xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 2d972b6a)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/restrack.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
71 
72 extern struct workqueue_struct *ib_wq;
73 extern struct workqueue_struct *ib_comp_wq;
74 
75 union ib_gid {
76 	u8	raw[16];
77 	struct {
78 		__be64	subnet_prefix;
79 		__be64	interface_id;
80 	} global;
81 };
82 
83 extern union ib_gid zgid;
84 
85 enum ib_gid_type {
86 	/* If link layer is Ethernet, this is RoCE V1 */
87 	IB_GID_TYPE_IB        = 0,
88 	IB_GID_TYPE_ROCE      = 0,
89 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 	IB_GID_TYPE_SIZE
91 };
92 
93 #define ROCE_V2_UDP_DPORT      4791
94 struct ib_gid_attr {
95 	struct net_device	*ndev;
96 	struct ib_device	*device;
97 	enum ib_gid_type	gid_type;
98 	u16			index;
99 	u8			port_num;
100 };
101 
102 enum rdma_node_type {
103 	/* IB values map to NodeInfo:NodeType. */
104 	RDMA_NODE_IB_CA 	= 1,
105 	RDMA_NODE_IB_SWITCH,
106 	RDMA_NODE_IB_ROUTER,
107 	RDMA_NODE_RNIC,
108 	RDMA_NODE_USNIC,
109 	RDMA_NODE_USNIC_UDP,
110 };
111 
112 enum {
113 	/* set the local administered indication */
114 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
115 };
116 
117 enum rdma_transport_type {
118 	RDMA_TRANSPORT_IB,
119 	RDMA_TRANSPORT_IWARP,
120 	RDMA_TRANSPORT_USNIC,
121 	RDMA_TRANSPORT_USNIC_UDP
122 };
123 
124 enum rdma_protocol_type {
125 	RDMA_PROTOCOL_IB,
126 	RDMA_PROTOCOL_IBOE,
127 	RDMA_PROTOCOL_IWARP,
128 	RDMA_PROTOCOL_USNIC_UDP
129 };
130 
131 __attribute_const__ enum rdma_transport_type
132 rdma_node_get_transport(enum rdma_node_type node_type);
133 
134 enum rdma_network_type {
135 	RDMA_NETWORK_IB,
136 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
137 	RDMA_NETWORK_IPV4,
138 	RDMA_NETWORK_IPV6
139 };
140 
141 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
142 {
143 	if (network_type == RDMA_NETWORK_IPV4 ||
144 	    network_type == RDMA_NETWORK_IPV6)
145 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
146 
147 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
148 	return IB_GID_TYPE_IB;
149 }
150 
151 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
152 							    union ib_gid *gid)
153 {
154 	if (gid_type == IB_GID_TYPE_IB)
155 		return RDMA_NETWORK_IB;
156 
157 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
158 		return RDMA_NETWORK_IPV4;
159 	else
160 		return RDMA_NETWORK_IPV6;
161 }
162 
163 enum rdma_link_layer {
164 	IB_LINK_LAYER_UNSPECIFIED,
165 	IB_LINK_LAYER_INFINIBAND,
166 	IB_LINK_LAYER_ETHERNET,
167 };
168 
169 enum ib_device_cap_flags {
170 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
171 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
172 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
173 	IB_DEVICE_RAW_MULTI			= (1 << 3),
174 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
175 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
176 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
177 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
178 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
179 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
180 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
181 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
182 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
183 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
184 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
185 
186 	/*
187 	 * This device supports a per-device lkey or stag that can be
188 	 * used without performing a memory registration for the local
189 	 * memory.  Note that ULPs should never check this flag, but
190 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
191 	 * which will always contain a usable lkey.
192 	 */
193 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
194 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
195 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
196 	/*
197 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
198 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
199 	 * messages and can verify the validity of checksum for
200 	 * incoming messages.  Setting this flag implies that the
201 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
202 	 */
203 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
204 	IB_DEVICE_UD_TSO			= (1 << 19),
205 	IB_DEVICE_XRC				= (1 << 20),
206 
207 	/*
208 	 * This device supports the IB "base memory management extension",
209 	 * which includes support for fast registrations (IB_WR_REG_MR,
210 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
211 	 * also be set by any iWarp device which must support FRs to comply
212 	 * to the iWarp verbs spec.  iWarp devices also support the
213 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
214 	 * stag.
215 	 */
216 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
217 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
218 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
219 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
220 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
221 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
222 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
223 	/*
224 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
225 	 * support execution of WQEs that involve synchronization
226 	 * of I/O operations with single completion queue managed
227 	 * by hardware.
228 	 */
229 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
230 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
231 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
232 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
233 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
234 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
235 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
236 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
237 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
238 	/* The device supports padding incoming writes to cacheline. */
239 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
240 };
241 
242 enum ib_signature_prot_cap {
243 	IB_PROT_T10DIF_TYPE_1 = 1,
244 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
245 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
246 };
247 
248 enum ib_signature_guard_cap {
249 	IB_GUARD_T10DIF_CRC	= 1,
250 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
251 };
252 
253 enum ib_atomic_cap {
254 	IB_ATOMIC_NONE,
255 	IB_ATOMIC_HCA,
256 	IB_ATOMIC_GLOB
257 };
258 
259 enum ib_odp_general_cap_bits {
260 	IB_ODP_SUPPORT		= 1 << 0,
261 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
262 };
263 
264 enum ib_odp_transport_cap_bits {
265 	IB_ODP_SUPPORT_SEND	= 1 << 0,
266 	IB_ODP_SUPPORT_RECV	= 1 << 1,
267 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
268 	IB_ODP_SUPPORT_READ	= 1 << 3,
269 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
270 };
271 
272 struct ib_odp_caps {
273 	uint64_t general_caps;
274 	struct {
275 		uint32_t  rc_odp_caps;
276 		uint32_t  uc_odp_caps;
277 		uint32_t  ud_odp_caps;
278 	} per_transport_caps;
279 };
280 
281 struct ib_rss_caps {
282 	/* Corresponding bit will be set if qp type from
283 	 * 'enum ib_qp_type' is supported, e.g.
284 	 * supported_qpts |= 1 << IB_QPT_UD
285 	 */
286 	u32 supported_qpts;
287 	u32 max_rwq_indirection_tables;
288 	u32 max_rwq_indirection_table_size;
289 };
290 
291 enum ib_tm_cap_flags {
292 	/*  Support tag matching on RC transport */
293 	IB_TM_CAP_RC		    = 1 << 0,
294 };
295 
296 struct ib_tm_caps {
297 	/* Max size of RNDV header */
298 	u32 max_rndv_hdr_size;
299 	/* Max number of entries in tag matching list */
300 	u32 max_num_tags;
301 	/* From enum ib_tm_cap_flags */
302 	u32 flags;
303 	/* Max number of outstanding list operations */
304 	u32 max_ops;
305 	/* Max number of SGE in tag matching entry */
306 	u32 max_sge;
307 };
308 
309 struct ib_cq_init_attr {
310 	unsigned int	cqe;
311 	int		comp_vector;
312 	u32		flags;
313 };
314 
315 enum ib_cq_attr_mask {
316 	IB_CQ_MODERATE = 1 << 0,
317 };
318 
319 struct ib_cq_caps {
320 	u16     max_cq_moderation_count;
321 	u16     max_cq_moderation_period;
322 };
323 
324 struct ib_dm_mr_attr {
325 	u64		length;
326 	u64		offset;
327 	u32		access_flags;
328 };
329 
330 struct ib_dm_alloc_attr {
331 	u64	length;
332 	u32	alignment;
333 	u32	flags;
334 };
335 
336 struct ib_device_attr {
337 	u64			fw_ver;
338 	__be64			sys_image_guid;
339 	u64			max_mr_size;
340 	u64			page_size_cap;
341 	u32			vendor_id;
342 	u32			vendor_part_id;
343 	u32			hw_ver;
344 	int			max_qp;
345 	int			max_qp_wr;
346 	u64			device_cap_flags;
347 	int			max_sge;
348 	int			max_sge_rd;
349 	int			max_cq;
350 	int			max_cqe;
351 	int			max_mr;
352 	int			max_pd;
353 	int			max_qp_rd_atom;
354 	int			max_ee_rd_atom;
355 	int			max_res_rd_atom;
356 	int			max_qp_init_rd_atom;
357 	int			max_ee_init_rd_atom;
358 	enum ib_atomic_cap	atomic_cap;
359 	enum ib_atomic_cap	masked_atomic_cap;
360 	int			max_ee;
361 	int			max_rdd;
362 	int			max_mw;
363 	int			max_raw_ipv6_qp;
364 	int			max_raw_ethy_qp;
365 	int			max_mcast_grp;
366 	int			max_mcast_qp_attach;
367 	int			max_total_mcast_qp_attach;
368 	int			max_ah;
369 	int			max_fmr;
370 	int			max_map_per_fmr;
371 	int			max_srq;
372 	int			max_srq_wr;
373 	int			max_srq_sge;
374 	unsigned int		max_fast_reg_page_list_len;
375 	u16			max_pkeys;
376 	u8			local_ca_ack_delay;
377 	int			sig_prot_cap;
378 	int			sig_guard_cap;
379 	struct ib_odp_caps	odp_caps;
380 	uint64_t		timestamp_mask;
381 	uint64_t		hca_core_clock; /* in KHZ */
382 	struct ib_rss_caps	rss_caps;
383 	u32			max_wq_type_rq;
384 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
385 	struct ib_tm_caps	tm_caps;
386 	struct ib_cq_caps       cq_caps;
387 	u64			max_dm_size;
388 };
389 
390 enum ib_mtu {
391 	IB_MTU_256  = 1,
392 	IB_MTU_512  = 2,
393 	IB_MTU_1024 = 3,
394 	IB_MTU_2048 = 4,
395 	IB_MTU_4096 = 5
396 };
397 
398 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
399 {
400 	switch (mtu) {
401 	case IB_MTU_256:  return  256;
402 	case IB_MTU_512:  return  512;
403 	case IB_MTU_1024: return 1024;
404 	case IB_MTU_2048: return 2048;
405 	case IB_MTU_4096: return 4096;
406 	default: 	  return -1;
407 	}
408 }
409 
410 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
411 {
412 	if (mtu >= 4096)
413 		return IB_MTU_4096;
414 	else if (mtu >= 2048)
415 		return IB_MTU_2048;
416 	else if (mtu >= 1024)
417 		return IB_MTU_1024;
418 	else if (mtu >= 512)
419 		return IB_MTU_512;
420 	else
421 		return IB_MTU_256;
422 }
423 
424 enum ib_port_state {
425 	IB_PORT_NOP		= 0,
426 	IB_PORT_DOWN		= 1,
427 	IB_PORT_INIT		= 2,
428 	IB_PORT_ARMED		= 3,
429 	IB_PORT_ACTIVE		= 4,
430 	IB_PORT_ACTIVE_DEFER	= 5
431 };
432 
433 enum ib_port_cap_flags {
434 	IB_PORT_SM				= 1 <<  1,
435 	IB_PORT_NOTICE_SUP			= 1 <<  2,
436 	IB_PORT_TRAP_SUP			= 1 <<  3,
437 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
438 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
439 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
440 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
441 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
442 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
443 	IB_PORT_SM_DISABLED			= 1 << 10,
444 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
445 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
446 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
447 	IB_PORT_CM_SUP				= 1 << 16,
448 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
449 	IB_PORT_REINIT_SUP			= 1 << 18,
450 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
451 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
452 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
453 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
454 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
455 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
456 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
457 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
458 };
459 
460 enum ib_port_width {
461 	IB_WIDTH_1X	= 1,
462 	IB_WIDTH_4X	= 2,
463 	IB_WIDTH_8X	= 4,
464 	IB_WIDTH_12X	= 8
465 };
466 
467 static inline int ib_width_enum_to_int(enum ib_port_width width)
468 {
469 	switch (width) {
470 	case IB_WIDTH_1X:  return  1;
471 	case IB_WIDTH_4X:  return  4;
472 	case IB_WIDTH_8X:  return  8;
473 	case IB_WIDTH_12X: return 12;
474 	default: 	  return -1;
475 	}
476 }
477 
478 enum ib_port_speed {
479 	IB_SPEED_SDR	= 1,
480 	IB_SPEED_DDR	= 2,
481 	IB_SPEED_QDR	= 4,
482 	IB_SPEED_FDR10	= 8,
483 	IB_SPEED_FDR	= 16,
484 	IB_SPEED_EDR	= 32,
485 	IB_SPEED_HDR	= 64
486 };
487 
488 /**
489  * struct rdma_hw_stats
490  * @lock - Mutex to protect parallel write access to lifespan and values
491  *    of counters, which are 64bits and not guaranteeed to be written
492  *    atomicaly on 32bits systems.
493  * @timestamp - Used by the core code to track when the last update was
494  * @lifespan - Used by the core code to determine how old the counters
495  *   should be before being updated again.  Stored in jiffies, defaults
496  *   to 10 milliseconds, drivers can override the default be specifying
497  *   their own value during their allocation routine.
498  * @name - Array of pointers to static names used for the counters in
499  *   directory.
500  * @num_counters - How many hardware counters there are.  If name is
501  *   shorter than this number, a kernel oops will result.  Driver authors
502  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
503  *   in their code to prevent this.
504  * @value - Array of u64 counters that are accessed by the sysfs code and
505  *   filled in by the drivers get_stats routine
506  */
507 struct rdma_hw_stats {
508 	struct mutex	lock; /* Protect lifespan and values[] */
509 	unsigned long	timestamp;
510 	unsigned long	lifespan;
511 	const char * const *names;
512 	int		num_counters;
513 	u64		value[];
514 };
515 
516 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
517 /**
518  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
519  *   for drivers.
520  * @names - Array of static const char *
521  * @num_counters - How many elements in array
522  * @lifespan - How many milliseconds between updates
523  */
524 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
525 		const char * const *names, int num_counters,
526 		unsigned long lifespan)
527 {
528 	struct rdma_hw_stats *stats;
529 
530 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
531 			GFP_KERNEL);
532 	if (!stats)
533 		return NULL;
534 	stats->names = names;
535 	stats->num_counters = num_counters;
536 	stats->lifespan = msecs_to_jiffies(lifespan);
537 
538 	return stats;
539 }
540 
541 
542 /* Define bits for the various functionality this port needs to be supported by
543  * the core.
