xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 165f2d28)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71 
72 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
73 
74 struct ib_umem_odp;
75 struct ib_uqp_object;
76 struct ib_usrq_object;
77 struct ib_uwq_object;
78 
79 extern struct workqueue_struct *ib_wq;
80 extern struct workqueue_struct *ib_comp_wq;
81 extern struct workqueue_struct *ib_comp_unbound_wq;
82 
83 struct ib_ucq_object;
84 
85 __printf(3, 4) __cold
86 void ibdev_printk(const char *level, const struct ib_device *ibdev,
87 		  const char *format, ...);
88 __printf(2, 3) __cold
89 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
90 __printf(2, 3) __cold
91 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
92 __printf(2, 3) __cold
93 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
94 __printf(2, 3) __cold
95 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
96 __printf(2, 3) __cold
97 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
98 __printf(2, 3) __cold
99 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
100 __printf(2, 3) __cold
101 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
102 
103 #if defined(CONFIG_DYNAMIC_DEBUG)
104 #define ibdev_dbg(__dev, format, args...)                       \
105 	dynamic_ibdev_dbg(__dev, format, ##args)
106 #else
107 __printf(2, 3) __cold
108 static inline
109 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
110 #endif
111 
112 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
113 do {                                                                    \
114 	static DEFINE_RATELIMIT_STATE(_rs,                              \
115 				      DEFAULT_RATELIMIT_INTERVAL,       \
116 				      DEFAULT_RATELIMIT_BURST);         \
117 	if (__ratelimit(&_rs))                                          \
118 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
119 } while (0)
120 
121 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
122 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
123 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
124 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
125 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
126 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
127 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
128 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
129 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
130 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
131 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
132 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
133 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
134 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
135 
136 #if defined(CONFIG_DYNAMIC_DEBUG)
137 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
138 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
139 do {                                                                    \
140 	static DEFINE_RATELIMIT_STATE(_rs,                              \
141 				      DEFAULT_RATELIMIT_INTERVAL,       \
142 				      DEFAULT_RATELIMIT_BURST);         \
143 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
144 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
145 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
146 				    ##__VA_ARGS__);                     \
147 } while (0)
148 #else
149 __printf(2, 3) __cold
150 static inline
151 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
152 #endif
153 
154 union ib_gid {
155 	u8	raw[16];
156 	struct {
157 		__be64	subnet_prefix;
158 		__be64	interface_id;
159 	} global;
160 };
161 
162 extern union ib_gid zgid;
163 
164 enum ib_gid_type {
165 	/* If link layer is Ethernet, this is RoCE V1 */
166 	IB_GID_TYPE_IB        = 0,
167 	IB_GID_TYPE_ROCE      = 0,
168 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
169 	IB_GID_TYPE_SIZE
170 };
171 
172 #define ROCE_V2_UDP_DPORT      4791
173 struct ib_gid_attr {
174 	struct net_device __rcu	*ndev;
175 	struct ib_device	*device;
176 	union ib_gid		gid;
177 	enum ib_gid_type	gid_type;
178 	u16			index;
179 	u8			port_num;
180 };
181 
182 enum {
183 	/* set the local administered indication */
184 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
185 };
186 
187 enum rdma_transport_type {
188 	RDMA_TRANSPORT_IB,
189 	RDMA_TRANSPORT_IWARP,
190 	RDMA_TRANSPORT_USNIC,
191 	RDMA_TRANSPORT_USNIC_UDP,
192 	RDMA_TRANSPORT_UNSPECIFIED,
193 };
194 
195 enum rdma_protocol_type {
196 	RDMA_PROTOCOL_IB,
197 	RDMA_PROTOCOL_IBOE,
198 	RDMA_PROTOCOL_IWARP,
199 	RDMA_PROTOCOL_USNIC_UDP
200 };
201 
202 __attribute_const__ enum rdma_transport_type
203 rdma_node_get_transport(unsigned int node_type);
204 
205 enum rdma_network_type {
206 	RDMA_NETWORK_IB,
207 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
208 	RDMA_NETWORK_IPV4,
209 	RDMA_NETWORK_IPV6
210 };
211 
212 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
213 {
214 	if (network_type == RDMA_NETWORK_IPV4 ||
215 	    network_type == RDMA_NETWORK_IPV6)
216 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
217 
218 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
219 	return IB_GID_TYPE_IB;
220 }
221 
222 static inline enum rdma_network_type
223 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
224 {
225 	if (attr->gid_type == IB_GID_TYPE_IB)
226 		return RDMA_NETWORK_IB;
227 
228 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
229 		return RDMA_NETWORK_IPV4;
230 	else
231 		return RDMA_NETWORK_IPV6;
232 }
233 
234 enum rdma_link_layer {
235 	IB_LINK_LAYER_UNSPECIFIED,
236 	IB_LINK_LAYER_INFINIBAND,
237 	IB_LINK_LAYER_ETHERNET,
238 };
239 
240 enum ib_device_cap_flags {
241 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
242 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
243 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
244 	IB_DEVICE_RAW_MULTI			= (1 << 3),
245 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
246 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
247 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
248 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
249 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
250 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
251 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
252 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
253 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
254 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
255 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
256 
257 	/*
258 	 * This device supports a per-device lkey or stag that can be
259 	 * used without performing a memory registration for the local
260 	 * memory.  Note that ULPs should never check this flag, but
261 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
262 	 * which will always contain a usable lkey.
263 	 */
264 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
265 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
266 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
267 	/*
268 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
269 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
270 	 * messages and can verify the validity of checksum for
271 	 * incoming messages.  Setting this flag implies that the
272 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
273 	 */
274 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
275 	IB_DEVICE_UD_TSO			= (1 << 19),
276 	IB_DEVICE_XRC				= (1 << 20),
277 
278 	/*
279 	 * This device supports the IB "base memory management extension",
280 	 * which includes support for fast registrations (IB_WR_REG_MR,
281 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
282 	 * also be set by any iWarp device which must support FRs to comply
283 	 * to the iWarp verbs spec.  iWarp devices also support the
284 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
285 	 * stag.
286 	 */
287 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
288 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
289 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
290 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
291 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
292 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
293 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
294 	/*
295 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
296 	 * support execution of WQEs that involve synchronization
297 	 * of I/O operations with single completion queue managed
298 	 * by hardware.
