xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 31b90347)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 
52 #include <linux/atomic.h>
53 #include <asm/uaccess.h>
54 
55 extern struct workqueue_struct *ib_wq;
56 
57 union ib_gid {
58 	u8	raw[16];
59 	struct {
60 		__be64	subnet_prefix;
61 		__be64	interface_id;
62 	} global;
63 };
64 
65 enum rdma_node_type {
66 	/* IB values map to NodeInfo:NodeType. */
67 	RDMA_NODE_IB_CA 	= 1,
68 	RDMA_NODE_IB_SWITCH,
69 	RDMA_NODE_IB_ROUTER,
70 	RDMA_NODE_RNIC,
71 	RDMA_NODE_USNIC,
72 };
73 
74 enum rdma_transport_type {
75 	RDMA_TRANSPORT_IB,
76 	RDMA_TRANSPORT_IWARP,
77 	RDMA_TRANSPORT_USNIC
78 };
79 
80 enum rdma_transport_type
81 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
82 
83 enum rdma_link_layer {
84 	IB_LINK_LAYER_UNSPECIFIED,
85 	IB_LINK_LAYER_INFINIBAND,
86 	IB_LINK_LAYER_ETHERNET,
87 };
88 
89 enum ib_device_cap_flags {
90 	IB_DEVICE_RESIZE_MAX_WR		= 1,
91 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
92 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
93 	IB_DEVICE_RAW_MULTI		= (1<<3),
94 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
95 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
96 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
97 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
98 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
99 	IB_DEVICE_INIT_TYPE		= (1<<9),
100 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
101 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
102 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
103 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
104 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
105 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
106 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
107 	IB_DEVICE_MEM_WINDOW		= (1<<17),
108 	/*
109 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
110 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
111 	 * messages and can verify the validity of checksum for
112 	 * incoming messages.  Setting this flag implies that the
113 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
114 	 */
115 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
116 	IB_DEVICE_UD_TSO		= (1<<19),
117 	IB_DEVICE_XRC			= (1<<20),
118 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
119 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
120 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
121 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
122 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
123 };
124 
125 enum ib_atomic_cap {
126 	IB_ATOMIC_NONE,
127 	IB_ATOMIC_HCA,
128 	IB_ATOMIC_GLOB
129 };
130 
131 struct ib_device_attr {
132 	u64			fw_ver;
133 	__be64			sys_image_guid;
134 	u64			max_mr_size;
135 	u64			page_size_cap;
136 	u32			vendor_id;
137 	u32			vendor_part_id;
138 	u32			hw_ver;
139 	int			max_qp;
140 	int			max_qp_wr;
141 	int			device_cap_flags;
142 	int			max_sge;
143 	int			max_sge_rd;
144 	int			max_cq;
145 	int			max_cqe;
146 	int			max_mr;
147 	int			max_pd;
148 	int			max_qp_rd_atom;
149 	int			max_ee_rd_atom;
150 	int			max_res_rd_atom;
151 	int			max_qp_init_rd_atom;
152 	int			max_ee_init_rd_atom;
153 	enum ib_atomic_cap	atomic_cap;
154 	enum ib_atomic_cap	masked_atomic_cap;
155 	int			max_ee;
156 	int			max_rdd;
157 	int			max_mw;
158 	int			max_raw_ipv6_qp;
159 	int			max_raw_ethy_qp;
160 	int			max_mcast_grp;
161 	int			max_mcast_qp_attach;
162 	int			max_total_mcast_qp_attach;
163 	int			max_ah;
164 	int			max_fmr;
165 	int			max_map_per_fmr;
166 	int			max_srq;
167 	int			max_srq_wr;
168 	int			max_srq_sge;
169 	unsigned int		max_fast_reg_page_list_len;
170 	u16			max_pkeys;
171 	u8			local_ca_ack_delay;
172 };
173 
174 enum ib_mtu {
175 	IB_MTU_256  = 1,
176 	IB_MTU_512  = 2,
177 	IB_MTU_1024 = 3,
178 	IB_MTU_2048 = 4,
179 	IB_MTU_4096 = 5
180 };
181 
182 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
183 {
184 	switch (mtu) {
185 	case IB_MTU_256:  return  256;
186 	case IB_MTU_512:  return  512;
187 	case IB_MTU_1024: return 1024;
188 	case IB_MTU_2048: return 2048;
189 	case IB_MTU_4096: return 4096;
190 	default: 	  return -1;
191 	}
192 }
193 
194 enum ib_port_state {
195 	IB_PORT_NOP		= 0,
196 	IB_PORT_DOWN		= 1,
197 	IB_PORT_INIT		= 2,
198 	IB_PORT_ARMED		= 3,
199 	IB_PORT_ACTIVE		= 4,
200 	IB_PORT_ACTIVE_DEFER	= 5
201 };
202 
203 enum ib_port_cap_flags {
204 	IB_PORT_SM				= 1 <<  1,
205 	IB_PORT_NOTICE_SUP			= 1 <<  2,
206 	IB_PORT_TRAP_SUP			= 1 <<  3,
207 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
208 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
209 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
210 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
211 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
212 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
213 	IB_PORT_SM_DISABLED			= 1 << 10,
214 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
215 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
216 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
217 	IB_PORT_CM_SUP				= 1 << 16,
218 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
219 	IB_PORT_REINIT_SUP			= 1 << 18,
220 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
221 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
222 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
223 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
224 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
225 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
226 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
227 };
228 
229 enum ib_port_width {
230 	IB_WIDTH_1X	= 1,
231 	IB_WIDTH_4X	= 2,
232 	IB_WIDTH_8X	= 4,
233 	IB_WIDTH_12X	= 8
234 };
235 
236 static inline int ib_width_enum_to_int(enum ib_port_width width)
237 {
238 	switch (width) {
239 	case IB_WIDTH_1X:  return  1;
240 	case IB_WIDTH_4X:  return  4;
241 	case IB_WIDTH_8X:  return  8;
242 	case IB_WIDTH_12X: return 12;
243 	default: 	  return -1;
244 	}
245 }
246 
247 enum ib_port_speed {
248 	IB_SPEED_SDR	= 1,
249 	IB_SPEED_DDR	= 2,
250 	IB_SPEED_QDR	= 4,
251 	IB_SPEED_FDR10	= 8,
252 	IB_SPEED_FDR	= 16,
253 	IB_SPEED_EDR	= 32
254 };
255 
256 struct ib_protocol_stats {
257 	/* TBD... */
258 };
259 
260 struct iw_protocol_stats {
261 	u64	ipInReceives;
262 	u64	ipInHdrErrors;
263 	u64	ipInTooBigErrors;
264 	u64	ipInNoRoutes;
265 	u64	ipInAddrErrors;
266 	u64	ipInUnknownProtos;
267 	u64	ipInTruncatedPkts;
268 	u64	ipInDiscards;
269 	u64	ipInDelivers;
270 	u64	ipOutForwDatagrams;
271 	u64	ipOutRequests;
272 	u64	ipOutDiscards;
273 	u64	ipOutNoRoutes;
274 	u64	ipReasmTimeout;
275 	u64	ipReasmReqds;
276 	u64	ipReasmOKs;
277 	u64	ipReasmFails;
278 	u64	ipFragOKs;
279 	u64	ipFragFails;
280 	u64	ipFragCreates;
281 	u64	ipInMcastPkts;
282 	u64	ipOutMcastPkts;
283 	u64	ipInBcastPkts;
284 	u64	ipOutBcastPkts;
285 
286 	u64	tcpRtoAlgorithm;
287 	u64	tcpRtoMin;
288 	u64	tcpRtoMax;
289 	u64	tcpMaxConn;
290 	u64	tcpActiveOpens;
291 	u64	tcpPassiveOpens;
292 	u64	tcpAttemptFails;
293 	u64	tcpEstabResets;
294 	u64	tcpCurrEstab;
295 	u64	tcpInSegs;
296 	u64	tcpOutSegs;
297 	u64	tcpRetransSegs;
298 	u64	tcpInErrs;
299 	u64	tcpOutRsts;
300 };
301 
302 union rdma_protocol_stats {
303 	struct ib_protocol_stats	ib;
304 	struct iw_protocol_stats	iw;
305 };
306 
307 struct ib_port_attr {
308 	enum ib_port_state	state;
309 	enum ib_mtu		max_mtu;
310 	enum ib_mtu		active_mtu;
311 	int			gid_tbl_len;
312 	u32			port_cap_flags;
313 	u32			max_msg_sz;
314 	u32			bad_pkey_cntr;
315 	u32			qkey_viol_cntr;
316 	u16			pkey_tbl_len;
317 	u16			lid;
318 	u16			sm_lid;
319 	u8			lmc;
320 	u8			max_vl_num;
321 	u8			sm_sl;
322 	u8			subnet_timeout;
323 	u8			init_type_reply;
324 	u8			active_width;
325 	u8			active_speed;
326 	u8                      phys_state;
327 };
328 
329 enum ib_device_modify_flags {
330 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
331 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
332 };
333 
334 struct ib_device_modify {
335 	u64	sys_image_guid;
336 	char	node_desc[64];
337 };
338 
339 enum ib_port_modify_flags {
340 	IB_PORT_SHUTDOWN		= 1,
341 	IB_PORT_INIT_TYPE		= (1<<2),
342 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
343 };
344 
345 struct ib_port_modify {
346 	u32	set_port_cap_mask;
347 	u32	clr_port_cap_mask;
348 	u8	init_type;
349 };
350 
351 enum ib_event_type {
352 	IB_EVENT_CQ_ERR,
353 	IB_EVENT_QP_FATAL,
354 	IB_EVENT_QP_REQ_ERR,
355 	IB_EVENT_QP_ACCESS_ERR,
356 	IB_EVENT_COMM_EST,
357 	IB_EVENT_SQ_DRAINED,
358 	IB_EVENT_PATH_MIG,
359 	IB_EVENT_PATH_MIG_ERR,
360 	IB_EVENT_DEVICE_FATAL,
361 	IB_EVENT_PORT_ACTIVE,
362 	IB_EVENT_PORT_ERR,
363 	IB_EVENT_LID_CHANGE,
364 	IB_EVENT_PKEY_CHANGE,
365 	IB_EVENT_SM_CHANGE,
366 	IB_EVENT_SRQ_ERR,
367 	IB_EVENT_SRQ_LIMIT_REACHED,
368 	IB_EVENT_QP_LAST_WQE_REACHED,
369 	IB_EVENT_CLIENT_REREGISTER,
370 	IB_EVENT_GID_CHANGE,
371 };
372 
373 struct ib_event {
374 	struct ib_device	*device;
375 	union {
376 		struct ib_cq	*cq;
377 		struct ib_qp	*qp;
378 		struct ib_srq	*srq;
379 		u8		port_num;
380 	} element;
381 	enum ib_event_type	event;
382 };
383 
384 struct ib_event_handler {
385 	struct ib_device *device;
386 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
387 	struct list_head  list;
388 };
389 
390 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
391 	do {							\
392 		(_ptr)->device  = _device;			\
393 		(_ptr)->handler = _handler;			\
394 		INIT_LIST_HEAD(&(_ptr)->list);			\
395 	} while (0)
396 
397 struct ib_global_route {
398 	union ib_gid	dgid;
399 	u32		flow_label;
400 	u8		sgid_index;
401 	u8		hop_limit;
402 	u8		traffic_class;
403 };
404 
405 struct ib_grh {
406 	__be32		version_tclass_flow;
407 	__be16		paylen;
408 	u8		next_hdr;
409 	u8		hop_limit;
410 	union ib_gid	sgid;
411 	union ib_gid	dgid;
412 };
413 
414 enum {
415 	IB_MULTICAST_QPN = 0xffffff
416 };
417 
418 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
419 
420 enum ib_ah_flags {
421 	IB_AH_GRH	= 1
422 };
423 
424 enum ib_rate {
425 	IB_RATE_PORT_CURRENT = 0,
426 	IB_RATE_2_5_GBPS = 2,
427 	IB_RATE_5_GBPS   = 5,
428 	IB_RATE_10_GBPS  = 3,
429 	IB_RATE_20_GBPS  = 6,
430 	IB_RATE_30_GBPS  = 4,
431 	IB_RATE_40_GBPS  = 7,
432 	IB_RATE_60_GBPS  = 8,
433 	IB_RATE_80_GBPS  = 9,
434 	IB_RATE_120_GBPS = 10,
435 	IB_RATE_14_GBPS  = 11,
436 	IB_RATE_56_GBPS  = 12,
437 	IB_RATE_112_GBPS = 13,
438 	IB_RATE_168_GBPS = 14,
439 	IB_RATE_25_GBPS  = 15,
440 	IB_RATE_100_GBPS = 16,
441 	IB_RATE_200_GBPS = 17,
442 	IB_RATE_300_GBPS = 18
443 };
444 
445 /**
446  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
447  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
448  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
449  * @rate: rate to convert.