544  */
545 /* Management                           0x00000FFF */
546 #define RDMA_CORE_CAP_IB_MAD            0x00000001
547 #define RDMA_CORE_CAP_IB_SMI            0x00000002
548 #define RDMA_CORE_CAP_IB_CM             0x00000004
549 #define RDMA_CORE_CAP_IW_CM             0x00000008
550 #define RDMA_CORE_CAP_IB_SA             0x00000010
551 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
552 
553 /* Address format                       0x000FF000 */
554 #define RDMA_CORE_CAP_AF_IB             0x00001000
555 #define RDMA_CORE_CAP_ETH_AH            0x00002000
556 #define RDMA_CORE_CAP_OPA_AH            0x00004000
557 
558 /* Protocol                             0xFFF00000 */
559 #define RDMA_CORE_CAP_PROT_IB           0x00100000
560 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
561 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
562 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
563 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
564 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
565 
566 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
567 					| RDMA_CORE_CAP_IB_MAD \
568 					| RDMA_CORE_CAP_IB_SMI \
569 					| RDMA_CORE_CAP_IB_CM  \
570 					| RDMA_CORE_CAP_IB_SA  \
571 					| RDMA_CORE_CAP_AF_IB)
572 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
573 					| RDMA_CORE_CAP_IB_MAD  \
574 					| RDMA_CORE_CAP_IB_CM   \
575 					| RDMA_CORE_CAP_AF_IB   \
576 					| RDMA_CORE_CAP_ETH_AH)
577 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
578 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
579 					| RDMA_CORE_CAP_IB_MAD  \
580 					| RDMA_CORE_CAP_IB_CM   \
581 					| RDMA_CORE_CAP_AF_IB   \
582 					| RDMA_CORE_CAP_ETH_AH)
583 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
584 					| RDMA_CORE_CAP_IW_CM)
585 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
586 					| RDMA_CORE_CAP_OPA_MAD)
587 
588 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
589 
590 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
591 
592 struct ib_port_attr {
593 	u64			subnet_prefix;
594 	enum ib_port_state	state;
595 	enum ib_mtu		max_mtu;
596 	enum ib_mtu		active_mtu;
597 	int			gid_tbl_len;
598 	u32			port_cap_flags;
599 	u32			max_msg_sz;
600 	u32			bad_pkey_cntr;
601 	u32			qkey_viol_cntr;
602 	u16			pkey_tbl_len;
603 	u32			sm_lid;
604 	u32			lid;
605 	u8			lmc;
606 	u8			max_vl_num;
607 	u8			sm_sl;
608 	u8			subnet_timeout;
609 	u8			init_type_reply;
610 	u8			active_width;
611 	u8			active_speed;
612 	u8                      phys_state;
613 	bool			grh_required;
614 };
615 
616 enum ib_device_modify_flags {
617 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
618 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
619 };
620 
621 #define IB_DEVICE_NODE_DESC_MAX 64
622 
623 struct ib_device_modify {
624 	u64	sys_image_guid;
625 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
626 };
627 
628 enum ib_port_modify_flags {
629 	IB_PORT_SHUTDOWN		= 1,
630 	IB_PORT_INIT_TYPE		= (1<<2),
631 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
632 	IB_PORT_OPA_MASK_CHG		= (1<<4)
633 };
634 
635 struct ib_port_modify {
636 	u32	set_port_cap_mask;
637 	u32	clr_port_cap_mask;
638 	u8	init_type;
639 };
640 
641 enum ib_event_type {
642 	IB_EVENT_CQ_ERR,
643 	IB_EVENT_QP_FATAL,
644 	IB_EVENT_QP_REQ_ERR,
645 	IB_EVENT_QP_ACCESS_ERR,
646 	IB_EVENT_COMM_EST,
647 	IB_EVENT_SQ_DRAINED,
648 	IB_EVENT_PATH_MIG,
649 	IB_EVENT_PATH_MIG_ERR,
650 	IB_EVENT_DEVICE_FATAL,
651 	IB_EVENT_PORT_ACTIVE,
652 	IB_EVENT_PORT_ERR,
653 	IB_EVENT_LID_CHANGE,
654 	IB_EVENT_PKEY_CHANGE,
655 	IB_EVENT_SM_CHANGE,
656 	IB_EVENT_SRQ_ERR,
657 	IB_EVENT_SRQ_LIMIT_REACHED,
658 	IB_EVENT_QP_LAST_WQE_REACHED,
659 	IB_EVENT_CLIENT_REREGISTER,
660 	IB_EVENT_GID_CHANGE,
661 	IB_EVENT_WQ_FATAL,
662 };
663 
664 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
665 
666 struct ib_event {
667 	struct ib_device	*device;
668 	union {
669 		struct ib_cq	*cq;
670 		struct ib_qp	*qp;
671 		struct ib_srq	*srq;
672 		struct ib_wq	*wq;
673 		u8		port_num;
674 	} element;
675 	enum ib_event_type	event;
676 };
677 
678 struct ib_event_handler {
679 	struct ib_device *device;
680 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
681 	struct list_head  list;
682 };
683 
684 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
685 	do {							\
686 		(_ptr)->device  = _device;			\
687 		(_ptr)->handler = _handler;			\
688 		INIT_LIST_HEAD(&(_ptr)->list);			\
689 	} while (0)
690 
691 struct ib_global_route {
692 	union ib_gid	dgid;
693 	u32		flow_label;
694 	u8		sgid_index;
695 	u8		hop_limit;
696 	u8		traffic_class;
697 };
698 
699 struct ib_grh {
700 	__be32		version_tclass_flow;
701 	__be16		paylen;
702 	u8		next_hdr;
703 	u8		hop_limit;
704 	union ib_gid	sgid;
705 	union ib_gid	dgid;
706 };
707 
708 union rdma_network_hdr {
709 	struct ib_grh ibgrh;
710 	struct {
711 		/* The IB spec states that if it's IPv4, the header
712 		 * is located in the last 20 bytes of the header.
713 		 */
714 		u8		reserved[20];
715 		struct iphdr	roce4grh;
716 	};
717 };
718 
719 #define IB_QPN_MASK		0xFFFFFF
720 
721 enum {
722 	IB_MULTICAST_QPN = 0xffffff
723 };
724 
725 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
726 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
727 
728 enum ib_ah_flags {
729 	IB_AH_GRH	= 1
730 };
731 
732 enum ib_rate {
733 	IB_RATE_PORT_CURRENT = 0,
734 	IB_RATE_2_5_GBPS = 2,
735 	IB_RATE_5_GBPS   = 5,
736 	IB_RATE_10_GBPS  = 3,
737 	IB_RATE_20_GBPS  = 6,
738 	IB_RATE_30_GBPS  = 4,
739 	IB_RATE_40_GBPS  = 7,
740 	IB_RATE_60_GBPS  = 8,
741 	IB_RATE_80_GBPS  = 9,
742 	IB_RATE_120_GBPS = 10,
743 	IB_RATE_14_GBPS  = 11,
744 	IB_RATE_56_GBPS  = 12,
745 	IB_RATE_112_GBPS = 13,
746 	IB_RATE_168_GBPS = 14,
747 	IB_RATE_25_GBPS  = 15,
748 	IB_RATE_100_GBPS = 16,
749 	IB_RATE_200_GBPS = 17,
750 	IB_RATE_300_GBPS = 18
751 };
752 
753 /**
754  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
755  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
756  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
757  * @rate: rate to convert.
758  */
759 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
760 
761 /**
762  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
763  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
764  * @rate: rate to convert.
765  */
766 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
767 
768 
769 /**
770  * enum ib_mr_type - memory region type
771  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
772  *                            normal registration
773  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
774  *                            signature operations (data-integrity
775  *                            capable regions)
776  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
777  *                            register any arbitrary sg lists (without
778  *                            the normal mr constraints - see
779  *                            ib_map_mr_sg)
780  */
781 enum ib_mr_type {
782 	IB_MR_TYPE_MEM_REG,
783 	IB_MR_TYPE_SIGNATURE,
784 	IB_MR_TYPE_SG_GAPS,
785 };
786 
787 /**
788  * Signature types
789  * IB_SIG_TYPE_NONE: Unprotected.
790  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
791  */
792 enum ib_signature_type {
793 	IB_SIG_TYPE_NONE,
794 	IB_SIG_TYPE_T10_DIF,
795 };
796 
797 /**
798  * Signature T10-DIF block-guard types
799  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
800  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
801  */
802 enum ib_t10_dif_bg_type {
803 	IB_T10DIF_CRC,
804 	IB_T10DIF_CSUM
805 };
806 
807 /**
808  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
809  *     domain.
810  * @bg_type: T10-DIF block guard type (CRC|CSUM)
811  * @pi_interval: protection information interval.
812  * @bg: seed of guard computation.
813  * @app_tag: application tag of guard block
814  * @ref_tag: initial guard block reference tag.
815  * @ref_remap: Indicate wethear the reftag increments each block
816  * @app_escape: Indicate to skip block check if apptag=0xffff
817  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
818  * @apptag_check_mask: check bitmask of application tag.
819  */
820 struct ib_t10_dif_domain {
821 	enum ib_t10_dif_bg_type bg_type;
822 	u16			pi_interval;
823 	u16			bg;
824 	u16			app_tag;
825 	u32			ref_tag;
826 	bool			ref_remap;
827 	bool			app_escape;
828 	bool			ref_escape;
829 	u16			apptag_check_mask;
830 };
831 
832 /**
833  * struct ib_sig_domain - Parameters for signature domain
834  * @sig_type: specific signauture type
835  * @sig: union of all signature domain attributes that may
836  *     be used to set domain layout.
837  */
838 struct ib_sig_domain {
839 	enum ib_signature_type sig_type;
840 	union {
841 		struct ib_t10_dif_domain dif;
842 	} sig;
843 };
844 
845 /**
846  * struct ib_sig_attrs - Parameters for signature handover operation
847  * @check_mask: bitmask for signature byte check (8 bytes)
848  * @mem: memory domain layout desciptor.
849  * @wire: wire domain layout desciptor.
850  */
851 struct ib_sig_attrs {
852 	u8			check_mask;
853 	struct ib_sig_domain	mem;
854 	struct ib_sig_domain	wire;
855 };
856 
857 enum ib_sig_err_type {
858 	IB_SIG_BAD_GUARD,
859 	IB_SIG_BAD_REFTAG,
860 	IB_SIG_BAD_APPTAG,
861 };
862 
863 /**
864  * struct ib_sig_err - signature error descriptor
865  */
866 struct ib_sig_err {
867 	enum ib_sig_err_type	err_type;
868 	u32			expected;
869 	u32			actual;
870 	u64			sig_err_offset;
871 	u32			key;
872 };
873 
874 enum ib_mr_status_check {
875 	IB_MR_CHECK_SIG_STATUS = 1,
876 };
877 
878 /**
879  * struct ib_mr_status - Memory region status container
880  *
881  * @fail_status: Bitmask of MR checks status. For each
882  *     failed check a corresponding status bit is set.
883  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
884  *     failure.
885  */
886 struct ib_mr_status {
887 	u32		    fail_status;
888 	struct ib_sig_err   sig_err;
889 };
890 
891 /**
892  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
893  * enum.
894  * @mult: multiple to convert.
895  */
896 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
897 
898 enum rdma_ah_attr_type {
899 	RDMA_AH_ATTR_TYPE_UNDEFINED,
900 	RDMA_AH_ATTR_TYPE_IB,
901 	RDMA_AH_ATTR_TYPE_ROCE,
902 	RDMA_AH_ATTR_TYPE_OPA,
903 };
904 
905 struct ib_ah_attr {
906 	u16			dlid;
907 	u8			src_path_bits;
908 };
909 
910 struct roce_ah_attr {
911 	u8			dmac[ETH_ALEN];
912 };
913 
914 struct opa_ah_attr {
915 	u32			dlid;
916 	u8			src_path_bits;
917 	bool			make_grd;
918 };
919 
920 struct rdma_ah_attr {
921 	struct ib_global_route	grh;
922 	u8			sl;
923 	u8			static_rate;
924 	u8			port_num;
925 	u8			ah_flags;
926 	enum rdma_ah_attr_type type;
927 	union {
928 		struct ib_ah_attr ib;
929 		struct roce_ah_attr roce;
930 		struct opa_ah_attr opa;
931 	};
932 };
933 
934 enum ib_wc_status {
935 	IB_WC_SUCCESS,
936 	IB_WC_LOC_LEN_ERR,
937 	IB_WC_LOC_QP_OP_ERR,
938 	IB_WC_LOC_EEC_OP_ERR,
939 	IB_WC_LOC_PROT_ERR,
940 	IB_WC_WR_FLUSH_ERR,
941 	IB_WC_MW_BIND_ERR,
942 	IB_WC_BAD_RESP_ERR,
943 	IB_WC_LOC_ACCESS_ERR,
944 	IB_WC_REM_INV_REQ_ERR,
945 	IB_WC_REM_ACCESS_ERR,
946 	IB_WC_REM_OP_ERR,
947 	IB_WC_RETRY_EXC_ERR,
948 	IB_WC_RNR_RETRY_EXC_ERR,
949 	IB_WC_LOC_RDD_VIOL_ERR,
950 	IB_WC_REM_INV_RD_REQ_ERR,
951 	IB_WC_REM_ABORT_ERR,
952 	IB_WC_INV_EECN_ERR,
953 	IB_WC_INV_EEC_STATE_ERR,
954 	IB_WC_FATAL_ERR,
955 	IB_WC_RESP_TIMEOUT_ERR,
956 	IB_WC_GENERAL_ERR
957 };
958 
959 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
960 
961 enum ib_wc_opcode {
962 	IB_WC_SEND,
963 	IB_WC_RDMA_WRITE,
964 	IB_WC_RDMA_READ,
965 	IB_WC_COMP_SWAP,
966 	IB_WC_FETCH_ADD,
967 	IB_WC_LSO,
968 	IB_WC_LOCAL_INV,
969 	IB_WC_REG_MR,
970 	IB_WC_MASKED_COMP_SWAP,
971 	IB_WC_MASKED_FETCH_ADD,
972 /*
973  * Set value of IB_WC_RECV so consumers can test if a completion is a
974  * receive by testing (opcode & IB_WC_RECV).
975  */
976 	IB_WC_RECV			= 1 << 7,
977 	IB_WC_RECV_RDMA_WITH_IMM
978 };
979 
980 enum ib_wc_flags {
981 	IB_WC_GRH		= 1,
982 	IB_WC_WITH_IMM		= (1<<1),
983 	IB_WC_WITH_INVALIDATE	= (1<<2),
984 	IB_WC_IP_CSUM_OK	= (1<<3),
985 	IB_WC_WITH_SMAC		= (1<<4),
986 	IB_WC_WITH_VLAN		= (1<<5),
987 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
988 };
989 
990 struct ib_wc {
991 	union {
992 		u64		wr_id;
993 		struct ib_cqe	*wr_cqe;
994 	};
995 	enum ib_wc_status	status;
996 	enum ib_wc_opcode	opcode;
997 	u32			vendor_err;
998 	u32			byte_len;
999 	struct ib_qp	       *qp;
1000 	union {
1001 		__be32		imm_data;
1002 		u32		invalidate_rkey;
1003 	} ex;
1004 	u32			src_qp;
1005 	u32			slid;
1006 	int			wc_flags;
1007 	u16			pkey_index;
1008 	u8			sl;
1009 	u8			dlid_path_bits;
1010 	u8			port_num;	/* valid only for DR SMPs on switches */
1011 	u8			smac[ETH_ALEN];
1012 	u16			vlan_id;
1013 	u8			network_hdr_type;
1014 };
1015 
1016 enum ib_cq_notify_flags {
1017 	IB_CQ_SOLICITED			= 1 << 0,
1018 	IB_CQ_NEXT_COMP			= 1 << 1,
1019 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1020 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1021 };
1022 
1023 enum ib_srq_type {
1024 	IB_SRQT_BASIC,
1025 	IB_SRQT_XRC,
1026 	IB_SRQT_TM,
1027 };
1028 
1029 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1030 {
1031 	return srq_type == IB_SRQT_XRC ||
1032 	       srq_type == IB_SRQT_TM;
1033 }
1034 
1035 enum ib_srq_attr_mask {
1036 	IB_SRQ_MAX_WR	= 1 << 0,
1037 	IB_SRQ_LIMIT	= 1 << 1,
1038 };
1039 
1040 struct ib_srq_attr {
1041 	u32	max_wr;
1042 	u32	max_sge;
1043 	u32	srq_limit;
1044 };
1045 
1046 struct ib_srq_init_attr {
1047 	void		      (*event_handler)(struct ib_event *, void *);
1048 	void		       *srq_context;
1049 	struct ib_srq_attr	attr;
1050 	enum ib_srq_type	srq_type;
1051 
1052 	struct {
1053 		struct ib_cq   *cq;
1054 		union {
1055 			struct {
1056 				struct ib_xrcd *xrcd;
1057 			} xrc;
1058 
1059 			struct {
1060 				u32		max_num_tags;
1061 			} tag_matching;
1062 		};
1063 	} ext;
1064 };
1065 
1066 struct ib_qp_cap {
1067 	u32	max_send_wr;
1068 	u32	max_recv_wr;
1069 	u32	max_send_sge;
1070 	u32	max_recv_sge;
1071 	u32	max_inline_data;
1072 
1073 	/*
1074 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1075 	 * ib_create_qp() will calculate the right amount of neededed WRs
1076 	 * and MRs based on this.
1077 	 */
1078 	u32	max_rdma_ctxs;
1079 };
1080 
1081 enum ib_sig_type {
1082 	IB_SIGNAL_ALL_WR,
1083 	IB_SIGNAL_REQ_WR
1084 };
1085 
1086 enum ib_qp_type {
1087 	/*
1088 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1089 	 * here (and in that order) since the MAD layer uses them as
1090 	 * indices into a 2-entry table.
