1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC, 71 RDMA_NODE_USNIC, 72 }; 73 74 enum rdma_transport_type { 75 RDMA_TRANSPORT_IB, 76 RDMA_TRANSPORT_IWARP, 77 RDMA_TRANSPORT_USNIC 78 }; 79 80 enum rdma_transport_type 81 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 82 83 enum rdma_link_layer { 84 IB_LINK_LAYER_UNSPECIFIED, 85 IB_LINK_LAYER_INFINIBAND, 86 IB_LINK_LAYER_ETHERNET, 87 }; 88 89 enum ib_device_cap_flags { 90 IB_DEVICE_RESIZE_MAX_WR = 1, 91 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 92 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 93 IB_DEVICE_RAW_MULTI = (1<<3), 94 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 95 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 96 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 97 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 98 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 99 IB_DEVICE_INIT_TYPE = (1<<9), 100 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 101 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 102 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 103 IB_DEVICE_SRQ_RESIZE = (1<<13), 104 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 105 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 106 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 107 IB_DEVICE_MEM_WINDOW = (1<<17), 108 /* 109 * Devices should set IB_DEVICE_UD_IP_SUM if they support 110 * insertion of UDP and TCP checksum on outgoing UD IPoIB 111 * messages and can verify the validity of checksum for 112 * incoming messages. Setting this flag implies that the 113 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 114 */ 115 IB_DEVICE_UD_IP_CSUM = (1<<18), 116 IB_DEVICE_UD_TSO = (1<<19), 117 IB_DEVICE_XRC = (1<<20), 118 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 119 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 120 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 121 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24), 122 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29) 123 }; 124 125 enum ib_atomic_cap { 126 IB_ATOMIC_NONE, 127 IB_ATOMIC_HCA, 128 IB_ATOMIC_GLOB 129 }; 130 131 struct ib_device_attr { 132 u64 fw_ver; 133 __be64 sys_image_guid; 134 u64 max_mr_size; 135 u64 page_size_cap; 136 u32 vendor_id; 137 u32 vendor_part_id; 138 u32 hw_ver; 139 int max_qp; 140 int max_qp_wr; 141 int device_cap_flags; 142 int max_sge; 143 int max_sge_rd; 144 int max_cq; 145 int max_cqe; 146 int max_mr; 147 int max_pd; 148 int max_qp_rd_atom; 149 int max_ee_rd_atom; 150 int max_res_rd_atom; 151 int max_qp_init_rd_atom; 152 int max_ee_init_rd_atom; 153 enum ib_atomic_cap atomic_cap; 154 enum ib_atomic_cap masked_atomic_cap; 155 int max_ee; 156 int max_rdd; 157 int max_mw; 158 int max_raw_ipv6_qp; 159 int max_raw_ethy_qp; 160 int max_mcast_grp; 161 int max_mcast_qp_attach; 162 int max_total_mcast_qp_attach; 163 int max_ah; 164 int max_fmr; 165 int max_map_per_fmr; 166 int max_srq; 167 int max_srq_wr; 168 int max_srq_sge; 169 unsigned int max_fast_reg_page_list_len; 170 u16 max_pkeys; 171 u8 local_ca_ack_delay; 172 }; 173 174 enum ib_mtu { 175 IB_MTU_256 = 1, 176 IB_MTU_512 = 2, 177 IB_MTU_1024 = 3, 178 IB_MTU_2048 = 4, 179 IB_MTU_4096 = 5 180 }; 181 182 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 183 { 184 switch (mtu) { 185 case IB_MTU_256: return 256; 186 case IB_MTU_512: return 512; 187 case IB_MTU_1024: return 1024; 188 case IB_MTU_2048: return 2048; 189 case IB_MTU_4096: return 4096; 190 default: return -1; 191 } 192 } 193 194 enum ib_port_state { 195 IB_PORT_NOP = 0, 196 IB_PORT_DOWN = 1, 197 IB_PORT_INIT = 2, 198 IB_PORT_ARMED = 3, 199 IB_PORT_ACTIVE = 4, 200 IB_PORT_ACTIVE_DEFER = 5 201 }; 202 203 enum ib_port_cap_flags { 204 IB_PORT_SM = 1 << 1, 205 IB_PORT_NOTICE_SUP = 1 << 2, 206 IB_PORT_TRAP_SUP = 1 << 3, 207 IB_PORT_OPT_IPD_SUP = 1 << 4, 208 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 209 IB_PORT_SL_MAP_SUP = 1 << 6, 210 IB_PORT_MKEY_NVRAM = 1 << 7, 211 IB_PORT_PKEY_NVRAM = 1 << 8, 212 IB_PORT_LED_INFO_SUP = 1 << 9, 213 IB_PORT_SM_DISABLED = 1 << 10, 214 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 215 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 216 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 217 IB_PORT_CM_SUP = 1 << 16, 218 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 219 IB_PORT_REINIT_SUP = 1 << 18, 220 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 221 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 222 IB_PORT_DR_NOTICE_SUP = 1 << 21, 223 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 224 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 225 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 226 IB_PORT_CLIENT_REG_SUP = 1 << 25 227 }; 228 229 enum ib_port_width { 230 IB_WIDTH_1X = 1, 231 IB_WIDTH_4X = 2, 232 IB_WIDTH_8X = 4, 233 IB_WIDTH_12X = 8 234 }; 235 236 static inline int ib_width_enum_to_int(enum ib_port_width width) 237 { 238 switch (width) { 239 case IB_WIDTH_1X: return 1; 240 case IB_WIDTH_4X: return 4; 241 case IB_WIDTH_8X: return 8; 242 case IB_WIDTH_12X: return 12; 243 default: return -1; 244 } 245 } 246 247 enum ib_port_speed { 248 IB_SPEED_SDR = 1, 249 IB_SPEED_DDR = 2, 250 IB_SPEED_QDR = 4, 251 IB_SPEED_FDR10 = 8, 252 IB_SPEED_FDR = 16, 253 IB_SPEED_EDR = 32 254 }; 255 256 struct ib_protocol_stats { 257 /* TBD... */ 258 }; 259 260 struct iw_protocol_stats { 261 u64 ipInReceives; 262 u64 ipInHdrErrors; 263 u64 ipInTooBigErrors; 264 u64 ipInNoRoutes; 265 u64 ipInAddrErrors; 266 u64 ipInUnknownProtos; 267 u64 ipInTruncatedPkts; 268 u64 ipInDiscards; 269 u64 ipInDelivers; 270 u64 ipOutForwDatagrams; 271 u64 ipOutRequests; 272 u64 ipOutDiscards; 273 u64 ipOutNoRoutes; 274 u64 ipReasmTimeout; 275 u64 ipReasmReqds; 276 u64 ipReasmOKs; 277 u64 ipReasmFails; 278 u64 ipFragOKs; 279 u64 ipFragFails; 280 u64 ipFragCreates; 281 u64 ipInMcastPkts; 282 u64 ipOutMcastPkts; 283 u64 ipInBcastPkts; 284 u64 ipOutBcastPkts; 285 286 u64 tcpRtoAlgorithm; 287 u64 tcpRtoMin; 288 u64 tcpRtoMax; 289 u64 tcpMaxConn; 290 u64 tcpActiveOpens; 291 u64 tcpPassiveOpens; 292 u64 tcpAttemptFails; 293 u64 tcpEstabResets; 294 u64 tcpCurrEstab; 295 u64 tcpInSegs; 296 u64 tcpOutSegs; 297 u64 tcpRetransSegs; 298 u64 tcpInErrs; 299 u64 tcpOutRsts; 300 }; 301 302 union rdma_protocol_stats { 303 struct ib_protocol_stats ib; 304 struct iw_protocol_stats iw; 305 }; 306 307 struct ib_port_attr { 308 enum ib_port_state state; 309 enum ib_mtu max_mtu; 310 enum ib_mtu active_mtu; 311 int gid_tbl_len; 312 u32 port_cap_flags; 313 u32 max_msg_sz; 314 u32 bad_pkey_cntr; 315 u32 qkey_viol_cntr; 316 u16 pkey_tbl_len; 317 u16 lid; 318 u16 sm_lid; 319 u8 lmc; 320 u8 max_vl_num; 321 u8 sm_sl; 322 u8 subnet_timeout; 323 u8 init_type_reply; 324 u8 active_width; 325 u8 active_speed; 326 u8 phys_state; 327 }; 328 329 enum ib_device_modify_flags { 330 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 331 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 332 }; 333 334 struct ib_device_modify { 335 u64 sys_image_guid; 336 char node_desc[64]; 337 }; 338 339 enum ib_port_modify_flags { 340 IB_PORT_SHUTDOWN = 1, 341 IB_PORT_INIT_TYPE = (1<<2), 342 IB_PORT_RESET_QKEY_CNTR = (1<<3) 343 }; 344 345 struct ib_port_modify { 346 u32 set_port_cap_mask; 347 u32 clr_port_cap_mask; 348 u8 init_type; 349 }; 350 351 enum ib_event_type { 352 IB_EVENT_CQ_ERR, 353 IB_EVENT_QP_FATAL, 354 IB_EVENT_QP_REQ_ERR, 355 IB_EVENT_QP_ACCESS_ERR, 356 IB_EVENT_COMM_EST, 357 IB_EVENT_SQ_DRAINED, 358 IB_EVENT_PATH_MIG, 359 IB_EVENT_PATH_MIG_ERR, 360 IB_EVENT_DEVICE_FATAL, 361 IB_EVENT_PORT_ACTIVE, 362 IB_EVENT_PORT_ERR, 363 IB_EVENT_LID_CHANGE, 364 IB_EVENT_PKEY_CHANGE, 365 IB_EVENT_SM_CHANGE, 366 IB_EVENT_SRQ_ERR, 367 IB_EVENT_SRQ_LIMIT_REACHED, 368 IB_EVENT_QP_LAST_WQE_REACHED, 369 IB_EVENT_CLIENT_REREGISTER, 370 IB_EVENT_GID_CHANGE, 371 }; 372 373 struct ib_event { 374 struct ib_device *device; 375 union { 376 struct ib_cq *cq; 377 struct ib_qp *qp; 378 struct ib_srq *srq; 379 u8 port_num; 380 } element; 381 enum ib_event_type event; 382 }; 383 384 struct ib_event_handler { 385 struct ib_device *device; 386 void (*handler)(struct ib_event_handler *, struct ib_event *); 387 struct list_head list; 388 }; 389 390 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 391 do { \ 392 (_ptr)->device = _device; \ 393 (_ptr)->handler = _handler; \ 394 INIT_LIST_HEAD(&(_ptr)->list); \ 395 } while (0) 396 397 struct ib_global_route { 398 union ib_gid dgid; 399 u32 flow_label; 400 u8 sgid_index; 401 u8 hop_limit; 402 u8 traffic_class; 403 }; 404 405 struct ib_grh { 406 __be32 version_tclass_flow; 407 __be16 paylen; 408 u8 next_hdr; 409 u8 hop_limit; 410 union ib_gid sgid; 411 union ib_gid dgid; 412 }; 413 414 enum { 415 IB_MULTICAST_QPN = 0xffffff 416 }; 417 418 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 419 420 enum ib_ah_flags { 421 IB_AH_GRH = 1 422 }; 423 424 enum ib_rate { 425 IB_RATE_PORT_CURRENT = 0, 426 IB_RATE_2_5_GBPS = 2, 427 IB_RATE_5_GBPS = 5, 428 IB_RATE_10_GBPS = 3, 429 IB_RATE_20_GBPS = 6, 430 IB_RATE_30_GBPS = 4, 431 IB_RATE_40_GBPS = 7, 432 IB_RATE_60_GBPS = 8, 433 IB_RATE_80_GBPS = 9, 434 IB_RATE_120_GBPS = 10, 435 IB_RATE_14_GBPS = 11, 436 IB_RATE_56_GBPS = 12, 437 IB_RATE_112_GBPS = 13, 438 IB_RATE_168_GBPS = 14, 439 IB_RATE_25_GBPS = 15, 440 IB_RATE_100_GBPS = 16, 441 IB_RATE_200_GBPS = 17, 442 IB_RATE_300_GBPS = 18 443 }; 444 445 /** 446 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 447 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 448 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 449 * @rate: rate to convert. 