450  */
451 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
452 
453 /**
454  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
455  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
456  * @rate: rate to convert.
457  */
458 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
459 
460 /**
461  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
462  * enum.
463  * @mult: multiple to convert.
464  */
465 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
466 
467 struct ib_ah_attr {
468 	struct ib_global_route	grh;
469 	u16			dlid;
470 	u8			sl;
471 	u8			src_path_bits;
472 	u8			static_rate;
473 	u8			ah_flags;
474 	u8			port_num;
475 };
476 
477 enum ib_wc_status {
478 	IB_WC_SUCCESS,
479 	IB_WC_LOC_LEN_ERR,
480 	IB_WC_LOC_QP_OP_ERR,
481 	IB_WC_LOC_EEC_OP_ERR,
482 	IB_WC_LOC_PROT_ERR,
483 	IB_WC_WR_FLUSH_ERR,
484 	IB_WC_MW_BIND_ERR,
485 	IB_WC_BAD_RESP_ERR,
486 	IB_WC_LOC_ACCESS_ERR,
487 	IB_WC_REM_INV_REQ_ERR,
488 	IB_WC_REM_ACCESS_ERR,
489 	IB_WC_REM_OP_ERR,
490 	IB_WC_RETRY_EXC_ERR,
491 	IB_WC_RNR_RETRY_EXC_ERR,
492 	IB_WC_LOC_RDD_VIOL_ERR,
493 	IB_WC_REM_INV_RD_REQ_ERR,
494 	IB_WC_REM_ABORT_ERR,
495 	IB_WC_INV_EECN_ERR,
496 	IB_WC_INV_EEC_STATE_ERR,
497 	IB_WC_FATAL_ERR,
498 	IB_WC_RESP_TIMEOUT_ERR,
499 	IB_WC_GENERAL_ERR
500 };
501 
502 enum ib_wc_opcode {
503 	IB_WC_SEND,
504 	IB_WC_RDMA_WRITE,
505 	IB_WC_RDMA_READ,
506 	IB_WC_COMP_SWAP,
507 	IB_WC_FETCH_ADD,
508 	IB_WC_BIND_MW,
509 	IB_WC_LSO,
510 	IB_WC_LOCAL_INV,
511 	IB_WC_FAST_REG_MR,
512 	IB_WC_MASKED_COMP_SWAP,
513 	IB_WC_MASKED_FETCH_ADD,
514 /*
515  * Set value of IB_WC_RECV so consumers can test if a completion is a
516  * receive by testing (opcode & IB_WC_RECV).
517  */
518 	IB_WC_RECV			= 1 << 7,
519 	IB_WC_RECV_RDMA_WITH_IMM
520 };
521 
522 enum ib_wc_flags {
523 	IB_WC_GRH		= 1,
524 	IB_WC_WITH_IMM		= (1<<1),
525 	IB_WC_WITH_INVALIDATE	= (1<<2),
526 	IB_WC_IP_CSUM_OK	= (1<<3),
527 };
528 
529 struct ib_wc {
530 	u64			wr_id;
531 	enum ib_wc_status	status;
532 	enum ib_wc_opcode	opcode;
533 	u32			vendor_err;
534 	u32			byte_len;
535 	struct ib_qp	       *qp;
536 	union {
537 		__be32		imm_data;
538 		u32		invalidate_rkey;
539 	} ex;
540 	u32			src_qp;
541 	int			wc_flags;
542 	u16			pkey_index;
543 	u16			slid;
544 	u8			sl;
545 	u8			dlid_path_bits;
546 	u8			port_num;	/* valid only for DR SMPs on switches */
547 };
548 
549 enum ib_cq_notify_flags {
550 	IB_CQ_SOLICITED			= 1 << 0,
551 	IB_CQ_NEXT_COMP			= 1 << 1,
552 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
553 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
554 };
555 
556 enum ib_srq_type {
557 	IB_SRQT_BASIC,
558 	IB_SRQT_XRC
559 };
560 
561 enum ib_srq_attr_mask {
562 	IB_SRQ_MAX_WR	= 1 << 0,
563 	IB_SRQ_LIMIT	= 1 << 1,
564 };
565 
566 struct ib_srq_attr {
567 	u32	max_wr;
568 	u32	max_sge;
569 	u32	srq_limit;
570 };
571 
572 struct ib_srq_init_attr {
573 	void		      (*event_handler)(struct ib_event *, void *);
574 	void		       *srq_context;
575 	struct ib_srq_attr	attr;
576 	enum ib_srq_type	srq_type;
577 
578 	union {
579 		struct {
580 			struct ib_xrcd *xrcd;
581 			struct ib_cq   *cq;
582 		} xrc;
583 	} ext;
584 };
585 
586 struct ib_qp_cap {
587 	u32	max_send_wr;
588 	u32	max_recv_wr;
589 	u32	max_send_sge;
590 	u32	max_recv_sge;
591 	u32	max_inline_data;
592 };
593 
594 enum ib_sig_type {
595 	IB_SIGNAL_ALL_WR,
596 	IB_SIGNAL_REQ_WR
597 };
598 
599 enum ib_qp_type {
600 	/*
601 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
602 	 * here (and in that order) since the MAD layer uses them as
603 	 * indices into a 2-entry table.
604 	 */
605 	IB_QPT_SMI,
606 	IB_QPT_GSI,
607 
608 	IB_QPT_RC,
609 	IB_QPT_UC,
610 	IB_QPT_UD,
611 	IB_QPT_RAW_IPV6,
612 	IB_QPT_RAW_ETHERTYPE,
613 	IB_QPT_RAW_PACKET = 8,
614 	IB_QPT_XRC_INI = 9,
615 	IB_QPT_XRC_TGT,
616 	IB_QPT_MAX,
617 	/* Reserve a range for qp types internal to the low level driver.
618 	 * These qp types will not be visible at the IB core layer, so the
619 	 * IB_QPT_MAX usages should not be affected in the core layer
620 	 */
621 	IB_QPT_RESERVED1 = 0x1000,
622 	IB_QPT_RESERVED2,
623 	IB_QPT_RESERVED3,
624 	IB_QPT_RESERVED4,
625 	IB_QPT_RESERVED5,
626 	IB_QPT_RESERVED6,
627 	IB_QPT_RESERVED7,
628 	IB_QPT_RESERVED8,
629 	IB_QPT_RESERVED9,
630 	IB_QPT_RESERVED10,
631 };
632 
633 enum ib_qp_create_flags {
634 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
635 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
636 	/* reserve bits 26-31 for low level drivers' internal use */
637 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
638 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
639 };
640 
641 
642 /*
643  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
644  * callback to destroy the passed in QP.