1091 	 */
1092 	IB_QPT_SMI,
1093 	IB_QPT_GSI,
1094 
1095 	IB_QPT_RC,
1096 	IB_QPT_UC,
1097 	IB_QPT_UD,
1098 	IB_QPT_RAW_IPV6,
1099 	IB_QPT_RAW_ETHERTYPE,
1100 	IB_QPT_RAW_PACKET = 8,
1101 	IB_QPT_XRC_INI = 9,
1102 	IB_QPT_XRC_TGT,
1103 	IB_QPT_MAX,
1104 	IB_QPT_DRIVER = 0xFF,
1105 	/* Reserve a range for qp types internal to the low level driver.
1106 	 * These qp types will not be visible at the IB core layer, so the
1107 	 * IB_QPT_MAX usages should not be affected in the core layer
1108 	 */
1109 	IB_QPT_RESERVED1 = 0x1000,
1110 	IB_QPT_RESERVED2,
1111 	IB_QPT_RESERVED3,
1112 	IB_QPT_RESERVED4,
1113 	IB_QPT_RESERVED5,
1114 	IB_QPT_RESERVED6,
1115 	IB_QPT_RESERVED7,
1116 	IB_QPT_RESERVED8,
1117 	IB_QPT_RESERVED9,
1118 	IB_QPT_RESERVED10,
1119 };
1120 
1121 enum ib_qp_create_flags {
1122 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1123 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1124 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1125 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1126 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1127 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1128 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1129 	/* FREE					= 1 << 7, */
1130 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1131 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1132 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1133 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1134 	/* reserve bits 26-31 for low level drivers' internal use */
1135 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1136 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1137 };
1138 
1139 /*
1140  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1141  * callback to destroy the passed in QP.
1142  */
1143 
1144 struct ib_qp_init_attr {
1145 	void                  (*event_handler)(struct ib_event *, void *);
1146 	void		       *qp_context;
1147 	struct ib_cq	       *send_cq;
1148 	struct ib_cq	       *recv_cq;
1149 	struct ib_srq	       *srq;
1150 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1151 	struct ib_qp_cap	cap;
1152 	enum ib_sig_type	sq_sig_type;
1153 	enum ib_qp_type		qp_type;
1154 	enum ib_qp_create_flags	create_flags;
1155 
1156 	/*
1157 	 * Only needed for special QP types, or when using the RW API.
1158 	 */
1159 	u8			port_num;
1160 	struct ib_rwq_ind_table *rwq_ind_tbl;
1161 	u32			source_qpn;
1162 };
1163 
1164 struct ib_qp_open_attr {
1165 	void                  (*event_handler)(struct ib_event *, void *);
1166 	void		       *qp_context;
1167 	u32			qp_num;
1168 	enum ib_qp_type		qp_type;
1169 };
1170 
1171 enum ib_rnr_timeout {
1172 	IB_RNR_TIMER_655_36 =  0,
1173 	IB_RNR_TIMER_000_01 =  1,
1174 	IB_RNR_TIMER_000_02 =  2,
1175 	IB_RNR_TIMER_000_03 =  3,
1176 	IB_RNR_TIMER_000_04 =  4,
1177 	IB_RNR_TIMER_000_06 =  5,
1178 	IB_RNR_TIMER_000_08 =  6,
1179 	IB_RNR_TIMER_000_12 =  7,
1180 	IB_RNR_TIMER_000_16 =  8,
1181 	IB_RNR_TIMER_000_24 =  9,
1182 	IB_RNR_TIMER_000_32 = 10,
1183 	IB_RNR_TIMER_000_48 = 11,
1184 	IB_RNR_TIMER_000_64 = 12,
1185 	IB_RNR_TIMER_000_96 = 13,
1186 	IB_RNR_TIMER_001_28 = 14,
1187 	IB_RNR_TIMER_001_92 = 15,
1188 	IB_RNR_TIMER_002_56 = 16,
1189 	IB_RNR_TIMER_003_84 = 17,
1190 	IB_RNR_TIMER_005_12 = 18,
1191 	IB_RNR_TIMER_007_68 = 19,
1192 	IB_RNR_TIMER_010_24 = 20,
1193 	IB_RNR_TIMER_015_36 = 21,
1194 	IB_RNR_TIMER_020_48 = 22,
1195 	IB_RNR_TIMER_030_72 = 23,
1196 	IB_RNR_TIMER_040_96 = 24,
1197 	IB_RNR_TIMER_061_44 = 25,
1198 	IB_RNR_TIMER_081_92 = 26,
1199 	IB_RNR_TIMER_122_88 = 27,
1200 	IB_RNR_TIMER_163_84 = 28,
1201 	IB_RNR_TIMER_245_76 = 29,
1202 	IB_RNR_TIMER_327_68 = 30,
1203 	IB_RNR_TIMER_491_52 = 31
1204 };
1205 
1206 enum ib_qp_attr_mask {
1207 	IB_QP_STATE			= 1,
1208 	IB_QP_CUR_STATE			= (1<<1),
1209 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1210 	IB_QP_ACCESS_FLAGS		= (1<<3),
1211 	IB_QP_PKEY_INDEX		= (1<<4),
1212 	IB_QP_PORT			= (1<<5),
1213 	IB_QP_QKEY			= (1<<6),
1214 	IB_QP_AV			= (1<<7),
1215 	IB_QP_PATH_MTU			= (1<<8),
1216 	IB_QP_TIMEOUT			= (1<<9),
1217 	IB_QP_RETRY_CNT			= (1<<10),
1218 	IB_QP_RNR_RETRY			= (1<<11),
1219 	IB_QP_RQ_PSN			= (1<<12),
1220 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1221 	IB_QP_ALT_PATH			= (1<<14),
1222 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1223 	IB_QP_SQ_PSN			= (1<<16),
1224 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1225 	IB_QP_PATH_MIG_STATE		= (1<<18),
1226 	IB_QP_CAP			= (1<<19),
1227 	IB_QP_DEST_QPN			= (1<<20),
1228 	IB_QP_RESERVED1			= (1<<21),
1229 	IB_QP_RESERVED2			= (1<<22),
1230 	IB_QP_RESERVED3			= (1<<23),
1231 	IB_QP_RESERVED4			= (1<<24),
1232 	IB_QP_RATE_LIMIT		= (1<<25),
1233 };
1234 
1235 enum ib_qp_state {
1236 	IB_QPS_RESET,
1237 	IB_QPS_INIT,
1238 	IB_QPS_RTR,
1239 	IB_QPS_RTS,
1240 	IB_QPS_SQD,
1241 	IB_QPS_SQE,
1242 	IB_QPS_ERR
1243 };
1244 
1245 enum ib_mig_state {
1246 	IB_MIG_MIGRATED,
1247 	IB_MIG_REARM,
1248 	IB_MIG_ARMED
1249 };
1250 
1251 enum ib_mw_type {
1252 	IB_MW_TYPE_1 = 1,
1253 	IB_MW_TYPE_2 = 2
1254 };
1255 
1256 struct ib_qp_attr {
1257 	enum ib_qp_state	qp_state;
1258 	enum ib_qp_state	cur_qp_state;
1259 	enum ib_mtu		path_mtu;
1260 	enum ib_mig_state	path_mig_state;
1261 	u32			qkey;
1262 	u32			rq_psn;
1263 	u32			sq_psn;
1264 	u32			dest_qp_num;
1265 	int			qp_access_flags;
1266 	struct ib_qp_cap	cap;
1267 	struct rdma_ah_attr	ah_attr;
1268 	struct rdma_ah_attr	alt_ah_attr;
1269 	u16			pkey_index;
1270 	u16			alt_pkey_index;
1271 	u8			en_sqd_async_notify;
1272 	u8			sq_draining;
1273 	u8			max_rd_atomic;
1274 	u8			max_dest_rd_atomic;
1275 	u8			min_rnr_timer;
1276 	u8			port_num;
1277 	u8			timeout;
1278 	u8			retry_cnt;
1279 	u8			rnr_retry;
1280 	u8			alt_port_num;
1281 	u8			alt_timeout;
1282 	u32			rate_limit;
1283 };
1284 
1285 enum ib_wr_opcode {
1286 	IB_WR_RDMA_WRITE,
1287 	IB_WR_RDMA_WRITE_WITH_IMM,
1288 	IB_WR_SEND,
1289 	IB_WR_SEND_WITH_IMM,
1290 	IB_WR_RDMA_READ,
1291 	IB_WR_ATOMIC_CMP_AND_SWP,
1292 	IB_WR_ATOMIC_FETCH_AND_ADD,
1293 	IB_WR_LSO,
1294 	IB_WR_SEND_WITH_INV,
1295 	IB_WR_RDMA_READ_WITH_INV,
1296 	IB_WR_LOCAL_INV,
1297 	IB_WR_REG_MR,
1298 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1299 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1300 	IB_WR_REG_SIG_MR,
1301 	/* reserve values for low level drivers' internal use.
1302 	 * These values will not be used at all in the ib core layer.
1303 	 */
1304 	IB_WR_RESERVED1 = 0xf0,
1305 	IB_WR_RESERVED2,
1306 	IB_WR_RESERVED3,
1307 	IB_WR_RESERVED4,
1308 	IB_WR_RESERVED5,
1309 	IB_WR_RESERVED6,
1310 	IB_WR_RESERVED7,
1311 	IB_WR_RESERVED8,
1312 	IB_WR_RESERVED9,
1313 	IB_WR_RESERVED10,
1314 };
1315 
1316 enum ib_send_flags {
1317 	IB_SEND_FENCE		= 1,
1318 	IB_SEND_SIGNALED	= (1<<1),
1319 	IB_SEND_SOLICITED	= (1<<2),
1320 	IB_SEND_INLINE		= (1<<3),
1321 	IB_SEND_IP_CSUM		= (1<<4),
1322 
1323 	/* reserve bits 26-31 for low level drivers' internal use */
1324 	IB_SEND_RESERVED_START	= (1 << 26),
1325 	IB_SEND_RESERVED_END	= (1 << 31),
1326 };
1327 
1328 struct ib_sge {
1329 	u64	addr;
1330 	u32	length;
1331 	u32	lkey;
1332 };
1333 
1334 struct ib_cqe {
1335 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1336 };
1337 
1338 struct ib_send_wr {
1339 	struct ib_send_wr      *next;
1340 	union {
1341 		u64		wr_id;
1342 		struct ib_cqe	*wr_cqe;
1343 	};
1344 	struct ib_sge	       *sg_list;
1345 	int			num_sge;
1346 	enum ib_wr_opcode	opcode;
1347 	int			send_flags;
1348 	union {
1349 		__be32		imm_data;
1350 		u32		invalidate_rkey;
1351 	} ex;
1352 };
1353 
1354 struct ib_rdma_wr {
1355 	struct ib_send_wr	wr;
1356 	u64			remote_addr;
1357 	u32			rkey;
1358 };
1359 
1360 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1361 {
1362 	return container_of(wr, struct ib_rdma_wr, wr);
1363 }
1364 
1365 struct ib_atomic_wr {
1366 	struct ib_send_wr	wr;
1367 	u64			remote_addr;
1368 	u64			compare_add;
1369 	u64			swap;
1370 	u64			compare_add_mask;
1371 	u64			swap_mask;
1372 	u32			rkey;
1373 };
1374 
1375 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1376 {
1377 	return container_of(wr, struct ib_atomic_wr, wr);
1378 }
1379 
1380 struct ib_ud_wr {
1381 	struct ib_send_wr	wr;
1382 	struct ib_ah		*ah;
1383 	void			*header;
1384 	int			hlen;
1385 	int			mss;
1386 	u32			remote_qpn;
1387 	u32			remote_qkey;
1388 	u16			pkey_index; /* valid for GSI only */
1389 	u8			port_num;   /* valid for DR SMPs on switch only */
1390 };
1391 
1392 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1393 {
1394 	return container_of(wr, struct ib_ud_wr, wr);
1395 }
1396 
1397 struct ib_reg_wr {
1398 	struct ib_send_wr	wr;
1399 	struct ib_mr		*mr;
1400 	u32			key;
1401 	int			access;
1402 };
1403 
1404 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1405 {
1406 	return container_of(wr, struct ib_reg_wr, wr);
1407 }
1408 
1409 struct ib_sig_handover_wr {
1410 	struct ib_send_wr	wr;
1411 	struct ib_sig_attrs    *sig_attrs;
1412 	struct ib_mr	       *sig_mr;
1413 	int			access_flags;
1414 	struct ib_sge	       *prot;
1415 };
1416 
1417 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1418 {
1419 	return container_of(wr, struct ib_sig_handover_wr, wr);
1420 }
1421 
1422 struct ib_recv_wr {
1423 	struct ib_recv_wr      *next;
1424 	union {
1425 		u64		wr_id;
1426 		struct ib_cqe	*wr_cqe;
1427 	};
1428 	struct ib_sge	       *sg_list;
1429 	int			num_sge;
1430 };
1431 
1432 enum ib_access_flags {
1433 	IB_ACCESS_LOCAL_WRITE	= 1,
1434 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1435 	IB_ACCESS_REMOTE_READ	= (1<<2),
1436 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1437 	IB_ACCESS_MW_BIND	= (1<<4),
1438 	IB_ZERO_BASED		= (1<<5),
1439 	IB_ACCESS_ON_DEMAND     = (1<<6),
1440 	IB_ACCESS_HUGETLB	= (1<<7),
1441 };
1442 
1443 /*
1444  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1445  * are hidden here instead of a uapi header!
1446  */
1447 enum ib_mr_rereg_flags {
1448 	IB_MR_REREG_TRANS	= 1,
1449 	IB_MR_REREG_PD		= (1<<1),
1450 	IB_MR_REREG_ACCESS	= (1<<2),
1451 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1452 };
1453 
1454 struct ib_fmr_attr {
1455 	int	max_pages;
1456 	int	max_maps;
1457 	u8	page_shift;
1458 };
1459 
1460 struct ib_umem;
1461 
1462 enum rdma_remove_reason {
1463 	/* Userspace requested uobject deletion. Call could fail */
1464 	RDMA_REMOVE_DESTROY,
1465 	/* Context deletion. This call should delete the actual object itself */
1466 	RDMA_REMOVE_CLOSE,
1467 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1468 	RDMA_REMOVE_DRIVER_REMOVE,
1469 	/* Context is being cleaned-up, but commit was just completed */
1470 	RDMA_REMOVE_DURING_CLEANUP,
1471 };
1472 
1473 struct ib_rdmacg_object {
1474 #ifdef CONFIG_CGROUP_RDMA
1475 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1476 #endif
1477 };
1478 
1479 struct ib_ucontext {
1480 	struct ib_device       *device;
1481 	struct ib_uverbs_file  *ufile;
1482 	int			closing;
1483 
1484 	/* locking the uobjects_list */
1485 	struct mutex		uobjects_lock;
1486 	struct list_head	uobjects;
1487 	/* protects cleanup process from other actions */
1488 	struct rw_semaphore	cleanup_rwsem;
1489 	enum rdma_remove_reason cleanup_reason;
1490 
1491 	struct pid             *tgid;
1492 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1493 	struct rb_root_cached   umem_tree;
1494 	/*
1495 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1496 	 * mmu notifiers registration.
