xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 36bccb11)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52 
53 #include <linux/atomic.h>
54 #include <asm/uaccess.h>
55 
56 extern struct workqueue_struct *ib_wq;
57 
58 union ib_gid {
59 	u8	raw[16];
60 	struct {
61 		__be64	subnet_prefix;
62 		__be64	interface_id;
63 	} global;
64 };
65 
66 enum rdma_node_type {
67 	/* IB values map to NodeInfo:NodeType. */
68 	RDMA_NODE_IB_CA 	= 1,
69 	RDMA_NODE_IB_SWITCH,
70 	RDMA_NODE_IB_ROUTER,
71 	RDMA_NODE_RNIC,
72 	RDMA_NODE_USNIC,
73 	RDMA_NODE_USNIC_UDP,
74 };
75 
76 enum rdma_transport_type {
77 	RDMA_TRANSPORT_IB,
78 	RDMA_TRANSPORT_IWARP,
79 	RDMA_TRANSPORT_USNIC,
80 	RDMA_TRANSPORT_USNIC_UDP
81 };
82 
83 enum rdma_transport_type
84 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85 
86 enum rdma_link_layer {
87 	IB_LINK_LAYER_UNSPECIFIED,
88 	IB_LINK_LAYER_INFINIBAND,
89 	IB_LINK_LAYER_ETHERNET,
90 };
91 
92 enum ib_device_cap_flags {
93 	IB_DEVICE_RESIZE_MAX_WR		= 1,
94 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
95 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
96 	IB_DEVICE_RAW_MULTI		= (1<<3),
97 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
98 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
99 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
100 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
101 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
102 	IB_DEVICE_INIT_TYPE		= (1<<9),
103 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
104 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
105 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
106 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
107 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
108 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
109 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
110 	IB_DEVICE_MEM_WINDOW		= (1<<17),
111 	/*
112 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 	 * messages and can verify the validity of checksum for
115 	 * incoming messages.  Setting this flag implies that the
116 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 	 */
118 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
119 	IB_DEVICE_UD_TSO		= (1<<19),
120 	IB_DEVICE_XRC			= (1<<20),
121 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
122 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
124 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
125 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
126 	IB_DEVICE_SIGNATURE_HANDOVER	= (1<<30)
127 };
128 
129 enum ib_signature_prot_cap {
130 	IB_PROT_T10DIF_TYPE_1 = 1,
131 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
132 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
133 };
134 
135 enum ib_signature_guard_cap {
136 	IB_GUARD_T10DIF_CRC	= 1,
137 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
138 };
139 
140 enum ib_atomic_cap {
141 	IB_ATOMIC_NONE,
142 	IB_ATOMIC_HCA,
143 	IB_ATOMIC_GLOB
144 };
145 
146 struct ib_device_attr {
147 	u64			fw_ver;
148 	__be64			sys_image_guid;
149 	u64			max_mr_size;
150 	u64			page_size_cap;
151 	u32			vendor_id;
152 	u32			vendor_part_id;
153 	u32			hw_ver;
154 	int			max_qp;
155 	int			max_qp_wr;
156 	int			device_cap_flags;
157 	int			max_sge;
158 	int			max_sge_rd;
159 	int			max_cq;
160 	int			max_cqe;
161 	int			max_mr;
162 	int			max_pd;
163 	int			max_qp_rd_atom;
164 	int			max_ee_rd_atom;
165 	int			max_res_rd_atom;
166 	int			max_qp_init_rd_atom;
167 	int			max_ee_init_rd_atom;
168 	enum ib_atomic_cap	atomic_cap;
169 	enum ib_atomic_cap	masked_atomic_cap;
170 	int			max_ee;
171 	int			max_rdd;
172 	int			max_mw;
173 	int			max_raw_ipv6_qp;
174 	int			max_raw_ethy_qp;
175 	int			max_mcast_grp;
176 	int			max_mcast_qp_attach;
177 	int			max_total_mcast_qp_attach;
178 	int			max_ah;
179 	int			max_fmr;
180 	int			max_map_per_fmr;
181 	int			max_srq;
182 	int			max_srq_wr;
183 	int			max_srq_sge;
184 	unsigned int		max_fast_reg_page_list_len;
185 	u16			max_pkeys;
186 	u8			local_ca_ack_delay;
187 	int			sig_prot_cap;
188 	int			sig_guard_cap;
189 };
190 
191 enum ib_mtu {
192 	IB_MTU_256  = 1,
193 	IB_MTU_512  = 2,
194 	IB_MTU_1024 = 3,
195 	IB_MTU_2048 = 4,
196 	IB_MTU_4096 = 5
197 };
198 
199 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
200 {
201 	switch (mtu) {
202 	case IB_MTU_256:  return  256;
203 	case IB_MTU_512:  return  512;
204 	case IB_MTU_1024: return 1024;
205 	case IB_MTU_2048: return 2048;
206 	case IB_MTU_4096: return 4096;
207 	default: 	  return -1;
208 	}
209 }
210 
211 enum ib_port_state {
212 	IB_PORT_NOP		= 0,
213 	IB_PORT_DOWN		= 1,
214 	IB_PORT_INIT		= 2,
215 	IB_PORT_ARMED		= 3,
216 	IB_PORT_ACTIVE		= 4,
217 	IB_PORT_ACTIVE_DEFER	= 5
218 };
219 
220 enum ib_port_cap_flags {
221 	IB_PORT_SM				= 1 <<  1,
222 	IB_PORT_NOTICE_SUP			= 1 <<  2,
223 	IB_PORT_TRAP_SUP			= 1 <<  3,
224 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
225 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
226 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
227 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
228 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
229 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
230 	IB_PORT_SM_DISABLED			= 1 << 10,
231 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
232 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
233 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
234 	IB_PORT_CM_SUP				= 1 << 16,
235 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
236 	IB_PORT_REINIT_SUP			= 1 << 18,
237 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
238 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
239 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
240 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
241 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
242 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
243 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
244 	IB_PORT_IP_BASED_GIDS			= 1 << 26
245 };
246 
247 enum ib_port_width {
248 	IB_WIDTH_1X	= 1,
249 	IB_WIDTH_4X	= 2,
250 	IB_WIDTH_8X	= 4,
251 	IB_WIDTH_12X	= 8
252 };
253 
254 static inline int ib_width_enum_to_int(enum ib_port_width width)
255 {
256 	switch (width) {
257 	case IB_WIDTH_1X:  return  1;
258 	case IB_WIDTH_4X:  return  4;
259 	case IB_WIDTH_8X:  return  8;
260 	case IB_WIDTH_12X: return 12;
261 	default: 	  return -1;
262 	}
263 }
264 
265 enum ib_port_speed {
266 	IB_SPEED_SDR	= 1,
267 	IB_SPEED_DDR	= 2,
268 	IB_SPEED_QDR	= 4,
269 	IB_SPEED_FDR10	= 8,
270 	IB_SPEED_FDR	= 16,
271 	IB_SPEED_EDR	= 32
272 };
273 
274 struct ib_protocol_stats {
275 	/* TBD... */
276 };
277 
278 struct iw_protocol_stats {
279 	u64	ipInReceives;
280 	u64	ipInHdrErrors;
281 	u64	ipInTooBigErrors;
282 	u64	ipInNoRoutes;
283 	u64	ipInAddrErrors;
284 	u64	ipInUnknownProtos;
285 	u64	ipInTruncatedPkts;
286 	u64	ipInDiscards;
287 	u64	ipInDelivers;
288 	u64	ipOutForwDatagrams;
289 	u64	ipOutRequests;
290 	u64	ipOutDiscards;
291 	u64	ipOutNoRoutes;
292 	u64	ipReasmTimeout;
293 	u64	ipReasmReqds;
294 	u64	ipReasmOKs;
295 	u64	ipReasmFails;
296 	u64	ipFragOKs;
297 	u64	ipFragFails;
298 	u64	ipFragCreates;
299 	u64	ipInMcastPkts;
300 	u64	ipOutMcastPkts;
301 	u64	ipInBcastPkts;
302 	u64	ipOutBcastPkts;
303 
304 	u64	tcpRtoAlgorithm;
305 	u64	tcpRtoMin;
306 	u64	tcpRtoMax;
307 	u64	tcpMaxConn;
308 	u64	tcpActiveOpens;
309 	u64	tcpPassiveOpens;
310 	u64	tcpAttemptFails;
311 	u64	tcpEstabResets;
312 	u64	tcpCurrEstab;
313 	u64	tcpInSegs;
314 	u64	tcpOutSegs;
315 	u64	tcpRetransSegs;
316 	u64	tcpInErrs;
317 	u64	tcpOutRsts;
318 };
319 
320 union rdma_protocol_stats {
321 	struct ib_protocol_stats	ib;
322 	struct iw_protocol_stats	iw;
323 };
324 
325 struct ib_port_attr {
326 	enum ib_port_state	state;
327 	enum ib_mtu		max_mtu;
328 	enum ib_mtu		active_mtu;
329 	int			gid_tbl_len;
330 	u32			port_cap_flags;
331 	u32			max_msg_sz;
332 	u32			bad_pkey_cntr;
333 	u32			qkey_viol_cntr;
334 	u16			pkey_tbl_len;
335 	u16			lid;
336 	u16			sm_lid;
337 	u8			lmc;
338 	u8			max_vl_num;
339 	u8			sm_sl;
340 	u8			subnet_timeout;
341 	u8			init_type_reply;
342 	u8			active_width;
343 	u8			active_speed;
344 	u8                      phys_state;
345 };
346 
347 enum ib_device_modify_flags {
348 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
349 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
350 };
351 
352 struct ib_device_modify {
353 	u64	sys_image_guid;
354 	char	node_desc[64];
355 };
356 
357 enum ib_port_modify_flags {
358 	IB_PORT_SHUTDOWN		= 1,
359 	IB_PORT_INIT_TYPE		= (1<<2),
360 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
361 };
362 
363 struct ib_port_modify {
364 	u32	set_port_cap_mask;
365 	u32	clr_port_cap_mask;
366 	u8	init_type;
367 };
368 
369 enum ib_event_type {
370 	IB_EVENT_CQ_ERR,
371 	IB_EVENT_QP_FATAL,
372 	IB_EVENT_QP_REQ_ERR,
373 	IB_EVENT_QP_ACCESS_ERR,
374 	IB_EVENT_COMM_EST,
375 	IB_EVENT_SQ_DRAINED,
376 	IB_EVENT_PATH_MIG,
377 	IB_EVENT_PATH_MIG_ERR,
378 	IB_EVENT_DEVICE_FATAL,
379 	IB_EVENT_PORT_ACTIVE,
380 	IB_EVENT_PORT_ERR,
381 	IB_EVENT_LID_CHANGE,
382 	IB_EVENT_PKEY_CHANGE,
383 	IB_EVENT_SM_CHANGE,
384 	IB_EVENT_SRQ_ERR,
385 	IB_EVENT_SRQ_LIMIT_REACHED,
386 	IB_EVENT_QP_LAST_WQE_REACHED,
387 	IB_EVENT_CLIENT_REREGISTER,
388 	IB_EVENT_GID_CHANGE,
389 };
390 
391 struct ib_event {
392 	struct ib_device	*device;
393 	union {
394 		struct ib_cq	*cq;
395 		struct ib_qp	*qp;
396 		struct ib_srq	*srq;
397 		u8		port_num;
398 	} element;
399 	enum ib_event_type	event;
400 };
401 
402 struct ib_event_handler {
403 	struct ib_device *device;
404 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
405 	struct list_head  list;
406 };
407 
408 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
409 	do {							\
410 		(_ptr)->device  = _device;			\
411 		(_ptr)->handler = _handler;			\
412 		INIT_LIST_HEAD(&(_ptr)->list);			\
413 	} while (0)
414 
415 struct ib_global_route {
416 	union ib_gid	dgid;
417 	u32		flow_label;
418 	u8		sgid_index;
419 	u8		hop_limit;
420 	u8		traffic_class;
421 };
422 
423 struct ib_grh {
424 	__be32		version_tclass_flow;
425 	__be16		paylen;
426 	u8		next_hdr;
427 	u8		hop_limit;
428 	union ib_gid	sgid;
429 	union ib_gid	dgid;
430 };
431 
432 enum {
433 	IB_MULTICAST_QPN = 0xffffff
434 };
435 
436 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
437 
438 enum ib_ah_flags {
439 	IB_AH_GRH	= 1
440 };
441 
442 enum ib_rate {
443 	IB_RATE_PORT_CURRENT = 0,
444 	IB_RATE_2_5_GBPS = 2,
445 	IB_RATE_5_GBPS   = 5,
446 	IB_RATE_10_GBPS  = 3,
447 	IB_RATE_20_GBPS  = 6,
448 	IB_RATE_30_GBPS  = 4,
449 	IB_RATE_40_GBPS  = 7,
450 	IB_RATE_60_GBPS  = 8,
451 	IB_RATE_80_GBPS  = 9,
452 	IB_RATE_120_GBPS = 10,
453 	IB_RATE_14_GBPS  = 11,
454 	IB_RATE_56_GBPS  = 12,
455 	IB_RATE_112_GBPS = 13,
456 	IB_RATE_168_GBPS = 14,
457 	IB_RATE_25_GBPS  = 15,
458 	IB_RATE_100_GBPS = 16,
459 	IB_RATE_200_GBPS = 17,
460 	IB_RATE_300_GBPS = 18
461 };
462 
463 /**
464  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
465  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
466  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
467  * @rate: rate to convert.