299 	 */
300 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
301 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
302 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
303 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
304 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
305 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
306 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
307 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
308 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
309 	/* The device supports padding incoming writes to cacheline. */
310 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
311 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
312 };
313 
314 enum ib_atomic_cap {
315 	IB_ATOMIC_NONE,
316 	IB_ATOMIC_HCA,
317 	IB_ATOMIC_GLOB
318 };
319 
320 enum ib_odp_general_cap_bits {
321 	IB_ODP_SUPPORT		= 1 << 0,
322 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
323 };
324 
325 enum ib_odp_transport_cap_bits {
326 	IB_ODP_SUPPORT_SEND	= 1 << 0,
327 	IB_ODP_SUPPORT_RECV	= 1 << 1,
328 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
329 	IB_ODP_SUPPORT_READ	= 1 << 3,
330 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
331 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
332 };
333 
334 struct ib_odp_caps {
335 	uint64_t general_caps;
336 	struct {
337 		uint32_t  rc_odp_caps;
338 		uint32_t  uc_odp_caps;
339 		uint32_t  ud_odp_caps;
340 		uint32_t  xrc_odp_caps;
341 	} per_transport_caps;
342 };
343 
344 struct ib_rss_caps {
345 	/* Corresponding bit will be set if qp type from
346 	 * 'enum ib_qp_type' is supported, e.g.
347 	 * supported_qpts |= 1 << IB_QPT_UD
348 	 */
349 	u32 supported_qpts;
350 	u32 max_rwq_indirection_tables;
351 	u32 max_rwq_indirection_table_size;
352 };
353 
354 enum ib_tm_cap_flags {
355 	/*  Support tag matching with rendezvous offload for RC transport */
356 	IB_TM_CAP_RNDV_RC = 1 << 0,
357 };
358 
359 struct ib_tm_caps {
360 	/* Max size of RNDV header */
361 	u32 max_rndv_hdr_size;
362 	/* Max number of entries in tag matching list */
363 	u32 max_num_tags;
364 	/* From enum ib_tm_cap_flags */
365 	u32 flags;
366 	/* Max number of outstanding list operations */
367 	u32 max_ops;
368 	/* Max number of SGE in tag matching entry */
369 	u32 max_sge;
370 };
371 
372 struct ib_cq_init_attr {
373 	unsigned int	cqe;
374 	u32		comp_vector;
375 	u32		flags;
376 };
377 
378 enum ib_cq_attr_mask {
379 	IB_CQ_MODERATE = 1 << 0,
380 };
381 
382 struct ib_cq_caps {
383 	u16     max_cq_moderation_count;
384 	u16     max_cq_moderation_period;
385 };
386 
387 struct ib_dm_mr_attr {
388 	u64		length;
389 	u64		offset;
390 	u32		access_flags;
391 };
392 
393 struct ib_dm_alloc_attr {
394 	u64	length;
395 	u32	alignment;
396 	u32	flags;
397 };
398 
399 struct ib_device_attr {
400 	u64			fw_ver;
401 	__be64			sys_image_guid;
402 	u64			max_mr_size;
403 	u64			page_size_cap;
404 	u32			vendor_id;
405 	u32			vendor_part_id;
406 	u32			hw_ver;
407 	int			max_qp;
408 	int			max_qp_wr;
409 	u64			device_cap_flags;
410 	int			max_send_sge;
411 	int			max_recv_sge;
412 	int			max_sge_rd;
413 	int			max_cq;
414 	int			max_cqe;
415 	int			max_mr;
416 	int			max_pd;
417 	int			max_qp_rd_atom;
418 	int			max_ee_rd_atom;
419 	int			max_res_rd_atom;
420 	int			max_qp_init_rd_atom;
421 	int			max_ee_init_rd_atom;
422 	enum ib_atomic_cap	atomic_cap;
423 	enum ib_atomic_cap	masked_atomic_cap;
424 	int			max_ee;
425 	int			max_rdd;
426 	int			max_mw;
427 	int			max_raw_ipv6_qp;
428 	int			max_raw_ethy_qp;
429 	int			max_mcast_grp;
430 	int			max_mcast_qp_attach;
431 	int			max_total_mcast_qp_attach;
432 	int			max_ah;
433 	int			max_fmr;
434 	int			max_map_per_fmr;
435 	int			max_srq;
436 	int			max_srq_wr;
437 	int			max_srq_sge;
438 	unsigned int		max_fast_reg_page_list_len;
439 	unsigned int		max_pi_fast_reg_page_list_len;
440 	u16			max_pkeys;
441 	u8			local_ca_ack_delay;
442 	int			sig_prot_cap;
443 	int			sig_guard_cap;
444 	struct ib_odp_caps	odp_caps;
445 	uint64_t		timestamp_mask;
446 	uint64_t		hca_core_clock; /* in KHZ */
447 	struct ib_rss_caps	rss_caps;
448 	u32			max_wq_type_rq;
449 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
450 	struct ib_tm_caps	tm_caps;
451 	struct ib_cq_caps       cq_caps;
452 	u64			max_dm_size;
453 	/* Max entries for sgl for optimized performance per READ */
454 	u32			max_sgl_rd;
455 };
456 
457 enum ib_mtu {
458 	IB_MTU_256  = 1,
459 	IB_MTU_512  = 2,
460 	IB_MTU_1024 = 3,
461 	IB_MTU_2048 = 4,
462 	IB_MTU_4096 = 5
463 };
464 
465 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
466 {
467 	switch (mtu) {
468 	case IB_MTU_256:  return  256;
469 	case IB_MTU_512:  return  512;
470 	case IB_MTU_1024: return 1024;
471 	case IB_MTU_2048: return 2048;
472 	case IB_MTU_4096: return 4096;
473 	default: 	  return -1;
474 	}
475 }
476 
477 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
478 {
479 	if (mtu >= 4096)
480 		return IB_MTU_4096;
481 	else if (mtu >= 2048)
482 		return IB_MTU_2048;
483 	else if (mtu >= 1024)
484 		return IB_MTU_1024;
485 	else if (mtu >= 512)
486 		return IB_MTU_512;
487 	else
488 		return IB_MTU_256;
489 }
490 
491 enum ib_port_state {
492 	IB_PORT_NOP		= 0,
493 	IB_PORT_DOWN		= 1,
494 	IB_PORT_INIT		= 2,
495 	IB_PORT_ARMED		= 3,
496 	IB_PORT_ACTIVE		= 4,
497 	IB_PORT_ACTIVE_DEFER	= 5
498 };
499 
500 enum ib_port_phys_state {
501 	IB_PORT_PHYS_STATE_SLEEP = 1,
502 	IB_PORT_PHYS_STATE_POLLING = 2,
503 	IB_PORT_PHYS_STATE_DISABLED = 3,
504 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
505 	IB_PORT_PHYS_STATE_LINK_UP = 5,
506 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
507 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
508 };
509 
510 enum ib_port_width {
511 	IB_WIDTH_1X	= 1,
512 	IB_WIDTH_2X	= 16,
513 	IB_WIDTH_4X	= 2,
514 	IB_WIDTH_8X	= 4,
515 	IB_WIDTH_12X	= 8
516 };
517 
518 static inline int ib_width_enum_to_int(enum ib_port_width width)
519 {
520 	switch (width) {
521 	case IB_WIDTH_1X:  return  1;
522 	case IB_WIDTH_2X:  return  2;
523 	case IB_WIDTH_4X:  return  4;
524 	case IB_WIDTH_8X:  return  8;
525 	case IB_WIDTH_12X: return 12;
526 	default: 	  return -1;
527 	}
528 }
529 
530 enum ib_port_speed {
531 	IB_SPEED_SDR	= 1,
532 	IB_SPEED_DDR	= 2,
533 	IB_SPEED_QDR	= 4,
534 	IB_SPEED_FDR10	= 8,
535 	IB_SPEED_FDR	= 16,
536 	IB_SPEED_EDR	= 32,
537 	IB_SPEED_HDR	= 64
538 };
539 
540 /**
541  * struct rdma_hw_stats
542  * @lock - Mutex to protect parallel write access to lifespan and values
543  *    of counters, which are 64bits and not guaranteeed to be written
544  *    atomicaly on 32bits systems.