1497 	 */
1498 	struct rw_semaphore	umem_rwsem;
1499 	void (*invalidate_range)(struct ib_umem *umem,
1500 				 unsigned long start, unsigned long end);
1501 
1502 	struct mmu_notifier	mn;
1503 	atomic_t		notifier_count;
1504 	/* A list of umems that don't have private mmu notifier counters yet. */
1505 	struct list_head	no_private_counters;
1506 	int                     odp_mrs_count;
1507 #endif
1508 
1509 	struct ib_rdmacg_object	cg_obj;
1510 };
1511 
1512 struct ib_uobject {
1513 	u64			user_handle;	/* handle given to us by userspace */
1514 	struct ib_ucontext     *context;	/* associated user context */
1515 	void		       *object;		/* containing object */
1516 	struct list_head	list;		/* link to context's list */
1517 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1518 	int			id;		/* index into kernel idr */
1519 	struct kref		ref;
1520 	atomic_t		usecnt;		/* protects exclusive access */
1521 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1522 
1523 	const struct uverbs_obj_type *type;
1524 };
1525 
1526 struct ib_uobject_file {
1527 	struct ib_uobject	uobj;
1528 	/* ufile contains the lock between context release and file close */
1529 	struct ib_uverbs_file	*ufile;
1530 };
1531 
1532 struct ib_udata {
1533 	const void __user *inbuf;
1534 	void __user *outbuf;
1535 	size_t       inlen;
1536 	size_t       outlen;
1537 };
1538 
1539 struct ib_pd {
1540 	u32			local_dma_lkey;
1541 	u32			flags;
1542 	struct ib_device       *device;
1543 	struct ib_uobject      *uobject;
1544 	atomic_t          	usecnt; /* count all resources */
1545 
1546 	u32			unsafe_global_rkey;
1547 
1548 	/*
1549 	 * Implementation details of the RDMA core, don't use in drivers:
1550 	 */
1551 	struct ib_mr	       *__internal_mr;
1552 	struct rdma_restrack_entry res;
1553 };
1554 
1555 struct ib_xrcd {
1556 	struct ib_device       *device;
1557 	atomic_t		usecnt; /* count all exposed resources */
1558 	struct inode	       *inode;
1559 
1560 	struct mutex		tgt_qp_mutex;
1561 	struct list_head	tgt_qp_list;
1562 };
1563 
1564 struct ib_ah {
1565 	struct ib_device	*device;
1566 	struct ib_pd		*pd;
1567 	struct ib_uobject	*uobject;
1568 	enum rdma_ah_attr_type	type;
1569 };
1570 
1571 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1572 
1573 enum ib_poll_context {
1574 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1575 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1576 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1577 };
1578 
1579 struct ib_cq {
1580 	struct ib_device       *device;
1581 	struct ib_uobject      *uobject;
1582 	ib_comp_handler   	comp_handler;
1583 	void                  (*event_handler)(struct ib_event *, void *);
1584 	void                   *cq_context;
1585 	int               	cqe;
1586 	atomic_t          	usecnt; /* count number of work queues */
1587 	enum ib_poll_context	poll_ctx;
1588 	struct ib_wc		*wc;
1589 	union {
1590 		struct irq_poll		iop;
1591 		struct work_struct	work;
1592 	};
1593 	/*
1594 	 * Implementation details of the RDMA core, don't use in drivers:
1595 	 */
1596 	struct rdma_restrack_entry res;
1597 };
1598 
1599 struct ib_srq {
1600 	struct ib_device       *device;
1601 	struct ib_pd	       *pd;
1602 	struct ib_uobject      *uobject;
1603 	void		      (*event_handler)(struct ib_event *, void *);
1604 	void		       *srq_context;
1605 	enum ib_srq_type	srq_type;
1606 	atomic_t		usecnt;
1607 
1608 	struct {
1609 		struct ib_cq   *cq;
1610 		union {
1611 			struct {
1612 				struct ib_xrcd *xrcd;
1613 				u32		srq_num;
1614 			} xrc;
1615 		};
1616 	} ext;
1617 };
1618 
1619 enum ib_raw_packet_caps {
1620 	/* Strip cvlan from incoming packet and report it in the matching work
1621 	 * completion is supported.
1622 	 */
1623 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1624 	/* Scatter FCS field of an incoming packet to host memory is supported.
1625 	 */
1626 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1627 	/* Checksum offloads are supported (for both send and receive). */
1628 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1629 	/* When a packet is received for an RQ with no receive WQEs, the
1630 	 * packet processing is delayed.
1631 	 */
1632 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1633 };
1634 
1635 enum ib_wq_type {
1636 	IB_WQT_RQ
1637 };
1638 
1639 enum ib_wq_state {
1640 	IB_WQS_RESET,
1641 	IB_WQS_RDY,
1642 	IB_WQS_ERR
1643 };
1644 
1645 struct ib_wq {
1646 	struct ib_device       *device;
1647 	struct ib_uobject      *uobject;
1648 	void		    *wq_context;
1649 	void		    (*event_handler)(struct ib_event *, void *);
1650 	struct ib_pd	       *pd;
1651 	struct ib_cq	       *cq;
1652 	u32		wq_num;
1653 	enum ib_wq_state       state;
1654 	enum ib_wq_type	wq_type;
1655 	atomic_t		usecnt;
1656 };
1657 
1658 enum ib_wq_flags {
1659 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1660 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1661 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1662 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1663 };
1664 
1665 struct ib_wq_init_attr {
1666 	void		       *wq_context;
1667 	enum ib_wq_type	wq_type;
1668 	u32		max_wr;
1669 	u32		max_sge;
1670 	struct	ib_cq	       *cq;
1671 	void		    (*event_handler)(struct ib_event *, void *);
1672 	u32		create_flags; /* Use enum ib_wq_flags */
1673 };
1674 
1675 enum ib_wq_attr_mask {
1676 	IB_WQ_STATE		= 1 << 0,
1677 	IB_WQ_CUR_STATE		= 1 << 1,
1678 	IB_WQ_FLAGS		= 1 << 2,
1679 };
1680 
1681 struct ib_wq_attr {
1682 	enum	ib_wq_state	wq_state;
1683 	enum	ib_wq_state	curr_wq_state;
1684 	u32			flags; /* Use enum ib_wq_flags */
1685 	u32			flags_mask; /* Use enum ib_wq_flags */
1686 };
1687 
1688 struct ib_rwq_ind_table {
1689 	struct ib_device	*device;
1690 	struct ib_uobject      *uobject;
1691 	atomic_t		usecnt;
1692 	u32		ind_tbl_num;
1693 	u32		log_ind_tbl_size;
1694 	struct ib_wq	**ind_tbl;
1695 };
1696 
1697 struct ib_rwq_ind_table_init_attr {
1698 	u32		log_ind_tbl_size;
1699 	/* Each entry is a pointer to Receive Work Queue */
1700 	struct ib_wq	**ind_tbl;
1701 };
1702 
1703 enum port_pkey_state {
1704 	IB_PORT_PKEY_NOT_VALID = 0,
1705 	IB_PORT_PKEY_VALID = 1,
1706 	IB_PORT_PKEY_LISTED = 2,
1707 };
1708 
1709 struct ib_qp_security;
1710 
1711 struct ib_port_pkey {
1712 	enum port_pkey_state	state;
1713 	u16			pkey_index;
1714 	u8			port_num;
1715 	struct list_head	qp_list;
1716 	struct list_head	to_error_list;
1717 	struct ib_qp_security  *sec;
1718 };
1719 
1720 struct ib_ports_pkeys {
1721 	struct ib_port_pkey	main;
1722 	struct ib_port_pkey	alt;
1723 };
1724 
1725 struct ib_qp_security {
1726 	struct ib_qp	       *qp;
1727 	struct ib_device       *dev;
1728 	/* Hold this mutex when changing port and pkey settings. */
1729 	struct mutex		mutex;
1730 	struct ib_ports_pkeys  *ports_pkeys;
1731 	/* A list of all open shared QP handles.  Required to enforce security
1732 	 * properly for all users of a shared QP.
1733 	 */
1734 	struct list_head        shared_qp_list;
1735 	void                   *security;
1736 	bool			destroying;
1737 	atomic_t		error_list_count;
1738 	struct completion	error_complete;
1739 	int			error_comps_pending;
1740 };
1741 
1742 /*
1743  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1744  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1745  */
1746 struct ib_qp {
1747 	struct ib_device       *device;
1748 	struct ib_pd	       *pd;
1749 	struct ib_cq	       *send_cq;
1750 	struct ib_cq	       *recv_cq;
1751 	spinlock_t		mr_lock;
1752 	int			mrs_used;
1753 	struct list_head	rdma_mrs;
1754 	struct list_head	sig_mrs;
1755 	struct ib_srq	       *srq;
1756 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1757 	struct list_head	xrcd_list;
1758 
1759 	/* count times opened, mcast attaches, flow attaches */
1760 	atomic_t		usecnt;
1761 	struct list_head	open_list;
1762 	struct ib_qp           *real_qp;
1763 	struct ib_uobject      *uobject;
1764 	void                  (*event_handler)(struct ib_event *, void *);
1765 	void		       *qp_context;
1766 	u32			qp_num;
1767 	u32			max_write_sge;
1768 	u32			max_read_sge;
1769 	enum ib_qp_type		qp_type;
1770 	struct ib_rwq_ind_table *rwq_ind_tbl;
1771 	struct ib_qp_security  *qp_sec;
1772 	u8			port;
1773 
1774 	/*
1775 	 * Implementation details of the RDMA core, don't use in drivers:
1776 	 */
1777 	struct rdma_restrack_entry     res;
1778 };
1779 
1780 struct ib_dm {
1781 	struct ib_device  *device;
1782 	u32		   length;
1783 	u32		   flags;
1784 	struct ib_uobject *uobject;
1785 	atomic_t	   usecnt;
1786 };
1787 
1788 struct ib_mr {
1789 	struct ib_device  *device;
1790 	struct ib_pd	  *pd;
1791 	u32		   lkey;
1792 	u32		   rkey;
1793 	u64		   iova;
1794 	u64		   length;
1795 	unsigned int	   page_size;
1796 	bool		   need_inval;
1797 	union {
1798 		struct ib_uobject	*uobject;	/* user */
1799 		struct list_head	qp_entry;	/* FR */
1800 	};
1801 
1802 	struct ib_dm      *dm;
1803 
1804 	/*
1805 	 * Implementation details of the RDMA core, don't use in drivers:
1806 	 */
1807 	struct rdma_restrack_entry res;
1808 };
1809 
1810 struct ib_mw {
1811 	struct ib_device	*device;
1812 	struct ib_pd		*pd;
1813 	struct ib_uobject	*uobject;
1814 	u32			rkey;
1815 	enum ib_mw_type         type;
1816 };
1817 
1818 struct ib_fmr {
1819 	struct ib_device	*device;
1820 	struct ib_pd		*pd;
1821 	struct list_head	list;
1822 	u32			lkey;
1823 	u32			rkey;
1824 };
1825 
1826 /* Supported steering options */
1827 enum ib_flow_attr_type {
1828 	/* steering according to rule specifications */
1829 	IB_FLOW_ATTR_NORMAL		= 0x0,
1830 	/* default unicast and multicast rule -
1831 	 * receive all Eth traffic which isn't steered to any QP
1832 	 */
1833 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1834 	/* default multicast rule -
1835 	 * receive all Eth multicast traffic which isn't steered to any QP
1836 	 */
1837 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1838 	/* sniffer rule - receive all port traffic */
1839 	IB_FLOW_ATTR_SNIFFER		= 0x3
1840 };
1841 
1842 /* Supported steering header types */
1843 enum ib_flow_spec_type {
1844 	/* L2 headers*/
1845 	IB_FLOW_SPEC_ETH		= 0x20,
1846 	IB_FLOW_SPEC_IB			= 0x22,
1847 	/* L3 header*/
1848 	IB_FLOW_SPEC_IPV4		= 0x30,
1849 	IB_FLOW_SPEC_IPV6		= 0x31,
1850 	IB_FLOW_SPEC_ESP                = 0x34,
1851 	/* L4 headers*/
1852 	IB_FLOW_SPEC_TCP		= 0x40,
1853 	IB_FLOW_SPEC_UDP		= 0x41,
1854 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1855 	IB_FLOW_SPEC_INNER		= 0x100,
1856 	/* Actions */
1857 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1858 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1859 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1860 };
1861 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1862 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1863 
1864 /* Flow steering rule priority is set according to it's domain.
1865  * Lower domain value means higher priority.
1866  */
1867 enum ib_flow_domain {
1868 	IB_FLOW_DOMAIN_USER,
1869 	IB_FLOW_DOMAIN_ETHTOOL,
1870 	IB_FLOW_DOMAIN_RFS,
1871 	IB_FLOW_DOMAIN_NIC,
1872 	IB_FLOW_DOMAIN_NUM /* Must be last */
1873 };
1874 
1875 enum ib_flow_flags {
1876 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1877 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1878 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1879 };
1880 
1881 struct ib_flow_eth_filter {
1882 	u8	dst_mac[6];
1883 	u8	src_mac[6];
1884 	__be16	ether_type;
1885 	__be16	vlan_tag;
1886 	/* Must be last */
1887 	u8	real_sz[0];
1888 };
1889 
1890 struct ib_flow_spec_eth {
1891 	u32			  type;
1892 	u16			  size;
1893 	struct ib_flow_eth_filter val;
1894 	struct ib_flow_eth_filter mask;
1895 };
1896 
1897 struct ib_flow_ib_filter {
1898 	__be16 dlid;
1899 	__u8   sl;
1900 	/* Must be last */
1901 	u8	real_sz[0];
1902 };
1903 
1904 struct ib_flow_spec_ib {
1905 	u32			 type;
1906 	u16			 size;
1907 	struct ib_flow_ib_filter val;
1908 	struct ib_flow_ib_filter mask;
1909 };
1910 
1911 /* IPv4 header flags */
1912 enum ib_ipv4_flags {
1913 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1914 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1915 				    last have this flag set */
1916 };
1917 
1918 struct ib_flow_ipv4_filter {
1919 	__be32	src_ip;
1920 	__be32	dst_ip;
1921 	u8	proto;
1922 	u8	tos;
1923 	u8	ttl;
1924 	u8	flags;
1925 	/* Must be last */
1926 	u8	real_sz[0];
1927 };
1928 
1929 struct ib_flow_spec_ipv4 {
1930 	u32			   type;
1931 	u16			   size;
1932 	struct ib_flow_ipv4_filter val;
1933 	struct ib_flow_ipv4_filter mask;
1934 };
1935 
1936 struct ib_flow_ipv6_filter {
1937 	u8	src_ip[16];
1938 	u8	dst_ip[16];
1939 	__be32	flow_label;
1940 	u8	next_hdr;
1941 	u8	traffic_class;
1942 	u8	hop_limit;
1943 	/* Must be last */
1944 	u8	real_sz[0];
1945 };
1946 
1947 struct ib_flow_spec_ipv6 {
1948 	u32			   type;
1949 	u16			   size;
1950 	struct ib_flow_ipv6_filter val;
1951 	struct ib_flow_ipv6_filter mask;
1952 };
1953 
1954 struct ib_flow_tcp_udp_filter {
1955 	__be16	dst_port;
1956 	__be16	src_port;
1957 	/* Must be last */
1958 	u8	real_sz[0];
1959 };
1960 
1961 struct ib_flow_spec_tcp_udp {
1962 	u32			      type;
1963 	u16			      size;
1964 	struct ib_flow_tcp_udp_filter val;
1965 	struct ib_flow_tcp_udp_filter mask;
1966 };
1967 
1968 struct ib_flow_tunnel_filter {
1969 	__be32	tunnel_id;
1970 	u8	real_sz[0];
1971 };
1972 
1973 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1974  * the tunnel_id from val has the vni value
1975  */
1976 struct ib_flow_spec_tunnel {
1977 	u32			      type;
1978 	u16			      size;
1979 	struct ib_flow_tunnel_filter  val;
1980 	struct ib_flow_tunnel_filter  mask;
1981 };
1982 
1983 struct ib_flow_esp_filter {
1984 	__be32	spi;
1985 	__be32  seq;
1986 	/* Must be last */
1987 	u8	real_sz[0];
1988 };
1989 
1990 struct ib_flow_spec_esp {
1991 	u32                           type;
1992 	u16			      size;
1993 	struct ib_flow_esp_filter     val;
1994 	struct ib_flow_esp_filter     mask;
1995 };
1996 
1997 struct ib_flow_spec_action_tag {
1998 	enum ib_flow_spec_type	      type;
1999 	u16			      size;
2000 	u32                           tag_id;
2001 };
2002 
2003 struct ib_flow_spec_action_drop {
2004 	enum ib_flow_spec_type	      type;
2005 	u16			      size;
2006 };
2007 
2008 struct ib_flow_spec_action_handle {
2009 	enum ib_flow_spec_type	      type;
2010 	u16			      size;
2011 	struct ib_flow_action	     *act;
2012 };
2013 
2014 union ib_flow_spec {
2015 	struct {
2016 		u32			type;
2017 		u16			size;
2018 	};
2019 	struct ib_flow_spec_eth		eth;
2020 	struct ib_flow_spec_ib		ib;
2021 	struct ib_flow_spec_ipv4        ipv4;
2022 	struct ib_flow_spec_tcp_udp	tcp_udp;
2023 	struct ib_flow_spec_ipv6        ipv6;
2024 	struct ib_flow_spec_tunnel      tunnel;
2025 	struct ib_flow_spec_esp		esp;
2026 	struct ib_flow_spec_action_tag  flow_tag;
2027 	struct ib_flow_spec_action_drop drop;
2028 	struct ib_flow_spec_action_handle action;
2029 };
2030 
2031 struct ib_flow_attr {
2032 	enum ib_flow_attr_type type;
2033 	u16	     size;
2034 	u16	     priority;
2035 	u32	     flags;
2036 	u8	     num_of_specs;
2037 	u8	     port;
2038 	/* Following are the optional layers according to user request
2039 	 * struct ib_flow_spec_xxx
2040 	 * struct ib_flow_spec_yyy
2041 	 */
2042 };
2043 
2044 struct ib_flow {
2045 	struct ib_qp		*qp;
2046 	struct ib_uobject	*uobject;
2047 };
2048 
2049 enum ib_flow_action_type {
2050 	IB_FLOW_ACTION_UNSPECIFIED,
2051 	IB_FLOW_ACTION_ESP = 1,
2052 };
2053 
2054 struct ib_flow_action_attrs_esp_keymats {
2055 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2056 	union {
2057 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2058 	} keymat;
2059 };
2060 
2061 struct ib_flow_action_attrs_esp_replays {
2062 	enum ib_uverbs_flow_action_esp_replay			protocol;
2063 	union {
2064 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2065 	} replay;
2066 };
2067 
2068 enum ib_flow_action_attrs_esp_flags {
2069 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2070 	 * This is done in order to share the same flags between user-space and
2071 	 * kernel and spare an unnecessary translation.