645  */
646 
647 struct ib_qp_init_attr {
648 	void                  (*event_handler)(struct ib_event *, void *);
649 	void		       *qp_context;
650 	struct ib_cq	       *send_cq;
651 	struct ib_cq	       *recv_cq;
652 	struct ib_srq	       *srq;
653 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
654 	struct ib_qp_cap	cap;
655 	enum ib_sig_type	sq_sig_type;
656 	enum ib_qp_type		qp_type;
657 	enum ib_qp_create_flags	create_flags;
658 	u8			port_num; /* special QP types only */
659 };
660 
661 struct ib_qp_open_attr {
662 	void                  (*event_handler)(struct ib_event *, void *);
663 	void		       *qp_context;
664 	u32			qp_num;
665 	enum ib_qp_type		qp_type;
666 };
667 
668 enum ib_rnr_timeout {
669 	IB_RNR_TIMER_655_36 =  0,
670 	IB_RNR_TIMER_000_01 =  1,
671 	IB_RNR_TIMER_000_02 =  2,
672 	IB_RNR_TIMER_000_03 =  3,
673 	IB_RNR_TIMER_000_04 =  4,
674 	IB_RNR_TIMER_000_06 =  5,
675 	IB_RNR_TIMER_000_08 =  6,
676 	IB_RNR_TIMER_000_12 =  7,
677 	IB_RNR_TIMER_000_16 =  8,
678 	IB_RNR_TIMER_000_24 =  9,
679 	IB_RNR_TIMER_000_32 = 10,
680 	IB_RNR_TIMER_000_48 = 11,
681 	IB_RNR_TIMER_000_64 = 12,
682 	IB_RNR_TIMER_000_96 = 13,
683 	IB_RNR_TIMER_001_28 = 14,
684 	IB_RNR_TIMER_001_92 = 15,
685 	IB_RNR_TIMER_002_56 = 16,
686 	IB_RNR_TIMER_003_84 = 17,
687 	IB_RNR_TIMER_005_12 = 18,
688 	IB_RNR_TIMER_007_68 = 19,
689 	IB_RNR_TIMER_010_24 = 20,
690 	IB_RNR_TIMER_015_36 = 21,
691 	IB_RNR_TIMER_020_48 = 22,
692 	IB_RNR_TIMER_030_72 = 23,
693 	IB_RNR_TIMER_040_96 = 24,
694 	IB_RNR_TIMER_061_44 = 25,
695 	IB_RNR_TIMER_081_92 = 26,
696 	IB_RNR_TIMER_122_88 = 27,
697 	IB_RNR_TIMER_163_84 = 28,
698 	IB_RNR_TIMER_245_76 = 29,
699 	IB_RNR_TIMER_327_68 = 30,
700 	IB_RNR_TIMER_491_52 = 31
701 };
702 
703 enum ib_qp_attr_mask {
704 	IB_QP_STATE			= 1,
705 	IB_QP_CUR_STATE			= (1<<1),
706 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
707 	IB_QP_ACCESS_FLAGS		= (1<<3),
708 	IB_QP_PKEY_INDEX		= (1<<4),
709 	IB_QP_PORT			= (1<<5),
710 	IB_QP_QKEY			= (1<<6),
711 	IB_QP_AV			= (1<<7),
712 	IB_QP_PATH_MTU			= (1<<8),
713 	IB_QP_TIMEOUT			= (1<<9),
714 	IB_QP_RETRY_CNT			= (1<<10),
715 	IB_QP_RNR_RETRY			= (1<<11),
716 	IB_QP_RQ_PSN			= (1<<12),
717 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
718 	IB_QP_ALT_PATH			= (1<<14),
719 	IB_QP_MIN_RNR_TIMER		= (1<<15),
720 	IB_QP_SQ_PSN			= (1<<16),
721 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
722 	IB_QP_PATH_MIG_STATE		= (1<<18),
723 	IB_QP_CAP			= (1<<19),
724 	IB_QP_DEST_QPN			= (1<<20)
725 };
726 
727 enum ib_qp_state {
728 	IB_QPS_RESET,
729 	IB_QPS_INIT,
730 	IB_QPS_RTR,
731 	IB_QPS_RTS,
732 	IB_QPS_SQD,
733 	IB_QPS_SQE,
734 	IB_QPS_ERR
735 };
736 
737 enum ib_mig_state {
738 	IB_MIG_MIGRATED,
739 	IB_MIG_REARM,
740 	IB_MIG_ARMED
741 };
742 
743 enum ib_mw_type {
744 	IB_MW_TYPE_1 = 1,
745 	IB_MW_TYPE_2 = 2
746 };
747 
748 struct ib_qp_attr {
749 	enum ib_qp_state	qp_state;
750 	enum ib_qp_state	cur_qp_state;
751 	enum ib_mtu		path_mtu;
752 	enum ib_mig_state	path_mig_state;
753 	u32			qkey;
754 	u32			rq_psn;
755 	u32			sq_psn;
756 	u32			dest_qp_num;
757 	int			qp_access_flags;
758 	struct ib_qp_cap	cap;
759 	struct ib_ah_attr	ah_attr;
760 	struct ib_ah_attr	alt_ah_attr;
761 	u16			pkey_index;
762 	u16			alt_pkey_index;
763 	u8			en_sqd_async_notify;
764 	u8			sq_draining;
765 	u8			max_rd_atomic;
766 	u8			max_dest_rd_atomic;
767 	u8			min_rnr_timer;
768 	u8			port_num;
769 	u8			timeout;
770 	u8			retry_cnt;
771 	u8			rnr_retry;
772 	u8			alt_port_num;
773 	u8			alt_timeout;
774 };
775 
776 enum ib_wr_opcode {
777 	IB_WR_RDMA_WRITE,
778 	IB_WR_RDMA_WRITE_WITH_IMM,
779 	IB_WR_SEND,
780 	IB_WR_SEND_WITH_IMM,
781 	IB_WR_RDMA_READ,
782 	IB_WR_ATOMIC_CMP_AND_SWP,
783 	IB_WR_ATOMIC_FETCH_AND_ADD,
784 	IB_WR_LSO,
785 	IB_WR_SEND_WITH_INV,
786 	IB_WR_RDMA_READ_WITH_INV,
787 	IB_WR_LOCAL_INV,
788 	IB_WR_FAST_REG_MR,
789 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
790 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
791 	IB_WR_BIND_MW,
792 	/* reserve values for low level drivers' internal use.
793 	 * These values will not be used at all in the ib core layer.
794 	 */
795 	IB_WR_RESERVED1 = 0xf0,
796 	IB_WR_RESERVED2,
797 	IB_WR_RESERVED3,
798 	IB_WR_RESERVED4,
799 	IB_WR_RESERVED5,
800 	IB_WR_RESERVED6,
801 	IB_WR_RESERVED7,
802 	IB_WR_RESERVED8,
803 	IB_WR_RESERVED9,
804 	IB_WR_RESERVED10,
805 };
806 
807 enum ib_send_flags {
808 	IB_SEND_FENCE		= 1,
809 	IB_SEND_SIGNALED	= (1<<1),
810 	IB_SEND_SOLICITED	= (1<<2),
811 	IB_SEND_INLINE		= (1<<3),
812 	IB_SEND_IP_CSUM		= (1<<4),
813 
814 	/* reserve bits 26-31 for low level drivers' internal use */
815 	IB_SEND_RESERVED_START	= (1 << 26),
816 	IB_SEND_RESERVED_END	= (1 << 31),
817 };
818 
819 struct ib_sge {
820 	u64	addr;
821 	u32	length;
822 	u32	lkey;
823 };
824 
825 struct ib_fast_reg_page_list {
826 	struct ib_device       *device;
827 	u64		       *page_list;
828 	unsigned int		max_page_list_len;
829 };
830 
831 /**
832  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
833  * @mr: A memory region to bind the memory window to.
834  * @addr: The address where the memory window should begin.
835  * @length: The length of the memory window, in bytes.
836  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
837  *
838  * This struct contains the shared parameters for type 1 and type 2
839  * memory window bind operations.
840  */
841 struct ib_mw_bind_info {
842 	struct ib_mr   *mr;
843 	u64		addr;
844 	u64		length;
845 	int		mw_access_flags;
846 };
847 
848 struct ib_send_wr {
849 	struct ib_send_wr      *next;
850 	u64			wr_id;
851 	struct ib_sge	       *sg_list;
852 	int			num_sge;
853 	enum ib_wr_opcode	opcode;
854 	int			send_flags;
855 	union {
856 		__be32		imm_data;
857 		u32		invalidate_rkey;
858 	} ex;
859 	union {
860 		struct {
861 			u64	remote_addr;
862 			u32	rkey;
863 		} rdma;
864 		struct {
865 			u64	remote_addr;
866 			u64	compare_add;
867 			u64	swap;
868 			u64	compare_add_mask;
869 			u64	swap_mask;
870 			u32	rkey;
871 		} atomic;
872 		struct {
873 			struct ib_ah *ah;
874 			void   *header;
875 			int     hlen;
876 			int     mss;
877 			u32	remote_qpn;
878 			u32	remote_qkey;
879 			u16	pkey_index; /* valid for GSI only */
880 			u8	port_num;   /* valid for DR SMPs on switch only */
881 		} ud;
882 		struct {
883 			u64				iova_start;
884 			struct ib_fast_reg_page_list   *page_list;
885 			unsigned int			page_shift;
886 			unsigned int			page_list_len;
887 			u32				length;
888 			int				access_flags;
889 			u32				rkey;
890 		} fast_reg;
891 		struct {
892 			struct ib_mw            *mw;
893 			/* The new rkey for the memory window. */
894 			u32                      rkey;
895 			struct ib_mw_bind_info   bind_info;
896 		} bind_mw;
897 	} wr;
898 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
899 };
900 
901 struct ib_recv_wr {
902 	struct ib_recv_wr      *next;
903 	u64			wr_id;
904 	struct ib_sge	       *sg_list;
905 	int			num_sge;
906 };
907 
908 enum ib_access_flags {
909 	IB_ACCESS_LOCAL_WRITE	= 1,
910 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
911 	IB_ACCESS_REMOTE_READ	= (1<<2),
912 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
913 	IB_ACCESS_MW_BIND	= (1<<4),
914 	IB_ZERO_BASED		= (1<<5)
915 };
916 
917 struct ib_phys_buf {
918 	u64      addr;
919 	u64      size;
920 };
921 
922 struct ib_mr_attr {
923 	struct ib_pd	*pd;
924 	u64		device_virt_addr;
925 	u64		size;
926 	int		mr_access_flags;
927 	u32		lkey;
928 	u32		rkey;
929 };
930 
931 enum ib_mr_rereg_flags {
932 	IB_MR_REREG_TRANS	= 1,
933 	IB_MR_REREG_PD		= (1<<1),
934 	IB_MR_REREG_ACCESS	= (1<<2)
935 };
936 
937 /**
938  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
939  * @wr_id:      Work request id.