545  * @timestamp - Used by the core code to track when the last update was
546  * @lifespan - Used by the core code to determine how old the counters
547  *   should be before being updated again.  Stored in jiffies, defaults
548  *   to 10 milliseconds, drivers can override the default be specifying
549  *   their own value during their allocation routine.
550  * @name - Array of pointers to static names used for the counters in
551  *   directory.
552  * @num_counters - How many hardware counters there are.  If name is
553  *   shorter than this number, a kernel oops will result.  Driver authors
554  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
555  *   in their code to prevent this.
556  * @value - Array of u64 counters that are accessed by the sysfs code and
557  *   filled in by the drivers get_stats routine
558  */
559 struct rdma_hw_stats {
560 	struct mutex	lock; /* Protect lifespan and values[] */
561 	unsigned long	timestamp;
562 	unsigned long	lifespan;
563 	const char * const *names;
564 	int		num_counters;
565 	u64		value[];
566 };
567 
568 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
569 /**
570  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
571  *   for drivers.
572  * @names - Array of static const char *
573  * @num_counters - How many elements in array
574  * @lifespan - How many milliseconds between updates
575  */
576 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
577 		const char * const *names, int num_counters,
578 		unsigned long lifespan)
579 {
580 	struct rdma_hw_stats *stats;
581 
582 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
583 			GFP_KERNEL);
584 	if (!stats)
585 		return NULL;
586 	stats->names = names;
587 	stats->num_counters = num_counters;
588 	stats->lifespan = msecs_to_jiffies(lifespan);
589 
590 	return stats;
591 }
592 
593 
594 /* Define bits for the various functionality this port needs to be supported by
595  * the core.
596  */
597 /* Management                           0x00000FFF */
598 #define RDMA_CORE_CAP_IB_MAD            0x00000001
599 #define RDMA_CORE_CAP_IB_SMI            0x00000002
600 #define RDMA_CORE_CAP_IB_CM             0x00000004
601 #define RDMA_CORE_CAP_IW_CM             0x00000008
602 #define RDMA_CORE_CAP_IB_SA             0x00000010
603 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
604 
605 /* Address format                       0x000FF000 */
606 #define RDMA_CORE_CAP_AF_IB             0x00001000
607 #define RDMA_CORE_CAP_ETH_AH            0x00002000
608 #define RDMA_CORE_CAP_OPA_AH            0x00004000
609 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
610 
611 /* Protocol                             0xFFF00000 */
612 #define RDMA_CORE_CAP_PROT_IB           0x00100000
613 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
614 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
615 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
616 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
617 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
618 
619 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
620 					| RDMA_CORE_CAP_PROT_ROCE     \
621 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
622 
623 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
624 					| RDMA_CORE_CAP_IB_MAD \
625 					| RDMA_CORE_CAP_IB_SMI \
626 					| RDMA_CORE_CAP_IB_CM  \
627 					| RDMA_CORE_CAP_IB_SA  \
628 					| RDMA_CORE_CAP_AF_IB)
629 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
630 					| RDMA_CORE_CAP_IB_MAD  \
631 					| RDMA_CORE_CAP_IB_CM   \
632 					| RDMA_CORE_CAP_AF_IB   \
633 					| RDMA_CORE_CAP_ETH_AH)
634 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
635 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
636 					| RDMA_CORE_CAP_IB_MAD  \
637 					| RDMA_CORE_CAP_IB_CM   \
638 					| RDMA_CORE_CAP_AF_IB   \
639 					| RDMA_CORE_CAP_ETH_AH)
640 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
641 					| RDMA_CORE_CAP_IW_CM)
642 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
643 					| RDMA_CORE_CAP_OPA_MAD)
644 
645 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
646 
647 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
648 
649 struct ib_port_attr {
650 	u64			subnet_prefix;
651 	enum ib_port_state	state;
652 	enum ib_mtu		max_mtu;
653 	enum ib_mtu		active_mtu;
654 	int			gid_tbl_len;
655 	unsigned int		ip_gids:1;
656 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
657 	u32			port_cap_flags;
658 	u32			max_msg_sz;
659 	u32			bad_pkey_cntr;
660 	u32			qkey_viol_cntr;
661 	u16			pkey_tbl_len;
662 	u32			sm_lid;
663 	u32			lid;
664 	u8			lmc;
665 	u8			max_vl_num;
666 	u8			sm_sl;
667 	u8			subnet_timeout;
668 	u8			init_type_reply;
669 	u8			active_width;
670 	u8			active_speed;
671 	u8                      phys_state;
672 	u16			port_cap_flags2;
673 };
674 
675 enum ib_device_modify_flags {
676 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
677 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
678 };
679 
680 #define IB_DEVICE_NODE_DESC_MAX 64
681 
682 struct ib_device_modify {
683 	u64	sys_image_guid;
684 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
685 };
686 
687 enum ib_port_modify_flags {
688 	IB_PORT_SHUTDOWN		= 1,