450 */ 451 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 452 453 /** 454 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 455 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 456 * @rate: rate to convert. 457 */ 458 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 459 460 /** 461 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 462 * enum. 463 * @mult: multiple to convert. 464 */ 465 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 466 467 struct ib_ah_attr { 468 struct ib_global_route grh; 469 u16 dlid; 470 u8 sl; 471 u8 src_path_bits; 472 u8 static_rate; 473 u8 ah_flags; 474 u8 port_num; 475 }; 476 477 enum ib_wc_status { 478 IB_WC_SUCCESS, 479 IB_WC_LOC_LEN_ERR, 480 IB_WC_LOC_QP_OP_ERR, 481 IB_WC_LOC_EEC_OP_ERR, 482 IB_WC_LOC_PROT_ERR, 483 IB_WC_WR_FLUSH_ERR, 484 IB_WC_MW_BIND_ERR, 485 IB_WC_BAD_RESP_ERR, 486 IB_WC_LOC_ACCESS_ERR, 487 IB_WC_REM_INV_REQ_ERR, 488 IB_WC_REM_ACCESS_ERR, 489 IB_WC_REM_OP_ERR, 490 IB_WC_RETRY_EXC_ERR, 491 IB_WC_RNR_RETRY_EXC_ERR, 492 IB_WC_LOC_RDD_VIOL_ERR, 493 IB_WC_REM_INV_RD_REQ_ERR, 494 IB_WC_REM_ABORT_ERR, 495 IB_WC_INV_EECN_ERR, 496 IB_WC_INV_EEC_STATE_ERR, 497 IB_WC_FATAL_ERR, 498 IB_WC_RESP_TIMEOUT_ERR, 499 IB_WC_GENERAL_ERR 500 }; 501 502 enum ib_wc_opcode { 503 IB_WC_SEND, 504 IB_WC_RDMA_WRITE, 505 IB_WC_RDMA_READ, 506 IB_WC_COMP_SWAP, 507 IB_WC_FETCH_ADD, 508 IB_WC_BIND_MW, 509 IB_WC_LSO, 510 IB_WC_LOCAL_INV, 511 IB_WC_FAST_REG_MR, 512 IB_WC_MASKED_COMP_SWAP, 513 IB_WC_MASKED_FETCH_ADD, 514 /* 515 * Set value of IB_WC_RECV so consumers can test if a completion is a 516 * receive by testing (opcode & IB_WC_RECV). 517 */ 518 IB_WC_RECV = 1 << 7, 519 IB_WC_RECV_RDMA_WITH_IMM 520 }; 521 522 enum ib_wc_flags { 523 IB_WC_GRH = 1, 524 IB_WC_WITH_IMM = (1<<1), 525 IB_WC_WITH_INVALIDATE = (1<<2), 526 IB_WC_IP_CSUM_OK = (1<<3), 527 }; 528 529 struct ib_wc { 530 u64 wr_id; 531 enum ib_wc_status status; 532 enum ib_wc_opcode opcode; 533 u32 vendor_err; 534 u32 byte_len; 535 struct ib_qp *qp; 536 union { 537 __be32 imm_data; 538 u32 invalidate_rkey; 539 } ex; 540 u32 src_qp; 541 int wc_flags; 542 u16 pkey_index; 543 u16 slid; 544 u8 sl; 545 u8 dlid_path_bits; 546 u8 port_num; /* valid only for DR SMPs on switches */ 547 }; 548 549 enum ib_cq_notify_flags { 550 IB_CQ_SOLICITED = 1 << 0, 551 IB_CQ_NEXT_COMP = 1 << 1, 552 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 553 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 554 }; 555 556 enum ib_srq_type { 557 IB_SRQT_BASIC, 558 IB_SRQT_XRC 559 }; 560 561 enum ib_srq_attr_mask { 562 IB_SRQ_MAX_WR = 1 << 0, 563 IB_SRQ_LIMIT = 1 << 1, 564 }; 565 566 struct ib_srq_attr { 567 u32 max_wr; 568 u32 max_sge; 569 u32 srq_limit; 570 }; 571 572 struct ib_srq_init_attr { 573 void (*event_handler)(struct ib_event *, void *); 574 void *srq_context; 575 struct ib_srq_attr attr; 576 enum ib_srq_type srq_type; 577 578 union { 579 struct { 580 struct ib_xrcd *xrcd; 581 struct ib_cq *cq; 582 } xrc; 583 } ext; 584 }; 585 586 struct ib_qp_cap { 587 u32 max_send_wr; 588 u32 max_recv_wr; 589 u32 max_send_sge; 590 u32 max_recv_sge; 591 u32 max_inline_data; 592 }; 593 594 enum ib_sig_type { 595 IB_SIGNAL_ALL_WR, 596 IB_SIGNAL_REQ_WR 597 }; 598 599 enum ib_qp_type { 600 /* 601 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 602 * here (and in that order) since the MAD layer uses them as 603 * indices into a 2-entry table. 604 */ 605 IB_QPT_SMI, 606 IB_QPT_GSI, 607 608 IB_QPT_RC, 609 IB_QPT_UC, 610 IB_QPT_UD, 611 IB_QPT_RAW_IPV6, 612 IB_QPT_RAW_ETHERTYPE, 613 IB_QPT_RAW_PACKET = 8, 614 IB_QPT_XRC_INI = 9, 615 IB_QPT_XRC_TGT, 616 IB_QPT_MAX, 617 /* Reserve a range for qp types internal to the low level driver. 618 * These qp types will not be visible at the IB core layer, so the 619 * IB_QPT_MAX usages should not be affected in the core layer 620 */ 621 IB_QPT_RESERVED1 = 0x1000, 622 IB_QPT_RESERVED2, 623 IB_QPT_RESERVED3, 624 IB_QPT_RESERVED4, 625 IB_QPT_RESERVED5, 626 IB_QPT_RESERVED6, 627 IB_QPT_RESERVED7, 628 IB_QPT_RESERVED8, 629 IB_QPT_RESERVED9, 630 IB_QPT_RESERVED10, 631 }; 632 633 enum ib_qp_create_flags { 634 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 635 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 636 /* reserve bits 26-31 for low level drivers' internal use */ 637 IB_QP_CREATE_RESERVED_START = 1 << 26, 638 IB_QP_CREATE_RESERVED_END = 1 << 31, 639 }; 640 641 642 /* 643 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 644 * callback to destroy the passed in QP. 645 */ 646 647 struct ib_qp_init_attr { 648 void (*event_handler)(struct ib_event *, void *); 649 void *qp_context; 650 struct ib_cq *send_cq; 651 struct ib_cq *recv_cq; 652 struct ib_srq *srq; 653 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 654 struct ib_qp_cap cap; 655 enum ib_sig_type sq_sig_type; 656 enum ib_qp_type qp_type; 657 enum ib_qp_create_flags create_flags; 658 u8 port_num; /* special QP types only */ 659 }; 660 661 struct ib_qp_open_attr { 662 void (*event_handler)(struct ib_event *, void *); 663 void *qp_context; 664 u32 qp_num; 665 enum ib_qp_type qp_type; 666 }; 667 668 enum ib_rnr_timeout { 669 IB_RNR_TIMER_655_36 = 0, 670 IB_RNR_TIMER_000_01 = 1, 671 IB_RNR_TIMER_000_02 = 2, 672 IB_RNR_TIMER_000_03 = 3, 673 IB_RNR_TIMER_000_04 = 4, 674 IB_RNR_TIMER_000_06 = 5, 675 IB_RNR_TIMER_000_08 = 6, 676 IB_RNR_TIMER_000_12 = 7, 677 IB_RNR_TIMER_000_16 = 8, 678 IB_RNR_TIMER_000_24 = 9, 679 IB_RNR_TIMER_000_32 = 10, 680 IB_RNR_TIMER_000_48 = 11, 681 IB_RNR_TIMER_000_64 = 12, 682 IB_RNR_TIMER_000_96 = 13, 683 IB_RNR_TIMER_001_28 = 14, 684 IB_RNR_TIMER_001_92 = 15, 685 IB_RNR_TIMER_002_56 = 16, 686 IB_RNR_TIMER_003_84 = 17, 687 IB_RNR_TIMER_005_12 = 18, 688 IB_RNR_TIMER_007_68 = 19, 689 IB_RNR_TIMER_010_24 = 20, 690 IB_RNR_TIMER_015_36 = 21, 691 IB_RNR_TIMER_020_48 = 22, 692 IB_RNR_TIMER_030_72 = 23, 693 IB_RNR_TIMER_040_96 = 24, 694 IB_RNR_TIMER_061_44 = 25, 695 IB_RNR_TIMER_081_92 = 26, 696 IB_RNR_TIMER_122_88 = 27, 697 IB_RNR_TIMER_163_84 = 28, 698 IB_RNR_TIMER_245_76 = 29, 699 IB_RNR_TIMER_327_68 = 30, 700 IB_RNR_TIMER_491_52 = 31 701 }; 702 703 enum ib_qp_attr_mask { 704 IB_QP_STATE = 1, 705 IB_QP_CUR_STATE = (1<<1), 706 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 707 IB_QP_ACCESS_FLAGS = (1<<3), 708 IB_QP_PKEY_INDEX = (1<<4), 709 IB_QP_PORT = (1<<5), 710 IB_QP_QKEY = (1<<6), 711 IB_QP_AV = (1<<7), 712 IB_QP_PATH_MTU = (1<<8), 713 IB_QP_TIMEOUT = (1<<9), 714 IB_QP_RETRY_CNT = (1<<10), 715 IB_QP_RNR_RETRY = (1<<11), 716 IB_QP_RQ_PSN = (1<<12), 717 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 718 IB_QP_ALT_PATH = (1<<14), 719 IB_QP_MIN_RNR_TIMER = (1<<15), 720 IB_QP_SQ_PSN = (1<<16), 721 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 722 IB_QP_PATH_MIG_STATE = (1<<18), 723 IB_QP_CAP = (1<<19), 724 IB_QP_DEST_QPN = (1<<20) 725 }; 726 727 enum ib_qp_state { 728 IB_QPS_RESET, 729 IB_QPS_INIT, 730 IB_QPS_RTR, 731 IB_QPS_RTS, 732 IB_QPS_SQD, 733 IB_QPS_SQE, 734 IB_QPS_ERR 735 }; 736 737 enum ib_mig_state { 738 IB_MIG_MIGRATED, 739 IB_MIG_REARM, 740 IB_MIG_ARMED 741 }; 742 743 enum ib_mw_type { 744 IB_MW_TYPE_1 = 1, 745 IB_MW_TYPE_2 = 2 746 }; 747 748 struct ib_qp_attr { 749 enum ib_qp_state qp_state; 750 enum ib_qp_state cur_qp_state; 751 enum ib_mtu path_mtu; 752 enum ib_mig_state path_mig_state; 753 u32 qkey; 754 u32 rq_psn; 755 u32 sq_psn; 756 u32 dest_qp_num; 757 int qp_access_flags; 758 struct ib_qp_cap cap; 759 struct ib_ah_attr ah_attr; 760 struct ib_ah_attr alt_ah_attr; 761 u16 pkey_index; 762 u16 alt_pkey_index; 763 u8 en_sqd_async_notify; 764 u8 sq_draining; 765 u8 max_rd_atomic; 766 u8 max_dest_rd_atomic; 767 u8 min_rnr_timer; 768 u8 port_num; 769 u8 timeout; 770 u8 retry_cnt; 771 u8 rnr_retry; 772 u8 alt_port_num; 773 u8 alt_timeout; 774 }; 775 776 enum ib_wr_opcode { 777 IB_WR_RDMA_WRITE, 778 IB_WR_RDMA_WRITE_WITH_IMM, 779 IB_WR_SEND, 780 IB_WR_SEND_WITH_IMM, 781 IB_WR_RDMA_READ, 782 IB_WR_ATOMIC_CMP_AND_SWP, 783 IB_WR_ATOMIC_FETCH_AND_ADD, 784 IB_WR_LSO, 785 IB_WR_SEND_WITH_INV, 786 IB_WR_RDMA_READ_WITH_INV, 787 IB_WR_LOCAL_INV, 788 IB_WR_FAST_REG_MR, 789 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 790 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 791 IB_WR_BIND_MW, 792 /* reserve values for low level drivers' internal use. 793 * These values will not be used at all in the ib core layer. 