468  */
469 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
470 
471 /**
472  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
473  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
474  * @rate: rate to convert.
475  */
476 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
477 
478 enum ib_mr_create_flags {
479 	IB_MR_SIGNATURE_EN = 1,
480 };
481 
482 /**
483  * ib_mr_init_attr - Memory region init attributes passed to routine
484  *     ib_create_mr.
485  * @max_reg_descriptors: max number of registration descriptors that
486  *     may be used with registration work requests.
487  * @flags: MR creation flags bit mask.
488  */
489 struct ib_mr_init_attr {
490 	int	    max_reg_descriptors;
491 	u32	    flags;
492 };
493 
494 enum ib_signature_type {
495 	IB_SIG_TYPE_T10_DIF,
496 };
497 
498 /**
499  * T10-DIF Signature types
500  * T10-DIF types are defined by SCSI
501  * specifications.
502  */
503 enum ib_t10_dif_type {
504 	IB_T10DIF_NONE,
505 	IB_T10DIF_TYPE1,
506 	IB_T10DIF_TYPE2,
507 	IB_T10DIF_TYPE3
508 };
509 
510 /**
511  * Signature T10-DIF block-guard types
512  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
513  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
514  */
515 enum ib_t10_dif_bg_type {
516 	IB_T10DIF_CRC,
517 	IB_T10DIF_CSUM
518 };
519 
520 /**
521  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
522  *     domain.
523  * @type: T10-DIF type (0|1|2|3)
524  * @bg_type: T10-DIF block guard type (CRC|CSUM)
525  * @pi_interval: protection information interval.
526  * @bg: seed of guard computation.
527  * @app_tag: application tag of guard block
528  * @ref_tag: initial guard block reference tag.
529  * @type3_inc_reftag: T10-DIF type 3 does not state
530  *     about the reference tag, it is the user
531  *     choice to increment it or not.
532  */
533 struct ib_t10_dif_domain {
534 	enum ib_t10_dif_type	type;
535 	enum ib_t10_dif_bg_type bg_type;
536 	u16			pi_interval;
537 	u16			bg;
538 	u16			app_tag;
539 	u32			ref_tag;
540 	bool			type3_inc_reftag;
541 };
542 
543 /**
544  * struct ib_sig_domain - Parameters for signature domain
545  * @sig_type: specific signauture type
546  * @sig: union of all signature domain attributes that may
547  *     be used to set domain layout.
548  */
549 struct ib_sig_domain {
550 	enum ib_signature_type sig_type;
551 	union {
552 		struct ib_t10_dif_domain dif;
553 	} sig;
554 };
555 
556 /**
557  * struct ib_sig_attrs - Parameters for signature handover operation
558  * @check_mask: bitmask for signature byte check (8 bytes)
559  * @mem: memory domain layout desciptor.
560  * @wire: wire domain layout desciptor.
561  */
562 struct ib_sig_attrs {
563 	u8			check_mask;
564 	struct ib_sig_domain	mem;
565 	struct ib_sig_domain	wire;
566 };
567 
568 enum ib_sig_err_type {
569 	IB_SIG_BAD_GUARD,
570 	IB_SIG_BAD_REFTAG,
571 	IB_SIG_BAD_APPTAG,
572 };
573 
574 /**
575  * struct ib_sig_err - signature error descriptor
576  */
577 struct ib_sig_err {
578 	enum ib_sig_err_type	err_type;
579 	u32			expected;
580 	u32			actual;
581 	u64			sig_err_offset;
582 	u32			key;
583 };
584 
585 enum ib_mr_status_check {
586 	IB_MR_CHECK_SIG_STATUS = 1,
587 };
588 
589 /**
590  * struct ib_mr_status - Memory region status container
591  *
592  * @fail_status: Bitmask of MR checks status. For each
593  *     failed check a corresponding status bit is set.
594  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
595  *     failure.
596  */
597 struct ib_mr_status {
598 	u32		    fail_status;
599 	struct ib_sig_err   sig_err;
600 };
601 
602 /**
603  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
604  * enum.
605  * @mult: multiple to convert.
606  */
607 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
608 
609 struct ib_ah_attr {
610 	struct ib_global_route	grh;
611 	u16			dlid;
612 	u8			sl;
613 	u8			src_path_bits;
614 	u8			static_rate;
615 	u8			ah_flags;
616 	u8			port_num;
617 	u8			dmac[ETH_ALEN];
618 	u16			vlan_id;
619 };
620 
621 enum ib_wc_status {
622 	IB_WC_SUCCESS,
623 	IB_WC_LOC_LEN_ERR,
624 	IB_WC_LOC_QP_OP_ERR,
625 	IB_WC_LOC_EEC_OP_ERR,
626 	IB_WC_LOC_PROT_ERR,
627 	IB_WC_WR_FLUSH_ERR,
628 	IB_WC_MW_BIND_ERR,
629 	IB_WC_BAD_RESP_ERR,
630 	IB_WC_LOC_ACCESS_ERR,
631 	IB_WC_REM_INV_REQ_ERR,
632 	IB_WC_REM_ACCESS_ERR,
633 	IB_WC_REM_OP_ERR,
634 	IB_WC_RETRY_EXC_ERR,
635 	IB_WC_RNR_RETRY_EXC_ERR,
636 	IB_WC_LOC_RDD_VIOL_ERR,
637 	IB_WC_REM_INV_RD_REQ_ERR,
638 	IB_WC_REM_ABORT_ERR,
639 	IB_WC_INV_EECN_ERR,
640 	IB_WC_INV_EEC_STATE_ERR,
641 	IB_WC_FATAL_ERR,
642 	IB_WC_RESP_TIMEOUT_ERR,
643 	IB_WC_GENERAL_ERR
644 };
645 
646 enum ib_wc_opcode {
647 	IB_WC_SEND,
648 	IB_WC_RDMA_WRITE,
649 	IB_WC_RDMA_READ,
650 	IB_WC_COMP_SWAP,
651 	IB_WC_FETCH_ADD,
652 	IB_WC_BIND_MW,
653 	IB_WC_LSO,
654 	IB_WC_LOCAL_INV,
655 	IB_WC_FAST_REG_MR,
656 	IB_WC_MASKED_COMP_SWAP,
657 	IB_WC_MASKED_FETCH_ADD,
658 /*
659  * Set value of IB_WC_RECV so consumers can test if a completion is a
660  * receive by testing (opcode & IB_WC_RECV).
661  */
662 	IB_WC_RECV			= 1 << 7,
663 	IB_WC_RECV_RDMA_WITH_IMM
664 };
665 
666 enum ib_wc_flags {
667 	IB_WC_GRH		= 1,
668 	IB_WC_WITH_IMM		= (1<<1),
669 	IB_WC_WITH_INVALIDATE	= (1<<2),
670 	IB_WC_IP_CSUM_OK	= (1<<3),
671 	IB_WC_WITH_SMAC		= (1<<4),
672 	IB_WC_WITH_VLAN		= (1<<5),
673 };
674 
675 struct ib_wc {
676 	u64			wr_id;
677 	enum ib_wc_status	status;
678 	enum ib_wc_opcode	opcode;
679 	u32			vendor_err;
680 	u32			byte_len;
681 	struct ib_qp	       *qp;
682 	union {
683 		__be32		imm_data;
684 		u32		invalidate_rkey;
685 	} ex;
686 	u32			src_qp;
687 	int			wc_flags;
688 	u16			pkey_index;
689 	u16			slid;
690 	u8			sl;
691 	u8			dlid_path_bits;
692 	u8			port_num;	/* valid only for DR SMPs on switches */
693 	u8			smac[ETH_ALEN];
694 	u16			vlan_id;
695 };
696 
697 enum ib_cq_notify_flags {
698 	IB_CQ_SOLICITED			= 1 << 0,
699 	IB_CQ_NEXT_COMP			= 1 << 1,
700 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
701 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
702 };
703 
704 enum ib_srq_type {
705 	IB_SRQT_BASIC,
706 	IB_SRQT_XRC
707 };
708 
709 enum ib_srq_attr_mask {
710 	IB_SRQ_MAX_WR	= 1 << 0,
711 	IB_SRQ_LIMIT	= 1 << 1,
712 };
713 
714 struct ib_srq_attr {
715 	u32	max_wr;
716 	u32	max_sge;
717 	u32	srq_limit;
718 };
719 
720 struct ib_srq_init_attr {
721 	void		      (*event_handler)(struct ib_event *, void *);
722 	void		       *srq_context;
723 	struct ib_srq_attr	attr;
724 	enum ib_srq_type	srq_type;
725 
726 	union {
727 		struct {
728 			struct ib_xrcd *xrcd;
729 			struct ib_cq   *cq;
730 		} xrc;
731 	} ext;
732 };
733 
734 struct ib_qp_cap {
735 	u32	max_send_wr;
736 	u32	max_recv_wr;
737 	u32	max_send_sge;
738 	u32	max_recv_sge;
739 	u32	max_inline_data;
740 };
741 
742 enum ib_sig_type {
743 	IB_SIGNAL_ALL_WR,
744 	IB_SIGNAL_REQ_WR
745 };
746 
747 enum ib_qp_type {
748 	/*
749 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
750 	 * here (and in that order) since the MAD layer uses them as
751 	 * indices into a 2-entry table.