940  * @send_flags: Flags from ib_send_flags enum.
941  * @bind_info:  More parameters of the bind operation.
942  */
943 struct ib_mw_bind {
944 	u64                    wr_id;
945 	int                    send_flags;
946 	struct ib_mw_bind_info bind_info;
947 };
948 
949 struct ib_fmr_attr {
950 	int	max_pages;
951 	int	max_maps;
952 	u8	page_shift;
953 };
954 
955 struct ib_ucontext {
956 	struct ib_device       *device;
957 	struct list_head	pd_list;
958 	struct list_head	mr_list;
959 	struct list_head	mw_list;
960 	struct list_head	cq_list;
961 	struct list_head	qp_list;
962 	struct list_head	srq_list;
963 	struct list_head	ah_list;
964 	struct list_head	xrcd_list;
965 	struct list_head	rule_list;
966 	int			closing;
967 };
968 
969 struct ib_uobject {
970 	u64			user_handle;	/* handle given to us by userspace */
971 	struct ib_ucontext     *context;	/* associated user context */
972 	void		       *object;		/* containing object */
973 	struct list_head	list;		/* link to context's list */
974 	int			id;		/* index into kernel idr */
975 	struct kref		ref;
976 	struct rw_semaphore	mutex;		/* protects .live */
977 	int			live;
978 };
979 
980 struct ib_udata {
981 	const void __user *inbuf;
982 	void __user *outbuf;
983 	size_t       inlen;
984 	size_t       outlen;
985 };
986 
987 struct ib_pd {
988 	struct ib_device       *device;
989 	struct ib_uobject      *uobject;
990 	atomic_t          	usecnt; /* count all resources */
991 };
992 
993 struct ib_xrcd {
994 	struct ib_device       *device;
995 	atomic_t		usecnt; /* count all exposed resources */
996 	struct inode	       *inode;
997 
998 	struct mutex		tgt_qp_mutex;
999 	struct list_head	tgt_qp_list;
1000 };
1001 
1002 struct ib_ah {
1003 	struct ib_device	*device;
1004 	struct ib_pd		*pd;
1005 	struct ib_uobject	*uobject;
1006 };
1007 
1008 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1009 
1010 struct ib_cq {
1011 	struct ib_device       *device;
1012 	struct ib_uobject      *uobject;
1013 	ib_comp_handler   	comp_handler;
1014 	void                  (*event_handler)(struct ib_event *, void *);
1015 	void                   *cq_context;
1016 	int               	cqe;
1017 	atomic_t          	usecnt; /* count number of work queues */
1018 };
1019 
1020 struct ib_srq {
1021 	struct ib_device       *device;
1022 	struct ib_pd	       *pd;
1023 	struct ib_uobject      *uobject;
1024 	void		      (*event_handler)(struct ib_event *, void *);
1025 	void		       *srq_context;
1026 	enum ib_srq_type	srq_type;
1027 	atomic_t		usecnt;
1028 
1029 	union {
1030 		struct {
1031 			struct ib_xrcd *xrcd;
1032 			struct ib_cq   *cq;
1033 			u32		srq_num;
1034 		} xrc;
1035 	} ext;
1036 };
1037 
1038 struct ib_qp {
1039 	struct ib_device       *device;
1040 	struct ib_pd	       *pd;
1041 	struct ib_cq	       *send_cq;
1042 	struct ib_cq	       *recv_cq;
1043 	struct ib_srq	       *srq;
1044 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1045 	struct list_head	xrcd_list;
1046 	/* count times opened, mcast attaches, flow attaches */
1047 	atomic_t		usecnt;
1048 	struct list_head	open_list;
1049 	struct ib_qp           *real_qp;
1050 	struct ib_uobject      *uobject;
1051 	void                  (*event_handler)(struct ib_event *, void *);
1052 	void		       *qp_context;
1053 	u32			qp_num;
1054 	enum ib_qp_type		qp_type;
1055 };
1056 
1057 struct ib_mr {
1058 	struct ib_device  *device;
1059 	struct ib_pd	  *pd;
1060 	struct ib_uobject *uobject;
1061 	u32		   lkey;
1062 	u32		   rkey;
1063 	atomic_t	   usecnt; /* count number of MWs */
1064 };
1065 
1066 struct ib_mw {
1067 	struct ib_device	*device;
1068 	struct ib_pd		*pd;
1069 	struct ib_uobject	*uobject;
1070 	u32			rkey;
1071 	enum ib_mw_type         type;
1072 };
1073 
1074 struct ib_fmr {
1075 	struct ib_device	*device;
1076 	struct ib_pd		*pd;
1077 	struct list_head	list;
1078 	u32			lkey;
1079 	u32			rkey;
1080 };
1081 
1082 /* Supported steering options */
1083 enum ib_flow_attr_type {
1084 	/* steering according to rule specifications */
1085 	IB_FLOW_ATTR_NORMAL		= 0x0,
1086 	/* default unicast and multicast rule -
1087 	 * receive all Eth traffic which isn't steered to any QP
1088 	 */
1089 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1090 	/* default multicast rule -
1091 	 * receive all Eth multicast traffic which isn't steered to any QP
1092 	 */
1093 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1094 	/* sniffer rule - receive all port traffic */
1095 	IB_FLOW_ATTR_SNIFFER		= 0x3
1096 };
1097 
1098 /* Supported steering header types */
1099 enum ib_flow_spec_type {
1100 	/* L2 headers*/
1101 	IB_FLOW_SPEC_ETH	= 0x20,
1102 	/* L3 header*/
1103 	IB_FLOW_SPEC_IPV4	= 0x30,
1104 	/* L4 headers*/
1105 	IB_FLOW_SPEC_TCP	= 0x40,
1106 	IB_FLOW_SPEC_UDP	= 0x41
1107 };
1108 
1109 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1110 
1111 /* Flow steering rule priority is set according to it's domain.
1112  * Lower domain value means higher priority.
1113  */
1114 enum ib_flow_domain {
1115 	IB_FLOW_DOMAIN_USER,
1116 	IB_FLOW_DOMAIN_ETHTOOL,
1117 	IB_FLOW_DOMAIN_RFS,
1118 	IB_FLOW_DOMAIN_NIC,
1119 	IB_FLOW_DOMAIN_NUM /* Must be last */
1120 };
1121 
1122 struct ib_flow_eth_filter {
1123 	u8	dst_mac[6];
1124 	u8	src_mac[6];
1125 	__be16	ether_type;
1126 	__be16	vlan_tag;
1127 };
1128 
1129 struct ib_flow_spec_eth {
1130 	enum ib_flow_spec_type	  type;
1131 	u16			  size;
1132 	struct ib_flow_eth_filter val;
1133 	struct ib_flow_eth_filter mask;
1134 };
1135 
1136 struct ib_flow_ipv4_filter {
1137 	__be32	src_ip;
1138 	__be32	dst_ip;
1139 };
1140 
1141 struct ib_flow_spec_ipv4 {
1142 	enum ib_flow_spec_type	   type;
1143 	u16			   size;
1144 	struct ib_flow_ipv4_filter val;
1145 	struct ib_flow_ipv4_filter mask;
1146 };
1147 
1148 struct ib_flow_tcp_udp_filter {
1149 	__be16	dst_port;
1150 	__be16	src_port;
1151 };
1152 
1153 struct ib_flow_spec_tcp_udp {
1154 	enum ib_flow_spec_type	      type;
1155 	u16			      size;
1156 	struct ib_flow_tcp_udp_filter val;
1157 	struct ib_flow_tcp_udp_filter mask;
1158 };
1159 
1160 union ib_flow_spec {
1161 	struct {
1162 		enum ib_flow_spec_type	type;
1163 		u16			size;
1164 	};
1165 	struct ib_flow_spec_eth		eth;
1166 	struct ib_flow_spec_ipv4        ipv4;
1167 	struct ib_flow_spec_tcp_udp	tcp_udp;
1168 };
1169 
1170 struct ib_flow_attr {
1171 	enum ib_flow_attr_type type;
1172 	u16	     size;
1173 	u16	     priority;
1174 	u32	     flags;
1175 	u8	     num_of_specs;
1176 	u8	     port;
1177 	/* Following are the optional layers according to user request
1178 	 * struct ib_flow_spec_xxx
1179 	 * struct ib_flow_spec_yyy
1180 	 */
1181 };
1182 
1183 struct ib_flow {
1184 	struct ib_qp		*qp;
1185 	struct ib_uobject	*uobject;
1186 };
1187 
1188 struct ib_mad;
1189 struct ib_grh;
1190 
1191 enum ib_process_mad_flags {
1192 	IB_MAD_IGNORE_MKEY	= 1,
1193 	IB_MAD_IGNORE_BKEY	= 2,
1194 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1195 };
1196 
1197 enum ib_mad_result {
1198 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1199 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1200 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1201 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1202 };
1203 
1204 #define IB_DEVICE_NAME_MAX 64
1205 
1206 struct ib_cache {
1207 	rwlock_t                lock;
1208 	struct ib_event_handler event_handler;
1209 	struct ib_pkey_cache  **pkey_cache;
1210 	struct ib_gid_cache   **gid_cache;
1211 	u8                     *lmc_cache;
1212 };
1213 
1214 struct ib_dma_mapping_ops {
1215 	int		(*mapping_error)(struct ib_device *dev,
1216 					 u64 dma_addr);
1217 	u64		(*map_single)(struct ib_device *dev,
1218 				      void *ptr, size_t size,
1219 				      enum dma_data_direction direction);
1220 	void		(*unmap_single)(struct ib_device *dev,
1221 					u64 addr, size_t size,
1222 					enum dma_data_direction direction);
1223 	u64		(*map_page)(struct ib_device *dev,
1224 				    struct page *page, unsigned long offset,
1225 				    size_t size,
1226 				    enum dma_data_direction direction);
1227 	void		(*unmap_page)(struct ib_device *dev,
1228 				      u64 addr, size_t size,
1229 				      enum dma_data_direction direction);
1230 	int		(*map_sg)(struct ib_device *dev,
1231 				  struct scatterlist *sg, int nents,
1232 				  enum dma_data_direction direction);
1233 	void		(*unmap_sg)(struct ib_device *dev,
1234 				    struct scatterlist *sg, int nents,
1235 				    enum dma_data_direction direction);
1236 	u64		(*dma_address)(struct ib_device *dev,
1237 				       struct scatterlist *sg);
1238 	unsigned int	(*dma_len)(struct ib_device *dev,
1239 				   struct scatterlist *sg);
1240 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1241 					       u64 dma_handle,
1242 					       size_t size,
1243 					       enum dma_data_direction dir);
1244 	void		(*sync_single_for_device)(struct ib_device *dev,
1245 						  u64 dma_handle,
1246 						  size_t size,
1247 						  enum dma_data_direction dir);
1248 	void		*(*alloc_coherent)(struct ib_device *dev,
1249 					   size_t size,
1250 					   u64 *dma_handle,
1251 					   gfp_t flag);
1252 	void		(*free_coherent)(struct ib_device *dev,
1253 					 size_t size, void *cpu_addr,
1254 					 u64 dma_handle);
1255 };
1256 
1257 struct iw_cm_verbs;
1258 
1259 struct ib_device {
1260 	struct device                *dma_device;
1261 
1262 	char                          name[IB_DEVICE_NAME_MAX];
1263 
1264 	struct list_head              event_handler_list;
1265 	spinlock_t                    event_handler_lock;
1266 
1267 	spinlock_t                    client_data_lock;
1268 	struct list_head              core_list;
1269 	struct list_head              client_data_list;
