32 mask = 0x000000ff;
2308 	return ((rkey + 1) & mask) | (rkey & ~mask);
2309 }
2310 
2311 /**
2312  * ib_alloc_mw - Allocates a memory window.
2313  * @pd: The protection domain associated with the memory window.
2314  * @type: The type of the memory window (1 or 2).
2315  */
2316 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2317 
2318 /**
2319  * ib_bind_mw - Posts a work request to the send queue of the specified
2320  *   QP, which binds the memory window to the given address range and
2321  *   remote access attributes.
2322  * @qp: QP to post the bind work request on.
2323  * @mw: The memory window to bind.
2324  * @mw_bind: Specifies information about the memory window, including
2325  *   its address range, remote access rights, and associated memory region.
2326  *
2327  * If there is no immediate error, the function will update the rkey member
2328  * of the mw parameter to its new value. The bind operation can still fail
2329  * asynchronously.
2330  */
2331 static inline int ib_bind_mw(struct ib_qp *qp,
2332 			     struct ib_mw *mw,
2333 			     struct ib_mw_bind *mw_bind)
2334 {
2335 	/* XXX reference counting in corresponding MR? */
2336 	return mw->device->bind_mw ?
2337 		mw->device->bind_mw(qp, mw, mw_bind) :
2338 		-ENOSYS;
2339 }
2340 
2341 /**
2342  * ib_dealloc_mw - Deallocates a memory window.
2343  * @mw: The memory window to deallocate.
2344  */
2345 int ib_dealloc_mw(struct ib_mw *mw);
2346 
2347 /**
2348  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2349  * @pd: The protection domain associated with the unmapped region.
2350  * @mr_access_flags: Specifies the memory access rights.
2351  * @fmr_attr: Attributes of the unmapped region.
2352  *
2353  * A fast memory region must be mapped before it can be used as part of
2354  * a work request.
2355  */
2356 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2357 			    int mr_access_flags,
2358 			    struct ib_fmr_attr *fmr_attr);
2359 
2360 /**
2361  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2362  * @fmr: The fast memory region to associate with the pages.
2363  * @page_list: An array of physical pages to map to the fast memory region.
2364  * @list_len: The number of pages in page_list.
2365  * @iova: The I/O virtual address to use with the mapped region.
2366  */
2367 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2368 				  u64 *page_list, int list_len,
2369 				  u64 iova)
2370 {
2371 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2372 }
2373 
2374 /**
2375  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2376  * @fmr_list: A linked list of fast memory regions to unmap.
2377  */
2378 int ib_unmap_fmr(struct list_head *fmr_list);
2379 
2380 /**
2381  * ib_dealloc_fmr - Deallocates a fast memory region.
2382  * @fmr: The fast memory region to deallocate.
2383  */
2384 int ib_dealloc_fmr(struct ib_fmr *fmr);
2385 
2386 /**
2387  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2388  * @qp: QP to attach to the multicast group.  The QP must be type
2389  *   IB_QPT_UD.
2390  * @gid: Multicast group GID.
2391  * @lid: Multicast group LID in host byte order.
2392  *
2393  * In order to send and receive multicast packets, subnet
2394  * administration must have created the multicast group and configured
2395  * the fabric appropriately.  The port associated with the specified
2396  * QP must also be a member of the multicast group.
2397  */
2398 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2399 
2400 /**
2401  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2402  * @qp: QP to detach from the multicast group.
2403  * @gid: Multicast group GID.
2404  * @lid: Multicast group LID in host byte order.
2405  */
2406 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2407 
2408 /**
2409  * ib_alloc_xrcd - Allocates an XRC domain.
2410  * @device: The device on which to allocate the XRC domain.
2411  */
2412 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2413 
2414 /**
2415  * ib_dealloc_xrcd - Deallocates an XRC domain.
2416  * @xrcd: The XRC domain to deallocate.
2417  */
2418 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2419 
2420 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2421 			       struct ib_flow_attr *flow_attr, int domain);
2422 int ib_destroy_flow(struct ib_flow *flow_id);
2423 
2424 static inline int ib_check_mr_access(int flags)
2425 {
2426 	/*
2427 	 * Local write permission is required if remote write or
2428 	 * remote atomic permission is also requested.
2429 	 */
2430 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2431 	    !(flags & IB_ACCESS_LOCAL_WRITE))
2432 		return -EINVAL;
2433 
2434 	return 0;
2435 }
2436 
2437 #endif /* IB_VERBS_H */
2438