2072 	 */
2073 
2074 	/* Kernel flags */
2075 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2076 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2077 };
2078 
2079 struct ib_flow_spec_list {
2080 	struct ib_flow_spec_list	*next;
2081 	union ib_flow_spec		spec;
2082 };
2083 
2084 struct ib_flow_action_attrs_esp {
2085 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2086 	struct ib_flow_action_attrs_esp_replays		*replay;
2087 	struct ib_flow_spec_list			*encap;
2088 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2089 	 * Value of 0 is a valid value.
2090 	 */
2091 	u32						esn;
2092 	u32						spi;
2093 	u32						seq;
2094 	u32						tfc_pad;
2095 	/* Use enum ib_flow_action_attrs_esp_flags */
2096 	u64						flags;
2097 	u64						hard_limit_pkts;
2098 };
2099 
2100 struct ib_flow_action {
2101 	struct ib_device		*device;
2102 	struct ib_uobject		*uobject;
2103 	enum ib_flow_action_type	type;
2104 	atomic_t			usecnt;
2105 };
2106 
2107 struct ib_mad_hdr;
2108 struct ib_grh;
2109 
2110 enum ib_process_mad_flags {
2111 	IB_MAD_IGNORE_MKEY	= 1,
2112 	IB_MAD_IGNORE_BKEY	= 2,
2113 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2114 };
2115 
2116 enum ib_mad_result {
2117 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2118 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2119 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2120 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2121 };
2122 
2123 struct ib_port_cache {
2124 	u64		      subnet_prefix;
2125 	struct ib_pkey_cache  *pkey;
2126 	struct ib_gid_table   *gid;
2127 	u8                     lmc;
2128 	enum ib_port_state     port_state;
2129 };
2130 
2131 struct ib_cache {
2132 	rwlock_t                lock;
2133 	struct ib_event_handler event_handler;
2134 	struct ib_port_cache   *ports;
2135 };
2136 
2137 struct iw_cm_verbs;
2138 
2139 struct ib_port_immutable {
2140 	int                           pkey_tbl_len;
2141 	int                           gid_tbl_len;
2142 	u32                           core_cap_flags;
2143 	u32                           max_mad_size;
2144 };
2145 
2146 /* rdma netdev type - specifies protocol type */
2147 enum rdma_netdev_t {
2148 	RDMA_NETDEV_OPA_VNIC,
2149 	RDMA_NETDEV_IPOIB,
2150 };
2151 
2152 /**
2153  * struct rdma_netdev - rdma netdev
2154  * For cases where netstack interfacing is required.
2155  */
2156 struct rdma_netdev {
2157 	void              *clnt_priv;
2158 	struct ib_device  *hca;
2159 	u8                 port_num;
2160 
2161 	/* cleanup function must be specified */
2162 	void (*free_rdma_netdev)(struct net_device *netdev);
2163 
2164 	/* control functions */
2165 	void (*set_id)(struct net_device *netdev, int id);
2166 	/* send packet */
2167 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2168 		    struct ib_ah *address, u32 dqpn);
2169 	/* multicast */
2170 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2171 			    union ib_gid *gid, u16 mlid,
2172 			    int set_qkey, u32 qkey);
2173 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2174 			    union ib_gid *gid, u16 mlid);
2175 };
2176 
2177 struct ib_port_pkey_list {
2178 	/* Lock to hold while modifying the list. */
2179 	spinlock_t                    list_lock;
2180 	struct list_head              pkey_list;
2181 };
2182 
2183 struct uverbs_attr_bundle;
2184 
2185 struct ib_device {
2186 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2187 	struct device                *dma_device;
2188 
2189 	char                          name[IB_DEVICE_NAME_MAX];
2190 
2191 	struct list_head              event_handler_list;
2192 	spinlock_t                    event_handler_lock;
2193 
2194 	spinlock_t                    client_data_lock;
2195 	struct list_head              core_list;
2196 	/* Access to the client_data_list is protected by the client_data_lock
2197 	 * spinlock and the lists_rwsem read-write semaphore */
2198 	struct list_head              client_data_list;
2199 
2200 	struct ib_cache               cache;
2201 	/**
2202 	 * port_immutable is indexed by port number
2203 	 */
2204 	struct ib_port_immutable     *port_immutable;
2205 
2206 	int			      num_comp_vectors;
2207 
2208 	struct ib_port_pkey_list     *port_pkey_list;
2209 
2210 	struct iw_cm_verbs	     *iwcm;
2211 
2212 	/**
2213 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2214 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2215 	 *   core when the device is removed.  A lifespan of -1 in the return
2216 	 *   struct tells the core to set a default lifespan.
2217 	 */
2218 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2219 						     u8 port_num);
2220 	/**
2221 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2222 	 * @index - The index in the value array we wish to have updated, or
2223 	 *   num_counters if we want all stats updated
2224 	 * Return codes -
2225 	 *   < 0 - Error, no counters updated
2226 	 *   index - Updated the single counter pointed to by index
2227 	 *   num_counters - Updated all counters (will reset the timestamp
2228 	 *     and prevent further calls for lifespan milliseconds)
2229 	 * Drivers are allowed to update all counters in leiu of just the
2230 	 *   one given in index at their option
2231 	 */
2232 	int		           (*get_hw_stats)(struct ib_device *device,
2233 						   struct rdma_hw_stats *stats,
2234 						   u8 port, int index);
2235 	int		           (*query_device)(struct ib_device *device,
2236 						   struct ib_device_attr *device_attr,
2237 						   struct ib_udata *udata);
2238 	int		           (*query_port)(struct ib_device *device,
2239 						 u8 port_num,
2240 						 struct ib_port_attr *port_attr);
2241 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2242 						     u8 port_num);
2243 	/* When calling get_netdev, the HW vendor's driver should return the
2244 	 * net device of device @device at port @port_num or NULL if such
2245 	 * a net device doesn't exist. The vendor driver should call dev_hold
2246 	 * on this net device. The HW vendor's device driver must guarantee
2247 	 * that this function returns NULL before the net device has finished
2248 	 * NETDEV_UNREGISTER state.
2249 	 */
2250 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2251 						 u8 port_num);
2252 	/* query_gid should be return GID value for @device, when @port_num
2253 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2254 	 * is RoCE link layer.
2255 	 */
2256 	int		           (*query_gid)(struct ib_device *device,
2257 						u8 port_num, int index,
2258 						union ib_gid *gid);
2259 	/* When calling add_gid, the HW vendor's driver should add the gid
2260 	 * of device of port at gid index available at @attr. Meta-info of
2261 	 * that gid (for example, the network device related to this gid) is
2262 	 * available at @attr. @context allows the HW vendor driver to store
2263 	 * extra information together with a GID entry. The HW vendor driver may
2264 	 * allocate memory to contain this information and store it in @context
2265 	 * when a new GID entry is written to. Params are consistent until the
2266 	 * next call of add_gid or delete_gid. The function should return 0 on
2267 	 * success or error otherwise. The function could be called
2268 	 * concurrently for different ports. This function is only called when
2269 	 * roce_gid_table is used.
2270 	 */
2271 	int		           (*add_gid)(const union ib_gid *gid,
2272 					      const struct ib_gid_attr *attr,
2273 					      void **context);
2274 	/* When calling del_gid, the HW vendor's driver should delete the
2275 	 * gid of device @device at gid index gid_index of port port_num
2276 	 * available in @attr.
2277 	 * Upon the deletion of a GID entry, the HW vendor must free any
2278 	 * allocated memory. The caller will clear @context afterwards.
2279 	 * This function is only called when roce_gid_table is used.
2280 	 */
2281 	int		           (*del_gid)(const struct ib_gid_attr *attr,
2282 					      void **context);
2283 	int		           (*query_pkey)(struct ib_device *device,
2284 						 u8 port_num, u16 index, u16 *pkey);
2285 	int		           (*modify_device)(struct ib_device *device,
2286 						    int device_modify_mask,
2287 						    struct ib_device_modify *device_modify);
2288 	int		           (*modify_port)(struct ib_device *device,
2289 						  u8 port_num, int port_modify_mask,
2290 						  struct ib_port_modify *port_modify);
2291 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2292 						     struct ib_udata *udata);
2293 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2294 	int                        (*mmap)(struct ib_ucontext *context,
2295 					   struct vm_area_struct *vma);
2296 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2297 					       struct ib_ucontext *context,
2298 					       struct ib_udata *udata);
2299 	int                        (*dealloc_pd)(struct ib_pd *pd);
2300 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2301 						struct rdma_ah_attr *ah_attr,
2302 						struct ib_udata *udata);
2303 	int                        (*modify_ah)(struct ib_ah *ah,
2304 						struct rdma_ah_attr *ah_attr);
2305 	int                        (*query_ah)(struct ib_ah *ah,
2306 					       struct rdma_ah_attr *ah_attr);
2307 	int                        (*destroy_ah)(struct ib_ah *ah);
2308 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2309 						 struct ib_srq_init_attr *srq_init_attr,
2310 						 struct ib_udata *udata);
2311 	int                        (*modify_srq)(struct ib_srq *srq,
2312 						 struct ib_srq_attr *srq_attr,
2313 						 enum ib_srq_attr_mask srq_attr_mask,
2314 						 struct ib_udata *udata);
2315 	int                        (*query_srq)(struct ib_srq *srq,
2316 						struct ib_srq_attr *srq_attr);
2317 	int                        (*destroy_srq)(struct ib_srq *srq);
2318 	int                        (*post_srq_recv)(struct ib_srq *srq,
2319 						    struct ib_recv_wr *recv_wr,
2320 						    struct ib_recv_wr **bad_recv_wr);
2321 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2322 						struct ib_qp_init_attr *qp_init_attr,
2323 						struct ib_udata *udata);
2324 	int                        (*modify_qp)(struct ib_qp *qp,
2325 						struct ib_qp_attr *qp_attr,
2326 						int qp_attr_mask,
2327 						struct ib_udata *udata);
2328 	int                        (*query_qp)(struct ib_qp *qp,
2329 					       struct ib_qp_attr *qp_attr,
2330 					       int qp_attr_mask,
2331 					       struct ib_qp_init_attr *qp_init_attr);
2332 	int                        (*destroy_qp)(struct ib_qp *qp);
2333 	int                        (*post_send)(struct ib_qp *qp,
2334 						struct ib_send_wr *send_wr,
2335 						struct ib_send_wr **bad_send_wr);
2336 	int                        (*post_recv)(struct ib_qp *qp,
2337 						struct ib_recv_wr *recv_wr,
2338 						struct ib_recv_wr **bad_recv_wr);
2339 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2340 						const struct ib_cq_init_attr *attr,
2341 						struct ib_ucontext *context,
2342 						struct ib_udata *udata);
2343 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2344 						u16 cq_period);
2345 	int                        (*destroy_cq)(struct ib_cq *cq);
2346 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2347 						struct ib_udata *udata);
2348 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2349 					      struct ib_wc *wc);
2350 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2351 	int                        (*req_notify_cq)(struct ib_cq *cq,
2352 						    enum ib_cq_notify_flags flags);
2353 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2354 						      int wc_cnt);
2355 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2356 						 int mr_access_flags);
2357 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2358 						  u64 start, u64 length,
2359 						  u64 virt_addr,
2360 						  int mr_access_flags,
2361 						  struct ib_udata *udata);
2362 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2363 						    int flags,
2364 						    u64 start, u64 length,
2365 						    u64 virt_addr,
2366 						    int mr_access_flags,
2367 						    struct ib_pd *pd,
2368 						    struct ib_udata *udata);
2369 	int                        (*dereg_mr)(struct ib_mr *mr);
2370 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2371 					       enum ib_mr_type mr_type,
2372 					       u32 max_num_sg);
2373 	int                        (*map_mr_sg)(struct ib_mr *mr,
2374 						struct scatterlist *sg,
2375 						int sg_nents,
2376 						unsigned int *sg_offset);
2377 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2378 					       enum ib_mw_type type,
2379 					       struct ib_udata *udata);
2380 	int                        (*dealloc_mw)(struct ib_mw *mw);
2381 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2382 						int mr_access_flags,
2383 						struct ib_fmr_attr *fmr_attr);
2384 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2385 						   u64 *page_list, int list_len,
2386 						   u64 iova);
2387 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2388 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2389 	int                        (*attach_mcast)(struct ib_qp *qp,
2390 						   union ib_gid *gid,
2391 						   u16 lid);
2392 	int                        (*detach_mcast)(struct ib_qp *qp,
2393 						   union ib_gid *gid,
2394 						   u16 lid);
2395 	int                        (*process_mad)(struct ib_device *device,
2396 						  int process_mad_flags,
2397 						  u8 port_num,
2398 						  const struct ib_wc *in_wc,
2399 						  const struct ib_grh *in_grh,
2400 						  const struct ib_mad_hdr *in_mad,
2401 						  size_t in_mad_size,
2402 						  struct ib_mad_hdr *out_mad,
2403 						  size_t *out_mad_size,
2404 						  u16 *out_mad_pkey_index);
2405 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2406 						 struct ib_ucontext *ucontext,
2407 						 struct ib_udata *udata);
2408 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2409 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2410 						  struct ib_flow_attr
2411 						  *flow_attr,
2412 						  int domain);
2413 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2414 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2415 						      struct ib_mr_status *mr_status);
2416 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2417 	void			   (*drain_rq)(struct ib_qp *qp);
2418 	void			   (*drain_sq)(struct ib_qp *qp);
2419 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2420 							int state);
2421 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2422 						   struct ifla_vf_info *ivf);
2423 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2424 						   struct ifla_vf_stats *stats);
2425 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2426 						  int type);
2427 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2428 						struct ib_wq_init_attr *init_attr,
2429 						struct ib_udata *udata);
2430 	int			   (*destroy_wq)(struct ib_wq *wq);
2431 	int			   (*modify_wq)(struct ib_wq *wq,
2432 						struct ib_wq_attr *attr,
2433 						u32 wq_attr_mask,
2434 						struct ib_udata *udata);
2435 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2436 							   struct ib_rwq_ind_table_init_attr *init_attr,
2437 							   struct ib_udata *udata);
2438 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2439 	struct ib_flow_action *	   (*create_flow_action_esp)(struct ib_device *device,
2440 							     const struct ib_flow_action_attrs_esp *attr,
2441 							     struct uverbs_attr_bundle *attrs);
2442 	int			   (*destroy_flow_action)(struct ib_flow_action *action);
2443 	int			   (*modify_flow_action_esp)(struct ib_flow_action *action,
2444 							     const struct ib_flow_action_attrs_esp *attr,
2445 							     struct uverbs_attr_bundle *attrs);
2446 	struct ib_dm *             (*alloc_dm)(struct ib_device *device,
2447 					       struct ib_ucontext *context,
2448 					       struct ib_dm_alloc_attr *attr,
2449 					       struct uverbs_attr_bundle *attrs);
2450 	int                        (*dealloc_dm)(struct ib_dm *dm);
2451 	struct ib_mr *             (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2452 						struct ib_dm_mr_attr *attr,
2453 						struct uverbs_attr_bundle *attrs);
2454 	/**
2455 	 * rdma netdev operation
2456 	 *
2457 	 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2458 	 * doesn't support the specified rdma netdev type.