794 */ 795 IB_WR_RESERVED1 = 0xf0, 796 IB_WR_RESERVED2, 797 IB_WR_RESERVED3, 798 IB_WR_RESERVED4, 799 IB_WR_RESERVED5, 800 IB_WR_RESERVED6, 801 IB_WR_RESERVED7, 802 IB_WR_RESERVED8, 803 IB_WR_RESERVED9, 804 IB_WR_RESERVED10, 805 }; 806 807 enum ib_send_flags { 808 IB_SEND_FENCE = 1, 809 IB_SEND_SIGNALED = (1<<1), 810 IB_SEND_SOLICITED = (1<<2), 811 IB_SEND_INLINE = (1<<3), 812 IB_SEND_IP_CSUM = (1<<4), 813 814 /* reserve bits 26-31 for low level drivers' internal use */ 815 IB_SEND_RESERVED_START = (1 << 26), 816 IB_SEND_RESERVED_END = (1 << 31), 817 }; 818 819 struct ib_sge { 820 u64 addr; 821 u32 length; 822 u32 lkey; 823 }; 824 825 struct ib_fast_reg_page_list { 826 struct ib_device *device; 827 u64 *page_list; 828 unsigned int max_page_list_len; 829 }; 830 831 /** 832 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 833 * @mr: A memory region to bind the memory window to. 834 * @addr: The address where the memory window should begin. 835 * @length: The length of the memory window, in bytes. 836 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 837 * 838 * This struct contains the shared parameters for type 1 and type 2 839 * memory window bind operations. 840 */ 841 struct ib_mw_bind_info { 842 struct ib_mr *mr; 843 u64 addr; 844 u64 length; 845 int mw_access_flags; 846 }; 847 848 struct ib_send_wr { 849 struct ib_send_wr *next; 850 u64 wr_id; 851 struct ib_sge *sg_list; 852 int num_sge; 853 enum ib_wr_opcode opcode; 854 int send_flags; 855 union { 856 __be32 imm_data; 857 u32 invalidate_rkey; 858 } ex; 859 union { 860 struct { 861 u64 remote_addr; 862 u32 rkey; 863 } rdma; 864 struct { 865 u64 remote_addr; 866 u64 compare_add; 867 u64 swap; 868 u64 compare_add_mask; 869 u64 swap_mask; 870 u32 rkey; 871 } atomic; 872 struct { 873 struct ib_ah *ah; 874 void *header; 875 int hlen; 876 int mss; 877 u32 remote_qpn; 878 u32 remote_qkey; 879 u16 pkey_index; /* valid for GSI only */ 880 u8 port_num; /* valid for DR SMPs on switch only */ 881 } ud; 882 struct { 883 u64 iova_start; 884 struct ib_fast_reg_page_list *page_list; 885 unsigned int page_shift; 886 unsigned int page_list_len; 887 u32 length; 888 int access_flags; 889 u32 rkey; 890 } fast_reg; 891 struct { 892 struct ib_mw *mw; 893 /* The new rkey for the memory window. */ 894 u32 rkey; 895 struct ib_mw_bind_info bind_info; 896 } bind_mw; 897 } wr; 898 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 899 }; 900 901 struct ib_recv_wr { 902 struct ib_recv_wr *next; 903 u64 wr_id; 904 struct ib_sge *sg_list; 905 int num_sge; 906 }; 907 908 enum ib_access_flags { 909 IB_ACCESS_LOCAL_WRITE = 1, 910 IB_ACCESS_REMOTE_WRITE = (1<<1), 911 IB_ACCESS_REMOTE_READ = (1<<2), 912 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 913 IB_ACCESS_MW_BIND = (1<<4), 914 IB_ZERO_BASED = (1<<5) 915 }; 916 917 struct ib_phys_buf { 918 u64 addr; 919 u64 size; 920 }; 921 922 struct ib_mr_attr { 923 struct ib_pd *pd; 924 u64 device_virt_addr; 925 u64 size; 926 int mr_access_flags; 927 u32 lkey; 928 u32 rkey; 929 }; 930 931 enum ib_mr_rereg_flags { 932 IB_MR_REREG_TRANS = 1, 933 IB_MR_REREG_PD = (1<<1), 934 IB_MR_REREG_ACCESS = (1<<2) 935 }; 936 937 /** 938 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 939 * @wr_id: Work request id. 940 * @send_flags: Flags from ib_send_flags enum. 941 * @bind_info: More parameters of the bind operation. 942 */ 943 struct ib_mw_bind { 944 u64 wr_id; 945 int send_flags; 946 struct ib_mw_bind_info bind_info; 947 }; 948 949 struct ib_fmr_attr { 950 int max_pages; 951 int max_maps; 952 u8 page_shift; 953 }; 954 955 struct ib_ucontext { 956 struct ib_device *device; 957 struct list_head pd_list; 958 struct list_head mr_list; 959 struct list_head mw_list; 960 struct list_head cq_list; 961 struct list_head qp_list; 962 struct list_head srq_list; 963 struct list_head ah_list; 964 struct list_head xrcd_list; 965 struct list_head rule_list; 966 int closing; 967 }; 968 969 struct ib_uobject { 970 u64 user_handle; /* handle given to us by userspace */ 971 struct ib_ucontext *context; /* associated user context */ 972 void *object; /* containing object */ 973 struct list_head list; /* link to context's list */ 974 int id; /* index into kernel idr */ 975 struct kref ref; 976 struct rw_semaphore mutex; /* protects .live */ 977 int live; 978 }; 979 980 struct ib_udata { 981 const void __user *inbuf; 982 void __user *outbuf; 983 size_t inlen; 984 size_t outlen; 985 }; 986 987 struct ib_pd { 988 struct ib_device *device; 989 struct ib_uobject *uobject; 990 atomic_t usecnt; /* count all resources */ 991 }; 992 993 struct ib_xrcd { 994 struct ib_device *device; 995 atomic_t usecnt; /* count all exposed resources */ 996 struct inode *inode; 997 998 struct mutex tgt_qp_mutex; 999 struct list_head tgt_qp_list; 1000 }; 1001 1002 struct ib_ah { 1003 struct ib_device *device; 1004 struct ib_pd *pd; 1005 struct ib_uobject *uobject; 1006 }; 1007 1008 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1009 1010 struct ib_cq { 1011 struct ib_device *device; 1012 struct ib_uobject *uobject; 1013 ib_comp_handler comp_handler; 1014 void (*event_handler)(struct ib_event *, void *); 1015 void *cq_context; 1016 int cqe; 1017 atomic_t usecnt; /* count number of work queues */ 1018 }; 1019 1020 struct ib_srq { 1021 struct ib_device *device; 1022 struct ib_pd *pd; 1023 struct ib_uobject *uobject; 1024 void (*event_handler)(struct ib_event *, void *); 1025 void *srq_context; 1026 enum ib_srq_type srq_type; 1027 atomic_t usecnt; 1028 1029 union { 1030 struct { 1031 struct ib_xrcd *xrcd; 1032 struct ib_cq *cq; 1033 u32 srq_num; 1034 } xrc; 1035 } ext; 1036 }; 1037 1038 struct ib_qp { 1039 struct ib_device *device; 1040 struct ib_pd *pd; 1041 struct ib_cq *send_cq; 1042 struct ib_cq *recv_cq; 1043 struct ib_srq *srq; 1044 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1045 struct list_head xrcd_list; 1046 /* count times opened, mcast attaches, flow attaches */ 1047 atomic_t usecnt; 1048 struct list_head open_list; 1049 struct ib_qp *real_qp; 1050 struct ib_uobject *uobject; 1051 void (*event_handler)(struct ib_event *, void *); 1052 void *qp_context; 1053 u32 qp_num; 1054 enum ib_qp_type qp_type; 1055 }; 1056 1057 struct ib_mr { 1058 struct ib_device *device; 1059 struct ib_pd *pd; 1060 struct ib_uobject *uobject; 1061 u32 lkey; 1062 u32 rkey; 1063 atomic_t usecnt; /* count number of MWs */ 1064 }; 1065 1066 struct ib_mw { 1067 struct ib_device *device; 1068 struct ib_pd *pd; 1069 struct ib_uobject *uobject; 1070 u32 rkey; 1071 enum ib_mw_type type; 1072 }; 1073 1074 struct ib_fmr { 1075 struct ib_device *device; 1076 struct ib_pd *pd; 1077 struct list_head list; 1078 u32 lkey; 1079 u32 rkey; 1080 }; 1081 1082 /* Supported steering options */ 1083 enum ib_flow_attr_type { 1084 /* steering according to rule specifications */ 1085 IB_FLOW_ATTR_NORMAL = 0x0, 1086 /* default unicast and multicast rule - 1087 * receive all Eth traffic which isn't steered to any QP 1088 */ 1089 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1090 /* default multicast rule - 1091 * receive all Eth multicast traffic which isn't steered to any QP 1092 */ 1093 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1094 /* sniffer rule - receive all port traffic */ 1095 IB_FLOW_ATTR_SNIFFER = 0x3 1096 }; 1097 1098 /* Supported steering header types */ 1099 enum ib_flow_spec_type { 1100 /* L2 headers*/ 1101 IB_FLOW_SPEC_ETH = 0x20, 1102 /* L3 header*/ 1103 IB_FLOW_SPEC_IPV4 = 0x30, 1104 /* L4 headers*/ 1105 IB_FLOW_SPEC_TCP = 0x40, 1106 IB_FLOW_SPEC_UDP = 0x41 1107 }; 1108 1109 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1110 1111 /* Flow steering rule priority is set according to it's domain. 1112 * Lower domain value means higher priority. 