689 	IB_PORT_INIT_TYPE		= (1<<2),
690 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
691 	IB_PORT_OPA_MASK_CHG		= (1<<4)
692 };
693 
694 struct ib_port_modify {
695 	u32	set_port_cap_mask;
696 	u32	clr_port_cap_mask;
697 	u8	init_type;
698 };
699 
700 enum ib_event_type {
701 	IB_EVENT_CQ_ERR,
702 	IB_EVENT_QP_FATAL,
703 	IB_EVENT_QP_REQ_ERR,
704 	IB_EVENT_QP_ACCESS_ERR,
705 	IB_EVENT_COMM_EST,
706 	IB_EVENT_SQ_DRAINED,
707 	IB_EVENT_PATH_MIG,
708 	IB_EVENT_PATH_MIG_ERR,
709 	IB_EVENT_DEVICE_FATAL,
710 	IB_EVENT_PORT_ACTIVE,
711 	IB_EVENT_PORT_ERR,
712 	IB_EVENT_LID_CHANGE,
713 	IB_EVENT_PKEY_CHANGE,
714 	IB_EVENT_SM_CHANGE,
715 	IB_EVENT_SRQ_ERR,
716 	IB_EVENT_SRQ_LIMIT_REACHED,
717 	IB_EVENT_QP_LAST_WQE_REACHED,
718 	IB_EVENT_CLIENT_REREGISTER,
719 	IB_EVENT_GID_CHANGE,
720 	IB_EVENT_WQ_FATAL,
721 };
722 
723 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
724 
725 struct ib_event {
726 	struct ib_device	*device;
727 	union {
728 		struct ib_cq	*cq;
729 		struct ib_qp	*qp;
730 		struct ib_srq	*srq;
731 		struct ib_wq	*wq;
732 		u8		port_num;
733 	} element;
734 	enum ib_event_type	event;
735 };
736 
737 struct ib_event_handler {
738 	struct ib_device *device;
739 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
740 	struct list_head  list;
741 };
742 
743 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
744 	do {							\
745 		(_ptr)->device  = _device;			\
746 		(_ptr)->handler = _handler;			\
747 		INIT_LIST_HEAD(&(_ptr)->list);			\
748 	} while (0)
749 
750 struct ib_global_route {
751 	const struct ib_gid_attr *sgid_attr;
752 	union ib_gid	dgid;
753 	u32		flow_label;
754 	u8		sgid_index;
755 	u8		hop_limit;
756 	u8		traffic_class;
757 };
758 
759 struct ib_grh {
760 	__be32		version_tclass_flow;
761 	__be16		paylen;
762 	u8		next_hdr;
763 	u8		hop_limit;
764 	union ib_gid	sgid;
765 	union ib_gid	dgid;
766 };
767 
768 union rdma_network_hdr {
769 	struct ib_grh ibgrh;
770 	struct {
771 		/* The IB spec states that if it's IPv4, the header
772 		 * is located in the last 20 bytes of the header.
773 		 */
774 		u8		reserved[20];
775 		struct iphdr	roce4grh;
776 	};
777 };
778 
779 #define IB_QPN_MASK		0xFFFFFF
780 
781 enum {
782 	IB_MULTICAST_QPN = 0xffffff
783 };
784 
785 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
786 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
787 
788 enum ib_ah_flags {
789 	IB_AH_GRH	= 1
790 };
791 
792 enum ib_rate {
793 	IB_RATE_PORT_CURRENT = 0,
794 	IB_RATE_2_5_GBPS = 2,
795 	IB_RATE_5_GBPS   = 5,
796 	IB_RATE_10_GBPS  = 3,
797 	IB_RATE_20_GBPS  = 6,
798 	IB_RATE_30_GBPS  = 4,
799 	IB_RATE_40_GBPS  = 7,
800 	IB_RATE_60_GBPS  = 8,
801 	IB_RATE_80_GBPS  = 9,
802 	IB_RATE_120_GBPS = 10,
803 	IB_RATE_14_GBPS  = 11,
804 	IB_RATE_56_GBPS  = 12,
805 	IB_RATE_112_GBPS = 13,
806 	IB_RATE_168_GBPS = 14,
807 	IB_RATE_25_GBPS  = 15,
808 	IB_RATE_100_GBPS = 16,
809 	IB_RATE_200_GBPS = 17,
810 	IB_RATE_300_GBPS = 18,
811 	IB_RATE_28_GBPS  = 19,
812 	IB_RATE_50_GBPS  = 20,
813 	IB_RATE_400_GBPS = 21,
814 	IB_RATE_600_GBPS = 22,
815 };
816 
817 /**
818  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
819  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
820  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
821  * @rate: rate to convert.
822  */
823 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
824 
825 /**
826  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
827  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
828  * @rate: rate to convert.
829  */
830 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
831 
832 
833 /**
834  * enum ib_mr_type - memory region type
835  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
836  *                            normal registration
837  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
838  *                            register any arbitrary sg lists (without
839  *                            the normal mr constraints - see
840  *                            ib_map_mr_sg)
841  * @IB_MR_TYPE_DM:            memory region that is used for device
842  *                            memory registration
843  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
844  *                            application
845  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
846  *                            without address translations (VA=PA)
847  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
848  *                            data integrity operations
849  */
850 enum ib_mr_type {
851 	IB_MR_TYPE_MEM_REG,
852 	IB_MR_TYPE_SG_GAPS,
853 	IB_MR_TYPE_DM,
854 	IB_MR_TYPE_USER,
855 	IB_MR_TYPE_DMA,
856 	IB_MR_TYPE_INTEGRITY,
857 };
858 
859 enum ib_mr_status_check {
860 	IB_MR_CHECK_SIG_STATUS = 1,
861 };
862 
863 /**
864  * struct ib_mr_status - Memory region status container
865  *
866  * @fail_status: Bitmask of MR checks status. For each
867  *     failed check a corresponding status bit is set.
868  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
869  *     failure.
870  */
871 struct ib_mr_status {
872 	u32		    fail_status;
873 	struct ib_sig_err   sig_err;
874 };
875 
876 /**
877  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
878  * enum.
879  * @mult: multiple to convert.