2459 	 */
2460 	struct net_device *(*alloc_rdma_netdev)(
2461 					struct ib_device *device,
2462 					u8 port_num,
2463 					enum rdma_netdev_t type,
2464 					const char *name,
2465 					unsigned char name_assign_type,
2466 					void (*setup)(struct net_device *));
2467 
2468 	struct module               *owner;
2469 	struct device                dev;
2470 	struct kobject               *ports_parent;
2471 	struct list_head             port_list;
2472 
2473 	enum {
2474 		IB_DEV_UNINITIALIZED,
2475 		IB_DEV_REGISTERED,
2476 		IB_DEV_UNREGISTERED
2477 	}                            reg_state;
2478 
2479 	int			     uverbs_abi_ver;
2480 	u64			     uverbs_cmd_mask;
2481 	u64			     uverbs_ex_cmd_mask;
2482 
2483 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2484 	__be64			     node_guid;
2485 	u32			     local_dma_lkey;
2486 	u16                          is_switch:1;
2487 	u8                           node_type;
2488 	u8                           phys_port_cnt;
2489 	struct ib_device_attr        attrs;
2490 	struct attribute_group	     *hw_stats_ag;
2491 	struct rdma_hw_stats         *hw_stats;
2492 
2493 #ifdef CONFIG_CGROUP_RDMA
2494 	struct rdmacg_device         cg_device;
2495 #endif
2496 
2497 	u32                          index;
2498 	/*
2499 	 * Implementation details of the RDMA core, don't use in drivers
2500 	 */
2501 	struct rdma_restrack_root     res;
2502 
2503 	/**
2504 	 * The following mandatory functions are used only at device
2505 	 * registration.  Keep functions such as these at the end of this
2506 	 * structure to avoid cache line misses when accessing struct ib_device
2507 	 * in fast paths.
2508 	 */
2509 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2510 	void (*get_dev_fw_str)(struct ib_device *, char *str);
2511 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2512 						     int comp_vector);
2513 
2514 	struct uverbs_root_spec		*specs_root;
2515 	enum rdma_driver_id		driver_id;
2516 };
2517 
2518 struct ib_client {
2519 	char  *name;
2520 	void (*add)   (struct ib_device *);
2521 	void (*remove)(struct ib_device *, void *client_data);
2522 
2523 	/* Returns the net_dev belonging to this ib_client and matching the
2524 	 * given parameters.
2525 	 * @dev:	 An RDMA device that the net_dev use for communication.
2526 	 * @port:	 A physical port number on the RDMA device.
2527 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2528 	 * @gid:	 A GID that the net_dev uses to communicate.
2529 	 * @addr:	 An IP address the net_dev is configured with.
2530 	 * @client_data: The device's client data set by ib_set_client_data().
2531 	 *
2532 	 * An ib_client that implements a net_dev on top of RDMA devices
2533 	 * (such as IP over IB) should implement this callback, allowing the
2534 	 * rdma_cm module to find the right net_dev for a given request.
2535 	 *
2536 	 * The caller is responsible for calling dev_put on the returned
2537 	 * netdev. */
2538 	struct net_device *(*get_net_dev_by_params)(
2539 			struct ib_device *dev,
2540 			u8 port,
2541 			u16 pkey,
2542 			const union ib_gid *gid,
2543 			const struct sockaddr *addr,
2544 			void *client_data);
2545 	struct list_head list;
2546 };
2547 
2548 struct ib_device *ib_alloc_device(size_t size);
2549 void ib_dealloc_device(struct ib_device *device);
2550 
2551 void ib_get_device_fw_str(struct ib_device *device, char *str);
2552 
2553 int ib_register_device(struct ib_device *device,
2554 		       int (*port_callback)(struct ib_device *,
2555 					    u8, struct kobject *));
2556 void ib_unregister_device(struct ib_device *device);
2557 
2558 int ib_register_client   (struct ib_client *client);
2559 void ib_unregister_client(struct ib_client *client);
2560 
2561 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2562 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2563 			 void *data);
2564 
2565 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2566 {
2567 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2568 }
2569 
2570 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2571 {
2572 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2573 }
2574 
2575 static inline bool ib_is_buffer_cleared(const void __user *p,
2576 					size_t len)
2577 {
2578 	bool ret;
2579 	u8 *buf;
2580 
2581 	if (len > USHRT_MAX)
2582 		return false;
2583 
2584 	buf = memdup_user(p, len);
2585 	if (IS_ERR(buf))
2586 		return false;
2587 
2588 	ret = !memchr_inv(buf, 0, len);
2589 	kfree(buf);
2590 	return ret;
2591 }
2592 
2593 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2594 				       size_t offset,
2595 				       size_t len)
2596 {
2597 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2598 }
2599 
2600 /**
2601  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2602  * contains all required attributes and no attributes not allowed for
2603  * the given QP state transition.
2604  * @cur_state: Current QP state
2605  * @next_state: Next QP state
2606  * @type: QP type
2607  * @mask: Mask of supplied QP attributes
2608  * @ll : link layer of port
2609  *
2610  * This function is a helper function that a low-level driver's
2611  * modify_qp method can use to validate the consumer's input.  It
2612  * checks that cur_state and next_state are valid QP states, that a
2613  * transition from cur_state to next_state is allowed by the IB spec,
2614  * and that the attribute mask supplied is allowed for the transition.
2615  */
2616 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2617 			enum ib_qp_type type, enum ib_qp_attr_mask mask,
2618 			enum rdma_link_layer ll);
2619 
2620 void ib_register_event_handler(struct ib_event_handler *event_handler);
2621 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2622 void ib_dispatch_event(struct ib_event *event);
2623 
2624 int ib_query_port(struct ib_device *device,
2625 		  u8 port_num, struct ib_port_attr *port_attr);
2626 
2627 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2628 					       u8 port_num);
2629 
2630 /**
2631  * rdma_cap_ib_switch - Check if the device is IB switch
2632  * @device: Device to check
2633  *
2634  * Device driver is responsible for setting is_switch bit on
2635  * in ib_device structure at init time.
2636  *
2637  * Return: true if the device is IB switch.
2638  */
2639 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2640 {
2641 	return device->is_switch;
2642 }
2643 
2644 /**
2645  * rdma_start_port - Return the first valid port number for the device
2646  * specified
2647  *
2648  * @device: Device to be checked
2649  *
2650  * Return start port number
2651  */
2652 static inline u8 rdma_start_port(const struct ib_device *device)
2653 {
2654 	return rdma_cap_ib_switch(device) ? 0 : 1;
2655 }
2656 
2657 /**
2658  * rdma_end_port - Return the last valid port number for the device
2659  * specified
2660  *
2661  * @device: Device to be checked
2662  *
2663  * Return last port number
2664  */
2665 static inline u8 rdma_end_port(const struct ib_device *device)
2666 {
2667 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2668 }
2669 
2670 static inline int rdma_is_port_valid(const struct ib_device *device,
2671 				     unsigned int port)
2672 {
2673 	return (port >= rdma_start_port(device) &&
2674 		port <= rdma_end_port(device));
2675 }
2676 
2677 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2678 {
2679 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2680 }
2681 
2682 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2683 {
2684 	return device->port_immutable[port_num].core_cap_flags &
2685 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2686 }
2687 
2688 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2689 {
2690 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2691 }
2692 
2693 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2694 {
2695 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2696 }
2697 
2698 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2699 {
2700 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2701 }
2702 
2703 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2704 {
2705 	return rdma_protocol_ib(device, port_num) ||
2706 		rdma_protocol_roce(device, port_num);
2707 }
2708 
2709 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2710 {
2711 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2712 }
2713 
2714 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2715 {
2716 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2717 }
2718 
2719 /**
2720  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2721  * Management Datagrams.
2722  * @device: Device to check
2723  * @port_num: Port number to check
2724  *
2725  * Management Datagrams (MAD) are a required part of the InfiniBand
2726  * specification and are supported on all InfiniBand devices.  A slightly
2727  * extended version are also supported on OPA interfaces.
2728  *
2729  * Return: true if the port supports sending/receiving of MAD packets.
2730  */
2731 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2732 {
2733 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2734 }
2735 
2736 /**
2737  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2738  * Management Datagrams.
2739  * @device: Device to check
2740  * @port_num: Port number to check
2741  *
2742  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2743  * datagrams with their own versions.  These OPA MADs share many but not all of
2744  * the characteristics of InfiniBand MADs.
2745  *
2746  * OPA MADs differ in the following ways:
2747  *
2748  *    1) MADs are variable size up to 2K
2749  *       IBTA defined MADs remain fixed at 256 bytes
2750  *    2) OPA SMPs must carry valid PKeys
2751  *    3) OPA SMP packets are a different format
2752  *
2753  * Return: true if the port supports OPA MAD packet formats.
2754  */
2755 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2756 {
2757 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2758 		== RDMA_CORE_CAP_OPA_MAD;
2759 }
2760 
2761 /**
2762  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2763  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2764  * @device: Device to check
2765  * @port_num: Port number to check
2766  *
2767  * Each InfiniBand node is required to provide a Subnet Management Agent
2768  * that the subnet manager can access.  Prior to the fabric being fully
2769  * configured by the subnet manager, the SMA is accessed via a well known
2770  * interface called the Subnet Management Interface (SMI).  This interface
2771  * uses directed route packets to communicate with the SM to get around the
2772  * chicken and egg problem of the SM needing to know what's on the fabric
2773  * in order to configure the fabric, and needing to configure the fabric in
2774  * order to send packets to the devices on the fabric.  These directed
2775  * route packets do not need the fabric fully configured in order to reach
2776  * their destination.  The SMI is the only method allowed to send
2777  * directed route packets on an InfiniBand fabric.
2778  *
2779  * Return: true if the port provides an SMI.
2780  */
2781 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2782 {
2783 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2784 }
2785 
2786 /**
2787  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2788  * Communication Manager.
2789  * @device: Device to check
2790  * @port_num: Port number to check
2791  *
2792  * The InfiniBand Communication Manager is one of many pre-defined General
2793  * Service Agents (GSA) that are accessed via the General Service
2794  * Interface (GSI).  It's role is to facilitate establishment of connections
2795  * between nodes as well as other management related tasks for established
2796  * connections.
2797  *
2798  * Return: true if the port supports an IB CM (this does not guarantee that
2799  * a CM is actually running however).
2800  */
2801 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2802 {
2803 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2804 }
2805 
2806 /**
2807  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2808  * Communication Manager.
2809  * @device: Device to check
2810  * @port_num: Port number to check
2811  *
2812  * Similar to above, but specific to iWARP connections which have a different
2813  * managment protocol than InfiniBand.
2814  *
2815  * Return: true if the port supports an iWARP CM (this does not guarantee that
2816  * a CM is actually running however).
2817  */
2818 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2819 {
2820 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2821 }
2822 
2823 /**
2824  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2825  * Subnet Administration.
2826  * @device: Device to check
2827  * @port_num: Port number to check
2828  *
2829  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2830  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2831  * fabrics, devices should resolve routes to other hosts by contacting the
2832  * SA to query the proper route.
2833  *
2834  * Return: true if the port should act as a client to the fabric Subnet
2835  * Administration interface.  This does not imply that the SA service is
2836  * running locally.
2837  */
2838 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2839 {
2840 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2841 }
2842 
2843 /**
2844  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2845  * Multicast.
2846  * @device: Device to check
2847  * @port_num: Port number to check
2848  *
2849  * InfiniBand multicast registration is more complex than normal IPv4 or
2850  * IPv6 multicast registration.  Each Host Channel Adapter must register
2851  * with the Subnet Manager when it wishes to join a multicast group.  It
2852  * should do so only once regardless of how many queue pairs it subscribes
2853  * to this group.  And it should leave the group only after all queue pairs
2854  * attached to the group have been detached.
2855  *
2856  * Return: true if the port must undertake the additional adminstrative
2857  * overhead of registering/unregistering with the SM and tracking of the
2858  * total number of queue pairs attached to the multicast group.
2859  */
2860 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2861 {
2862 	return rdma_cap_ib_sa(device, port_num);
2863 }
2864 
2865 /**
2866  * rdma_cap_af_ib - Check if the port of device has the capability
2867  * Native Infiniband Address.
2868  * @device: Device to check
2869  * @port_num: Port number to check
2870  *
2871  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2872  * GID.  RoCE uses a different mechanism, but still generates a GID via
2873  * a prescribed mechanism and port specific data.
2874  *
2875  * Return: true if the port uses a GID address to identify devices on the
2876  * network.
2877  */
2878 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2879 {
2880 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2881 }
2882 
2883 /**
2884  * rdma_cap_eth_ah - Check if the port of device has the capability
2885  * Ethernet Address Handle.
2886  * @device: Device to check
2887  * @port_num: Port number to check
2888  *
2889  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2890  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2891  * port.  Normally, packet headers are generated by the sending host
2892  * adapter, but when sending connectionless datagrams, we must manually
2893  * inject the proper headers for the fabric we are communicating over.
2894  *
2895  * Return: true if we are running as a RoCE port and must force the
2896  * addition of a Global Route Header built from our Ethernet Address
2897  * Handle into our header list for connectionless packets.
2898  */
2899 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2900 {
2901 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2902 }
2903 
2904 /**
2905  * rdma_cap_opa_ah - Check if the port of device supports
2906  * OPA Address handles
2907  * @device: Device to check
2908  * @port_num: Port number to check
2909  *
2910  * Return: true if we are running on an OPA device which supports
2911  * the extended OPA addressing.
2912  */
2913 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2914 {
2915 	return (device->port_immutable[port_num].core_cap_flags &
2916 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2917 }
2918 
2919 /**
2920  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2921  *
2922  * @device: Device
2923  * @port_num: Port number
2924  *
2925  * This MAD size includes the MAD headers and MAD payload.  No other headers
2926  * are included.
2927  *
2928  * Return the max MAD size required by the Port.  Will return 0 if the port
2929  * does not support MADs
2930  */
2931 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2932 {
2933 	return device->port_immutable[port_num].max_mad_size;
2934 }
2935 
2936 /**
2937  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2938  * @device: Device to check
2939  * @port_num: Port number to check
2940  *
2941  * RoCE GID table mechanism manages the various GIDs for a device.
2942  *
2943  * NOTE: if allocating the port's GID table has failed, this call will still
2944  * return true, but any RoCE GID table API will fail.
2945  *
2946  * Return: true if the port uses RoCE GID table mechanism in order to manage
2947  * its GIDs.
2948  */
2949 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2950 					   u8 port_num)
2951 {
2952 	return rdma_protocol_roce(device, port_num) &&
2953 		device->add_gid && device->del_gid;
2954 }
2955 
2956 /*
2957  * Check if the device supports READ W/ INVALIDATE.
2958  */
2959 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2960 {
2961 	/*
2962 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2963 	 * has support for it yet.