752 	 */
753 	IB_QPT_SMI,
754 	IB_QPT_GSI,
755 
756 	IB_QPT_RC,
757 	IB_QPT_UC,
758 	IB_QPT_UD,
759 	IB_QPT_RAW_IPV6,
760 	IB_QPT_RAW_ETHERTYPE,
761 	IB_QPT_RAW_PACKET = 8,
762 	IB_QPT_XRC_INI = 9,
763 	IB_QPT_XRC_TGT,
764 	IB_QPT_MAX,
765 	/* Reserve a range for qp types internal to the low level driver.
766 	 * These qp types will not be visible at the IB core layer, so the
767 	 * IB_QPT_MAX usages should not be affected in the core layer
768 	 */
769 	IB_QPT_RESERVED1 = 0x1000,
770 	IB_QPT_RESERVED2,
771 	IB_QPT_RESERVED3,
772 	IB_QPT_RESERVED4,
773 	IB_QPT_RESERVED5,
774 	IB_QPT_RESERVED6,
775 	IB_QPT_RESERVED7,
776 	IB_QPT_RESERVED8,
777 	IB_QPT_RESERVED9,
778 	IB_QPT_RESERVED10,
779 };
780 
781 enum ib_qp_create_flags {
782 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
783 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
784 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
785 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
786 	/* reserve bits 26-31 for low level drivers' internal use */
787 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
788 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
789 };
790 
791 
792 /*
793  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
794  * callback to destroy the passed in QP.
795  */
796 
797 struct ib_qp_init_attr {
798 	void                  (*event_handler)(struct ib_event *, void *);
799 	void		       *qp_context;
800 	struct ib_cq	       *send_cq;
801 	struct ib_cq	       *recv_cq;
802 	struct ib_srq	       *srq;
803 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
804 	struct ib_qp_cap	cap;
805 	enum ib_sig_type	sq_sig_type;
806 	enum ib_qp_type		qp_type;
807 	enum ib_qp_create_flags	create_flags;
808 	u8			port_num; /* special QP types only */
809 };
810 
811 struct ib_qp_open_attr {
812 	void                  (*event_handler)(struct ib_event *, void *);
813 	void		       *qp_context;
814 	u32			qp_num;
815 	enum ib_qp_type		qp_type;
816 };
817 
818 enum ib_rnr_timeout {
819 	IB_RNR_TIMER_655_36 =  0,
820 	IB_RNR_TIMER_000_01 =  1,
821 	IB_RNR_TIMER_000_02 =  2,
822 	IB_RNR_TIMER_000_03 =  3,
823 	IB_RNR_TIMER_000_04 =  4,
824 	IB_RNR_TIMER_000_06 =  5,
825 	IB_RNR_TIMER_000_08 =  6,
826 	IB_RNR_TIMER_000_12 =  7,
827 	IB_RNR_TIMER_000_16 =  8,
828 	IB_RNR_TIMER_000_24 =  9,
829 	IB_RNR_TIMER_000_32 = 10,
830 	IB_RNR_TIMER_000_48 = 11,
831 	IB_RNR_TIMER_000_64 = 12,
832 	IB_RNR_TIMER_000_96 = 13,
833 	IB_RNR_TIMER_001_28 = 14,
834 	IB_RNR_TIMER_001_92 = 15,
835 	IB_RNR_TIMER_002_56 = 16,
836 	IB_RNR_TIMER_003_84 = 17,
837 	IB_RNR_TIMER_005_12 = 18,
838 	IB_RNR_TIMER_007_68 = 19,
839 	IB_RNR_TIMER_010_24 = 20,
840 	IB_RNR_TIMER_015_36 = 21,
841 	IB_RNR_TIMER_020_48 = 22,
842 	IB_RNR_TIMER_030_72 = 23,
843 	IB_RNR_TIMER_040_96 = 24,
844 	IB_RNR_TIMER_061_44 = 25,
845 	IB_RNR_TIMER_081_92 = 26,
846 	IB_RNR_TIMER_122_88 = 27,
847 	IB_RNR_TIMER_163_84 = 28,
848 	IB_RNR_TIMER_245_76 = 29,
849 	IB_RNR_TIMER_327_68 = 30,
850 	IB_RNR_TIMER_491_52 = 31
851 };
852 
853 enum ib_qp_attr_mask {
854 	IB_QP_STATE			= 1,
855 	IB_QP_CUR_STATE			= (1<<1),
856 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
857 	IB_QP_ACCESS_FLAGS		= (1<<3),
858 	IB_QP_PKEY_INDEX		= (1<<4),
859 	IB_QP_PORT			= (1<<5),
860 	IB_QP_QKEY			= (1<<6),
861 	IB_QP_AV			= (1<<7),
862 	IB_QP_PATH_MTU			= (1<<8),
863 	IB_QP_TIMEOUT			= (1<<9),
864 	IB_QP_RETRY_CNT			= (1<<10),
865 	IB_QP_RNR_RETRY			= (1<<11),
866 	IB_QP_RQ_PSN			= (1<<12),
867 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
868 	IB_QP_ALT_PATH			= (1<<14),
869 	IB_QP_MIN_RNR_TIMER		= (1<<15),
870 	IB_QP_SQ_PSN			= (1<<16),
871 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
872 	IB_QP_PATH_MIG_STATE		= (1<<18),
873 	IB_QP_CAP			= (1<<19),
874 	IB_QP_DEST_QPN			= (1<<20),
875 	IB_QP_SMAC			= (1<<21),
876 	IB_QP_ALT_SMAC			= (1<<22),
877 	IB_QP_VID			= (1<<23),
878 	IB_QP_ALT_VID			= (1<<24),
879 };
880 
881 enum ib_qp_state {
882 	IB_QPS_RESET,
883 	IB_QPS_INIT,
884 	IB_QPS_RTR,
885 	IB_QPS_RTS,
886 	IB_QPS_SQD,
887 	IB_QPS_SQE,
888 	IB_QPS_ERR
889 };
890 
891 enum ib_mig_state {
892 	IB_MIG_MIGRATED,
893 	IB_MIG_REARM,
894 	IB_MIG_ARMED
895 };
896 
897 enum ib_mw_type {
898 	IB_MW_TYPE_1 = 1,
899 	IB_MW_TYPE_2 = 2
900 };
901 
902 struct ib_qp_attr {
903 	enum ib_qp_state	qp_state;
904 	enum ib_qp_state	cur_qp_state;
905 	enum ib_mtu		path_mtu;
906 	enum ib_mig_state	path_mig_state;
907 	u32			qkey;
908 	u32			rq_psn;
909 	u32			sq_psn;
910 	u32			dest_qp_num;
911 	int			qp_access_flags;
912 	struct ib_qp_cap	cap;
913 	struct ib_ah_attr	ah_attr;
914 	struct ib_ah_attr	alt_ah_attr;
915 	u16			pkey_index;
916 	u16			alt_pkey_index;
917 	u8			en_sqd_async_notify;
918 	u8			sq_draining;
919 	u8			max_rd_atomic;
920 	u8			max_dest_rd_atomic;
921 	u8			min_rnr_timer;
922 	u8			port_num;
923 	u8			timeout;
924 	u8			retry_cnt;
925 	u8			rnr_retry;
926 	u8			alt_port_num;
927 	u8			alt_timeout;
928 	u8			smac[ETH_ALEN];
929 	u8			alt_smac[ETH_ALEN];
930 	u16			vlan_id;
931 	u16			alt_vlan_id;
932 };
933 
934 enum ib_wr_opcode {
935 	IB_WR_RDMA_WRITE,
936 	IB_WR_RDMA_WRITE_WITH_IMM,
937 	IB_WR_SEND,
938 	IB_WR_SEND_WITH_IMM,
939 	IB_WR_RDMA_READ,
940 	IB_WR_ATOMIC_CMP_AND_SWP,
941 	IB_WR_ATOMIC_FETCH_AND_ADD,
942 	IB_WR_LSO,
943 	IB_WR_SEND_WITH_INV,
944 	IB_WR_RDMA_READ_WITH_INV,
945 	IB_WR_LOCAL_INV,
946 	IB_WR_FAST_REG_MR,
947 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
948 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
949 	IB_WR_BIND_MW,
950 	IB_WR_REG_SIG_MR,
951 	/* reserve values for low level drivers' internal use.
952 	 * These values will not be used at all in the ib core layer.
953 	 */
954 	IB_WR_RESERVED1 = 0xf0,
955 	IB_WR_RESERVED2,
956 	IB_WR_RESERVED3,
957 	IB_WR_RESERVED4,
958 	IB_WR_RESERVED5,
959 	IB_WR_RESERVED6,
960 	IB_WR_RESERVED7,
961 	IB_WR_RESERVED8,
962 	IB_WR_RESERVED9,
963 	IB_WR_RESERVED10,
964 };
965 
966 enum ib_send_flags {
967 	IB_SEND_FENCE		= 1,
968 	IB_SEND_SIGNALED	= (1<<1),
969 	IB_SEND_SOLICITED	= (1<<2),
970 	IB_SEND_INLINE		= (1<<3),
971 	IB_SEND_IP_CSUM		= (1<<4),
972 
973 	/* reserve bits 26-31 for low level drivers' internal use */
974 	IB_SEND_RESERVED_START	= (1 << 26),
975 	IB_SEND_RESERVED_END	= (1 << 31),
976 };
977 
978 struct ib_sge {
979 	u64	addr;
980 	u32	length;
981 	u32	lkey;
982 };
983 
984 struct ib_fast_reg_page_list {
985 	struct ib_device       *device;
986 	u64		       *page_list;
987 	unsigned int		max_page_list_len;
988 };
989 
990 /**
991  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
992  * @mr: A memory region to bind the memory window to.
993  * @addr: The address where the memory window should begin.
994  * @length: The length of the memory window, in bytes.
995  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
996  *
997  * This struct contains the shared parameters for type 1 and type 2
998  * memory window bind operations.