1113 */ 1114 enum ib_flow_domain { 1115 IB_FLOW_DOMAIN_USER, 1116 IB_FLOW_DOMAIN_ETHTOOL, 1117 IB_FLOW_DOMAIN_RFS, 1118 IB_FLOW_DOMAIN_NIC, 1119 IB_FLOW_DOMAIN_NUM /* Must be last */ 1120 }; 1121 1122 struct ib_flow_eth_filter { 1123 u8 dst_mac[6]; 1124 u8 src_mac[6]; 1125 __be16 ether_type; 1126 __be16 vlan_tag; 1127 }; 1128 1129 struct ib_flow_spec_eth { 1130 enum ib_flow_spec_type type; 1131 u16 size; 1132 struct ib_flow_eth_filter val; 1133 struct ib_flow_eth_filter mask; 1134 }; 1135 1136 struct ib_flow_ipv4_filter { 1137 __be32 src_ip; 1138 __be32 dst_ip; 1139 }; 1140 1141 struct ib_flow_spec_ipv4 { 1142 enum ib_flow_spec_type type; 1143 u16 size; 1144 struct ib_flow_ipv4_filter val; 1145 struct ib_flow_ipv4_filter mask; 1146 }; 1147 1148 struct ib_flow_tcp_udp_filter { 1149 __be16 dst_port; 1150 __be16 src_port; 1151 }; 1152 1153 struct ib_flow_spec_tcp_udp { 1154 enum ib_flow_spec_type type; 1155 u16 size; 1156 struct ib_flow_tcp_udp_filter val; 1157 struct ib_flow_tcp_udp_filter mask; 1158 }; 1159 1160 union ib_flow_spec { 1161 struct { 1162 enum ib_flow_spec_type type; 1163 u16 size; 1164 }; 1165 struct ib_flow_spec_eth eth; 1166 struct ib_flow_spec_ipv4 ipv4; 1167 struct ib_flow_spec_tcp_udp tcp_udp; 1168 }; 1169 1170 struct ib_flow_attr { 1171 enum ib_flow_attr_type type; 1172 u16 size; 1173 u16 priority; 1174 u32 flags; 1175 u8 num_of_specs; 1176 u8 port; 1177 /* Following are the optional layers according to user request 1178 * struct ib_flow_spec_xxx 1179 * struct ib_flow_spec_yyy 1180 */ 1181 }; 1182 1183 struct ib_flow { 1184 struct ib_qp *qp; 1185 struct ib_uobject *uobject; 1186 }; 1187 1188 struct ib_mad; 1189 struct ib_grh; 1190 1191 enum ib_process_mad_flags { 1192 IB_MAD_IGNORE_MKEY = 1, 1193 IB_MAD_IGNORE_BKEY = 2, 1194 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1195 }; 1196 1197 enum ib_mad_result { 1198 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1199 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1200 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1201 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1202 }; 1203 1204 #define IB_DEVICE_NAME_MAX 64 1205 1206 struct ib_cache { 1207 rwlock_t lock; 1208 struct ib_event_handler event_handler; 1209 struct ib_pkey_cache **pkey_cache; 1210 struct ib_gid_cache **gid_cache; 1211 u8 *lmc_cache; 1212 }; 1213 1214 struct ib_dma_mapping_ops { 1215 int (*mapping_error)(struct ib_device *dev, 1216 u64 dma_addr); 1217 u64 (*map_single)(struct ib_device *dev, 1218 void *ptr, size_t size, 1219 enum dma_data_direction direction); 1220 void (*unmap_single)(struct ib_device *dev, 1221 u64 addr, size_t size, 1222 enum dma_data_direction direction); 1223 u64 (*map_page)(struct ib_device *dev, 1224 struct page *page, unsigned long offset, 1225 size_t size, 1226 enum dma_data_direction direction); 1227 void (*unmap_page)(struct ib_device *dev, 1228 u64 addr, size_t size, 1229 enum dma_data_direction direction); 1230 int (*map_sg)(struct ib_device *dev, 1231 struct scatterlist *sg, int nents, 1232 enum dma_data_direction direction); 1233 void (*unmap_sg)(struct ib_device *dev, 1234 struct scatterlist *sg, int nents, 1235 enum dma_data_direction direction); 1236 u64 (*dma_address)(struct ib_device *dev, 1237 struct scatterlist *sg); 1238 unsigned int (*dma_len)(struct ib_device *dev, 1239 struct scatterlist *sg); 1240 void (*sync_single_for_cpu)(struct ib_device *dev, 1241 u64 dma_handle, 1242 size_t size, 1243 enum dma_data_direction dir); 1244 void (*sync_single_for_device)(struct ib_device *dev, 1245 u64 dma_handle, 1246 size_t size, 1247 enum dma_data_direction dir); 1248 void *(*alloc_coherent)(struct ib_device *dev, 1249 size_t size, 1250 u64 *dma_handle, 1251 gfp_t flag); 1252 void (*free_coherent)(struct ib_device *dev, 1253 size_t size, void *cpu_addr, 1254 u64 dma_handle); 1255 }; 1256 1257 struct iw_cm_verbs; 1258 1259 struct ib_device { 1260 struct device *dma_device; 1261 1262 char name[IB_DEVICE_NAME_MAX]; 1263 1264 struct list_head event_handler_list; 1265 spinlock_t event_handler_lock; 1266 1267 spinlock_t client_data_lock; 1268 struct list_head core_list; 1269 struct list_head client_data_list; 1270 1271 struct ib_cache cache; 1272 int *pkey_tbl_len; 1273 int *gid_tbl_len; 1274 1275 int num_comp_vectors; 1276 1277 struct iw_cm_verbs *iwcm; 1278 1279 int (*get_protocol_stats)(struct ib_device *device, 1280 union rdma_protocol_stats *stats); 1281 int (*query_device)(struct ib_device *device, 1282 struct ib_device_attr *device_attr); 1283 int (*query_port)(struct ib_device *device, 1284 u8 port_num, 1285 struct ib_port_attr *port_attr); 1286 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1287 u8 port_num); 1288 int (*query_gid)(struct ib_device *device, 1289 u8 port_num, int index, 1290 union ib_gid *gid); 1291 int (*query_pkey)(struct ib_device *device, 1292 u8 port_num, u16 index, u16 *pkey); 1293 int (*modify_device)(struct ib_device *device, 1294 int device_modify_mask, 1295 struct ib_device_modify *device_modify); 1296 int (*modify_port)(struct ib_device *device, 1297 u8 port_num, int port_modify_mask, 1298 struct ib_port_modify *port_modify); 1299 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1300 struct ib_udata *udata); 1301 int (*dealloc_ucontext)(struct ib_ucontext *context); 1302 int (*mmap)(struct ib_ucontext *context, 1303 struct vm_area_struct *vma); 1304 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1305 struct ib_ucontext *context, 1306 struct ib_udata *udata); 1307 int (*dealloc_pd)(struct ib_pd *pd); 1308 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1309 struct ib_ah_attr *ah_attr); 1310 int (*modify_ah)(struct ib_ah *ah, 1311 struct ib_ah_attr *ah_attr); 1312 int (*query_ah)(struct ib_ah *ah, 1313 struct ib_ah_attr *ah_attr); 1314 int (*destroy_ah)(struct ib_ah *ah); 1315 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1316 struct ib_srq_init_attr *srq_init_attr, 1317 struct ib_udata *udata); 1318 int (*modify_srq)(struct ib_srq *srq, 1319 struct ib_srq_attr *srq_attr, 1320 enum ib_srq_attr_mask srq_attr_mask, 1321 struct ib_udata *udata); 1322 int (*query_srq)(struct ib_srq *srq, 1323 struct ib_srq_attr *srq_attr); 1324 int (*destroy_srq)(struct ib_srq *srq); 1325 int (*post_srq_recv)(struct ib_srq *srq, 1326 struct ib_recv_wr *recv_wr, 1327 struct ib_recv_wr **bad_recv_wr); 1328 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1329 struct ib_qp_init_attr *qp_init_attr, 1330 struct ib_udata *udata); 1331 int (*modify_qp)(struct ib_qp *qp, 1332 struct ib_qp_attr *qp_attr, 1333 int qp_attr_mask, 1334 struct ib_udata *udata); 1335 int (*query_qp)(struct ib_qp *qp, 1336 struct ib_qp_attr *qp_attr, 1337 int qp_attr_mask, 1338 struct ib_qp_init_attr *qp_init_attr); 1339 int (*destroy_qp)(struct ib_qp *qp); 1340 int (*post_send)(struct ib_qp *qp, 1341 struct ib_send_wr *send_wr, 1342 struct ib_send_wr **bad_send_wr); 1343 int (*post_recv)(struct ib_qp *qp, 1344 struct ib_recv_wr *recv_wr, 1345 struct ib_recv_wr **bad_recv_wr); 1346 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1347 int comp_vector, 1348 struct ib_ucontext *context, 1349 struct ib_udata *udata); 1350 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1351 u16 cq_period); 1352 int (*destroy_cq)(struct ib_cq *cq); 1353 int (*resize_cq)(struct ib_cq *cq, int cqe, 1354 struct ib_udata *udata); 1355 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1356 struct ib_wc *wc); 1357 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1358 int (*req_notify_cq)(struct ib_cq *cq, 1359 enum ib_cq_notify_flags flags); 1360 int (*req_ncomp_notif)(struct ib_cq *cq, 1361 int wc_cnt); 1362 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1363 int mr_access_flags); 1364 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1365 struct ib_phys_buf *phys_buf_array, 1366 int num_phys_buf, 1367 int mr_access_flags, 1368 u64 *iova_start); 1369 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1370 u64 start, u64 length, 1371 u64 virt_addr, 1372 int mr_access_flags, 1373 struct ib_udata *udata); 1374 int (*query_mr)(struct ib_mr *mr, 1375 struct ib_mr_attr *mr_attr); 1376 int (*dereg_mr)(struct ib_mr *mr); 1377 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1378 int max_page_list_len); 1379 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1380 int page_list_len); 1381 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1382 int (*rereg_phys_mr)(struct ib_mr *mr, 1383 int mr_rereg_mask, 1384 struct ib_pd *pd, 1385 struct ib_phys_buf *phys_buf_array, 1386 int num_phys_buf, 1387 int mr_access_flags, 1388 u64 *iova_start); 1389 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1390 enum ib_mw_type type); 1391 int (*bind_mw)(struct ib_qp *qp, 1392 struct ib_mw *mw, 1393 struct ib_mw_bind *mw_bind); 1394 int (*dealloc_mw)(struct ib_mw *mw); 1395 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1396 int mr_access_flags, 1397 struct ib_fmr_attr *fmr_attr); 1398 int (*map_phys_fmr)(struct ib_fmr *fmr, 1399 u64 *page_list, int list_len, 1400 u64 iova); 1401 int (*unmap_fmr)(struct list_head *fmr_list); 1402 int (*dealloc_fmr)(struct ib_fmr *fmr); 1403 int (*attach_mcast)(struct ib_qp *qp, 1404 union ib_gid *gid, 1405 u16 lid); 1406 int (*detach_mcast)(struct ib_qp *qp, 1407 union ib_gid *gid, 1408 u16 lid); 1409 int (*process_mad)(struct ib_device *device, 1410 int process_mad_flags, 1411 u8 port_num, 1412 struct ib_wc *in_wc, 1413 struct ib_grh *in_grh, 1414 struct ib_mad *in_mad, 1415 struct ib_mad *out_mad); 1416 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1417 struct ib_ucontext *ucontext, 1418 struct ib_udata *udata); 1419 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1420 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1421 struct ib_flow_attr 1422 *flow_attr, 1423 int domain); 1424 int (*destroy_flow)(struct ib_flow *flow_id); 1425 1426 struct ib_dma_mapping_ops *dma_ops; 1427 1428 struct module *owner; 1429 struct device dev; 1430 struct kobject *ports_parent; 1431 struct list_head port_list; 1432 1433 enum { 1434 IB_DEV_UNINITIALIZED, 1435 IB_DEV_REGISTERED, 1436 IB_DEV_UNREGISTERED 1437 } reg_state; 1438 1439 int uverbs_abi_ver; 1440 u64 uverbs_cmd_mask; 1441 u64 uverbs_ex_cmd_mask; 1442 1443 char node_desc[64]; 1444 __be64 node_guid; 1445 u32 local_dma_lkey; 1446 u8 node_type; 1447 u8 phys_port_cnt; 1448 }; 1449 1450 struct ib_client { 1451 char *name; 1452 void (*add) (struct ib_device *); 1453 void (*remove)(struct ib_device *); 1454 1455 struct list_head list; 1456 }; 1457 1458 struct ib_device *ib_alloc_device(size_t size); 1459 void ib_dealloc_device(struct ib_device *device); 1460 1461 int ib_register_device(struct ib_device *device, 1462 int (*port_callback)(struct ib_device *, 1463 u8, struct kobject *)); 1464 void ib_unregister_device(struct ib_device *device); 1465 1466 int ib_register_client (struct ib_client *client); 1467 void ib_unregister_client(struct ib_client *client); 1468 1469 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1470 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1471 void *data); 1472 1473 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1474 { 1475 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1476 } 1477 1478 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1479 { 1480 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1481 } 1482 1483 /** 1484 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1485 * contains all required attributes and no attributes not allowed for 1486 * the given QP state transition. 1487 * @cur_state: Current QP state 1488 * @next_state: Next QP state 1489 * @type: QP type 1490 * @mask: Mask of supplied QP attributes 1491 * 1492 * This function is a helper function that a low-level driver's 1493 * modify_qp method can use to validate the consumer's input. It 1494 * checks that cur_state and next_state are valid QP states, that a 1495 * transition from cur_state to next_state is allowed by the IB spec, 1496 * and that the attribute mask supplied is allowed for the transition. 1497 */ 1498 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1499 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1500 1501 int ib_register_event_handler (struct ib_event_handler *event_handler); 1502 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1503 void ib_dispatch_event(struct ib_event *event); 1504 1505 int ib_query_device(struct ib_device *device, 1506 struct ib_device_attr *device_attr); 1507 1508 int ib_query_port(struct ib_device *device, 1509 u8 port_num, struct ib_port_attr *port_attr); 1510 1511 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1512 u8 port_num); 1513 1514 int ib_query_gid(struct ib_device *device, 1515 u8 port_num, int index, union ib_gid *gid); 1516 1517 int ib_query_pkey(struct ib_device *device, 1518 u8 port_num, u16 index, u16 *pkey); 1519 1520 int ib_modify_device(struct ib_device *device, 1521 int device_modify_mask, 1522 struct ib_device_modify *device_modify); 1523 1524 int ib_modify_port(struct ib_device *device, 1525 u8 port_num, int port_modify_mask, 1526 struct ib_port_modify *port_modify); 1527 1528 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1529 u8 *port_num, u16 *index); 1530 1531 int ib_find_pkey(struct ib_device *device, 1532 u8 port_num, u16 pkey, u16 *index); 1533 1534 /** 1535 * ib_alloc_pd - Allocates an unused protection domain. 1536 * @device: The device on which to allocate the protection domain. 1537 * 1538 * A protection domain object provides an association between QPs, shared 1539 * receive queues, address handles, memory regions, and memory windows. 1540 */ 1541 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1542 1543 /** 1544 * ib_dealloc_pd - Deallocates a protection domain. 1545 * @pd: The protection domain to deallocate. 1546 */ 1547 int ib_dealloc_pd(struct ib_pd *pd); 1548 1549 /** 1550 * ib_create_ah - Creates an address handle for the given address vector. 1551 * @pd: The protection domain associated with the address handle. 1552 * @ah_attr: The attributes of the address vector. 1553 * 1554 * The address handle is used to reference a local or global destination 1555 * in all UD QP post sends. 1556 */ 1557 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1558 1559 /** 1560 * ib_init_ah_from_wc - Initializes address handle attributes from a 1561 * work completion. 1562 * @device: Device on which the received message arrived. 1563 * @port_num: Port on which the received message arrived. 1564 * @wc: Work completion associated with the received message. 1565 * @grh: References the received global route header. This parameter is 1566 * ignored unless the work completion indicates that the GRH is valid. 1567 * @ah_attr: Returned attributes that can be used when creating an address 1568 * handle for replying to the message. 1569 */ 1570 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1571 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1572 1573 /** 1574 * ib_create_ah_from_wc - Creates an address handle associated with the 1575 * sender of the specified work completion. 1576 * @pd: The protection domain associated with the address handle. 1577 * @wc: Work completion information associated with a received message. 1578 * @grh: References the received global route header. This parameter is 1579 * ignored unless the work completion indicates that the GRH is valid. 1580 * @port_num: The outbound port number to associate with the address. 1581 * 1582 * The address handle is used to reference a local or global destination 1583 * in all UD QP post sends. 1584 */ 1585 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1586 struct ib_grh *grh, u8 port_num); 1587 1588 /** 1589 * ib_modify_ah - Modifies the address vector associated with an address 1590 * handle. 1591 * @ah: The address handle to modify. 1592 * @ah_attr: The new address vector attributes to associate with the 1593 * address handle. 1594 */ 1595 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1596 1597 /** 1598 * ib_query_ah - Queries the address vector associated with an address 1599 * handle. 1600 * @ah: The address handle to query. 1601 * @ah_attr: The address vector attributes associated with the address 1602 * handle. 1603 */ 1604 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1605 1606 /** 1607 * ib_destroy_ah - Destroys an address handle. 1608 * @ah: The address handle to destroy. 1609 */ 1610 int ib_destroy_ah(struct ib_ah *ah); 1611 1612 /** 1613 * ib_create_srq - Creates a SRQ associated with the specified protection 1614 * domain. 1615 * @pd: The protection domain associated with the SRQ. 1616 * @srq_init_attr: A list of initial attributes required to create the 1617 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1618 * the actual capabilities of the created SRQ. 1619 * 1620 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1621 * requested size of the SRQ, and set to the actual values allocated 1622 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1623 * will always be at least as large as the requested values. 1624 */ 1625 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1626 struct ib_srq_init_attr *srq_init_attr); 1627 1628 /** 1629 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1630 * @srq: The SRQ to modify. 1631 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1632 * the current values of selected SRQ attributes are returned. 1633 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1634 * are being modified. 1635 * 1636 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1637 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1638 * the number of receives queued drops below the limit. 1639 */ 1640 int ib_modify_srq(struct ib_srq *srq, 1641 struct ib_srq_attr *srq_attr, 1642 enum ib_srq_attr_mask srq_attr_mask); 1643 1644 /** 1645 * ib_query_srq - Returns the attribute list and current values for the 1646 * specified SRQ. 1647 * @srq: The SRQ to query. 1648 * @srq_attr: The attributes of the specified SRQ. 1649 */ 1650 int ib_query_srq(struct ib_srq *srq, 1651 struct ib_srq_attr *srq_attr); 1652 1653 /** 1654 * ib_destroy_srq - Destroys the specified SRQ. 1655 * @srq: The SRQ to destroy. 1656 */ 1657 int ib_destroy_srq(struct ib_srq *srq); 1658 1659 /** 1660 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1661 * @srq: The SRQ to post the work request on. 1662 * @recv_wr: A list of work requests to post on the receive queue. 1663 * @bad_recv_wr: On an immediate failure, this parameter will reference 1664 * the work request that failed to be posted on the QP. 1665 */ 1666 static inline int ib_post_srq_recv(struct ib_srq *srq, 1667 struct ib_recv_wr *recv_wr, 1668 struct ib_recv_wr **bad_recv_wr) 1669 { 1670 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1671 } 1672 1673 /** 1674 * ib_create_qp - Creates a QP associated with the specified protection 1675 * domain. 