2964 	 */
2965 	return rdma_protocol_iwarp(dev, port_num);
2966 }
2967 
2968 int ib_query_gid(struct ib_device *device,
2969 		 u8 port_num, int index, union ib_gid *gid,
2970 		 struct ib_gid_attr *attr);
2971 
2972 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2973 			 int state);
2974 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2975 		     struct ifla_vf_info *info);
2976 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2977 		    struct ifla_vf_stats *stats);
2978 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2979 		   int type);
2980 
2981 int ib_query_pkey(struct ib_device *device,
2982 		  u8 port_num, u16 index, u16 *pkey);
2983 
2984 int ib_modify_device(struct ib_device *device,
2985 		     int device_modify_mask,
2986 		     struct ib_device_modify *device_modify);
2987 
2988 int ib_modify_port(struct ib_device *device,
2989 		   u8 port_num, int port_modify_mask,
2990 		   struct ib_port_modify *port_modify);
2991 
2992 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2993 		u8 *port_num, u16 *index);
2994 
2995 int ib_find_pkey(struct ib_device *device,
2996 		 u8 port_num, u16 pkey, u16 *index);
2997 
2998 enum ib_pd_flags {
2999 	/*
3000 	 * Create a memory registration for all memory in the system and place
3001 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3002 	 * ULPs to avoid the overhead of dynamic MRs.
3003 	 *
3004 	 * This flag is generally considered unsafe and must only be used in
3005 	 * extremly trusted environments.  Every use of it will log a warning
3006 	 * in the kernel log.
3007 	 */
3008 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3009 };
3010 
3011 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3012 		const char *caller);
3013 #define ib_alloc_pd(device, flags) \
3014 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3015 void ib_dealloc_pd(struct ib_pd *pd);
3016 
3017 /**
3018  * rdma_create_ah - Creates an address handle for the given address vector.
3019  * @pd: The protection domain associated with the address handle.
3020  * @ah_attr: The attributes of the address vector.
3021  *
3022  * The address handle is used to reference a local or global destination
3023  * in all UD QP post sends.
3024  */
3025 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3026 
3027 /**
3028  * rdma_create_user_ah - Creates an address handle for the given address vector.
3029  * It resolves destination mac address for ah attribute of RoCE type.
3030  * @pd: The protection domain associated with the address handle.
3031  * @ah_attr: The attributes of the address vector.
3032  * @udata: pointer to user's input output buffer information need by
3033  *         provider driver.
3034  *
3035  * It returns 0 on success and returns appropriate error code on error.
3036  * The address handle is used to reference a local or global destination
3037  * in all UD QP post sends.
3038  */
3039 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3040 				  struct rdma_ah_attr *ah_attr,
3041 				  struct ib_udata *udata);
3042 /**
3043  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3044  *   work completion.
3045  * @hdr: the L3 header to parse
3046  * @net_type: type of header to parse
3047  * @sgid: place to store source gid
3048  * @dgid: place to store destination gid
3049  */
3050 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3051 			      enum rdma_network_type net_type,
3052 			      union ib_gid *sgid, union ib_gid *dgid);
3053 
3054 /**
3055  * ib_get_rdma_header_version - Get the header version
3056  * @hdr: the L3 header to parse
3057  */
3058 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3059 
3060 /**
3061  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3062  *   work completion.
3063  * @device: Device on which the received message arrived.
3064  * @port_num: Port on which the received message arrived.
3065  * @wc: Work completion associated with the received message.
3066  * @grh: References the received global route header.  This parameter is
3067  *   ignored unless the work completion indicates that the GRH is valid.
3068  * @ah_attr: Returned attributes that can be used when creating an address
3069  *   handle for replying to the message.
3070  */
3071 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3072 			    const struct ib_wc *wc, const struct ib_grh *grh,
3073 			    struct rdma_ah_attr *ah_attr);
3074 
3075 /**
3076  * ib_create_ah_from_wc - Creates an address handle associated with the
3077  *   sender of the specified work completion.
3078  * @pd: The protection domain associated with the address handle.
3079  * @wc: Work completion information associated with a received message.
3080  * @grh: References the received global route header.  This parameter is
3081  *   ignored unless the work completion indicates that the GRH is valid.
3082  * @port_num: The outbound port number to associate with the address.
3083  *
3084  * The address handle is used to reference a local or global destination
3085  * in all UD QP post sends.
3086  */
3087 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3088 				   const struct ib_grh *grh, u8 port_num);
3089 
3090 /**
3091  * rdma_modify_ah - Modifies the address vector associated with an address
3092  *   handle.
3093  * @ah: The address handle to modify.
3094  * @ah_attr: The new address vector attributes to associate with the
3095  *   address handle.
3096  */
3097 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3098 
3099 /**
3100  * rdma_query_ah - Queries the address vector associated with an address
3101  *   handle.
3102  * @ah: The address handle to query.
3103  * @ah_attr: The address vector attributes associated with the address
3104  *   handle.
3105  */
3106 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3107 
3108 /**
3109  * rdma_destroy_ah - Destroys an address handle.
3110  * @ah: The address handle to destroy.
3111  */
3112 int rdma_destroy_ah(struct ib_ah *ah);
3113 
3114 /**
3115  * ib_create_srq - Creates a SRQ associated with the specified protection
3116  *   domain.
3117  * @pd: The protection domain associated with the SRQ.
3118  * @srq_init_attr: A list of initial attributes required to create the
3119  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3120  *   the actual capabilities of the created SRQ.
3121  *
3122  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3123  * requested size of the SRQ, and set to the actual values allocated
3124  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3125  * will always be at least as large as the requested values.
3126  */
3127 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3128 			     struct ib_srq_init_attr *srq_init_attr);
3129 
3130 /**
3131  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3132  * @srq: The SRQ to modify.
3133  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3134  *   the current values of selected SRQ attributes are returned.
3135  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3136  *   are being modified.
3137  *
3138  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3139  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3140  * the number of receives queued drops below the limit.
3141  */
3142 int ib_modify_srq(struct ib_srq *srq,
3143 		  struct ib_srq_attr *srq_attr,
3144 		  enum ib_srq_attr_mask srq_attr_mask);
3145 
3146 /**
3147  * ib_query_srq - Returns the attribute list and current values for the
3148  *   specified SRQ.
3149  * @srq: The SRQ to query.
3150  * @srq_attr: The attributes of the specified SRQ.
3151  */
3152 int ib_query_srq(struct ib_srq *srq,
3153 		 struct ib_srq_attr *srq_attr);
3154 
3155 /**
3156  * ib_destroy_srq - Destroys the specified SRQ.
3157  * @srq: The SRQ to destroy.
3158  */
3159 int ib_destroy_srq(struct ib_srq *srq);
3160 
3161 /**
3162  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3163  * @srq: The SRQ to post the work request on.
3164  * @recv_wr: A list of work requests to post on the receive queue.
3165  * @bad_recv_wr: On an immediate failure, this parameter will reference
3166  *   the work request that failed to be posted on the QP.
3167  */
3168 static inline int ib_post_srq_recv(struct ib_srq *srq,
3169 				   struct ib_recv_wr *recv_wr,
3170 				   struct ib_recv_wr **bad_recv_wr)
3171 {
3172 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3173 }
3174 
3175 /**
3176  * ib_create_qp - Creates a QP associated with the specified protection
3177  *   domain.
3178  * @pd: The protection domain associated with the QP.
3179  * @qp_init_attr: A list of initial attributes required to create the
3180  *   QP.  If QP creation succeeds, then the attributes are updated to
3181  *   the actual capabilities of the created QP.
3182  */
3183 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3184 			   struct ib_qp_init_attr *qp_init_attr);
3185 
3186 /**
3187  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3188  * @qp: The QP to modify.
3189  * @attr: On input, specifies the QP attributes to modify.  On output,
3190  *   the current values of selected QP attributes are returned.
3191  * @attr_mask: A bit-mask used to specify which attributes of the QP
3192  *   are being modified.
3193  * @udata: pointer to user's input output buffer information
3194  *   are being modified.
3195  * It returns 0 on success and returns appropriate error code on error.
3196  */
3197 int ib_modify_qp_with_udata(struct ib_qp *qp,
3198 			    struct ib_qp_attr *attr,
3199 			    int attr_mask,
3200 			    struct ib_udata *udata);
3201 
3202 /**
3203  * ib_modify_qp - Modifies the attributes for the specified QP and then
3204  *   transitions the QP to the given state.
3205  * @qp: The QP to modify.
3206  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3207  *   the current values of selected QP attributes are returned.
3208  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3209  *   are being modified.
3210  */
3211 int ib_modify_qp(struct ib_qp *qp,
3212 		 struct ib_qp_attr *qp_attr,
3213 		 int qp_attr_mask);
3214 
3215 /**
3216  * ib_query_qp - Returns the attribute list and current values for the
3217  *   specified QP.
3218  * @qp: The QP to query.
3219  * @qp_attr: The attributes of the specified QP.
3220  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3221  * @qp_init_attr: Additional attributes of the selected QP.
3222  *
3223  * The qp_attr_mask may be used to limit the query to gathering only the
3224  * selected attributes.
3225  */
3226 int ib_query_qp(struct ib_qp *qp,
3227 		struct ib_qp_attr *qp_attr,
3228 		int qp_attr_mask,
3229 		struct ib_qp_init_attr *qp_init_attr);
3230 
3231 /**
3232  * ib_destroy_qp - Destroys the specified QP.
3233  * @qp: The QP to destroy.
3234  */
3235 int ib_destroy_qp(struct ib_qp *qp);
3236 
3237 /**
3238  * ib_open_qp - Obtain a reference to an existing sharable QP.
3239  * @xrcd - XRC domain
3240  * @qp_open_attr: Attributes identifying the QP to open.
3241  *
3242  * Returns a reference to a sharable QP.
3243  */
3244 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3245 			 struct ib_qp_open_attr *qp_open_attr);
3246 
3247 /**
3248  * ib_close_qp - Release an external reference to a QP.
3249  * @qp: The QP handle to release
3250  *
3251  * The opened QP handle is released by the caller.  The underlying
3252  * shared QP is not destroyed until all internal references are released.
3253  */
3254 int ib_close_qp(struct ib_qp *qp);
3255 
3256 /**
3257  * ib_post_send - Posts a list of work requests to the send queue of
3258  *   the specified QP.
3259  * @qp: The QP to post the work request on.
3260  * @send_wr: A list of work requests to post on the send queue.
3261  * @bad_send_wr: On an immediate failure, this parameter will reference
3262  *   the work request that failed to be posted on the QP.
3263  *
3264  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3265  * error is returned, the QP state shall not be affected,
3266  * ib_post_send() will return an immediate error after queueing any
3267  * earlier work requests in the list.
3268  */
3269 static inline int ib_post_send(struct ib_qp *qp,
3270 			       struct ib_send_wr *send_wr,
3271 			       struct ib_send_wr **bad_send_wr)
3272 {
3273 	return qp->device->post_send(qp, send_wr, bad_send_wr);
3274 }
3275 
3276 /**
3277  * ib_post_recv - Posts a list of work requests to the receive queue of
3278  *   the specified QP.
3279  * @qp: The QP to post the work request on.
3280  * @recv_wr: A list of work requests to post on the receive queue.
3281  * @bad_recv_wr: On an immediate failure, this parameter will reference
3282  *   the work request that failed to be posted on the QP.
3283  */
3284 static inline int ib_post_recv(struct ib_qp *qp,
3285 			       struct ib_recv_wr *recv_wr,
3286 			       struct ib_recv_wr **bad_recv_wr)
3287 {
3288 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3289 }
3290 
3291 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3292 			    int nr_cqe, int comp_vector,
3293 			    enum ib_poll_context poll_ctx, const char *caller);
3294 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3295 	__ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3296 
3297 void ib_free_cq(struct ib_cq *cq);
3298 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3299 
3300 /**
3301  * ib_create_cq - Creates a CQ on the specified device.
3302  * @device: The device on which to create the CQ.
3303  * @comp_handler: A user-specified callback that is invoked when a
3304  *   completion event occurs on the CQ.
3305  * @event_handler: A user-specified callback that is invoked when an
3306  *   asynchronous event not associated with a completion occurs on the CQ.
3307  * @cq_context: Context associated with the CQ returned to the user via
3308  *   the associated completion and event handlers.
3309  * @cq_attr: The attributes the CQ should be created upon.
3310  *
3311  * Users can examine the cq structure to determine the actual CQ size.
3312  */
3313 struct ib_cq *ib_create_cq(struct ib_device *device,
3314 			   ib_comp_handler comp_handler,
3315 			   void (*event_handler)(struct ib_event *, void *),
3316 			   void *cq_context,
3317 			   const struct ib_cq_init_attr *cq_attr);
3318 
3319 /**
3320  * ib_resize_cq - Modifies the capacity of the CQ.
3321  * @cq: The CQ to resize.
3322  * @cqe: The minimum size of the CQ.
3323  *
3324  * Users can examine the cq structure to determine the actual CQ size.
3325  */
3326 int ib_resize_cq(struct ib_cq *cq, int cqe);
3327 
3328 /**
3329  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3330  * @cq: The CQ to modify.
3331  * @cq_count: number of CQEs that will trigger an event
3332  * @cq_period: max period of time in usec before triggering an event
3333  *
3334  */
3335 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3336 
3337 /**
3338  * ib_destroy_cq - Destroys the specified CQ.
3339  * @cq: The CQ to destroy.
3340  */
3341 int ib_destroy_cq(struct ib_cq *cq);
3342 
3343 /**
3344  * ib_poll_cq - poll a CQ for completion(s)
3345  * @cq:the CQ being polled
3346  * @num_entries:maximum number of completions to return
3347  * @wc:array of at least @num_entries &struct ib_wc where completions
3348  *   will be returned
3349  *
3350  * Poll a CQ for (possibly multiple) completions.  If the return value
3351  * is < 0, an error occurred.  If the return value is >= 0, it is the
3352  * number of completions returned.  If the return value is
3353  * non-negative and < num_entries, then the CQ was emptied.
3354  */
3355 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3356 			     struct ib_wc *wc)
3357 {
3358 	return cq->device->poll_cq(cq, num_entries, wc);
3359 }
3360 
3361 /**
3362  * ib_req_notify_cq - Request completion notification on a CQ.
3363  * @cq: The CQ to generate an event for.
3364  * @flags:
3365  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3366  *   to request an event on the next solicited event or next work
3367  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3368  *   may also be |ed in to request a hint about missed events, as
3369  *   described below.
3370  *
3371  * Return Value:
3372  *    < 0 means an error occurred while requesting notification
3373  *   == 0 means notification was requested successfully, and if
3374  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3375  *        were missed and it is safe to wait for another event.  In
3376  *        this case is it guaranteed that any work completions added
3377  *        to the CQ since the last CQ poll will trigger a completion
3378  *        notification event.
3379  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3380  *        in.  It means that the consumer must poll the CQ again to
3381  *        make sure it is empty to avoid missing an event because of a
3382  *        race between requesting notification and an entry being
3383  *        added to the CQ.  This return value means it is possible
3384  *        (but not guaranteed) that a work completion has been added
3385  *        to the CQ since the last poll without triggering a
3386  *        completion notification event.
3387  */
3388 static inline int ib_req_notify_cq(struct ib_cq *cq,
3389 				   enum ib_cq_notify_flags flags)
3390 {
3391 	return cq->device->req_notify_cq(cq, flags);
3392 }
3393 
3394 /**
3395  * ib_req_ncomp_notif - Request completion notification when there are
3396  *   at least the specified number of unreaped completions on the CQ.
3397  * @cq: The CQ to generate an event for.
3398  * @wc_cnt: The number of unreaped completions that should be on the
3399  *   CQ before an event is generated.
3400  */
3401 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3402 {
3403 	return cq->device->req_ncomp_notif ?