1270 
1271 	struct ib_cache               cache;
1272 	int                          *pkey_tbl_len;
1273 	int                          *gid_tbl_len;
1274 
1275 	int			      num_comp_vectors;
1276 
1277 	struct iw_cm_verbs	     *iwcm;
1278 
1279 	int		           (*get_protocol_stats)(struct ib_device *device,
1280 							 union rdma_protocol_stats *stats);
1281 	int		           (*query_device)(struct ib_device *device,
1282 						   struct ib_device_attr *device_attr);
1283 	int		           (*query_port)(struct ib_device *device,
1284 						 u8 port_num,
1285 						 struct ib_port_attr *port_attr);
1286 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1287 						     u8 port_num);
1288 	int		           (*query_gid)(struct ib_device *device,
1289 						u8 port_num, int index,
1290 						union ib_gid *gid);
1291 	int		           (*query_pkey)(struct ib_device *device,
1292 						 u8 port_num, u16 index, u16 *pkey);
1293 	int		           (*modify_device)(struct ib_device *device,
1294 						    int device_modify_mask,
1295 						    struct ib_device_modify *device_modify);
1296 	int		           (*modify_port)(struct ib_device *device,
1297 						  u8 port_num, int port_modify_mask,
1298 						  struct ib_port_modify *port_modify);
1299 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1300 						     struct ib_udata *udata);
1301 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1302 	int                        (*mmap)(struct ib_ucontext *context,
1303 					   struct vm_area_struct *vma);
1304 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1305 					       struct ib_ucontext *context,
1306 					       struct ib_udata *udata);
1307 	int                        (*dealloc_pd)(struct ib_pd *pd);
1308 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1309 						struct ib_ah_attr *ah_attr);
1310 	int                        (*modify_ah)(struct ib_ah *ah,
1311 						struct ib_ah_attr *ah_attr);
1312 	int                        (*query_ah)(struct ib_ah *ah,
1313 					       struct ib_ah_attr *ah_attr);
1314 	int                        (*destroy_ah)(struct ib_ah *ah);
1315 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1316 						 struct ib_srq_init_attr *srq_init_attr,
1317 						 struct ib_udata *udata);
1318 	int                        (*modify_srq)(struct ib_srq *srq,
1319 						 struct ib_srq_attr *srq_attr,
1320 						 enum ib_srq_attr_mask srq_attr_mask,
1321 						 struct ib_udata *udata);
1322 	int                        (*query_srq)(struct ib_srq *srq,
1323 						struct ib_srq_attr *srq_attr);
1324 	int                        (*destroy_srq)(struct ib_srq *srq);
1325 	int                        (*post_srq_recv)(struct ib_srq *srq,
1326 						    struct ib_recv_wr *recv_wr,
1327 						    struct ib_recv_wr **bad_recv_wr);
1328 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1329 						struct ib_qp_init_attr *qp_init_attr,
1330 						struct ib_udata *udata);
1331 	int                        (*modify_qp)(struct ib_qp *qp,
1332 						struct ib_qp_attr *qp_attr,
1333 						int qp_attr_mask,
1334 						struct ib_udata *udata);
1335 	int                        (*query_qp)(struct ib_qp *qp,
1336 					       struct ib_qp_attr *qp_attr,
1337 					       int qp_attr_mask,
1338 					       struct ib_qp_init_attr *qp_init_attr);
1339 	int                        (*destroy_qp)(struct ib_qp *qp);
1340 	int                        (*post_send)(struct ib_qp *qp,
1341 						struct ib_send_wr *send_wr,
1342 						struct ib_send_wr **bad_send_wr);
1343 	int                        (*post_recv)(struct ib_qp *qp,
1344 						struct ib_recv_wr *recv_wr,
1345 						struct ib_recv_wr **bad_recv_wr);
1346 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1347 						int comp_vector,
1348 						struct ib_ucontext *context,
1349 						struct ib_udata *udata);
1350 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1351 						u16 cq_period);
1352 	int                        (*destroy_cq)(struct ib_cq *cq);
1353 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1354 						struct ib_udata *udata);
1355 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1356 					      struct ib_wc *wc);
1357 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1358 	int                        (*req_notify_cq)(struct ib_cq *cq,
1359 						    enum ib_cq_notify_flags flags);
1360 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1361 						      int wc_cnt);
1362 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1363 						 int mr_access_flags);
1364 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1365 						  struct ib_phys_buf *phys_buf_array,
1366 						  int num_phys_buf,
1367 						  int mr_access_flags,
1368 						  u64 *iova_start);
1369 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1370 						  u64 start, u64 length,
1371 						  u64 virt_addr,
1372 						  int mr_access_flags,
1373 						  struct ib_udata *udata);
1374 	int                        (*query_mr)(struct ib_mr *mr,
1375 					       struct ib_mr_attr *mr_attr);
1376 	int                        (*dereg_mr)(struct ib_mr *mr);
1377 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1378 					       int max_page_list_len);
1379 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1380 								   int page_list_len);
1381 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1382 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1383 						    int mr_rereg_mask,
1384 						    struct ib_pd *pd,
1385 						    struct ib_phys_buf *phys_buf_array,
1386 						    int num_phys_buf,
1387 						    int mr_access_flags,
1388 						    u64 *iova_start);
1389 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1390 					       enum ib_mw_type type);
1391 	int                        (*bind_mw)(struct ib_qp *qp,
1392 					      struct ib_mw *mw,
1393 					      struct ib_mw_bind *mw_bind);
1394 	int                        (*dealloc_mw)(struct ib_mw *mw);
1395 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1396 						int mr_access_flags,
1397 						struct ib_fmr_attr *fmr_attr);
1398 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1399 						   u64 *page_list, int list_len,
1400 						   u64 iova);
1401 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1402 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1403 	int                        (*attach_mcast)(struct ib_qp *qp,
1404 						   union ib_gid *gid,
1405 						   u16 lid);
1406 	int                        (*detach_mcast)(struct ib_qp *qp,
1407 						   union ib_gid *gid,
1408 						   u16 lid);
1409 	int                        (*process_mad)(struct ib_device *device,
1410 						  int process_mad_flags,
1411 						  u8 port_num,
1412 						  struct ib_wc *in_wc,
1413 						  struct ib_grh *in_grh,
1414 						  struct ib_mad *in_mad,
1415 						  struct ib_mad *out_mad);
1416 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1417 						 struct ib_ucontext *ucontext,
1418 						 struct ib_udata *udata);
1419 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1420 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1421 						  struct ib_flow_attr
1422 						  *flow_attr,
1423 						  int domain);
1424 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1425 
1426 	struct ib_dma_mapping_ops   *dma_ops;
1427 
1428 	struct module               *owner;
1429 	struct device                dev;
1430 	struct kobject               *ports_parent;
1431 	struct list_head             port_list;
1432 
1433 	enum {
1434 		IB_DEV_UNINITIALIZED,
1435 		IB_DEV_REGISTERED,
1436 		IB_DEV_UNREGISTERED
1437 	}                            reg_state;
1438 
1439 	int			     uverbs_abi_ver;
1440 	u64			     uverbs_cmd_mask;
1441 	u64			     uverbs_ex_cmd_mask;
1442 
1443 	char			     node_desc[64];
1444 	__be64			     node_guid;
1445 	u32			     local_dma_lkey;
1446 	u8                           node_type;
1447 	u8                           phys_port_cnt;
1448 };
1449 
1450 struct ib_client {
1451 	char  *name;
1452 	void (*add)   (struct ib_device *);
1453 	void (*remove)(struct ib_device *);
1454 
1455 	struct list_head list;
1456 };
1457 
1458 struct ib_device *ib_alloc_device(size_t size);
1459 void ib_dealloc_device(struct ib_device *device);
1460 
1461 int ib_register_device(struct ib_device *device,
1462 		       int (*port_callback)(struct ib_device *,
1463 					    u8, struct kobject *));
1464 void ib_unregister_device(struct ib_device *device);
1465 
1466 int ib_register_client   (struct ib_client *client);
1467 void ib_unregister_client(struct ib_client *client);
1468 
1469 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1470 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1471 			 void *data);
1472 
1473 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1474 {
1475 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1476 }
1477 
1478 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1479 {
1480 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1481 }
1482 
1483 /**
1484  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1485  * contains all required attributes and no attributes not allowed for
1486  * the given QP state transition.
1487  * @cur_state: Current QP state
1488  * @next_state: Next QP state
1489  * @type: QP type
1490  * @mask: Mask of supplied QP attributes
1491  *
1492  * This function is a helper function that a low-level driver's
1493  * modify_qp method can use to validate the consumer's input.  It
1494  * checks that cur_state and next_state are valid QP states, that a
1495  * transition from cur_state to next_state is allowed by the IB spec,
1496  * and that the attribute mask supplied is allowed for the transition.