999  */
1000 struct ib_mw_bind_info {
1001 	struct ib_mr   *mr;
1002 	u64		addr;
1003 	u64		length;
1004 	int		mw_access_flags;
1005 };
1006 
1007 struct ib_send_wr {
1008 	struct ib_send_wr      *next;
1009 	u64			wr_id;
1010 	struct ib_sge	       *sg_list;
1011 	int			num_sge;
1012 	enum ib_wr_opcode	opcode;
1013 	int			send_flags;
1014 	union {
1015 		__be32		imm_data;
1016 		u32		invalidate_rkey;
1017 	} ex;
1018 	union {
1019 		struct {
1020 			u64	remote_addr;
1021 			u32	rkey;
1022 		} rdma;
1023 		struct {
1024 			u64	remote_addr;
1025 			u64	compare_add;
1026 			u64	swap;
1027 			u64	compare_add_mask;
1028 			u64	swap_mask;
1029 			u32	rkey;
1030 		} atomic;
1031 		struct {
1032 			struct ib_ah *ah;
1033 			void   *header;
1034 			int     hlen;
1035 			int     mss;
1036 			u32	remote_qpn;
1037 			u32	remote_qkey;
1038 			u16	pkey_index; /* valid for GSI only */
1039 			u8	port_num;   /* valid for DR SMPs on switch only */
1040 		} ud;
1041 		struct {
1042 			u64				iova_start;
1043 			struct ib_fast_reg_page_list   *page_list;
1044 			unsigned int			page_shift;
1045 			unsigned int			page_list_len;
1046 			u32				length;
1047 			int				access_flags;
1048 			u32				rkey;
1049 		} fast_reg;
1050 		struct {
1051 			struct ib_mw            *mw;
1052 			/* The new rkey for the memory window. */
1053 			u32                      rkey;
1054 			struct ib_mw_bind_info   bind_info;
1055 		} bind_mw;
1056 		struct {
1057 			struct ib_sig_attrs    *sig_attrs;
1058 			struct ib_mr	       *sig_mr;
1059 			int			access_flags;
1060 			struct ib_sge	       *prot;
1061 		} sig_handover;
1062 	} wr;
1063 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
1064 };
1065 
1066 struct ib_recv_wr {
1067 	struct ib_recv_wr      *next;
1068 	u64			wr_id;
1069 	struct ib_sge	       *sg_list;
1070 	int			num_sge;
1071 };
1072 
1073 enum ib_access_flags {
1074 	IB_ACCESS_LOCAL_WRITE	= 1,
1075 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1076 	IB_ACCESS_REMOTE_READ	= (1<<2),
1077 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1078 	IB_ACCESS_MW_BIND	= (1<<4),
1079 	IB_ZERO_BASED		= (1<<5)
1080 };
1081 
1082 struct ib_phys_buf {
1083 	u64      addr;
1084 	u64      size;
1085 };
1086 
1087 struct ib_mr_attr {
1088 	struct ib_pd	*pd;
1089 	u64		device_virt_addr;
1090 	u64		size;
1091 	int		mr_access_flags;
1092 	u32		lkey;
1093 	u32		rkey;
1094 };
1095 
1096 enum ib_mr_rereg_flags {
1097 	IB_MR_REREG_TRANS	= 1,
1098 	IB_MR_REREG_PD		= (1<<1),
1099 	IB_MR_REREG_ACCESS	= (1<<2)
1100 };
1101 
1102 /**
1103  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1104  * @wr_id:      Work request id.
1105  * @send_flags: Flags from ib_send_flags enum.
1106  * @bind_info:  More parameters of the bind operation.
1107  */
1108 struct ib_mw_bind {
1109 	u64                    wr_id;
1110 	int                    send_flags;
1111 	struct ib_mw_bind_info bind_info;
1112 };
1113 
1114 struct ib_fmr_attr {
1115 	int	max_pages;
1116 	int	max_maps;
1117 	u8	page_shift;
1118 };
1119 
1120 struct ib_ucontext {
1121 	struct ib_device       *device;
1122 	struct list_head	pd_list;
1123 	struct list_head	mr_list;
1124 	struct list_head	mw_list;
1125 	struct list_head	cq_list;
1126 	struct list_head	qp_list;
1127 	struct list_head	srq_list;
1128 	struct list_head	ah_list;
1129 	struct list_head	xrcd_list;
1130 	struct list_head	rule_list;
1131 	int			closing;
1132 };
1133 
1134 struct ib_uobject {
1135 	u64			user_handle;	/* handle given to us by userspace */
1136 	struct ib_ucontext     *context;	/* associated user context */
1137 	void		       *object;		/* containing object */
1138 	struct list_head	list;		/* link to context's list */
1139 	int			id;		/* index into kernel idr */
1140 	struct kref		ref;
1141 	struct rw_semaphore	mutex;		/* protects .live */
1142 	int			live;
1143 };
1144 
1145 struct ib_udata {
1146 	const void __user *inbuf;
1147 	void __user *outbuf;
1148 	size_t       inlen;
1149 	size_t       outlen;
1150 };
1151 
1152 struct ib_pd {
1153 	struct ib_device       *device;
1154 	struct ib_uobject      *uobject;
1155 	atomic_t          	usecnt; /* count all resources */
1156 };
1157 
1158 struct ib_xrcd {
1159 	struct ib_device       *device;
1160 	atomic_t		usecnt; /* count all exposed resources */
1161 	struct inode	       *inode;
1162 
1163 	struct mutex		tgt_qp_mutex;
1164 	struct list_head	tgt_qp_list;
1165 };
1166 
1167 struct ib_ah {
1168 	struct ib_device	*device;
1169 	struct ib_pd		*pd;
1170 	struct ib_uobject	*uobject;
1171 };
1172 
1173 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1174 
1175 struct ib_cq {
1176 	struct ib_device       *device;
1177 	struct ib_uobject      *uobject;
1178 	ib_comp_handler   	comp_handler;
1179 	void                  (*event_handler)(struct ib_event *, void *);
1180 	void                   *cq_context;
1181 	int               	cqe;
1182 	atomic_t          	usecnt; /* count number of work queues */
1183 };
1184 
1185 struct ib_srq {
1186 	struct ib_device       *device;
1187 	struct ib_pd	       *pd;
1188 	struct ib_uobject      *uobject;
1189 	void		      (*event_handler)(struct ib_event *, void *);
1190 	void		       *srq_context;
1191 	enum ib_srq_type	srq_type;
1192 	atomic_t		usecnt;
1193 
1194 	union {
1195 		struct {
1196 			struct ib_xrcd *xrcd;
1197 			struct ib_cq   *cq;
1198 			u32		srq_num;
1199 		} xrc;
1200 	} ext;
1201 };
1202 
1203 struct ib_qp {
1204 	struct ib_device       *device;
1205 	struct ib_pd	       *pd;
1206 	struct ib_cq	       *send_cq;
1207 	struct ib_cq	       *recv_cq;
1208 	struct ib_srq	       *srq;
1209 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1210 	struct list_head	xrcd_list;
1211 	/* count times opened, mcast attaches, flow attaches */
1212 	atomic_t		usecnt;
1213 	struct list_head	open_list;
1214 	struct ib_qp           *real_qp;
1215 	struct ib_uobject      *uobject;
1216 	void                  (*event_handler)(struct ib_event *, void *);
1217 	void		       *qp_context;
1218 	u32			qp_num;
1219 	enum ib_qp_type		qp_type;
1220 };
1221 
1222 struct ib_mr {
1223 	struct ib_device  *device;
1224 	struct ib_pd	  *pd;
1225 	struct ib_uobject *uobject;
1226 	u32		   lkey;
1227 	u32		   rkey;
1228 	atomic_t	   usecnt; /* count number of MWs */
1229 };
1230 
1231 struct ib_mw {
1232 	struct ib_device	*device;
1233 	struct ib_pd		*pd;
1234 	struct ib_uobject	*uobject;
1235 	u32			rkey;
1236 	enum ib_mw_type         type;
1237 };
1238 
1239 struct ib_fmr {
1240 	struct ib_device	*device;
1241 	struct ib_pd		*pd;
1242 	struct list_head	list;
1243 	u32			lkey;
1244 	u32			rkey;
1245 };
1246 
1247 /* Supported steering options */
1248 enum ib_flow_attr_type {
1249 	/* steering according to rule specifications */
1250 	IB_FLOW_ATTR_NORMAL		= 0x0,
1251 	/* default unicast and multicast rule -
1252 	 * receive all Eth traffic which isn't steered to any QP
1253 	 */
1254 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1255 	/* default multicast rule -
1256 	 * receive all Eth multicast traffic which isn't steered to any QP
1257 	 */
1258 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1259 	/* sniffer rule - receive all port traffic */
1260 	IB_FLOW_ATTR_SNIFFER		= 0x3
1261 };
1262 
1263 /* Supported steering header types */
1264 enum ib_flow_spec_type {
1265 	/* L2 headers*/
1266 	IB_FLOW_SPEC_ETH	= 0x20,
1267 	IB_FLOW_SPEC_IB		= 0x22,
1268 	/* L3 header*/
1269 	IB_FLOW_SPEC_IPV4	= 0x30,
1270 	/* L4 headers*/
1271 	IB_FLOW_SPEC_TCP	= 0x40,
1272 	IB_FLOW_SPEC_UDP	= 0x41
1273 };
1274 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1275 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1276 
1277 /* Flow steering rule priority is set according to it's domain.
1278  * Lower domain value means higher priority.