3404 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3405 		-ENOSYS;
3406 }
3407 
3408 /**
3409  * ib_dma_mapping_error - check a DMA addr for error
3410  * @dev: The device for which the dma_addr was created
3411  * @dma_addr: The DMA address to check
3412  */
3413 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3414 {
3415 	return dma_mapping_error(dev->dma_device, dma_addr);
3416 }
3417 
3418 /**
3419  * ib_dma_map_single - Map a kernel virtual address to DMA address
3420  * @dev: The device for which the dma_addr is to be created
3421  * @cpu_addr: The kernel virtual address
3422  * @size: The size of the region in bytes
3423  * @direction: The direction of the DMA
3424  */
3425 static inline u64 ib_dma_map_single(struct ib_device *dev,
3426 				    void *cpu_addr, size_t size,
3427 				    enum dma_data_direction direction)
3428 {
3429 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3430 }
3431 
3432 /**
3433  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3434  * @dev: The device for which the DMA address was created
3435  * @addr: The DMA address
3436  * @size: The size of the region in bytes
3437  * @direction: The direction of the DMA
3438  */
3439 static inline void ib_dma_unmap_single(struct ib_device *dev,
3440 				       u64 addr, size_t size,
3441 				       enum dma_data_direction direction)
3442 {
3443 	dma_unmap_single(dev->dma_device, addr, size, direction);
3444 }
3445 
3446 /**
3447  * ib_dma_map_page - Map a physical page to DMA address
3448  * @dev: The device for which the dma_addr is to be created
3449  * @page: The page to be mapped
3450  * @offset: The offset within the page
3451  * @size: The size of the region in bytes
3452  * @direction: The direction of the DMA
3453  */
3454 static inline u64 ib_dma_map_page(struct ib_device *dev,
3455 				  struct page *page,
3456 				  unsigned long offset,
3457 				  size_t size,
3458 					 enum dma_data_direction direction)
3459 {
3460 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3461 }
3462 
3463 /**
3464  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3465  * @dev: The device for which the DMA address was created
3466  * @addr: The DMA address
3467  * @size: The size of the region in bytes
3468  * @direction: The direction of the DMA
3469  */
3470 static inline void ib_dma_unmap_page(struct ib_device *dev,
3471 				     u64 addr, size_t size,
3472 				     enum dma_data_direction direction)
3473 {
3474 	dma_unmap_page(dev->dma_device, addr, size, direction);
3475 }
3476 
3477 /**
3478  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3479  * @dev: The device for which the DMA addresses are to be created
3480  * @sg: The array of scatter/gather entries
3481  * @nents: The number of scatter/gather entries
3482  * @direction: The direction of the DMA
3483  */
3484 static inline int ib_dma_map_sg(struct ib_device *dev,
3485 				struct scatterlist *sg, int nents,
3486 				enum dma_data_direction direction)
3487 {
3488 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3489 }
3490 
3491 /**
3492  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3493  * @dev: The device for which the DMA addresses were created
3494  * @sg: The array of scatter/gather entries
3495  * @nents: The number of scatter/gather entries
3496  * @direction: The direction of the DMA
3497  */
3498 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3499 				   struct scatterlist *sg, int nents,
3500 				   enum dma_data_direction direction)
3501 {
3502 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3503 }
3504 
3505 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3506 				      struct scatterlist *sg, int nents,
3507 				      enum dma_data_direction direction,
3508 				      unsigned long dma_attrs)
3509 {
3510 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3511 				dma_attrs);
3512 }
3513 
3514 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3515 					 struct scatterlist *sg, int nents,
3516 					 enum dma_data_direction direction,
3517 					 unsigned long dma_attrs)
3518 {
3519 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3520 }
3521 /**
3522  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3523  * @dev: The device for which the DMA addresses were created
3524  * @sg: The scatter/gather entry
3525  *
3526  * Note: this function is obsolete. To do: change all occurrences of
3527  * ib_sg_dma_address() into sg_dma_address().
3528  */
3529 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3530 				    struct scatterlist *sg)
3531 {
3532 	return sg_dma_address(sg);
3533 }
3534 
3535 /**
3536  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3537  * @dev: The device for which the DMA addresses were created
3538  * @sg: The scatter/gather entry
3539  *
3540  * Note: this function is obsolete. To do: change all occurrences of
3541  * ib_sg_dma_len() into sg_dma_len().
3542  */
3543 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3544 					 struct scatterlist *sg)
3545 {
3546 	return sg_dma_len(sg);
3547 }
3548 
3549 /**
3550  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3551  * @dev: The device for which the DMA address was created
3552  * @addr: The DMA address
3553  * @size: The size of the region in bytes
3554  * @dir: The direction of the DMA
3555  */
3556 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3557 					      u64 addr,
3558 					      size_t size,
3559 					      enum dma_data_direction dir)
3560 {
3561 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3562 }
3563 
3564 /**
3565  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3566  * @dev: The device for which the DMA address was created
3567  * @addr: The DMA address
3568  * @size: The size of the region in bytes
3569  * @dir: The direction of the DMA
3570  */
3571 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3572 						 u64 addr,
3573 						 size_t size,
3574 						 enum dma_data_direction dir)
3575 {
3576 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3577 }
3578 
3579 /**
3580  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3581  * @dev: The device for which the DMA address is requested
3582  * @size: The size of the region to allocate in bytes
3583  * @dma_handle: A pointer for returning the DMA address of the region
3584  * @flag: memory allocator flags
3585  */
3586 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3587 					   size_t size,
3588 					   dma_addr_t *dma_handle,
3589 					   gfp_t flag)
3590 {
3591 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3592 }
3593 
3594 /**
3595  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3596  * @dev: The device for which the DMA addresses were allocated
3597  * @size: The size of the region
3598  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3599  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3600  */
3601 static inline void ib_dma_free_coherent(struct ib_device *dev,
3602 					size_t size, void *cpu_addr,
3603 					dma_addr_t dma_handle)
3604 {
3605 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3606 }
3607 
3608 /**
3609  * ib_dereg_mr - Deregisters a memory region and removes it from the
3610  *   HCA translation table.
3611  * @mr: The memory region to deregister.
3612  *
3613  * This function can fail, if the memory region has memory windows bound to it.
3614  */
3615 int ib_dereg_mr(struct ib_mr *mr);
3616 
3617 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3618 			  enum ib_mr_type mr_type,
3619 			  u32 max_num_sg);
3620 
3621 /**
3622  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3623  *   R_Key and L_Key.
3624  * @mr - struct ib_mr pointer to be updated.
3625  * @newkey - new key to be used.
3626  */
3627 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3628 {
3629 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3630 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3631 }
3632 
3633 /**
3634  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3635  * for calculating a new rkey for type 2 memory windows.
3636  * @rkey - the rkey to increment.
3637  */
3638 static inline u32 ib_inc_rkey(u32 rkey)
3639 {
3640 	const u32 mask = 0x000000ff;
3641 	return ((rkey + 1) & mask) | (rkey & ~mask);
3642 }
3643 
3644 /**
3645  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3646  * @pd: The protection domain associated with the unmapped region.
3647  * @mr_access_flags: Specifies the memory access rights.
3648  * @fmr_attr: Attributes of the unmapped region.
3649  *
3650  * A fast memory region must be mapped before it can be used as part of
3651  * a work request.
3652  */
3653 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3654 			    int mr_access_flags,
3655 			    struct ib_fmr_attr *fmr_attr);
3656 
3657 /**
3658  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3659  * @fmr: The fast memory region to associate with the pages.
3660  * @page_list: An array of physical pages to map to the fast memory region.
3661  * @list_len: The number of pages in page_list.
3662  * @iova: The I/O virtual address to use with the mapped region.
3663  */
3664 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3665 				  u64 *page_list, int list_len,
3666 				  u64 iova)
3667 {
3668 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3669 }
3670 
3671 /**
3672  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3673  * @fmr_list: A linked list of fast memory regions to unmap.
3674  */
3675 int ib_unmap_fmr(struct list_head *fmr_list);
3676 
3677 /**
3678  * ib_dealloc_fmr - Deallocates a fast memory region.
3679  * @fmr: The fast memory region to deallocate.
3680  */
3681 int ib_dealloc_fmr(struct ib_fmr *fmr);
3682 
3683 /**
3684  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3685  * @qp: QP to attach to the multicast group.  The QP must be type
3686  *   IB_QPT_UD.
3687  * @gid: Multicast group GID.
3688  * @lid: Multicast group LID in host byte order.
3689  *
3690  * In order to send and receive multicast packets, subnet
3691  * administration must have created the multicast group and configured
3692  * the fabric appropriately.  The port associated with the specified
3693  * QP must also be a member of the multicast group.
3694  */
3695 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3696 
3697 /**
3698  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3699  * @qp: QP to detach from the multicast group.
3700  * @gid: Multicast group GID.
3701  * @lid: Multicast group LID in host byte order.
3702  */
3703 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3704 
3705 /**
3706  * ib_alloc_xrcd - Allocates an XRC domain.
3707  * @device: The device on which to allocate the XRC domain.
3708  * @caller: Module name for kernel consumers
3709  */
3710 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3711 #define ib_alloc_xrcd(device) \
3712 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
3713 
3714 /**
3715  * ib_dealloc_xrcd - Deallocates an XRC domain.
3716  * @xrcd: The XRC domain to deallocate.
3717  */
3718 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3719 
3720 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3721 			       struct ib_flow_attr *flow_attr, int domain);
3722 int ib_destroy_flow(struct ib_flow *flow_id);
3723 
3724 static inline int ib_check_mr_access(int flags)
3725 {
3726 	/*
3727 	 * Local write permission is required if remote write or
3728 	 * remote atomic permission is also requested.
3729 	 */
3730 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3731 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3732 		return -EINVAL;
3733 
3734 	return 0;
3735 }
3736 
3737 /**
3738  * ib_check_mr_status: lightweight check of MR status.
3739  *     This routine may provide status checks on a selected
3740  *     ib_mr. first use is for signature status check.
3741  *
3742  * @mr: A memory region.
3743  * @check_mask: Bitmask of which checks to perform from
3744  *     ib_mr_status_check enumeration.
3745  * @mr_status: The container of relevant status checks.
3746  *     failed checks will be indicated in the status bitmask
3747  *     and the relevant info shall be in the error item.
3748  */
3749 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3750 		       struct ib_mr_status *mr_status);
3751 
3752 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3753 					    u16 pkey, const union ib_gid *gid,
3754 					    const struct sockaddr *addr);
3755 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3756 			   struct ib_wq_init_attr *init_attr);
3757 int ib_destroy_wq(struct ib_wq *wq);
3758 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3759 		 u32 wq_attr_mask);
3760 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3761 						 struct ib_rwq_ind_table_init_attr*
3762 						 wq_ind_table_init_attr);
3763 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3764 
3765 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3766 		 unsigned int *sg_offset, unsigned int page_size);
3767 
3768 static inline int
3769 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3770 		  unsigned int *sg_offset, unsigned int page_size)
3771 {
3772 	int n;
3773 
3774 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3775 	mr->iova = 0;
3776 
3777 	return n;
3778 }
3779 
3780 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3781 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3782 
3783 void ib_drain_rq(struct ib_qp *qp);
3784 void ib_drain_sq(struct ib_qp *qp);
3785 void ib_drain_qp(struct ib_qp *qp);
3786 
3787 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3788 
3789 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3790 {
3791 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3792 		return attr->roce.dmac;
3793 	return NULL;
3794 }
3795 
3796 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3797 {
3798 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3799 		attr->ib.dlid = (u16)dlid;
3800 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3801 		attr->opa.dlid = dlid;
3802 }
3803 
3804 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3805 {
3806 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3807 		return attr->ib.dlid;
3808 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3809 		return attr->opa.dlid;
3810 	return 0;
3811 }
3812 
3813 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3814 {
3815 	attr->sl = sl;
3816 }
3817 
3818 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3819 {
3820 	return attr->sl;
3821 }
3822 
3823 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3824 					 u8 src_path_bits)
3825 {
3826 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3827 		attr->ib.src_path_bits = src_path_bits;
3828 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3829 		attr->opa.src_path_bits = src_path_bits;
3830 }
3831 
3832 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3833 {
3834 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3835 		return attr->ib.src_path_bits;
3836 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3837 		return attr->opa.src_path_bits;
3838 	return 0;
3839 }
3840 
3841 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3842 					bool make_grd)
3843 {
3844 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3845 		attr->opa.make_grd = make_grd;
3846 }
3847 
3848 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3849 {
3850 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3851 		return attr->opa.make_grd;
3852 	return false;
3853 }
3854 
3855 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3856 {
3857 	attr->port_num = port_num;
3858 }
3859 
3860 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3861 {
3862 	return attr->port_num;
3863 }
3864 
3865 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3866 					   u8 static_rate)
3867 {
3868 	attr->static_rate = static_rate;
3869 }
3870 
3871 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3872 {
3873 	return attr->static_rate;
3874 }
3875 
3876 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3877 					enum ib_ah_flags flag)
3878 {
3879 	attr->ah_flags = flag;
3880 }
3881 
3882 static inline enum ib_ah_flags
3883 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3884 {
3885 	return attr->ah_flags;
3886 }
3887 
3888 static inline const struct ib_global_route
3889 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3890 {
3891 	return &attr->grh;
3892 }
3893 
3894 /*To retrieve and modify the grh */
3895 static inline struct ib_global_route
3896 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3897 {
3898 	return &attr->grh;
3899 }
3900 
3901 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3902 {
3903 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3904 
3905 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3906 }
3907 
3908 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3909 					     __be64 prefix)
3910 {
3911 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3912 
3913 	grh->dgid.global.subnet_prefix = prefix;
3914 }
3915 
3916 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3917 					    __be64 if_id)
3918 {
3919 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3920 
3921 	grh->dgid.global.interface_id = if_id;
3922 }
3923 
3924 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3925 				   union ib_gid *dgid, u32 flow_label,
3926 				   u8 sgid_index, u8 hop_limit,
3927 				   u8 traffic_class)
3928 {
3929 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3930 
3931 	attr->ah_flags = IB_AH_GRH;
3932 	if (dgid)
3933 		grh->dgid = *dgid;
3934 	grh->flow_label = flow_label;
3935 	grh->sgid_index = sgid_index;
3936 	grh->hop_limit = hop_limit;
3937 	grh->traffic_class = traffic_class;
3938 }
3939 
3940 /**
3941  * rdma_ah_find_type - Return address handle type.
3942  *
3943  * @dev: Device to be checked
3944  * @port_num: Port number
3945  */
3946 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3947 						       u8 port_num)
3948 {
3949 	if (rdma_protocol_roce(dev, port_num))
3950 		return RDMA_AH_ATTR_TYPE_ROCE;
3951 	if (rdma_protocol_ib(dev, port_num)) {
3952 		if (rdma_cap_opa_ah(dev, port_num))
3953 			return RDMA_AH_ATTR_TYPE_OPA;
3954 		return RDMA_AH_ATTR_TYPE_IB;
3955 	}
3956 
3957 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
3958 }
3959 
3960 /**
3961  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3962  *     In the current implementation the only way to get
3963  *     get the 32bit lid is from other sources for OPA.
3964  *     For IB, lids will always be 16bits so cast the
3965  *     value accordingly.
3966  *
3967  * @lid: A 32bit LID
3968  */
3969 static inline u16 ib_lid_cpu16(u32 lid)
3970 {
3971 	WARN_ON_ONCE(lid & 0xFFFF0000);
3972 	return (u16)lid;
3973 }
3974 
3975 /**
3976  * ib_lid_be16 - Return lid in 16bit BE encoding.
3977  *
3978  * @lid: A 32bit LID
3979  */
3980 static inline __be16 ib_lid_be16(u32 lid)
3981 {
3982 	WARN_ON_ONCE(lid & 0xFFFF0000);
3983 	return cpu_to_be16((u16)lid);
3984 }
3985 
3986 /**
3987  * ib_get_vector_affinity - Get the affinity mappings of a given completion
3988  *   vector
3989  * @device:         the rdma device
3990  * @comp_vector:    index of completion vector
3991  *
3992  * Returns NULL on failure, otherwise a corresponding cpu map of the
3993  * completion vector (returns all-cpus map if the device driver doesn't
3994  * implement get_vector_affinity).
3995  */
3996 static inline const struct cpumask *
3997 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3998 {
3999 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4000 	    !device->get_vector_affinity)
4001 		return NULL;
4002 
4003 	return device->get_vector_affinity(device, comp_vector);
4004 
4005 }
4006 
4007 /**
4008  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4009  * and add their gids, as needed, to the relevant RoCE devices.
4010  *
4011  * @device:         the rdma device
4012  */
4013 void rdma_roce_rescan_device(struct ib_device *ibdev);
4014 
4015 #endif /* IB_VERBS_H */
4016