880  */
881 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
882 
883 enum rdma_ah_attr_type {
884 	RDMA_AH_ATTR_TYPE_UNDEFINED,
885 	RDMA_AH_ATTR_TYPE_IB,
886 	RDMA_AH_ATTR_TYPE_ROCE,
887 	RDMA_AH_ATTR_TYPE_OPA,
888 };
889 
890 struct ib_ah_attr {
891 	u16			dlid;
892 	u8			src_path_bits;
893 };
894 
895 struct roce_ah_attr {
896 	u8			dmac[ETH_ALEN];
897 };
898 
899 struct opa_ah_attr {
900 	u32			dlid;
901 	u8			src_path_bits;
902 	bool			make_grd;
903 };
904 
905 struct rdma_ah_attr {
906 	struct ib_global_route	grh;
907 	u8			sl;
908 	u8			static_rate;
909 	u8			port_num;
910 	u8			ah_flags;
911 	enum rdma_ah_attr_type type;
912 	union {
913 		struct ib_ah_attr ib;
914 		struct roce_ah_attr roce;
915 		struct opa_ah_attr opa;
916 	};
917 };
918 
919 enum ib_wc_status {
920 	IB_WC_SUCCESS,
921 	IB_WC_LOC_LEN_ERR,
922 	IB_WC_LOC_QP_OP_ERR,
923 	IB_WC_LOC_EEC_OP_ERR,
924 	IB_WC_LOC_PROT_ERR,
925 	IB_WC_WR_FLUSH_ERR,
926 	IB_WC_MW_BIND_ERR,
927 	IB_WC_BAD_RESP_ERR,
928 	IB_WC_LOC_ACCESS_ERR,
929 	IB_WC_REM_INV_REQ_ERR,
930 	IB_WC_REM_ACCESS_ERR,
931 	IB_WC_REM_OP_ERR,
932 	IB_WC_RETRY_EXC_ERR,
933 	IB_WC_RNR_RETRY_EXC_ERR,
934 	IB_WC_LOC_RDD_VIOL_ERR,
935 	IB_WC_REM_INV_RD_REQ_ERR,
936 	IB_WC_REM_ABORT_ERR,
937 	IB_WC_INV_EECN_ERR,
938 	IB_WC_INV_EEC_STATE_ERR,
939 	IB_WC_FATAL_ERR,
940 	IB_WC_RESP_TIMEOUT_ERR,
941 	IB_WC_GENERAL_ERR
942 };
943 
944 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
945 
946 enum ib_wc_opcode {
947 	IB_WC_SEND,
948 	IB_WC_RDMA_WRITE,
949 	IB_WC_RDMA_READ,
950 	IB_WC_COMP_SWAP,
951 	IB_WC_FETCH_ADD,
952 	IB_WC_LSO,
953 	IB_WC_LOCAL_INV,
954 	IB_WC_REG_MR,
955 	IB_WC_MASKED_COMP_SWAP,
956 	IB_WC_MASKED_FETCH_ADD,
957 /*
958  * Set value of IB_WC_RECV so consumers can test if a completion is a
959  * receive by testing (opcode & IB_WC_RECV).
960  */
961 	IB_WC_RECV			= 1 << 7,
962 	IB_WC_RECV_RDMA_WITH_IMM
963 };
964 
965 enum ib_wc_flags {
966 	IB_WC_GRH		= 1,
967 	IB_WC_WITH_IMM		= (1<<1),
968 	IB_WC_WITH_INVALIDATE	= (1<<2),
969 	IB_WC_IP_CSUM_OK	= (1<<3),
970 	IB_WC_WITH_SMAC		= (1<<4),
971 	IB_WC_WITH_VLAN		= (1<<5),
972 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
973 };
974 
975 struct ib_wc {
976 	union {
977 		u64		wr_id;
978 		struct ib_cqe	*wr_cqe;
979 	};
980 	enum ib_wc_status	status;
981 	enum ib_wc_opcode	opcode;
982 	u32			vendor_err;
983 	u32			byte_len;
984 	struct ib_qp	       *qp;
985 	union {
986 		__be32		imm_data;
987 		u32		invalidate_rkey;
988 	} ex;
989 	u32			src_qp;
990 	u32			slid;
991 	int			wc_flags;
992 	u16			pkey_index;
993 	u8			sl;
994 	u8			dlid_path_bits;
995 	u8			port_num;	/* valid only for DR SMPs on switches */
996 	u8			smac[ETH_ALEN];
997 	u16			vlan_id;
998 	u8			network_hdr_type;
999 };
1000 
1001 enum ib_cq_notify_flags {
1002 	IB_CQ_SOLICITED			= 1 << 0,
1003 	IB_CQ_NEXT_COMP			= 1 << 1,
1004 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1005 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1006 };
1007 
1008 enum ib_srq_type {
1009 	IB_SRQT_BASIC,
1010 	IB_SRQT_XRC,
1011 	IB_SRQT_TM,
1012 };
1013 
1014 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1015 {
1016 	return srq_type == IB_SRQT_XRC ||
1017 	       srq_type == IB_SRQT_TM;
1018 }
1019 
1020 enum ib_srq_attr_mask {
1021 	IB_SRQ_MAX_WR	= 1 << 0,
1022 	IB_SRQ_LIMIT	= 1 << 1,
1023 };
1024 
1025 struct ib_srq_attr {
1026 	u32	max_wr;
1027 	u32	max_sge;
1028 	u32	srq_limit;
1029 };
1030 
1031 struct ib_srq_init_attr {
1032 	void		      (*event_handler)(struct ib_event *, void *);
1033 	void		       *srq_context;
1034 	struct ib_srq_attr	attr;
1035 	enum ib_srq_type	srq_type;
1036 
1037 	struct {
1038 		struct ib_cq   *cq;
1039 		union {
1040 			struct {
1041 				struct ib_xrcd *xrcd;
1042 			} xrc;
1043 
1044 			struct {
1045 				u32		max_num_tags;
1046 			} tag_matching;
1047 		};
1048 	} ext;
1049 };
1050 
1051 struct ib_qp_cap {
1052 	u32	max_send_wr;
1053 	u32	max_recv_wr;
1054 	u32	max_send_sge;
1055 	u32	max_recv_sge;
1056 	u32	max_inline_data;
1057 
1058 	/*
1059 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1060 	 * ib_create_qp() will calculate the right amount of neededed WRs
1061 	 * and MRs based on this.
1062 	 */
1063 	u32	max_rdma_ctxs;
1064 };
1065 
1066 enum ib_sig_type {
1067 	IB_SIGNAL_ALL_WR,
1068 	IB_SIGNAL_REQ_WR
1069 };
1070 
1071 enum ib_qp_type {
1072 	/*
1073 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1074 	 * here (and in that order) since the MAD layer uses them as
1075 	 * indices into a 2-entry table.