1279  */
1280 enum ib_flow_domain {
1281 	IB_FLOW_DOMAIN_USER,
1282 	IB_FLOW_DOMAIN_ETHTOOL,
1283 	IB_FLOW_DOMAIN_RFS,
1284 	IB_FLOW_DOMAIN_NIC,
1285 	IB_FLOW_DOMAIN_NUM /* Must be last */
1286 };
1287 
1288 struct ib_flow_eth_filter {
1289 	u8	dst_mac[6];
1290 	u8	src_mac[6];
1291 	__be16	ether_type;
1292 	__be16	vlan_tag;
1293 };
1294 
1295 struct ib_flow_spec_eth {
1296 	enum ib_flow_spec_type	  type;
1297 	u16			  size;
1298 	struct ib_flow_eth_filter val;
1299 	struct ib_flow_eth_filter mask;
1300 };
1301 
1302 struct ib_flow_ib_filter {
1303 	__be16 dlid;
1304 	__u8   sl;
1305 };
1306 
1307 struct ib_flow_spec_ib {
1308 	enum ib_flow_spec_type	 type;
1309 	u16			 size;
1310 	struct ib_flow_ib_filter val;
1311 	struct ib_flow_ib_filter mask;
1312 };
1313 
1314 struct ib_flow_ipv4_filter {
1315 	__be32	src_ip;
1316 	__be32	dst_ip;
1317 };
1318 
1319 struct ib_flow_spec_ipv4 {
1320 	enum ib_flow_spec_type	   type;
1321 	u16			   size;
1322 	struct ib_flow_ipv4_filter val;
1323 	struct ib_flow_ipv4_filter mask;
1324 };
1325 
1326 struct ib_flow_tcp_udp_filter {
1327 	__be16	dst_port;
1328 	__be16	src_port;
1329 };
1330 
1331 struct ib_flow_spec_tcp_udp {
1332 	enum ib_flow_spec_type	      type;
1333 	u16			      size;
1334 	struct ib_flow_tcp_udp_filter val;
1335 	struct ib_flow_tcp_udp_filter mask;
1336 };
1337 
1338 union ib_flow_spec {
1339 	struct {
1340 		enum ib_flow_spec_type	type;
1341 		u16			size;
1342 	};
1343 	struct ib_flow_spec_eth		eth;
1344 	struct ib_flow_spec_ib		ib;
1345 	struct ib_flow_spec_ipv4        ipv4;
1346 	struct ib_flow_spec_tcp_udp	tcp_udp;
1347 };
1348 
1349 struct ib_flow_attr {
1350 	enum ib_flow_attr_type type;
1351 	u16	     size;
1352 	u16	     priority;
1353 	u32	     flags;
1354 	u8	     num_of_specs;
1355 	u8	     port;
1356 	/* Following are the optional layers according to user request
1357 	 * struct ib_flow_spec_xxx
1358 	 * struct ib_flow_spec_yyy
1359 	 */
1360 };
1361 
1362 struct ib_flow {
1363 	struct ib_qp		*qp;
1364 	struct ib_uobject	*uobject;
1365 };
1366 
1367 struct ib_mad;
1368 struct ib_grh;
1369 
1370 enum ib_process_mad_flags {
1371 	IB_MAD_IGNORE_MKEY	= 1,
1372 	IB_MAD_IGNORE_BKEY	= 2,
1373 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1374 };
1375 
1376 enum ib_mad_result {
1377 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1378 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1379 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1380 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1381 };
1382 
1383 #define IB_DEVICE_NAME_MAX 64
1384 
1385 struct ib_cache {
1386 	rwlock_t                lock;
1387 	struct ib_event_handler event_handler;
1388 	struct ib_pkey_cache  **pkey_cache;
1389 	struct ib_gid_cache   **gid_cache;
1390 	u8                     *lmc_cache;
1391 };
1392 
1393 struct ib_dma_mapping_ops {
1394 	int		(*mapping_error)(struct ib_device *dev,
1395 					 u64 dma_addr);
1396 	u64		(*map_single)(struct ib_device *dev,
1397 				      void *ptr, size_t size,
1398 				      enum dma_data_direction direction);
1399 	void		(*unmap_single)(struct ib_device *dev,
1400 					u64 addr, size_t size,
1401 					enum dma_data_direction direction);
1402 	u64		(*map_page)(struct ib_device *dev,
1403 				    struct page *page, unsigned long offset,
1404 				    size_t size,
1405 				    enum dma_data_direction direction);
1406 	void		(*unmap_page)(struct ib_device *dev,
1407 				      u64 addr, size_t size,
1408 				      enum dma_data_direction direction);
1409 	int		(*map_sg)(struct ib_device *dev,
1410 				  struct scatterlist *sg, int nents,
1411 				  enum dma_data_direction direction);
1412 	void		(*unmap_sg)(struct ib_device *dev,
1413 				    struct scatterlist *sg, int nents,
1414 				    enum dma_data_direction direction);
1415 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1416 					       u64 dma_handle,
1417 					       size_t size,
1418 					       enum dma_data_direction dir);
1419 	void		(*sync_single_for_device)(struct ib_device *dev,
1420 						  u64 dma_handle,
1421 						  size_t size,
1422 						  enum dma_data_direction dir);
1423 	void		*(*alloc_coherent)(struct ib_device *dev,
1424 					   size_t size,
1425 					   u64 *dma_handle,
1426 					   gfp_t flag);
1427 	void		(*free_coherent)(struct ib_device *dev,
1428 					 size_t size, void *cpu_addr,
1429 					 u64 dma_handle);
1430 };
1431 
1432 struct iw_cm_verbs;
1433 
1434 struct ib_device {
1435 	struct device                *dma_device;
1436 
1437 	char                          name[IB_DEVICE_NAME_MAX];
1438 
1439 	struct list_head              event_handler_list;
1440 	spinlock_t                    event_handler_lock;
1441 
1442 	spinlock_t                    client_data_lock;
1443 	struct list_head              core_list;
1444 	struct list_head              client_data_list;
1445 
1446 	struct ib_cache               cache;
1447 	int                          *pkey_tbl_len;
1448 	int                          *gid_tbl_len;
1449 
1450 	int			      num_comp_vectors;
1451 
1452 	struct iw_cm_verbs	     *iwcm;
1453 
1454 	int		           (*get_protocol_stats)(struct ib_device *device,
1455 							 union rdma_protocol_stats *stats);
1456 	int		           (*query_device)(struct ib_device *device,
1457 						   struct ib_device_attr *device_attr);
1458 	int		           (*query_port)(struct ib_device *device,
1459 						 u8 port_num,
1460 						 struct ib_port_attr *port_attr);
1461 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1462 						     u8 port_num);
1463 	int		           (*query_gid)(struct ib_device *device,
1464 						u8 port_num, int index,
1465 						union ib_gid *gid);
1466 	int		           (*query_pkey)(struct ib_device *device,
1467 						 u8 port_num, u16 index, u16 *pkey);
1468 	int		           (*modify_device)(struct ib_device *device,
1469 						    int device_modify_mask,
1470 						    struct ib_device_modify *device_modify);
1471 	int		           (*modify_port)(struct ib_device *device,
1472 						  u8 port_num, int port_modify_mask,
1473 						  struct ib_port_modify *port_modify);
1474 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1475 						     struct ib_udata *udata);
1476 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1477 	int                        (*mmap)(struct ib_ucontext *context,
1478 					   struct vm_area_struct *vma);
1479 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1480 					       struct ib_ucontext *context,
1481 					       struct ib_udata *udata);
1482 	int                        (*dealloc_pd)(struct ib_pd *pd);
1483 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1484 						struct ib_ah_attr *ah_attr);
1485 	int                        (*modify_ah)(struct ib_ah *ah,
1486 						struct ib_ah_attr *ah_attr);
1487 	int                        (*query_ah)(struct ib_ah *ah,
1488 					       struct ib_ah_attr *ah_attr);
1489 	int                        (*destroy_ah)(struct ib_ah *ah);
1490 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1491 						 struct ib_srq_init_attr *srq_init_attr,
1492 						 struct ib_udata *udata);
1493 	int                        (*modify_srq)(struct ib_srq *srq,
1494 						 struct ib_srq_attr *srq_attr,
1495 						 enum ib_srq_attr_mask srq_attr_mask,
1496 						 struct ib_udata *udata);
1497 	int                        (*query_srq)(struct ib_srq *srq,
1498 						struct ib_srq_attr *srq_attr);
1499 	int                        (*destroy_srq)(struct ib_srq *srq);
1500 	int                        (*post_srq_recv)(struct ib_srq *srq,
1501 						    struct ib_recv_wr *recv_wr,
1502 						    struct ib_recv_wr **bad_recv_wr);
1503 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1504 						struct ib_qp_init_attr *qp_init_attr,
1505 						struct ib_udata *udata);
1506 	int                        (*modify_qp)(struct ib_qp *qp,
1507 						struct ib_qp_attr *qp_attr,
1508 						int qp_attr_mask,
1509 						struct ib_udata *udata);
1510 	int                        (*query_qp)(struct ib_qp *qp,
1511 					       struct ib_qp_attr *qp_attr,
1512 					       int qp_attr_mask,
1513 					       struct ib_qp_init_attr *qp_init_attr);
1514 	int                        (*destroy_qp)(struct ib_qp *qp);
1515 	int                        (*post_send)(struct ib_qp *qp,
1516 						struct ib_send_wr *send_wr,
1517 						struct ib_send_wr **bad_send_wr);
1518 	int                        (*post_recv)(struct ib_qp *qp,
1519 						struct ib_recv_wr *recv_wr,
1520 						struct ib_recv_wr **bad_recv_wr);
1521 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1522 						int comp_vector,
1523 						struct ib_ucontext *context,
1524 						struct ib_udata *udata);
1525 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1526 						u16 cq_period);
1527 	int                        (*destroy_cq)(struct ib_cq *cq);
1528 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1529 						struct ib_udata *udata);
1530 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1531 					      struct ib_wc *wc);
1532 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1533 	int                        (*req_notify_cq)(struct ib_cq *cq,
1534 						    enum ib_cq_notify_flags flags);
1535 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1536 						      int wc_cnt);
1537 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1538 						 int mr_access_flags);
1539 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1540 						  struct ib_phys_buf *phys_buf_array,
1541 						  int num_phys_buf,
1542 						  int mr_access_flags,
1543 						  u64 *iova_start);
1544 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1545 						  u64 start, u64 length,
1546 						  u64 virt_addr,
1547 						  int mr_access_flags,
1548 						  struct ib_udata *udata);
1549 	int                        (*query_mr)(struct ib_mr *mr,
1550 					       struct ib_mr_attr *mr_attr);
1551 	int                        (*dereg_mr)(struct ib_mr *mr);
1552 	int                        (*destroy_mr)(struct ib_mr *mr);
1553 	struct ib_mr *		   (*create_mr)(struct ib_pd *pd,
1554 						struct ib_mr_init_attr *mr_init_attr);
1555 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1556 					       int max_page_list_len);
1557 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1558 								   int page_list_len);
1559 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1560 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1561 						    int mr_rereg_mask,
1562 						    struct ib_pd *pd,
1563 						    struct ib_phys_buf *phys_buf_array,
1564 						    int num_phys_buf,
1565 						    int mr_access_flags,
1566 						    u64 *iova_start);
1567 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1568 					       enum ib_mw_type type);
1569 	int                        (*bind_mw)(struct ib_qp *qp,
1570 					      struct ib_mw *mw,
1571 					      struct ib_mw_bind *mw_bind);
1572 	int                        (*dealloc_mw)(struct ib_mw *mw);
1573 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1574 						int mr_access_flags,
1575 						struct ib_fmr_attr *fmr_attr);
1576 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1577 						   u64 *page_list, int list_len,
1578 						   u64 iova);
1579 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1580 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1581 	int                        (*attach_mcast)(struct ib_qp *qp,
1582 						   union ib_gid *gid,
1583 						   u16 lid);
1584 	int                        (*detach_mcast)(struct ib_qp *qp,
1585 						   union ib_gid *gid,
1586 						   u16 lid);
1587 	int                        (*process_mad)(struct ib_device *device,
1588 						  int process_mad_flags,
1589 						  u8 port_num,
1590 						  struct ib_wc *in_wc,
1591 						  struct ib_grh *in_grh,
1592 						  struct ib_mad *in_mad,
1593 						  struct ib_mad *out_mad);
1594 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1595 						 struct ib_ucontext *ucontext,
1596 						 struct ib_udata *udata);
1597 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1598 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1599 						  struct ib_flow_attr
1600 						  *flow_attr,
1601 						  int domain);
1602 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1603 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1604 						      struct ib_mr_status *mr_status);
1605 
1606 	struct ib_dma_mapping_ops   *dma_ops;
1607 
1608 	struct module               *owner;
1609 	struct device                dev;
1610 	struct kobject               *ports_parent;
1611 	struct list_head             port_list;
1612 
1613 	enum {
1614 		IB_DEV_UNINITIALIZED,
1615 		IB_DEV_REGISTERED,
1616 		IB_DEV_UNREGISTERED
1617 	}                            reg_state;
1618 
1619 	int			     uverbs_abi_ver;
1620 	u64			     uverbs_cmd_mask;
1621 	u64			     uverbs_ex_cmd_mask;
1622 
1623 	char			     node_desc[64];
1624 	__be64			     node_guid;
1625 	u32			     local_dma_lkey;
1626 	u8                           node_type;
1627 	u8                           phys_port_cnt;
1628 };
1629 
1630 struct ib_client {
1631 	char  *name;
1632 	void (*add)   (struct ib_device *);
1633 	void (*remove)(struct ib_device *);
1634 
1635 	struct list_head list;
1636 };
1637 
1638 struct ib_device *ib_alloc_device(size_t size);
1639 void ib_dealloc_device(struct ib_device *device);
1640 
1641 int ib_register_device(struct ib_device *device,
1642 		       int (*port_callback)(struct ib_device *,
1643 					    u8, struct kobject *));
1644 void ib_unregister_device(struct ib_device *device);
1645 
1646 int ib_register_client   (struct ib_client *client);
1647 void ib_unregister_client(struct ib_client *client);
1648 
1649 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1650 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1651 			 void *data);
1652 
1653 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1654 {
1655 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1656 }
1657 
1658 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1659 {
1660 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1661 }
1662 
1663 /**
1664  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1665  * contains all required attributes and no attributes not allowed for
1666  * the given QP state transition.