1497  */
1498 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1499 		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1500 
1501 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1502 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1503 void ib_dispatch_event(struct ib_event *event);
1504 
1505 int ib_query_device(struct ib_device *device,
1506 		    struct ib_device_attr *device_attr);
1507 
1508 int ib_query_port(struct ib_device *device,
1509 		  u8 port_num, struct ib_port_attr *port_attr);
1510 
1511 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1512 					       u8 port_num);
1513 
1514 int ib_query_gid(struct ib_device *device,
1515 		 u8 port_num, int index, union ib_gid *gid);
1516 
1517 int ib_query_pkey(struct ib_device *device,
1518 		  u8 port_num, u16 index, u16 *pkey);
1519 
1520 int ib_modify_device(struct ib_device *device,
1521 		     int device_modify_mask,
1522 		     struct ib_device_modify *device_modify);
1523 
1524 int ib_modify_port(struct ib_device *device,
1525 		   u8 port_num, int port_modify_mask,
1526 		   struct ib_port_modify *port_modify);
1527 
1528 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1529 		u8 *port_num, u16 *index);
1530 
1531 int ib_find_pkey(struct ib_device *device,
1532 		 u8 port_num, u16 pkey, u16 *index);
1533 
1534 /**
1535  * ib_alloc_pd - Allocates an unused protection domain.
1536  * @device: The device on which to allocate the protection domain.
1537  *
1538  * A protection domain object provides an association between QPs, shared
1539  * receive queues, address handles, memory regions, and memory windows.
1540  */
1541 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1542 
1543 /**
1544  * ib_dealloc_pd - Deallocates a protection domain.
1545  * @pd: The protection domain to deallocate.
1546  */
1547 int ib_dealloc_pd(struct ib_pd *pd);
1548 
1549 /**
1550  * ib_create_ah - Creates an address handle for the given address vector.
1551  * @pd: The protection domain associated with the address handle.
1552  * @ah_attr: The attributes of the address vector.
1553  *
1554  * The address handle is used to reference a local or global destination
1555  * in all UD QP post sends.
1556  */
1557 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1558 
1559 /**
1560  * ib_init_ah_from_wc - Initializes address handle attributes from a
1561  *   work completion.
1562  * @device: Device on which the received message arrived.
1563  * @port_num: Port on which the received message arrived.
1564  * @wc: Work completion associated with the received message.
1565  * @grh: References the received global route header.  This parameter is
1566  *   ignored unless the work completion indicates that the GRH is valid.
1567  * @ah_attr: Returned attributes that can be used when creating an address
1568  *   handle for replying to the message.
1569  */
1570 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1571 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1572 
1573 /**
1574  * ib_create_ah_from_wc - Creates an address handle associated with the
1575  *   sender of the specified work completion.
1576  * @pd: The protection domain associated with the address handle.
1577  * @wc: Work completion information associated with a received message.
1578  * @grh: References the received global route header.  This parameter is
1579  *   ignored unless the work completion indicates that the GRH is valid.
1580  * @port_num: The outbound port number to associate with the address.
1581  *
1582  * The address handle is used to reference a local or global destination
1583  * in all UD QP post sends.
1584  */
1585 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1586 				   struct ib_grh *grh, u8 port_num);
1587 
1588 /**
1589  * ib_modify_ah - Modifies the address vector associated with an address
1590  *   handle.
1591  * @ah: The address handle to modify.
1592  * @ah_attr: The new address vector attributes to associate with the
1593  *   address handle.
1594  */
1595 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1596 
1597 /**
1598  * ib_query_ah - Queries the address vector associated with an address
1599  *   handle.
1600  * @ah: The address handle to query.
1601  * @ah_attr: The address vector attributes associated with the address
1602  *   handle.
1603  */
1604 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1605 
1606 /**
1607  * ib_destroy_ah - Destroys an address handle.
1608  * @ah: The address handle to destroy.
1609  */
1610 int ib_destroy_ah(struct ib_ah *ah);
1611 
1612 /**
1613  * ib_create_srq - Creates a SRQ associated with the specified protection
1614  *   domain.
1615  * @pd: The protection domain associated with the SRQ.
1616  * @srq_init_attr: A list of initial attributes required to create the
1617  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1618  *   the actual capabilities of the created SRQ.
1619  *
1620  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1621  * requested size of the SRQ, and set to the actual values allocated
1622  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1623  * will always be at least as large as the requested values.
1624  */
1625 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1626 			     struct ib_srq_init_attr *srq_init_attr);
1627 
1628 /**
1629  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1630  * @srq: The SRQ to modify.
1631  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1632  *   the current values of selected SRQ attributes are returned.
1633  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1634  *   are being modified.
1635  *
1636  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1637  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1638  * the number of receives queued drops below the limit.
1639  */
1640 int ib_modify_srq(struct ib_srq *srq,
1641 		  struct ib_srq_attr *srq_attr,
1642 		  enum ib_srq_attr_mask srq_attr_mask);
1643 
1644 /**
1645  * ib_query_srq - Returns the attribute list and current values for the
1646  *   specified SRQ.
1647  * @srq: The SRQ to query.
1648  * @srq_attr: The attributes of the specified SRQ.
1649  */
1650 int ib_query_srq(struct ib_srq *srq,
1651 		 struct ib_srq_attr *srq_attr);
1652 
1653 /**
1654  * ib_destroy_srq - Destroys the specified SRQ.
1655  * @srq: The SRQ to destroy.
1656  */
1657 int ib_destroy_srq(struct ib_srq *srq);
1658 
1659 /**
1660  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1661  * @srq: The SRQ to post the work request on.
1662  * @recv_wr: A list of work requests to post on the receive queue.
1663  * @bad_recv_wr: On an immediate failure, this parameter will reference
1664  *   the work request that failed to be posted on the QP.
1665  */
1666 static inline int ib_post_srq_recv(struct ib_srq *srq,
1667 				   struct ib_recv_wr *recv_wr,
1668 				   struct ib_recv_wr **bad_recv_wr)
1669 {
1670 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1671 }
1672 
1673 /**
1674  * ib_create_qp - Creates a QP associated with the specified protection
1675  *   domain.
1676  * @pd: The protection domain associated with the QP.
1677  * @qp_init_attr: A list of initial attributes required to create the
1678  *   QP.  If QP creation succeeds, then the attributes are updated to
1679  *   the actual capabilities of the created QP.
1680  */
1681 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1682 			   struct ib_qp_init_attr *qp_init_attr);
1683 
1684 /**
1685  * ib_modify_qp - Modifies the attributes for the specified QP and then
1686  *   transitions the QP to the given state.
1687  * @qp: The QP to modify.
1688  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1689  *   the current values of selected QP attributes are returned.
1690  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1691  *   are being modified.
1692  */
1693 int ib_modify_qp(struct ib_qp *qp,
1694 		 struct ib_qp_attr *qp_attr,
1695 		 int qp_attr_mask);
1696 
1697 /**
1698  * ib_query_qp - Returns the attribute list and current values for the
1699  *   specified QP.
1700  * @qp: The QP to query.
1701  * @qp_attr: The attributes of the specified QP.
1702  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1703  * @qp_init_attr: Additional attributes of the selected QP.
1704  *
1705  * The qp_attr_mask may be used to limit the query to gathering only the
1706  * selected attributes.
1707  */
1708 int ib_query_qp(struct ib_qp *qp,
1709 		struct ib_qp_attr *qp_attr,
1710 		int qp_attr_mask,
1711 		struct ib_qp_init_attr *qp_init_attr);
1712 
1713 /**
1714  * ib_destroy_qp - Destroys the specified QP.
1715  * @qp: The QP to destroy.
1716  */
1717 int ib_destroy_qp(struct ib_qp *qp);
1718 
1719 /**
1720  * ib_open_qp - Obtain a reference to an existing sharable QP.
1721  * @xrcd - XRC domain
1722  * @qp_open_attr: Attributes identifying the QP to open.
1723  *
1724  * Returns a reference to a sharable QP.
1725  */
1726 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1727 			 struct ib_qp_open_attr *qp_open_attr);
1728 
1729 /**
1730  * ib_close_qp - Release an external reference to a QP.
1731  * @qp: The QP handle to release
1732  *
1733  * The opened QP handle is released by the caller.  The underlying
1734  * shared QP is not destroyed until all internal references are released.
1735  */
1736 int ib_close_qp(struct ib_qp *qp);
1737 
1738 /**
1739  * ib_post_send - Posts a list of work requests to the send queue of
1740  *   the specified QP.
1741  * @qp: The QP to post the work request on.
1742  * @send_wr: A list of work requests to post on the send queue.
1743  * @bad_send_wr: On an immediate failure, this parameter will reference
1744  *   the work request that failed to be posted on the QP.
1745  *
1746  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1747  * error is returned, the QP state shall not be affected,
1748  * ib_post_send() will return an immediate error after queueing any
1749  * earlier work requests in the list.
1750  */
1751 static inline int ib_post_send(struct ib_qp *qp,
1752 			       struct ib_send_wr *send_wr,
1753 			       struct ib_send_wr **bad_send_wr)
1754 {
1755 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1756 }
1757 
1758 /**
1759  * ib_post_recv - Posts a list of work requests to the receive queue of
1760  *   the specified QP.
1761  * @qp: The QP to post the work request on.
1762  * @recv_wr: A list of work requests to post on the receive queue.
1763  * @bad_recv_wr: On an immediate failure, this parameter will reference
1764  *   the work request that failed to be posted on the QP.
1765  */
1766 static inline int ib_post_recv(struct ib_qp *qp,
1767 			       struct ib_recv_wr *recv_wr,
1768 			       struct ib_recv_wr **bad_recv_wr)
1769 {
1770 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1771 }
1772 
1773 /**
1774  * ib_create_cq - Creates a CQ on the specified device.
1775  * @device: The device on which to create the CQ.
1776  * @comp_handler: A user-specified callback that is invoked when a
1777  *   completion event occurs on the CQ.
1778  * @event_handler: A user-specified callback that is invoked when an
1779  *   asynchronous event not associated with a completion occurs on the CQ.