1076 	 */
1077 	IB_QPT_SMI,
1078 	IB_QPT_GSI,
1079 
1080 	IB_QPT_RC,
1081 	IB_QPT_UC,
1082 	IB_QPT_UD,
1083 	IB_QPT_RAW_IPV6,
1084 	IB_QPT_RAW_ETHERTYPE,
1085 	IB_QPT_RAW_PACKET = 8,
1086 	IB_QPT_XRC_INI = 9,
1087 	IB_QPT_XRC_TGT,
1088 	IB_QPT_MAX,
1089 	IB_QPT_DRIVER = 0xFF,
1090 	/* Reserve a range for qp types internal to the low level driver.
1091 	 * These qp types will not be visible at the IB core layer, so the
1092 	 * IB_QPT_MAX usages should not be affected in the core layer
1093 	 */
1094 	IB_QPT_RESERVED1 = 0x1000,
1095 	IB_QPT_RESERVED2,
1096 	IB_QPT_RESERVED3,
1097 	IB_QPT_RESERVED4,
1098 	IB_QPT_RESERVED5,
1099 	IB_QPT_RESERVED6,
1100 	IB_QPT_RESERVED7,
1101 	IB_QPT_RESERVED8,
1102 	IB_QPT_RESERVED9,
1103 	IB_QPT_RESERVED10,
1104 };
1105 
1106 enum ib_qp_create_flags {
1107 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1108 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1109 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1110 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1111 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1112 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1113 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1114 	/* FREE					= 1 << 7, */
1115 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1116 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1117 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1118 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1119 	/* reserve bits 26-31 for low level drivers' internal use */
1120 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1121 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1122 };
1123 
1124 /*
1125  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1126  * callback to destroy the passed in QP.
1127  */
1128 
1129 struct ib_qp_init_attr {
1130 	/* Consumer's event_handler callback must not block */
1131 	void                  (*event_handler)(struct ib_event *, void *);
1132 
1133 	void		       *qp_context;
1134 	struct ib_cq	       *send_cq;
1135 	struct ib_cq	       *recv_cq;
1136 	struct ib_srq	       *srq;
1137 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1138 	struct ib_qp_cap	cap;
1139 	enum ib_sig_type	sq_sig_type;
1140 	enum ib_qp_type		qp_type;
1141 	u32			create_flags;
1142 
1143 	/*
1144 	 * Only needed for special QP types, or when using the RW API.
1145 	 */
1146 	u8			port_num;
1147 	struct ib_rwq_ind_table *rwq_ind_tbl;
1148 	u32			source_qpn;
1149 };
1150 
1151 struct ib_qp_open_attr {
1152 	void                  (*event_handler)(struct ib_event *, void *);
1153 	void		       *qp_context;
1154 	u32			qp_num;
1155 	enum ib_qp_type		qp_type;
1156 };
1157 
1158 enum ib_rnr_timeout {
1159 	IB_RNR_TIMER_655_36 =  0,
1160 	IB_RNR_TIMER_000_01 =  1,
1161 	IB_RNR_TIMER_000_02 =  2,
1162 	IB_RNR_TIMER_000_03 =  3,
1163 	IB_RNR_TIMER_000_04 =  4,
1164 	IB_RNR_TIMER_000_06 =  5,
1165 	IB_RNR_TIMER_000_08 =  6,
1166 	IB_RNR_TIMER_000_12 =  7,
1167 	IB_RNR_TIMER_000_16 =  8,
1168 	IB_RNR_TIMER_000_24 =  9,
1169 	IB_RNR_TIMER_000_32 = 10,
1170 	IB_RNR_TIMER_000_48 = 11,
1171 	IB_RNR_TIMER_000_64 = 12,
1172 	IB_RNR_TIMER_000_96 = 13,
1173 	IB_RNR_TIMER_001_28 = 14,
1174 	IB_RNR_TIMER_001_92 = 15,
1175 	IB_RNR_TIMER_002_56 = 16,
1176 	IB_RNR_TIMER_003_84 = 17,
1177 	IB_RNR_TIMER_005_12 = 18,
1178 	IB_RNR_TIMER_007_68 = 19,
1179 	IB_RNR_TIMER_010_24 = 20,
1180 	IB_RNR_TIMER_015_36 = 21,
1181 	IB_RNR_TIMER_020_48 = 22,
1182 	IB_RNR_TIMER_030_72 = 23,
1183 	IB_RNR_TIMER_040_96 = 24,
1184 	IB_RNR_TIMER_061_44 = 25,
1185 	IB_RNR_TIMER_081_92 = 26,
1186 	IB_RNR_TIMER_122_88 = 27,
1187 	IB_RNR_TIMER_163_84 = 28,
1188 	IB_RNR_TIMER_245_76 = 29,
1189 	IB_RNR_TIMER_327_68 = 30,
1190 	IB_RNR_TIMER_491_52 = 31
1191 };
1192 
1193 enum ib_qp_attr_mask {
1194 	IB_QP_STATE			= 1,
1195 	IB_QP_CUR_STATE			= (1<<1),
1196 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1197 	IB_QP_ACCESS_FLAGS		= (1<<3),
1198 	IB_QP_PKEY_INDEX		= (1<<4),
1199 	IB_QP_PORT			= (1<<5),
1200 	IB_QP_QKEY			= (1<<6),
1201 	IB_QP_AV			= (1<<7),
1202 	IB_QP_PATH_MTU			= (1<<8),
1203 	IB_QP_TIMEOUT			= (1<<9),
1204 	IB_QP_RETRY_CNT			= (1<<10),
1205 	IB_QP_RNR_RETRY			= (1<<11),
1206 	IB_QP_RQ_PSN			= (1<<12),
1207 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1208 	IB_QP_ALT_PATH			= (1<<14),
1209 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1210 	IB_QP_SQ_PSN			= (1<<16),
1211 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1212 	IB_QP_PATH_MIG_STATE		= (1<<18),
1213 	IB_QP_CAP			= (1<<19),
1214 	IB_QP_DEST_QPN			= (1<<20),
1215 	IB_QP_RESERVED1			= (1<<21),
1216 	IB_QP_RESERVED2			= (1<<22),
1217 	IB_QP_RESERVED3			= (1<<23),
1218 	IB_QP_RESERVED4			= (1<<24),
1219 	IB_QP_RATE_LIMIT		= (1<<25),
1220 };
1221 
1222 enum ib_qp_state {
1223 	IB_QPS_RESET,
1224 	IB_QPS_INIT,
1225 	IB_QPS_RTR,
1226 	IB_QPS_RTS,
1227 	IB_QPS_SQD,
1228 	IB_QPS_SQE,
1229 	IB_QPS_ERR
1230 };
1231 
1232 enum ib_mig_state {
1233 	IB_MIG_MIGRATED,
1234 	IB_MIG_REARM,
1235 	IB_MIG_ARMED
1236 };
1237 
1238 enum ib_mw_type {
1239 	IB_MW_TYPE_1 = 1,
1240 	IB_MW_TYPE_2 = 2
1241 };
1242 
1243 struct ib_qp_attr {
1244 	enum ib_qp_state	qp_state;
1245 	enum ib_qp_state	cur_qp_state;
1246 	enum ib_mtu		path_mtu;
1247 	enum ib_mig_state	path_mig_state;
1248 	u32			qkey;
1249 	u32			rq_psn;
1250 	u32			sq_psn;
1251 	u32			dest_qp_num;
1252 	int			qp_access_flags;
1253 	struct ib_qp_cap	cap;
1254 	struct rdma_ah_attr	ah_attr;
1255 	struct rdma_ah_attr	alt_ah_attr;
1256 	u16			pkey_index;
1257 	u16			alt_pkey_index;
1258 	u8			en_sqd_async_notify;
1259 	u8			sq_draining;
1260 	u8			max_rd_atomic;
1261 	u8			max_dest_rd_atomic;
1262 	u8			min_rnr_timer;
1263 	u8			port_num;
1264 	u8			timeout;
1265 	u8			retry_cnt;
1266 	u8			rnr_retry;
1267 	u8			alt_port_num;
1268 	u8			alt_timeout;
1269 	u32			rate_limit;
1270 };
1271 
1272 enum ib_wr_opcode {
1273 	/* These are shared with userspace */
1274 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1275 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1276 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1277 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1278 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1279 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1280 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1281 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1282 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1283 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1284 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1285 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1286 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1287 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1288 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1289 
1290 	/* These are kernel only and can not be issued by userspace */
1291 	IB_WR_REG_MR = 0x20,
1292 	IB_WR_REG_MR_INTEGRITY,
1293 
1294 	/* reserve values for low level drivers' internal use.