1667  * @cur_state: Current QP state
1668  * @next_state: Next QP state
1669  * @type: QP type
1670  * @mask: Mask of supplied QP attributes
1671  * @ll : link layer of port
1672  *
1673  * This function is a helper function that a low-level driver's
1674  * modify_qp method can use to validate the consumer's input.  It
1675  * checks that cur_state and next_state are valid QP states, that a
1676  * transition from cur_state to next_state is allowed by the IB spec,
1677  * and that the attribute mask supplied is allowed for the transition.
1678  */
1679 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1680 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1681 		       enum rdma_link_layer ll);
1682 
1683 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1684 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1685 void ib_dispatch_event(struct ib_event *event);
1686 
1687 int ib_query_device(struct ib_device *device,
1688 		    struct ib_device_attr *device_attr);
1689 
1690 int ib_query_port(struct ib_device *device,
1691 		  u8 port_num, struct ib_port_attr *port_attr);
1692 
1693 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1694 					       u8 port_num);
1695 
1696 int ib_query_gid(struct ib_device *device,
1697 		 u8 port_num, int index, union ib_gid *gid);
1698 
1699 int ib_query_pkey(struct ib_device *device,
1700 		  u8 port_num, u16 index, u16 *pkey);
1701 
1702 int ib_modify_device(struct ib_device *device,
1703 		     int device_modify_mask,
1704 		     struct ib_device_modify *device_modify);
1705 
1706 int ib_modify_port(struct ib_device *device,
1707 		   u8 port_num, int port_modify_mask,
1708 		   struct ib_port_modify *port_modify);
1709 
1710 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1711 		u8 *port_num, u16 *index);
1712 
1713 int ib_find_pkey(struct ib_device *device,
1714 		 u8 port_num, u16 pkey, u16 *index);
1715 
1716 /**
1717  * ib_alloc_pd - Allocates an unused protection domain.
1718  * @device: The device on which to allocate the protection domain.
1719  *
1720  * A protection domain object provides an association between QPs, shared
1721  * receive queues, address handles, memory regions, and memory windows.
1722  */
1723 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1724 
1725 /**
1726  * ib_dealloc_pd - Deallocates a protection domain.
1727  * @pd: The protection domain to deallocate.
1728  */
1729 int ib_dealloc_pd(struct ib_pd *pd);
1730 
1731 /**
1732  * ib_create_ah - Creates an address handle for the given address vector.
1733  * @pd: The protection domain associated with the address handle.
1734  * @ah_attr: The attributes of the address vector.
1735  *
1736  * The address handle is used to reference a local or global destination
1737  * in all UD QP post sends.
1738  */
1739 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1740 
1741 /**
1742  * ib_init_ah_from_wc - Initializes address handle attributes from a
1743  *   work completion.
1744  * @device: Device on which the received message arrived.
1745  * @port_num: Port on which the received message arrived.
1746  * @wc: Work completion associated with the received message.
1747  * @grh: References the received global route header.  This parameter is
1748  *   ignored unless the work completion indicates that the GRH is valid.
1749  * @ah_attr: Returned attributes that can be used when creating an address
1750  *   handle for replying to the message.
1751  */
1752 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1753 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1754 
1755 /**
1756  * ib_create_ah_from_wc - Creates an address handle associated with the
1757  *   sender of the specified work completion.
1758  * @pd: The protection domain associated with the address handle.
1759  * @wc: Work completion information associated with a received message.
1760  * @grh: References the received global route header.  This parameter is
1761  *   ignored unless the work completion indicates that the GRH is valid.
1762  * @port_num: The outbound port number to associate with the address.
1763  *
1764  * The address handle is used to reference a local or global destination
1765  * in all UD QP post sends.
1766  */
1767 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1768 				   struct ib_grh *grh, u8 port_num);
1769 
1770 /**
1771  * ib_modify_ah - Modifies the address vector associated with an address
1772  *   handle.
1773  * @ah: The address handle to modify.
1774  * @ah_attr: The new address vector attributes to associate with the
1775  *   address handle.
1776  */
1777 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1778 
1779 /**
1780  * ib_query_ah - Queries the address vector associated with an address
1781  *   handle.
1782  * @ah: The address handle to query.
1783  * @ah_attr: The address vector attributes associated with the address
1784  *   handle.
1785  */
1786 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1787 
1788 /**
1789  * ib_destroy_ah - Destroys an address handle.
1790  * @ah: The address handle to destroy.
1791  */
1792 int ib_destroy_ah(struct ib_ah *ah);
1793 
1794 /**
1795  * ib_create_srq - Creates a SRQ associated with the specified protection
1796  *   domain.
1797  * @pd: The protection domain associated with the SRQ.
1798  * @srq_init_attr: A list of initial attributes required to create the
1799  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1800  *   the actual capabilities of the created SRQ.
1801  *
1802  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1803  * requested size of the SRQ, and set to the actual values allocated
1804  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1805  * will always be at least as large as the requested values.
1806  */
1807 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1808 			     struct ib_srq_init_attr *srq_init_attr);
1809 
1810 /**
1811  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1812  * @srq: The SRQ to modify.
1813  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1814  *   the current values of selected SRQ attributes are returned.
1815  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1816  *   are being modified.
1817  *
1818  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1819  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1820  * the number of receives queued drops below the limit.
1821  */
1822 int ib_modify_srq(struct ib_srq *srq,
1823 		  struct ib_srq_attr *srq_attr,
1824 		  enum ib_srq_attr_mask srq_attr_mask);
1825 
1826 /**
1827  * ib_query_srq - Returns the attribute list and current values for the
1828  *   specified SRQ.
1829  * @srq: The SRQ to query.
1830  * @srq_attr: The attributes of the specified SRQ.
1831  */
1832 int ib_query_srq(struct ib_srq *srq,
1833 		 struct ib_srq_attr *srq_attr);
1834 
1835 /**
1836  * ib_destroy_srq - Destroys the specified SRQ.
1837  * @srq: The SRQ to destroy.
1838  */
1839 int ib_destroy_srq(struct ib_srq *srq);
1840 
1841 /**
1842  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1843  * @srq: The SRQ to post the work request on.
1844  * @recv_wr: A list of work requests to post on the receive queue.
1845  * @bad_recv_wr: On an immediate failure, this parameter will reference
1846  *   the work request that failed to be posted on the QP.
1847  */
1848 static inline int ib_post_srq_recv(struct ib_srq *srq,
1849 				   struct ib_recv_wr *recv_wr,
1850 				   struct ib_recv_wr **bad_recv_wr)
1851 {
1852 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1853 }
1854 
1855 /**
1856  * ib_create_qp - Creates a QP associated with the specified protection
1857  *   domain.
1858  * @pd: The protection domain associated with the QP.
1859  * @qp_init_attr: A list of initial attributes required to create the
1860  *   QP.  If QP creation succeeds, then the attributes are updated to
1861  *   the actual capabilities of the created QP.
1862  */
1863 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1864 			   struct ib_qp_init_attr *qp_init_attr);
1865 
1866 /**
1867  * ib_modify_qp - Modifies the attributes for the specified QP and then
1868  *   transitions the QP to the given state.
1869  * @qp: The QP to modify.
1870  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1871  *   the current values of selected QP attributes are returned.
1872  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1873  *   are being modified.
1874  */
1875 int ib_modify_qp(struct ib_qp *qp,
1876 		 struct ib_qp_attr *qp_attr,
1877 		 int qp_attr_mask);
1878 
1879 /**
1880  * ib_query_qp - Returns the attribute list and current values for the
1881  *   specified QP.
1882  * @qp: The QP to query.
1883  * @qp_attr: The attributes of the specified QP.
1884  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1885  * @qp_init_attr: Additional attributes of the selected QP.
1886  *
1887  * The qp_attr_mask may be used to limit the query to gathering only the
1888  * selected attributes.
1889  */
1890 int ib_query_qp(struct ib_qp *qp,
1891 		struct ib_qp_attr *qp_attr,
1892 		int qp_attr_mask,
1893 		struct ib_qp_init_attr *qp_init_attr);
1894 
1895 /**
1896  * ib_destroy_qp - Destroys the specified QP.
1897  * @qp: The QP to destroy.
1898  */
1899 int ib_destroy_qp(struct ib_qp *qp);
1900 
1901 /**
1902  * ib_open_qp - Obtain a reference to an existing sharable QP.
1903  * @xrcd - XRC domain
1904  * @qp_open_attr: Attributes identifying the QP to open.
1905  *
1906  * Returns a reference to a sharable QP.
1907  */
1908 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1909 			 struct ib_qp_open_attr *qp_open_attr);
1910 
1911 /**
1912  * ib_close_qp - Release an external reference to a QP.
1913  * @qp: The QP handle to release
1914  *
1915  * The opened QP handle is released by the caller.  The underlying
1916  * shared QP is not destroyed until all internal references are released.
1917  */
1918 int ib_close_qp(struct ib_qp *qp);
1919 
1920 /**
1921  * ib_post_send - Posts a list of work requests to the send queue of
1922  *   the specified QP.
1923  * @qp: The QP to post the work request on.
1924  * @send_wr: A list of work requests to post on the send queue.
1925  * @bad_send_wr: On an immediate failure, this parameter will reference
1926  *   the work request that failed to be posted on the QP.
1927  *
1928  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1929  * error is returned, the QP state shall not be affected,
1930  * ib_post_send() will return an immediate error after queueing any
1931  * earlier work requests in the list.
1932  */
1933 static inline int ib_post_send(struct ib_qp *qp,
1934 			       struct ib_send_wr *send_wr,
1935 			       struct ib_send_wr **bad_send_wr)
1936 {
1937 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1938 }
1939 
1940 /**
1941  * ib_post_recv - Posts a list of work requests to the receive queue of
1942  *   the specified QP.
1943  * @qp: The QP to post the work request on.
1944  * @recv_wr: A list of work requests to post on the receive queue.
1945  * @bad_recv_wr: On an immediate failure, this parameter will reference
1946  *   the work request that failed to be posted on the QP.
1947  */
1948 static inline int ib_post_recv(struct ib_qp *qp,
1949 			       struct ib_recv_wr *recv_wr,
1950 			       struct ib_recv_wr **bad_recv_wr)
1951 {
1952 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1953 }
1954 
1955 /**
1956  * ib_create_cq - Creates a CQ on the specified device.