1676 * @pd: The protection domain associated with the QP. 1677 * @qp_init_attr: A list of initial attributes required to create the 1678 * QP. If QP creation succeeds, then the attributes are updated to 1679 * the actual capabilities of the created QP. 1680 */ 1681 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1682 struct ib_qp_init_attr *qp_init_attr); 1683 1684 /** 1685 * ib_modify_qp - Modifies the attributes for the specified QP and then 1686 * transitions the QP to the given state. 1687 * @qp: The QP to modify. 1688 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1689 * the current values of selected QP attributes are returned. 1690 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1691 * are being modified. 1692 */ 1693 int ib_modify_qp(struct ib_qp *qp, 1694 struct ib_qp_attr *qp_attr, 1695 int qp_attr_mask); 1696 1697 /** 1698 * ib_query_qp - Returns the attribute list and current values for the 1699 * specified QP. 1700 * @qp: The QP to query. 1701 * @qp_attr: The attributes of the specified QP. 1702 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1703 * @qp_init_attr: Additional attributes of the selected QP. 1704 * 1705 * The qp_attr_mask may be used to limit the query to gathering only the 1706 * selected attributes. 1707 */ 1708 int ib_query_qp(struct ib_qp *qp, 1709 struct ib_qp_attr *qp_attr, 1710 int qp_attr_mask, 1711 struct ib_qp_init_attr *qp_init_attr); 1712 1713 /** 1714 * ib_destroy_qp - Destroys the specified QP. 1715 * @qp: The QP to destroy. 1716 */ 1717 int ib_destroy_qp(struct ib_qp *qp); 1718 1719 /** 1720 * ib_open_qp - Obtain a reference to an existing sharable QP. 1721 * @xrcd - XRC domain 1722 * @qp_open_attr: Attributes identifying the QP to open. 1723 * 1724 * Returns a reference to a sharable QP. 1725 */ 1726 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1727 struct ib_qp_open_attr *qp_open_attr); 1728 1729 /** 1730 * ib_close_qp - Release an external reference to a QP. 1731 * @qp: The QP handle to release 1732 * 1733 * The opened QP handle is released by the caller. The underlying 1734 * shared QP is not destroyed until all internal references are released. 1735 */ 1736 int ib_close_qp(struct ib_qp *qp); 1737 1738 /** 1739 * ib_post_send - Posts a list of work requests to the send queue of 1740 * the specified QP. 1741 * @qp: The QP to post the work request on. 1742 * @send_wr: A list of work requests to post on the send queue. 1743 * @bad_send_wr: On an immediate failure, this parameter will reference 1744 * the work request that failed to be posted on the QP. 1745 * 1746 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1747 * error is returned, the QP state shall not be affected, 1748 * ib_post_send() will return an immediate error after queueing any 1749 * earlier work requests in the list. 1750 */ 1751 static inline int ib_post_send(struct ib_qp *qp, 1752 struct ib_send_wr *send_wr, 1753 struct ib_send_wr **bad_send_wr) 1754 { 1755 return qp->device->post_send(qp, send_wr, bad_send_wr); 1756 } 1757 1758 /** 1759 * ib_post_recv - Posts a list of work requests to the receive queue of 1760 * the specified QP. 1761 * @qp: The QP to post the work request on. 1762 * @recv_wr: A list of work requests to post on the receive queue. 1763 * @bad_recv_wr: On an immediate failure, this parameter will reference 1764 * the work request that failed to be posted on the QP. 1765 */ 1766 static inline int ib_post_recv(struct ib_qp *qp, 1767 struct ib_recv_wr *recv_wr, 1768 struct ib_recv_wr **bad_recv_wr) 1769 { 1770 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1771 } 1772 1773 /** 1774 * ib_create_cq - Creates a CQ on the specified device. 1775 * @device: The device on which to create the CQ. 1776 * @comp_handler: A user-specified callback that is invoked when a 1777 * completion event occurs on the CQ. 1778 * @event_handler: A user-specified callback that is invoked when an 1779 * asynchronous event not associated with a completion occurs on the CQ. 1780 * @cq_context: Context associated with the CQ returned to the user via 1781 * the associated completion and event handlers. 1782 * @cqe: The minimum size of the CQ. 1783 * @comp_vector - Completion vector used to signal completion events. 1784 * Must be >= 0 and < context->num_comp_vectors. 1785 * 1786 * Users can examine the cq structure to determine the actual CQ size. 1787 */ 1788 struct ib_cq *ib_create_cq(struct ib_device *device, 1789 ib_comp_handler comp_handler, 1790 void (*event_handler)(struct ib_event *, void *), 1791 void *cq_context, int cqe, int comp_vector); 1792 1793 /** 1794 * ib_resize_cq - Modifies the capacity of the CQ. 1795 * @cq: The CQ to resize. 1796 * @cqe: The minimum size of the CQ. 1797 * 1798 * Users can examine the cq structure to determine the actual CQ size. 1799 */ 1800 int ib_resize_cq(struct ib_cq *cq, int cqe); 1801 1802 /** 1803 * ib_modify_cq - Modifies moderation params of the CQ 1804 * @cq: The CQ to modify. 1805 * @cq_count: number of CQEs that will trigger an event 1806 * @cq_period: max period of time in usec before triggering an event 1807 * 1808 */ 1809 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1810 1811 /** 1812 * ib_destroy_cq - Destroys the specified CQ. 1813 * @cq: The CQ to destroy. 1814 */ 1815 int ib_destroy_cq(struct ib_cq *cq); 1816 1817 /** 1818 * ib_poll_cq - poll a CQ for completion(s) 1819 * @cq:the CQ being polled 1820 * @num_entries:maximum number of completions to return 1821 * @wc:array of at least @num_entries &struct ib_wc where completions 1822 * will be returned 1823 * 1824 * Poll a CQ for (possibly multiple) completions. If the return value 1825 * is < 0, an error occurred. If the return value is >= 0, it is the 1826 * number of completions returned. If the return value is 1827 * non-negative and < num_entries, then the CQ was emptied. 1828 */ 1829 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1830 struct ib_wc *wc) 1831 { 1832 return cq->device->poll_cq(cq, num_entries, wc); 1833 } 1834 1835 /** 1836 * ib_peek_cq - Returns the number of unreaped completions currently 1837 * on the specified CQ. 1838 * @cq: The CQ to peek. 1839 * @wc_cnt: A minimum number of unreaped completions to check for. 1840 * 1841 * If the number of unreaped completions is greater than or equal to wc_cnt, 1842 * this function returns wc_cnt, otherwise, it returns the actual number of 1843 * unreaped completions. 1844 */ 1845 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1846 1847 /** 1848 * ib_req_notify_cq - Request completion notification on a CQ. 1849 * @cq: The CQ to generate an event for. 1850 * @flags: 1851 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1852 * to request an event on the next solicited event or next work 1853 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1854 * may also be |ed in to request a hint about missed events, as 1855 * described below. 1856 * 1857 * Return Value: 1858 * < 0 means an error occurred while requesting notification 1859 * == 0 means notification was requested successfully, and if 1860 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1861 * were missed and it is safe to wait for another event. In 1862 * this case is it guaranteed that any work completions added 1863 * to the CQ since the last CQ poll will trigger a completion 1864 * notification event. 1865 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1866 * in. It means that the consumer must poll the CQ again to 1867 * make sure it is empty to avoid missing an event because of a 1868 * race between requesting notification and an entry being 1869 * added to the CQ. This return value means it is possible 1870 * (but not guaranteed) that a work completion has been added 1871 * to the CQ since the last poll without triggering a 1872 * completion notification event. 1873 */ 1874 static inline int ib_req_notify_cq(struct ib_cq *cq, 1875 enum ib_cq_notify_flags flags) 1876 { 1877 return cq->device->req_notify_cq(cq, flags); 1878 } 1879 1880 /** 1881 * ib_req_ncomp_notif - Request completion notification when there are 1882 * at least the specified number of unreaped completions on the CQ. 1883 * @cq: The CQ to generate an event for. 1884 * @wc_cnt: The number of unreaped completions that should be on the 1885 * CQ before an event is generated. 1886 */ 1887 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1888 { 1889 return cq->device->req_ncomp_notif ? 1890 cq->device->req_ncomp_notif(cq, wc_cnt) : 1891 -ENOSYS; 1892 } 1893 1894 /** 1895 * ib_get_dma_mr - Returns a memory region for system memory that is 1896 * usable for DMA. 1897 * @pd: The protection domain associated with the memory region. 1898 * @mr_access_flags: Specifies the memory access rights. 