1780  * @cq_context: Context associated with the CQ returned to the user via
1781  *   the associated completion and event handlers.
1782  * @cqe: The minimum size of the CQ.
1783  * @comp_vector - Completion vector used to signal completion events.
1784  *     Must be >= 0 and < context->num_comp_vectors.
1785  *
1786  * Users can examine the cq structure to determine the actual CQ size.
1787  */
1788 struct ib_cq *ib_create_cq(struct ib_device *device,
1789 			   ib_comp_handler comp_handler,
1790 			   void (*event_handler)(struct ib_event *, void *),
1791 			   void *cq_context, int cqe, int comp_vector);
1792 
1793 /**
1794  * ib_resize_cq - Modifies the capacity of the CQ.
1795  * @cq: The CQ to resize.
1796  * @cqe: The minimum size of the CQ.
1797  *
1798  * Users can examine the cq structure to determine the actual CQ size.
1799  */
1800 int ib_resize_cq(struct ib_cq *cq, int cqe);
1801 
1802 /**
1803  * ib_modify_cq - Modifies moderation params of the CQ
1804  * @cq: The CQ to modify.
1805  * @cq_count: number of CQEs that will trigger an event
1806  * @cq_period: max period of time in usec before triggering an event
1807  *
1808  */
1809 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1810 
1811 /**
1812  * ib_destroy_cq - Destroys the specified CQ.
1813  * @cq: The CQ to destroy.
1814  */
1815 int ib_destroy_cq(struct ib_cq *cq);
1816 
1817 /**
1818  * ib_poll_cq - poll a CQ for completion(s)
1819  * @cq:the CQ being polled
1820  * @num_entries:maximum number of completions to return
1821  * @wc:array of at least @num_entries &struct ib_wc where completions
1822  *   will be returned
1823  *
1824  * Poll a CQ for (possibly multiple) completions.  If the return value
1825  * is < 0, an error occurred.  If the return value is >= 0, it is the
1826  * number of completions returned.  If the return value is
1827  * non-negative and < num_entries, then the CQ was emptied.
1828  */
1829 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1830 			     struct ib_wc *wc)
1831 {
1832 	return cq->device->poll_cq(cq, num_entries, wc);
1833 }
1834 
1835 /**
1836  * ib_peek_cq - Returns the number of unreaped completions currently
1837  *   on the specified CQ.
1838  * @cq: The CQ to peek.
1839  * @wc_cnt: A minimum number of unreaped completions to check for.
1840  *
1841  * If the number of unreaped completions is greater than or equal to wc_cnt,
1842  * this function returns wc_cnt, otherwise, it returns the actual number of
1843  * unreaped completions.
1844  */
1845 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1846 
1847 /**
1848  * ib_req_notify_cq - Request completion notification on a CQ.
1849  * @cq: The CQ to generate an event for.
1850  * @flags:
1851  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1852  *   to request an event on the next solicited event or next work
1853  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1854  *   may also be |ed in to request a hint about missed events, as
1855  *   described below.
1856  *
1857  * Return Value:
1858  *    < 0 means an error occurred while requesting notification
1859  *   == 0 means notification was requested successfully, and if
1860  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1861  *        were missed and it is safe to wait for another event.  In
1862  *        this case is it guaranteed that any work completions added
1863  *        to the CQ since the last CQ poll will trigger a completion
1864  *        notification event.
1865  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1866  *        in.  It means that the consumer must poll the CQ again to
1867  *        make sure it is empty to avoid missing an event because of a
1868  *        race between requesting notification and an entry being
1869  *        added to the CQ.  This return value means it is possible
1870  *        (but not guaranteed) that a work completion has been added
1871  *        to the CQ since the last poll without triggering a
1872  *        completion notification event.
1873  */
1874 static inline int ib_req_notify_cq(struct ib_cq *cq,
1875 				   enum ib_cq_notify_flags flags)
1876 {
1877 	return cq->device->req_notify_cq(cq, flags);
1878 }
1879 
1880 /**
1881  * ib_req_ncomp_notif - Request completion notification when there are
1882  *   at least the specified number of unreaped completions on the CQ.
1883  * @cq: The CQ to generate an event for.
1884  * @wc_cnt: The number of unreaped completions that should be on the
1885  *   CQ before an event is generated.
1886  */
1887 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1888 {
1889 	return cq->device->req_ncomp_notif ?
1890 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1891 		-ENOSYS;
1892 }
1893 
1894 /**
1895  * ib_get_dma_mr - Returns a memory region for system memory that is
1896  *   usable for DMA.
1897  * @pd: The protection domain associated with the memory region.
1898  * @mr_access_flags: Specifies the memory access rights.
1899  *
1900  * Note that the ib_dma_*() functions defined below must be used
1901  * to create/destroy addresses used with the Lkey or Rkey returned
1902  * by ib_get_dma_mr().
1903  */
1904 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1905 
1906 /**
1907  * ib_dma_mapping_error - check a DMA addr for error
1908  * @dev: The device for which the dma_addr was created
1909  * @dma_addr: The DMA address to check
1910  */
1911 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1912 {
1913 	if (dev->dma_ops)
1914 		return dev->dma_ops->mapping_error(dev, dma_addr);
1915 	return dma_mapping_error(dev->dma_device, dma_addr);
1916 }
1917 
1918 /**
1919  * ib_dma_map_single - Map a kernel virtual address to DMA address
1920  * @dev: The device for which the dma_addr is to be created
1921  * @cpu_addr: The kernel virtual address
1922  * @size: The size of the region in bytes
1923  * @direction: The direction of the DMA
1924  */
1925 static inline u64 ib_dma_map_single(struct ib_device *dev,
1926 				    void *cpu_addr, size_t size,
1927 				    enum dma_data_direction direction)
1928 {
1929 	if (dev->dma_ops)
1930 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1931 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1932 }
1933 
1934 /**
1935  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1936  * @dev: The device for which the DMA address was created
1937  * @addr: The DMA address
1938  * @size: The size of the region in bytes
1939  * @direction: The direction of the DMA
1940  */
1941 static inline void ib_dma_unmap_single(struct ib_device *dev,
1942 				       u64 addr, size_t size,
1943 				       enum dma_data_direction direction)
1944 {
1945 	if (dev->dma_ops)
1946 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1947 	else
1948 		dma_unmap_single(dev->dma_device, addr, size, direction);
1949 }
1950 
1951 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1952 					  void *cpu_addr, size_t size,
1953 					  enum dma_data_direction direction,
1954 					  struct dma_attrs *attrs)
1955 {
1956 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1957 				    direction, attrs);
1958 }
1959 
1960 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1961 					     u64 addr, size_t size,
1962 					     enum dma_data_direction direction,
1963 					     struct dma_attrs *attrs)
1964 {
1965 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1966 				      direction, attrs);
1967 }
1968 
1969 /**
1970  * ib_dma_map_page - Map a physical page to DMA address
1971  * @dev: The device for which the dma_addr is to be created
1972  * @page: The page to be mapped
1973  * @offset: The offset within the page
1974  * @size: The size of the region in bytes
1975  * @direction: The direction of the DMA
1976  */
1977 static inline u64 ib_dma_map_page(struct ib_device *dev,
1978 				  struct page *page,
1979 				  unsigned long offset,
1980 				  size_t size,
1981 					 enum dma_data_direction direction)
1982 {
1983 	if (dev->dma_ops)
1984 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1985 	return dma_map_page(dev->dma_device, page, offset, size, direction);
1986 }
1987 
1988 /**
1989  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1990  * @dev: The device for which the DMA address was created
1991  * @addr: The DMA address
1992  * @size: The size of the region in bytes
1993  * @direction: The direction of the DMA
1994  */
1995 static inline void ib_dma_unmap_page(struct ib_device *dev,
1996 				     u64 addr, size_t size,
1997 				     enum dma_data_direction direction)
1998 {
1999 	if (dev->dma_ops)
2000 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2001 	else
2002 		dma_unmap_page(dev->dma_device, addr, size, direction);
2003 }
2004 
2005 /**
2006  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2007  * @dev: The device for which the DMA addresses are to be created
2008  * @sg: The array of scatter/gather entries
2009  * @nents: The number of scatter/gather entries
2010  * @direction: The direction of the DMA
2011  */
2012 static inline int ib_dma_map_sg(struct ib_device *dev,
2013 				struct scatterlist *sg, int nents,
2014 				enum dma_data_direction direction)
2015 {
2016 	if (dev->dma_ops)
2017 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2018 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2019 }
2020 
2021 /**
2022  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2023  * @dev: The device for which the DMA addresses were created
2024  * @sg: The array of scatter/gather entries
2025  * @nents: The number of scatter/gather entries
2026  * @direction: The direction of the DMA
2027  */
2028 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2029 				   struct scatterlist *sg, int nents,
2030 				   enum dma_data_direction direction)
2031 {
2032 	if (dev->dma_ops)
2033 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2034 	else
2035 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2036 }
2037 
2038 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2039 				      struct scatterlist *sg, int nents,
2040 				      enum dma_data_direction direction,
2041 				      struct dma_attrs *attrs)
2042 {
2043 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2044 }
2045 
2046 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2047 					 struct scatterlist *sg, int nents,
2048 					 enum dma_data_direction direction,
2049 					 struct dma_attrs *attrs)
2050 {
2051 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2052 }
2053 /**
2054  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2055  * @dev: The device for which the DMA addresses were created
2056  * @sg: The scatter/gather entry
2057  */
2058 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2059 				    struct scatterlist *sg)
2060 {
2061 	if (dev->dma_ops)
2062 		return dev->dma_ops->dma_address(dev, sg);
2063 	return sg_dma_address(sg);
2064 }
2065 
2066 /**
2067  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2068  * @dev: The device for which the DMA addresses were created
2069  * @sg: The scatter/gather entry
2070  */
2071 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2072 					 struct scatterlist *sg)
2073 {
2074 	if (dev->dma_ops)
2075 		return dev->dma_ops->dma_len(dev, sg);
2076 	return sg_dma_len(sg);
2077 }
2078 
2079 /**
2080  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2081  * @dev: The device for which the DMA address was created
2082  * @addr: The DMA address
2083  * @size: The size of the region in bytes
2084  * @dir: The direction of the DMA
2085  */
2086 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2087 					      u64 addr,
2088 					      size_t size,
2089 					      enum dma_data_direction dir)
2090 {
2091 	if (dev->dma_ops)
2092 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2093 	else
2094 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2095 }
2096 
2097 /**
2098  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2099  * @dev: The device for which the DMA address was created
2100  * @addr: The DMA address
2101  * @size: The size of the region in bytes
2102  * @dir: The direction of the DMA
2103  */
2104 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2105 						 u64 addr,
2106 						 size_t size,
2107 						 enum dma_data_direction dir)
2108 {
2109 	if (dev->dma_ops)
2110 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2111 	else
2112 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2113 }
2114 
2115 /**
2116  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2117  * @dev: The device for which the DMA address is requested
2118  * @size: The size of the region to allocate in bytes
2119  * @dma_handle: A pointer for returning the DMA address of the region
2120  * @flag: memory allocator flags
2121  */
2122 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2123 					   size_t size,
2124 					   u64 *dma_handle,
2125 					   gfp_t flag)
2126 {
2127 	if (dev->dma_ops)
2128 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2129 	else {
2130 		dma_addr_t handle;
2131 		void *ret;
2132 
2133 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2134 		*dma_handle = handle;
2135 		return ret;
2136 	}
2137 }
2138 
2139 /**
2140  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2141  * @dev: The device for which the DMA addresses were allocated
2142  * @size: The size of the region
2143  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2144  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2145  */
2146 static inline void ib_dma_free_coherent(struct ib_device *dev,
2147 					size_t size, void *cpu_addr,
2148 					u64 dma_handle)
2149 {
2150 	if (dev->dma_ops)
2151 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2152 	else
2153 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2154 }
2155 
2156 /**
2157  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2158  *   by an HCA.