1957  * @device: The device on which to create the CQ.
1958  * @comp_handler: A user-specified callback that is invoked when a
1959  *   completion event occurs on the CQ.
1960  * @event_handler: A user-specified callback that is invoked when an
1961  *   asynchronous event not associated with a completion occurs on the CQ.
1962  * @cq_context: Context associated with the CQ returned to the user via
1963  *   the associated completion and event handlers.
1964  * @cqe: The minimum size of the CQ.
1965  * @comp_vector - Completion vector used to signal completion events.
1966  *     Must be >= 0 and < context->num_comp_vectors.
1967  *
1968  * Users can examine the cq structure to determine the actual CQ size.
1969  */
1970 struct ib_cq *ib_create_cq(struct ib_device *device,
1971 			   ib_comp_handler comp_handler,
1972 			   void (*event_handler)(struct ib_event *, void *),
1973 			   void *cq_context, int cqe, int comp_vector);
1974 
1975 /**
1976  * ib_resize_cq - Modifies the capacity of the CQ.
1977  * @cq: The CQ to resize.
1978  * @cqe: The minimum size of the CQ.
1979  *
1980  * Users can examine the cq structure to determine the actual CQ size.
1981  */
1982 int ib_resize_cq(struct ib_cq *cq, int cqe);
1983 
1984 /**
1985  * ib_modify_cq - Modifies moderation params of the CQ
1986  * @cq: The CQ to modify.
1987  * @cq_count: number of CQEs that will trigger an event
1988  * @cq_period: max period of time in usec before triggering an event
1989  *
1990  */
1991 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1992 
1993 /**
1994  * ib_destroy_cq - Destroys the specified CQ.
1995  * @cq: The CQ to destroy.
1996  */
1997 int ib_destroy_cq(struct ib_cq *cq);
1998 
1999 /**
2000  * ib_poll_cq - poll a CQ for completion(s)
2001  * @cq:the CQ being polled
2002  * @num_entries:maximum number of completions to return
2003  * @wc:array of at least @num_entries &struct ib_wc where completions
2004  *   will be returned
2005  *
2006  * Poll a CQ for (possibly multiple) completions.  If the return value
2007  * is < 0, an error occurred.  If the return value is >= 0, it is the
2008  * number of completions returned.  If the return value is
2009  * non-negative and < num_entries, then the CQ was emptied.
2010  */
2011 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2012 			     struct ib_wc *wc)
2013 {
2014 	return cq->device->poll_cq(cq, num_entries, wc);
2015 }
2016 
2017 /**
2018  * ib_peek_cq - Returns the number of unreaped completions currently
2019  *   on the specified CQ.
2020  * @cq: The CQ to peek.
2021  * @wc_cnt: A minimum number of unreaped completions to check for.
2022  *
2023  * If the number of unreaped completions is greater than or equal to wc_cnt,
2024  * this function returns wc_cnt, otherwise, it returns the actual number of
2025  * unreaped completions.
2026  */
2027 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2028 
2029 /**
2030  * ib_req_notify_cq - Request completion notification on a CQ.
2031  * @cq: The CQ to generate an event for.
2032  * @flags:
2033  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2034  *   to request an event on the next solicited event or next work
2035  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2036  *   may also be |ed in to request a hint about missed events, as
2037  *   described below.
2038  *
2039  * Return Value:
2040  *    < 0 means an error occurred while requesting notification
2041  *   == 0 means notification was requested successfully, and if
2042  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2043  *        were missed and it is safe to wait for another event.  In
2044  *        this case is it guaranteed that any work completions added
2045  *        to the CQ since the last CQ poll will trigger a completion
2046  *        notification event.
2047  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2048  *        in.  It means that the consumer must poll the CQ again to
2049  *        make sure it is empty to avoid missing an event because of a
2050  *        race between requesting notification and an entry being
2051  *        added to the CQ.  This return value means it is possible
2052  *        (but not guaranteed) that a work completion has been added
2053  *        to the CQ since the last poll without triggering a
2054  *        completion notification event.
2055  */
2056 static inline int ib_req_notify_cq(struct ib_cq *cq,
2057 				   enum ib_cq_notify_flags flags)
2058 {
2059 	return cq->device->req_notify_cq(cq, flags);
2060 }
2061 
2062 /**
2063  * ib_req_ncomp_notif - Request completion notification when there are
2064  *   at least the specified number of unreaped completions on the CQ.
2065  * @cq: The CQ to generate an event for.
2066  * @wc_cnt: The number of unreaped completions that should be on the
2067  *   CQ before an event is generated.
2068  */
2069 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2070 {
2071 	return cq->device->req_ncomp_notif ?
2072 		cq->device->req_ncomp_notif(cq, wc_cnt) :
2073 		-ENOSYS;
2074 }
2075 
2076 /**
2077  * ib_get_dma_mr - Returns a memory region for system memory that is
2078  *   usable for DMA.
2079  * @pd: The protection domain associated with the memory region.
2080  * @mr_access_flags: Specifies the memory access rights.
2081  *
2082  * Note that the ib_dma_*() functions defined below must be used
2083  * to create/destroy addresses used with the Lkey or Rkey returned
2084  * by ib_get_dma_mr().
2085  */
2086 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2087 
2088 /**
2089  * ib_dma_mapping_error - check a DMA addr for error
2090  * @dev: The device for which the dma_addr was created
2091  * @dma_addr: The DMA address to check
2092  */
2093 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2094 {
2095 	if (dev->dma_ops)
2096 		return dev->dma_ops->mapping_error(dev, dma_addr);
2097 	return dma_mapping_error(dev->dma_device, dma_addr);
2098 }
2099 
2100 /**
2101  * ib_dma_map_single - Map a kernel virtual address to DMA address
2102  * @dev: The device for which the dma_addr is to be created
2103  * @cpu_addr: The kernel virtual address
2104  * @size: The size of the region in bytes
2105  * @direction: The direction of the DMA
2106  */
2107 static inline u64 ib_dma_map_single(struct ib_device *dev,
2108 				    void *cpu_addr, size_t size,
2109 				    enum dma_data_direction direction)
2110 {
2111 	if (dev->dma_ops)
2112 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2113 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2114 }
2115 
2116 /**
2117  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2118  * @dev: The device for which the DMA address was created
2119  * @addr: The DMA address
2120  * @size: The size of the region in bytes
2121  * @direction: The direction of the DMA
2122  */
2123 static inline void ib_dma_unmap_single(struct ib_device *dev,
2124 				       u64 addr, size_t size,
2125 				       enum dma_data_direction direction)
2126 {
2127 	if (dev->dma_ops)
2128 		dev->dma_ops->unmap_single(dev, addr, size, direction);
2129 	else
2130 		dma_unmap_single(dev->dma_device, addr, size, direction);
2131 }
2132 
2133 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2134 					  void *cpu_addr, size_t size,
2135 					  enum dma_data_direction direction,
2136 					  struct dma_attrs *attrs)
2137 {
2138 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2139 				    direction, attrs);
2140 }
2141 
2142 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2143 					     u64 addr, size_t size,
2144 					     enum dma_data_direction direction,
2145 					     struct dma_attrs *attrs)
2146 {
2147 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2148 				      direction, attrs);
2149 }
2150 
2151 /**
2152  * ib_dma_map_page - Map a physical page to DMA address
2153  * @dev: The device for which the dma_addr is to be created
2154  * @page: The page to be mapped
2155  * @offset: The offset within the page
2156  * @size: The size of the region in bytes
2157  * @direction: The direction of the DMA
2158  */
2159 static inline u64 ib_dma_map_page(struct ib_device *dev,
2160 				  struct page *page,
2161 				  unsigned long offset,
2162 				  size_t size,
2163 					 enum dma_data_direction direction)
2164 {
2165 	if (dev->dma_ops)
2166 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2167 	return dma_map_page(dev->dma_device, page, offset, size, direction);
2168 }
2169 
2170 /**
2171  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2172  * @dev: The device for which the DMA address was created
2173  * @addr: The DMA address
2174  * @size: The size of the region in bytes
2175  * @direction: The direction of the DMA
2176  */
2177 static inline void ib_dma_unmap_page(struct ib_device *dev,
2178 				     u64 addr, size_t size,
2179 				     enum dma_data_direction direction)
2180 {
2181 	if (dev->dma_ops)
2182 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2183 	else
2184 		dma_unmap_page(dev->dma_device, addr, size, direction);
2185 }
2186 
2187 /**
2188  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2189  * @dev: The device for which the DMA addresses are to be created
2190  * @sg: The array of scatter/gather entries
2191  * @nents: The number of scatter/gather entries
2192  * @direction: The direction of the DMA
2193  */
2194 static inline int ib_dma_map_sg(struct ib_device *dev,
2195 				struct scatterlist *sg, int nents,
2196 				enum dma_data_direction direction)
2197 {
2198 	if (dev->dma_ops)
2199 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2200 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2201 }
2202 
2203 /**
2204  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2205  * @dev: The device for which the DMA addresses were created
2206  * @sg: The array of scatter/gather entries
2207  * @nents: The number of scatter/gather entries
2208  * @direction: The direction of the DMA
2209  */
2210 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2211 				   struct scatterlist *sg, int nents,
2212 				   enum dma_data_direction direction)
2213 {
2214 	if (dev->dma_ops)
2215 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2216 	else
2217 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2218 }
2219 
2220 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2221 				      struct scatterlist *sg, int nents,
2222 				      enum dma_data_direction direction,
2223 				      struct dma_attrs *attrs)
2224 {
2225 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2226 }
2227 
2228 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2229 					 struct scatterlist *sg, int nents,
2230 					 enum dma_data_direction direction,
2231 					 struct dma_attrs *attrs)
2232 {
2233 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2234 }
2235 /**
2236  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2237  * @dev: The device for which the DMA addresses were created
2238  * @sg: The scatter/gather entry
2239  *
2240  * Note: this function is obsolete. To do: change all occurrences of
2241  * ib_sg_dma_address() into sg_dma_address().
2242  */
2243 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2244 				    struct scatterlist *sg)
2245 {
2246 	return sg_dma_address(sg);
2247 }
2248 
2249 /**
2250  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2251  * @dev: The device for which the DMA addresses were created
2252  * @sg: The scatter/gather entry
2253  *
2254  * Note: this function is obsolete. To do: change all occurrences of
2255  * ib_sg_dma_len() into sg_dma_len().