1295 	 * These values will not be used at all in the ib core layer.
1296 	 */
1297 	IB_WR_RESERVED1 = 0xf0,
1298 	IB_WR_RESERVED2,
1299 	IB_WR_RESERVED3,
1300 	IB_WR_RESERVED4,
1301 	IB_WR_RESERVED5,
1302 	IB_WR_RESERVED6,
1303 	IB_WR_RESERVED7,
1304 	IB_WR_RESERVED8,
1305 	IB_WR_RESERVED9,
1306 	IB_WR_RESERVED10,
1307 };
1308 
1309 enum ib_send_flags {
1310 	IB_SEND_FENCE		= 1,
1311 	IB_SEND_SIGNALED	= (1<<1),
1312 	IB_SEND_SOLICITED	= (1<<2),
1313 	IB_SEND_INLINE		= (1<<3),
1314 	IB_SEND_IP_CSUM		= (1<<4),
1315 
1316 	/* reserve bits 26-31 for low level drivers' internal use */
1317 	IB_SEND_RESERVED_START	= (1 << 26),
1318 	IB_SEND_RESERVED_END	= (1 << 31),
1319 };
1320 
1321 struct ib_sge {
1322 	u64	addr;
1323 	u32	length;
1324 	u32	lkey;
1325 };
1326 
1327 struct ib_cqe {
1328 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1329 };
1330 
1331 struct ib_send_wr {
1332 	struct ib_send_wr      *next;
1333 	union {
1334 		u64		wr_id;
1335 		struct ib_cqe	*wr_cqe;
1336 	};
1337 	struct ib_sge	       *sg_list;
1338 	int			num_sge;
1339 	enum ib_wr_opcode	opcode;
1340 	int			send_flags;
1341 	union {
1342 		__be32		imm_data;
1343 		u32		invalidate_rkey;
1344 	} ex;
1345 };
1346 
1347 struct ib_rdma_wr {
1348 	struct ib_send_wr	wr;
1349 	u64			remote_addr;
1350 	u32			rkey;
1351 };
1352 
1353 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1354 {
1355 	return container_of(wr, struct ib_rdma_wr, wr);
1356 }
1357 
1358 struct ib_atomic_wr {
1359 	struct ib_send_wr	wr;
1360 	u64			remote_addr;
1361 	u64			compare_add;
1362 	u64			swap;
1363 	u64			compare_add_mask;
1364 	u64			swap_mask;
1365 	u32			rkey;
1366 };
1367 
1368 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1369 {
1370 	return container_of(wr, struct ib_atomic_wr, wr);
1371 }
1372 
1373 struct ib_ud_wr {
1374 	struct ib_send_wr	wr;
1375 	struct ib_ah		*ah;
1376 	void			*header;
1377 	int			hlen;
1378 	int			mss;
1379 	u32			remote_qpn;
1380 	u32			remote_qkey;
1381 	u16			pkey_index; /* valid for GSI only */
1382 	u8			port_num;   /* valid for DR SMPs on switch only */
1383 };
1384 
1385 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1386 {
1387 	return container_of(wr, struct ib_ud_wr, wr);
1388 }
1389 
1390 struct ib_reg_wr {
1391 	struct ib_send_wr	wr;
1392 	struct ib_mr		*mr;
1393 	u32			key;
1394 	int			access;
1395 };
1396 
1397 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1398 {
1399 	return container_of(wr, struct ib_reg_wr, wr);
1400 }
1401 
1402 struct ib_recv_wr {
1403 	struct ib_recv_wr      *next;
1404 	union {
1405 		u64		wr_id;
1406 		struct ib_cqe	*wr_cqe;
1407 	};
1408 	struct ib_sge	       *sg_list;
1409 	int			num_sge;
1410 };
1411 
1412 enum ib_access_flags {
1413 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1414 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1415 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1416 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1417 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1418 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1419 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1420 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1421 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1422 
1423 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1424 	IB_ACCESS_SUPPORTED =
1425 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1426 };
1427 
1428 /*
1429  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1430  * are hidden here instead of a uapi header!