2159  * @pd: The protection domain associated assigned to the registered region.
2160  * @phys_buf_array: Specifies a list of physical buffers to use in the
2161  *   memory region.
2162  * @num_phys_buf: Specifies the size of the phys_buf_array.
2163  * @mr_access_flags: Specifies the memory access rights.
2164  * @iova_start: The offset of the region's starting I/O virtual address.
2165  */
2166 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2167 			     struct ib_phys_buf *phys_buf_array,
2168 			     int num_phys_buf,
2169 			     int mr_access_flags,
2170 			     u64 *iova_start);
2171 
2172 /**
2173  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2174  *   Conceptually, this call performs the functions deregister memory region
2175  *   followed by register physical memory region.  Where possible,
2176  *   resources are reused instead of deallocated and reallocated.
2177  * @mr: The memory region to modify.
2178  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2179  *   properties of the memory region are being modified.
2180  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2181  *   the new protection domain to associated with the memory region,
2182  *   otherwise, this parameter is ignored.
2183  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2184  *   field specifies a list of physical buffers to use in the new
2185  *   translation, otherwise, this parameter is ignored.
2186  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2187  *   field specifies the size of the phys_buf_array, otherwise, this
2188  *   parameter is ignored.
2189  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2190  *   field specifies the new memory access rights, otherwise, this
2191  *   parameter is ignored.
2192  * @iova_start: The offset of the region's starting I/O virtual address.
2193  */
2194 int ib_rereg_phys_mr(struct ib_mr *mr,
2195 		     int mr_rereg_mask,
2196 		     struct ib_pd *pd,
2197 		     struct ib_phys_buf *phys_buf_array,
2198 		     int num_phys_buf,
2199 		     int mr_access_flags,
2200 		     u64 *iova_start);
2201 
2202 /**
2203  * ib_query_mr - Retrieves information about a specific memory region.
2204  * @mr: The memory region to retrieve information about.
2205  * @mr_attr: The attributes of the specified memory region.
2206  */
2207 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2208 
2209 /**
2210  * ib_dereg_mr - Deregisters a memory region and removes it from the
2211  *   HCA translation table.
2212  * @mr: The memory region to deregister.
2213  *
2214  * This function can fail, if the memory region has memory windows bound to it.
2215  */
2216 int ib_dereg_mr(struct ib_mr *mr);
2217 
2218 /**
2219  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2220  *   IB_WR_FAST_REG_MR send work request.
2221  * @pd: The protection domain associated with the region.
2222  * @max_page_list_len: requested max physical buffer list length to be
2223  *   used with fast register work requests for this MR.
2224  */
2225 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2226 
2227 /**
2228  * ib_alloc_fast_reg_page_list - Allocates a page list array
2229  * @device - ib device pointer.
2230  * @page_list_len - size of the page list array to be allocated.
2231  *
2232  * This allocates and returns a struct ib_fast_reg_page_list * and a
2233  * page_list array that is at least page_list_len in size.  The actual
2234  * size is returned in max_page_list_len.  The caller is responsible
2235  * for initializing the contents of the page_list array before posting
2236  * a send work request with the IB_WC_FAST_REG_MR opcode.
2237  *
2238  * The page_list array entries must be translated using one of the
2239  * ib_dma_*() functions just like the addresses passed to
2240  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2241  * ib_fast_reg_page_list must not be modified by the caller until the
2242  * IB_WC_FAST_REG_MR work request completes.
2243  */
2244 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2245 				struct ib_device *device, int page_list_len);
2246 
2247 /**
2248  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2249  *   page list array.
2250  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2251  */
2252 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2253 
2254 /**
2255  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2256  *   R_Key and L_Key.
2257  * @mr - struct ib_mr pointer to be updated.
2258  * @newkey - new key to be used.
2259  */
2260 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2261 {
2262 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2263 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2264 }
2265 
2266 /**
2267  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2268  * for calculating a new rkey for type 2 memory windows.
2269  * @rkey - the rkey to increment.
2270  */
2271 static inline u32 ib_inc_rkey(u32 rkey)
2272 {
2273 	const u32 mask = 0x000000ff;
2274 	return ((rkey + 1) & mask) | (rkey & ~mask);
2275 }
2276 
2277 /**
2278  * ib_alloc_mw - Allocates a memory window.
2279  * @pd: The protection domain associated with the memory window.
2280  * @type: The type of the memory window (1 or 2).
2281  */
2282 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2283 
2284 /**
2285  * ib_bind_mw - Posts a work request to the send queue of the specified
2286  *   QP, which binds the memory window to the given address range and
2287  *   remote access attributes.
2288  * @qp: QP to post the bind work request on.
2289  * @mw: The memory window to bind.
2290  * @mw_bind: Specifies information about the memory window, including
2291  *   its address range, remote access rights, and associated memory region.
2292  *
2293  * If there is no immediate error, the function will update the rkey member
2294  * of the mw parameter to its new value. The bind operation can still fail
2295  * asynchronously.
2296  */
2297 static inline int ib_bind_mw(struct ib_qp *qp,
2298 			     struct ib_mw *mw,
2299 			     struct ib_mw_bind *mw_bind)
2300 {
2301 	/* XXX reference counting in corresponding MR? */
2302 	return mw->device->bind_mw ?
2303 		mw->device->bind_mw(qp, mw, mw_bind) :
2304 		-ENOSYS;
2305 }
2306 
2307 /**
2308  * ib_dealloc_mw - Deallocates a memory window.
2309  * @mw: The memory window to deallocate.
2310  */
2311 int ib_dealloc_mw(struct ib_mw *mw);
2312 
2313 /**
2314  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2315  * @pd: The protection domain associated with the unmapped region.
2316  * @mr_access_flags: Specifies the memory access rights.
2317  * @fmr_attr: Attributes of the unmapped region.
2318  *
2319  * A fast memory region must be mapped before it can be used as part of
2320  * a work request.
2321  */
2322 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2323 			    int mr_access_flags,
2324 			    struct ib_fmr_attr *fmr_attr);
2325 
2326 /**
2327  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2328  * @fmr: The fast memory region to associate with the pages.
2329  * @page_list: An array of physical pages to map to the fast memory region.
2330  * @list_len: The number of pages in page_list.
2331  * @iova: The I/O virtual address to use with the mapped region.
2332  */
2333 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2334 				  u64 *page_list, int list_len,
2335 				  u64 iova)
2336 {
2337 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2338 }
2339 
2340 /**
2341  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2342  * @fmr_list: A linked list of fast memory regions to unmap.
2343  */
2344 int ib_unmap_fmr(struct list_head *fmr_list);
2345 
2346 /**
2347  * ib_dealloc_fmr - Deallocates a fast memory region.
2348  * @fmr: The fast memory region to deallocate.
2349  */
2350 int ib_dealloc_fmr(struct ib_fmr *fmr);
2351 
2352 /**
2353  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2354  * @qp: QP to attach to the multicast group.  The QP must be type
2355  *   IB_QPT_UD.
2356  * @gid: Multicast group GID.
2357  * @lid: Multicast group LID in host byte order.
2358  *
2359  * In order to send and receive multicast packets, subnet
2360  * administration must have created the multicast group and configured
2361  * the fabric appropriately.  The port associated with the specified
2362  * QP must also be a member of the multicast group.
2363  */
2364 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2365 
2366 /**
2367  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2368  * @qp: QP to detach from the multicast group.
2369  * @gid: Multicast group GID.
2370  * @lid: Multicast group LID in host byte order.
2371  */
2372 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2373 
2374 /**
2375  * ib_alloc_xrcd - Allocates an XRC domain.
2376  * @device: The device on which to allocate the XRC domain.
2377  */
2378 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2379 
2380 /**
2381  * ib_dealloc_xrcd - Deallocates an XRC domain.
2382  * @xrcd: The XRC domain to deallocate.
2383  */
2384 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2385 
2386 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2387 			       struct ib_flow_attr *flow_attr, int domain);
2388 int ib_destroy_flow(struct ib_flow *flow_id);
2389 
2390 static inline int ib_check_mr_access(int flags)
2391 {
2392 	/*
2393 	 * Local write permission is required if remote write or
2394 	 * remote atomic permission is also requested.
2395 	 */
2396 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2397 	    !(flags & IB_ACCESS_LOCAL_WRITE))
2398 		return -EINVAL;
2399 
2400 	return 0;
2401 }
2402 
2403 #endif /* IB_VERBS_H */
2404