2256  */
2257 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2258 					 struct scatterlist *sg)
2259 {
2260 	return sg_dma_len(sg);
2261 }
2262 
2263 /**
2264  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2265  * @dev: The device for which the DMA address was created
2266  * @addr: The DMA address
2267  * @size: The size of the region in bytes
2268  * @dir: The direction of the DMA
2269  */
2270 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2271 					      u64 addr,
2272 					      size_t size,
2273 					      enum dma_data_direction dir)
2274 {
2275 	if (dev->dma_ops)
2276 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2277 	else
2278 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2279 }
2280 
2281 /**
2282  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2283  * @dev: The device for which the DMA address was created
2284  * @addr: The DMA address
2285  * @size: The size of the region in bytes
2286  * @dir: The direction of the DMA
2287  */
2288 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2289 						 u64 addr,
2290 						 size_t size,
2291 						 enum dma_data_direction dir)
2292 {
2293 	if (dev->dma_ops)
2294 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2295 	else
2296 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2297 }
2298 
2299 /**
2300  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2301  * @dev: The device for which the DMA address is requested
2302  * @size: The size of the region to allocate in bytes
2303  * @dma_handle: A pointer for returning the DMA address of the region
2304  * @flag: memory allocator flags
2305  */
2306 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2307 					   size_t size,
2308 					   u64 *dma_handle,
2309 					   gfp_t flag)
2310 {
2311 	if (dev->dma_ops)
2312 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2313 	else {
2314 		dma_addr_t handle;
2315 		void *ret;
2316 
2317 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2318 		*dma_handle = handle;
2319 		return ret;
2320 	}
2321 }
2322 
2323 /**
2324  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2325  * @dev: The device for which the DMA addresses were allocated
2326  * @size: The size of the region
2327  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2328  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2329  */
2330 static inline void ib_dma_free_coherent(struct ib_device *dev,
2331 					size_t size, void *cpu_addr,
2332 					u64 dma_handle)
2333 {
2334 	if (dev->dma_ops)
2335 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2336 	else
2337 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2338 }
2339 
2340 /**
2341  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2342  *   by an HCA.
2343  * @pd: The protection domain associated assigned to the registered region.
2344  * @phys_buf_array: Specifies a list of physical buffers to use in the
2345  *   memory region.
2346  * @num_phys_buf: Specifies the size of the phys_buf_array.
2347  * @mr_access_flags: Specifies the memory access rights.
2348  * @iova_start: The offset of the region's starting I/O virtual address.
2349  */
2350 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2351 			     struct ib_phys_buf *phys_buf_array,
2352 			     int num_phys_buf,
2353 			     int mr_access_flags,
2354 			     u64 *iova_start);
2355 
2356 /**
2357  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2358  *   Conceptually, this call performs the functions deregister memory region
2359  *   followed by register physical memory region.  Where possible,
2360  *   resources are reused instead of deallocated and reallocated.
2361  * @mr: The memory region to modify.
2362  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2363  *   properties of the memory region are being modified.
2364  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2365  *   the new protection domain to associated with the memory region,
2366  *   otherwise, this parameter is ignored.
2367  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2368  *   field specifies a list of physical buffers to use in the new
2369  *   translation, otherwise, this parameter is ignored.
2370  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2371  *   field specifies the size of the phys_buf_array, otherwise, this
2372  *   parameter is ignored.
2373  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2374  *   field specifies the new memory access rights, otherwise, this
2375  *   parameter is ignored.
2376  * @iova_start: The offset of the region's starting I/O virtual address.
2377  */
2378 int ib_rereg_phys_mr(struct ib_mr *mr,
2379 		     int mr_rereg_mask,
2380 		     struct ib_pd *pd,
2381 		     struct ib_phys_buf *phys_buf_array,
2382 		     int num_phys_buf,
2383 		     int mr_access_flags,
2384 		     u64 *iova_start);
2385 
2386 /**
2387  * ib_query_mr - Retrieves information about a specific memory region.
2388  * @mr: The memory region to retrieve information about.
2389  * @mr_attr: The attributes of the specified memory region.
2390  */
2391 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2392 
2393 /**
2394  * ib_dereg_mr - Deregisters a memory region and removes it from the
2395  *   HCA translation table.
2396  * @mr: The memory region to deregister.
2397  *
2398  * This function can fail, if the memory region has memory windows bound to it.
2399  */
2400 int ib_dereg_mr(struct ib_mr *mr);
2401 
2402 
2403 /**
2404  * ib_create_mr - Allocates a memory region that may be used for
2405  *     signature handover operations.
2406  * @pd: The protection domain associated with the region.
2407  * @mr_init_attr: memory region init attributes.
2408  */
2409 struct ib_mr *ib_create_mr(struct ib_pd *pd,
2410 			   struct ib_mr_init_attr *mr_init_attr);
2411 
2412 /**
2413  * ib_destroy_mr - Destroys a memory region that was created using
2414  *     ib_create_mr and removes it from HW translation tables.
2415  * @mr: The memory region to destroy.
2416  *
2417  * This function can fail, if the memory region has memory windows bound to it.
2418  */
2419 int ib_destroy_mr(struct ib_mr *mr);
2420 
2421 /**
2422  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2423  *   IB_WR_FAST_REG_MR send work request.
2424  * @pd: The protection domain associated with the region.
2425  * @max_page_list_len: requested max physical buffer list length to be
2426  *   used with fast register work requests for this MR.
2427  */
2428 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2429 
2430 /**
2431  * ib_alloc_fast_reg_page_list - Allocates a page list array
2432  * @device - ib device pointer.
2433  * @page_list_len - size of the page list array to be allocated.
2434  *
2435  * This allocates and returns a struct ib_fast_reg_page_list * and a
2436  * page_list array that is at least page_list_len in size.  The actual
2437  * size is returned in max_page_list_len.  The caller is responsible
2438  * for initializing the contents of the page_list array before posting
2439  * a send work request with the IB_WC_FAST_REG_MR opcode.
2440  *
2441  * The page_list array entries must be translated using one of the
2442  * ib_dma_*() functions just like the addresses passed to
2443  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2444  * ib_fast_reg_page_list must not be modified by the caller until the
2445  * IB_WC_FAST_REG_MR work request completes.
2446  */
2447 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2448 				struct ib_device *device, int page_list_len);
2449 
2450 /**
2451  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2452  *   page list array.
2453  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2454  */
2455 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2456 
2457 /**
2458  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2459  *   R_Key and L_Key.
2460  * @mr - struct ib_mr pointer to be updated.
2461  * @newkey - new key to be used.
2462  */
2463 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2464 {
2465 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2466 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2467 }
2468 
2469 /**
2470  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2471  * for calculating a new rkey for type 2 memory windows.
2472  * @rkey - the rkey to increment.
2473  */
2474 static inline u32 ib_inc_rkey(u32 rkey)
2475 {
2476 	const u32 mask = 0x000000ff;
2477 	return ((rkey + 1) & mask) | (rkey & ~mask);
2478 }
2479 
2480 /**
2481  * ib_alloc_mw - Allocates a memory window.
2482  * @pd: The protection domain associated with the memory window.
2483  * @type: The type of the memory window (1 or 2).
2484  */
2485 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2486 
2487 /**
2488  * ib_bind_mw - Posts a work request to the send queue of the specified
2489  *   QP, which binds the memory window to the given address range and
2490  *   remote access attributes.
2491  * @qp: QP to post the bind work request on.
2492  * @mw: The memory window to bind.
2493  * @mw_bind: Specifies information about the memory window, including
2494  *   its address range, remote access rights, and associated memory region.
2495  *
2496  * If there is no immediate error, the function will update the rkey member
2497  * of the mw parameter to its new value. The bind operation can still fail
2498  * asynchronously.
2499  */
2500 static inline int ib_bind_mw(struct ib_qp *qp,
2501 			     struct ib_mw *mw,
2502 			     struct ib_mw_bind *mw_bind)
2503 {
2504 	/* XXX reference counting in corresponding MR? */
2505 	return mw->device->bind_mw ?
2506 		mw->device->bind_mw(qp, mw, mw_bind) :
2507 		-ENOSYS;
2508 }
2509 
2510 /**
2511  * ib_dealloc_mw - Deallocates a memory window.
2512  * @mw: The memory window to deallocate.
2513  */
2514 int ib_dealloc_mw(struct ib_mw *mw);
2515 
2516 /**
2517  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2518  * @pd: The protection domain associated with the unmapped region.
2519  * @mr_access_flags: Specifies the memory access rights.
2520  * @fmr_attr: Attributes of the unmapped region.
2521  *
2522  * A fast memory region must be mapped before it can be used as part of
2523  * a work request.
2524  */
2525 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2526 			    int mr_access_flags,
2527 			    struct ib_fmr_attr *fmr_attr);
2528 
2529 /**
2530  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2531  * @fmr: The fast memory region to associate with the pages.
2532  * @page_list: An array of physical pages to map to the fast memory region.
2533  * @list_len: The number of pages in page_list.
2534  * @iova: The I/O virtual address to use with the mapped region.
2535  */
2536 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2537 				  u64 *page_list, int list_len,
2538 				  u64 iova)
2539 {
2540 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2541 }
2542 
2543 /**
2544  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2545  * @fmr_list: A linked list of fast memory regions to unmap.
2546  */
2547 int ib_unmap_fmr(struct list_head *fmr_list);
2548 
2549 /**
2550  * ib_dealloc_fmr - Deallocates a fast memory region.
2551  * @fmr: The fast memory region to deallocate.
2552  */
2553 int ib_dealloc_fmr(struct ib_fmr *fmr);
2554 
2555 /**
2556  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2557  * @qp: QP to attach to the multicast group.  The QP must be type
2558  *   IB_QPT_UD.
2559  * @gid: Multicast group GID.
2560  * @lid: Multicast group LID in host byte order.
2561  *
2562  * In order to send and receive multicast packets, subnet
2563  * administration must have created the multicast group and configured
2564  * the fabric appropriately.  The port associated with the specified
2565  * QP must also be a member of the multicast group.
2566  */
2567 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568 
2569 /**
2570  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2571  * @qp: QP to detach from the multicast group.
2572  * @gid: Multicast group GID.
2573  * @lid: Multicast group LID in host byte order.
2574  */
2575 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2576 
2577 /**
2578  * ib_alloc_xrcd - Allocates an XRC domain.
2579  * @device: The device on which to allocate the XRC domain.
2580  */
2581 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2582 
2583 /**
2584  * ib_dealloc_xrcd - Deallocates an XRC domain.
2585  * @xrcd: The XRC domain to deallocate.
2586  */
2587 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2588 
2589 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2590 			       struct ib_flow_attr *flow_attr, int domain);
2591 int ib_destroy_flow(struct ib_flow *flow_id);
2592 
2593 static inline int ib_check_mr_access(int flags)
2594 {
2595 	/*
2596 	 * Local write permission is required if remote write or
2597 	 * remote atomic permission is also requested.
2598 	 */
2599 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2600 	    !(flags & IB_ACCESS_LOCAL_WRITE))
2601 		return -EINVAL;
2602 
2603 	return 0;
2604 }
2605 
2606 /**
2607  * ib_check_mr_status: lightweight check of MR status.
2608  *     This routine may provide status checks on a selected
2609  *     ib_mr. first use is for signature status check.
2610  *
2611  * @mr: A memory region.
2612  * @check_mask: Bitmask of which checks to perform from
2613  *     ib_mr_status_check enumeration.
2614  * @mr_status: The container of relevant status checks.
2615  *     failed checks will be indicated in the status bitmask
2616  *     and the relevant info shall be in the error item.
2617  */
2618 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2619 		       struct ib_mr_status *mr_status);
2620 
2621 #endif /* IB_VERBS_H */
2622