1899 * 1900 * Note that the ib_dma_*() functions defined below must be used 1901 * to create/destroy addresses used with the Lkey or Rkey returned 1902 * by ib_get_dma_mr(). 1903 */ 1904 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1905 1906 /** 1907 * ib_dma_mapping_error - check a DMA addr for error 1908 * @dev: The device for which the dma_addr was created 1909 * @dma_addr: The DMA address to check 1910 */ 1911 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1912 { 1913 if (dev->dma_ops) 1914 return dev->dma_ops->mapping_error(dev, dma_addr); 1915 return dma_mapping_error(dev->dma_device, dma_addr); 1916 } 1917 1918 /** 1919 * ib_dma_map_single - Map a kernel virtual address to DMA address 1920 * @dev: The device for which the dma_addr is to be created 1921 * @cpu_addr: The kernel virtual address 1922 * @size: The size of the region in bytes 1923 * @direction: The direction of the DMA 1924 */ 1925 static inline u64 ib_dma_map_single(struct ib_device *dev, 1926 void *cpu_addr, size_t size, 1927 enum dma_data_direction direction) 1928 { 1929 if (dev->dma_ops) 1930 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1931 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1932 } 1933 1934 /** 1935 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1936 * @dev: The device for which the DMA address was created 1937 * @addr: The DMA address 1938 * @size: The size of the region in bytes 1939 * @direction: The direction of the DMA 1940 */ 1941 static inline void ib_dma_unmap_single(struct ib_device *dev, 1942 u64 addr, size_t size, 1943 enum dma_data_direction direction) 1944 { 1945 if (dev->dma_ops) 1946 dev->dma_ops->unmap_single(dev, addr, size, direction); 1947 else 1948 dma_unmap_single(dev->dma_device, addr, size, direction); 1949 } 1950 1951 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1952 void *cpu_addr, size_t size, 1953 enum dma_data_direction direction, 1954 struct dma_attrs *attrs) 1955 { 1956 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1957 direction, attrs); 1958 } 1959 1960 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1961 u64 addr, size_t size, 1962 enum dma_data_direction direction, 1963 struct dma_attrs *attrs) 1964 { 1965 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1966 direction, attrs); 1967 } 1968 1969 /** 1970 * ib_dma_map_page - Map a physical page to DMA address 1971 * @dev: The device for which the dma_addr is to be created 1972 * @page: The page to be mapped 1973 * @offset: The offset within the page 1974 * @size: The size of the region in bytes 1975 * @direction: The direction of the DMA 1976 */ 1977 static inline u64 ib_dma_map_page(struct ib_device *dev, 1978 struct page *page, 1979 unsigned long offset, 1980 size_t size, 1981 enum dma_data_direction direction) 1982 { 1983 if (dev->dma_ops) 1984 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1985 return dma_map_page(dev->dma_device, page, offset, size, direction); 1986 } 1987 1988 /** 1989 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1990 * @dev: The device for which the DMA address was created 1991 * @addr: The DMA address 1992 * @size: The size of the region in bytes 1993 * @direction: The direction of the DMA 1994 */ 1995 static inline void ib_dma_unmap_page(struct ib_device *dev, 1996 u64 addr, size_t size, 1997 enum dma_data_direction direction) 1998 { 1999 if (dev->dma_ops) 2000 dev->dma_ops->unmap_page(dev, addr, size, direction); 2001 else 2002 dma_unmap_page(dev->dma_device, addr, size, direction); 2003 } 2004 2005 /** 2006 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2007 * @dev: The device for which the DMA addresses are to be created 2008 * @sg: The array of scatter/gather entries 2009 * @nents: The number of scatter/gather entries 2010 * @direction: The direction of the DMA 2011 */ 2012 static inline int ib_dma_map_sg(struct ib_device *dev, 2013 struct scatterlist *sg, int nents, 2014 enum dma_data_direction direction) 2015 { 2016 if (dev->dma_ops) 2017 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2018 return dma_map_sg(dev->dma_device, sg, nents, direction); 2019 } 2020 2021 /** 2022 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2023 * @dev: The device for which the DMA addresses were created 2024 * @sg: The array of scatter/gather entries 2025 * @nents: The number of scatter/gather entries 2026 * @direction: The direction of the DMA 2027 */ 2028 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2029 struct scatterlist *sg, int nents, 2030 enum dma_data_direction direction) 2031 { 2032 if (dev->dma_ops) 2033 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2034 else 2035 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2036 } 2037 2038 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2039 struct scatterlist *sg, int nents, 2040 enum dma_data_direction direction, 2041 struct dma_attrs *attrs) 2042 { 2043 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2044 } 2045 2046 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2047 struct scatterlist *sg, int nents, 2048 enum dma_data_direction direction, 2049 struct dma_attrs *attrs) 2050 { 2051 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2052 } 2053 /** 2054 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2055 * @dev: The device for which the DMA addresses were created 2056 * @sg: The scatter/gather entry 2057 */ 2058 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2059 struct scatterlist *sg) 2060 { 2061 if (dev->dma_ops) 2062 return dev->dma_ops->dma_address(dev, sg); 2063 return sg_dma_address(sg); 2064 } 2065 2066 /** 2067 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2068 * @dev: The device for which the DMA addresses were created 2069 * @sg: The scatter/gather entry 2070 */ 2071 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2072 struct scatterlist *sg) 2073 { 2074 if (dev->dma_ops) 2075 return dev->dma_ops->dma_len(dev, sg); 2076 return sg_dma_len(sg); 2077 } 2078 2079 /** 2080 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2081 * @dev: The device for which the DMA address was created 2082 * @addr: The DMA address 2083 * @size: The size of the region in bytes 2084 * @dir: The direction of the DMA 2085 */ 2086 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2087 u64 addr, 2088 size_t size, 2089 enum dma_data_direction dir) 2090 { 2091 if (dev->dma_ops) 2092 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2093 else 2094 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2095 } 2096 2097 /** 2098 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2099 * @dev: The device for which the DMA address was created 2100 * @addr: The DMA address 2101 * @size: The size of the region in bytes 2102 * @dir: The direction of the DMA 2103 */ 2104 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2105 u64 addr, 2106 size_t size, 2107 enum dma_data_direction dir) 2108 { 2109 if (dev->dma_ops) 2110 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2111 else 2112 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2113 } 2114 2115 /** 2116 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2117 * @dev: The device for which the DMA address is requested 2118 * @size: The size of the region to allocate in bytes 2119 * @dma_handle: A pointer for returning the DMA address of the region 2120 * @flag: memory allocator flags 2121 */ 2122 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2123 size_t size, 2124 u64 *dma_handle, 2125 gfp_t flag) 2126 { 2127 if (dev->dma_ops) 2128 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2129 else { 2130 dma_addr_t handle; 2131 void *ret; 2132 2133 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2134 *dma_handle = handle; 2135 return ret; 2136 } 2137 } 2138 2139 /** 2140 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2141 * @dev: The device for which the DMA addresses were allocated 2142 * @size: The size of the region 2143 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2144 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2145 */ 2146 static inline void ib_dma_free_coherent(struct ib_device *dev, 2147 size_t size, void *cpu_addr, 2148 u64 dma_handle) 2149 { 2150 if (dev->dma_ops) 2151 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2152 else 2153 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2154 } 2155 2156 /** 2157 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2158 * by an HCA. 2159 * @pd: The protection domain associated assigned to the registered region. 2160 * @phys_buf_array: Specifies a list of physical buffers to use in the 2161 * memory region. 2162 * @num_phys_buf: Specifies the size of the phys_buf_array. 2163 * @mr_access_flags: Specifies the memory access rights. 2164 * @iova_start: The offset of the region's starting I/O virtual address. 2165 */ 2166 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2167 struct ib_phys_buf *phys_buf_array, 2168 int num_phys_buf, 2169 int mr_access_flags, 2170 u64 *iova_start); 2171 2172 /** 2173 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2174 * Conceptually, this call performs the functions deregister memory region 2175 * followed by register physical memory region. Where possible, 2176 * resources are reused instead of deallocated and reallocated. 2177 * @mr: The memory region to modify. 2178 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2179 * properties of the memory region are being modified. 2180 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2181 * the new protection domain to associated with the memory region, 2182 * otherwise, this parameter is ignored. 2183 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2184 * field specifies a list of physical buffers to use in the new 2185 * translation, otherwise, this parameter is ignored. 2186 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2187 * field specifies the size of the phys_buf_array, otherwise, this 2188 * parameter is ignored. 2189 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2190 * field specifies the new memory access rights, otherwise, this 2191 * parameter is ignored. 2192 * @iova_start: The offset of the region's starting I/O virtual address. 2193 */ 2194 int ib_rereg_phys_mr(struct ib_mr *mr, 2195 int mr_rereg_mask, 2196 struct ib_pd *pd, 2197 struct ib_phys_buf *phys_buf_array, 2198 int num_phys_buf, 2199 int mr_access_flags, 2200 u64 *iova_start); 2201 2202 /** 2203 * ib_query_mr - Retrieves information about a specific memory region. 2204 * @mr: The memory region to retrieve information about. 2205 * @mr_attr: The attributes of the specified memory region. 2206 */ 2207 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2208 2209 /** 2210 * ib_dereg_mr - Deregisters a memory region and removes it from the 2211 * HCA translation table. 2212 * @mr: The memory region to deregister. 2213 * 2214 * This function can fail, if the memory region has memory windows bound to it. 2215 */ 2216 int ib_dereg_mr(struct ib_mr *mr); 2217 2218 /** 2219 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2220 * IB_WR_FAST_REG_MR send work request. 2221 * @pd: The protection domain associated with the region. 2222 * @max_page_list_len: requested max physical buffer list length to be 2223 * used with fast register work requests for this MR. 2224 */ 2225 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2226 2227 /** 2228 * ib_alloc_fast_reg_page_list - Allocates a page list array 2229 * @device - ib device pointer. 2230 * @page_list_len - size of the page list array to be allocated. 2231 * 2232 * This allocates and returns a struct ib_fast_reg_page_list * and a 2233 * page_list array that is at least page_list_len in size. The actual 2234 * size is returned in max_page_list_len. The caller is responsible 2235 * for initializing the contents of the page_list array before posting 2236 * a send work request with the IB_WC_FAST_REG_MR opcode. 2237 * 2238 * The page_list array entries must be translated using one of the 2239 * ib_dma_*() functions just like the addresses passed to 2240 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2241 * ib_fast_reg_page_list must not be modified by the caller until the 2242 * IB_WC_FAST_REG_MR work request completes. 2243 */ 2244 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2245 struct ib_device *device, int page_list_len); 2246 2247 /** 2248 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2249 * page list array. 2250 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2251 */ 2252 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2253 2254 /** 2255 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2256 * R_Key and L_Key. 2257 * @mr - struct ib_mr pointer to be updated. 2258 * @newkey - new key to be used. 2259 */ 2260 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2261 { 2262 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2263 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2264 } 2265 2266 /** 2267 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2268 * for calculating a new rkey for type 2 memory windows. 2269 * @rkey - the rkey to increment. 2270 */ 2271 static inline u32 ib_inc_rkey(u32 rkey) 2272 { 2273 const u32 mask = 0x000000ff; 2274 return ((rkey + 1) & mask) | (rkey & ~mask); 2275 } 2276 2277 /** 2278 * ib_alloc_mw - Allocates a memory window. 2279 * @pd: The protection domain associated with the memory window. 2280 * @type: The type of the memory window (1 or 2). 2281 */ 2282 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2283 2284 /** 2285 * ib_bind_mw - Posts a work request to the send queue of the specified 2286 * QP, which binds the memory window to the given address range and 2287 * remote access attributes. 2288 * @qp: QP to post the bind work request on. 2289 * @mw: The memory window to bind. 2290 * @mw_bind: Specifies information about the memory window, including 2291 * its address range, remote access rights, and associated memory region. 2292 * 2293 * If there is no immediate error, the function will update the rkey member 2294 * of the mw parameter to its new value. The bind operation can still fail 2295 * asynchronously. 2296 */ 2297 static inline int ib_bind_mw(struct ib_qp *qp, 2298 struct ib_mw *mw, 2299 struct ib_mw_bind *mw_bind) 2300 { 2301 /* XXX reference counting in corresponding MR? */ 2302 return mw->device->bind_mw ? 2303 mw->device->bind_mw(qp, mw, mw_bind) : 2304 -ENOSYS; 2305 } 2306 2307 /** 2308 * ib_dealloc_mw - Deallocates a memory window. 2309 * @mw: The memory window to deallocate. 2310 */ 2311 int ib_dealloc_mw(struct ib_mw *mw); 2312 2313 /** 2314 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2315 * @pd: The protection domain associated with the unmapped region. 2316 * @mr_access_flags: Specifies the memory access rights. 2317 * @fmr_attr: Attributes of the unmapped region. 2318 * 2319 * A fast memory region must be mapped before it can be used as part of 2320 * a work request. 2321 */ 2322 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2323 int mr_access_flags, 2324 struct ib_fmr_attr *fmr_attr); 2325 2326 /** 2327 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2328 * @fmr: The fast memory region to associate with the pages. 2329 * @page_list: An array of physical pages to map to the fast memory region. 2330 * @list_len: The number of pages in page_list. 2331 * @iova: The I/O virtual address to use with the mapped region. 2332 */ 2333 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2334 u64 *page_list, int list_len, 2335 u64 iova) 2336 { 2337 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2338 } 2339 2340 /** 2341 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2342 * @fmr_list: A linked list of fast memory regions to unmap. 2343 */ 2344 int ib_unmap_fmr(struct list_head *fmr_list); 2345 2346 /** 2347 * ib_dealloc_fmr - Deallocates a fast memory region. 2348 * @fmr: The fast memory region to deallocate. 2349 */ 2350 int ib_dealloc_fmr(struct ib_fmr *fmr); 2351 2352 /** 2353 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2354 * @qp: QP to attach to the multicast group. The QP must be type 2355 * IB_QPT_UD. 2356 * @gid: Multicast group GID. 2357 * @lid: Multicast group LID in host byte order. 2358 * 2359 * In order to send and receive multicast packets, subnet 2360 * administration must have created the multicast group and configured 2361 * the fabric appropriately. The port associated with the specified 2362 * QP must also be a member of the multicast group. 2363 */ 2364 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2365 2366 /** 2367 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2368 * @qp: QP to detach from the multicast group. 2369 * @gid: Multicast group GID. 2370 * @lid: Multicast group LID in host byte order. 2371 */ 2372 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2373 2374 /** 2375 * ib_alloc_xrcd - Allocates an XRC domain. 2376 * @device: The device on which to allocate the XRC domain. 2377 */ 2378 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2379 2380 /** 2381 * ib_dealloc_xrcd - Deallocates an XRC domain. 2382 * @xrcd: The XRC domain to deallocate. 2383 */ 2384 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2385 2386 struct ib_flow *ib_create_flow(struct ib_qp *qp, 2387 struct ib_flow_attr *flow_attr, int domain); 2388 int ib_destroy_flow(struct ib_flow *flow_id); 2389 2390 static inline int ib_check_mr_access(int flags) 2391 { 2392 /* 2393 * Local write permission is required if remote write or 2394 * remote atomic permission is also requested. 2395 */ 2396 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 2397 !(flags & IB_ACCESS_LOCAL_WRITE)) 2398 return -EINVAL; 2399 2400 return 0; 2401 } 2402 2403 #endif /* IB_VERBS_H */ 2404