1431  */
1432 enum ib_mr_rereg_flags {
1433 	IB_MR_REREG_TRANS	= 1,
1434 	IB_MR_REREG_PD		= (1<<1),
1435 	IB_MR_REREG_ACCESS	= (1<<2),
1436 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1437 };
1438 
1439 struct ib_fmr_attr {
1440 	int	max_pages;
1441 	int	max_maps;
1442 	u8	page_shift;
1443 };
1444 
1445 struct ib_umem;
1446 
1447 enum rdma_remove_reason {
1448 	/*
1449 	 * Userspace requested uobject deletion or initial try
1450 	 * to remove uobject via cleanup. Call could fail
1451 	 */
1452 	RDMA_REMOVE_DESTROY,
1453 	/* Context deletion. This call should delete the actual object itself */
1454 	RDMA_REMOVE_CLOSE,
1455 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1456 	RDMA_REMOVE_DRIVER_REMOVE,
1457 	/* uobj is being cleaned-up before being committed */
1458 	RDMA_REMOVE_ABORT,
1459 };
1460 
1461 struct ib_rdmacg_object {
1462 #ifdef CONFIG_CGROUP_RDMA
1463 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1464 #endif
1465 };
1466 
1467 struct ib_ucontext {
1468 	struct ib_device       *device;
1469 	struct ib_uverbs_file  *ufile;
1470 	/*
1471 	 * 'closing' can be read by the driver only during a destroy callback,
1472 	 * it is set when we are closing the file descriptor and indicates
1473 	 * that mm_sem may be locked.
1474 	 */
1475 	bool closing;
1476 
1477 	bool cleanup_retryable;
1478 
1479 	struct ib_rdmacg_object	cg_obj;
1480 	/*
1481 	 * Implementation details of the RDMA core, don't use in drivers:
1482 	 */
1483 	struct rdma_restrack_entry res;
1484 	struct xarray mmap_xa;
1485 };
1486 
1487 struct ib_uobject {
1488 	u64			user_handle;	/* handle given to us by userspace */
1489 	/* ufile & ucontext owning this object */
1490 	struct ib_uverbs_file  *ufile;
1491 	/* FIXME, save memory: ufile->context == context */
1492 	struct ib_ucontext     *context;	/* associated user context */
1493 	void		       *object;		/* containing object */
1494 	struct list_head	list;		/* link to context's list */
1495 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1496 	int			id;		/* index into kernel idr */
1497 	struct kref		ref;
1498 	atomic_t		usecnt;		/* protects exclusive access */
1499 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1500 
1501 	const struct uverbs_api_object *uapi_object;
1502 };
1503 
1504 struct ib_udata {
1505 	const void __user *inbuf;
1506 	void __user *outbuf;
1507 	size_t       inlen;
1508 	size_t       outlen;
1509 };
1510 
1511 struct ib_pd {
1512 	u32			local_dma_lkey;
1513 	u32			flags;
1514 	struct ib_device       *device;
1515 	struct ib_uobject      *uobject;
1516 	atomic_t          	usecnt; /* count all resources */
1517 
1518 	u32			unsafe_global_rkey;
1519 
1520 	/*
1521 	 * Implementation details of the RDMA core, don't use in drivers:
1522 	 */
1523 	struct ib_mr	       *__internal_mr;
1524 	struct rdma_restrack_entry res;
1525 };
1526 
1527 struct ib_xrcd {
1528 	struct ib_device       *device;
1529 	atomic_t		usecnt; /* count all exposed resources */
1530 	struct inode	       *inode;
1531 
1532 	struct mutex		tgt_qp_mutex;
1533 	struct list_head	tgt_qp_list;
1534 };
1535 
1536 struct ib_ah {
1537 	struct ib_device	*device;
1538 	struct ib_pd		*pd;
1539 	struct ib_uobject	*uobject;
1540 	const struct ib_gid_attr *sgid_attr;
1541 	enum rdma_ah_attr_type	type;
1542 };
1543 
1544 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1545 
1546 enum ib_poll_context {
1547 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1548 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1549 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1550 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1551 };
1552 
1553 struct ib_cq {
1554 	struct ib_device       *device;
1555 	struct ib_ucq_object   *uobject;
1556 	ib_comp_handler   	comp_handler;
1557 	void                  (*event_handler)(struct ib_event *, void *);
1558 	void                   *cq_context;
1559 	int               	cqe;
1560 	atomic_t          	usecnt; /* count number of work queues */
1561 	enum ib_poll_context	poll_ctx;
1562 	struct ib_wc		*wc;
1563 	union {
1564 		struct irq_poll		iop;
1565 		struct work_struct	work;
1566 	};
1567 	struct workqueue_struct *comp_wq;
1568 	struct dim *dim;
1569 
1570 	/* updated only by trace points */
1571 	ktime_t timestamp;
1572 	bool interrupt;
1573 
1574 	/*
1575 	 * Implementation details of the RDMA core, don't use in drivers:
1576 	 */
1577 	struct rdma_restrack_entry res;
1578 };
1579 
1580 struct ib_srq {
1581 	struct ib_device       *device;
1582 	struct ib_pd	       *pd;
1583 	struct ib_usrq_object  *uobject;
1584 	void		      (*event_handler)(struct ib_event *, void *);
1585 	void		       *srq_context;
1586 	enum ib_srq_type	srq_type;
1587 	atomic_t		usecnt;
1588 
1589 	struct {
1590 		struct ib_cq   *cq;
1591 		union {
1592 			struct {
1593 				struct ib_xrcd *xrcd;
1594 				u32		srq_num;
1595 			} xrc;
1596 		};
1597 	} ext;
1598 };
1599 
1600 enum ib_raw_packet_caps {
1601 	/* Strip cvlan from incoming packet and report it in the matching work
1602 	 * completion is supported.
1603 	 */
1604 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1605 	/* Scatter FCS field of an incoming packet to host memory is supported.
1606 	 */
1607 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1608 	/* Checksum offloads are supported (for both send and receive). */
1609 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1610 	/* When a packet is received for an RQ with no receive WQEs, the
1611 	 * packet processing is delayed.
1612 	 */
1613 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1614 };
1615 
1616 enum ib_wq_type {
1617 	IB_WQT_RQ
1618 };
1619 
1620 enum ib_wq_state {
1621 	IB_WQS_RESET,
1622 	IB_WQS_RDY,
1623 	IB_WQS_ERR
1624 };
1625 
1626 struct ib_wq {
1627 	struct ib_device       *device;
1628 	struct ib_uwq_object   *uobject;
1629 	void		    *wq_context;
1630 	void		    (*event_handler)(struct ib_event *, void *);
1631 	struct ib_pd	       *pd;
1632 	struct ib_cq	       *cq;
1633 	u32		wq_num;
1634 	enum ib_wq_state       state;
1635 	enum ib_wq_type	wq_type;
1636 	atomic_t		usecnt;
1637 };
1638 
1639 enum ib_wq_flags {
1640 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1641 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1642 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1643 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1644 };
1645 
1646 struct ib_wq_init_attr {
1647 	void		       *wq_context;
1648 	enum ib_wq_type	wq_type;
1649 	u32		max_wr;
1650 	u32		max_sge;
1651 	struct	ib_cq	       *cq;
1652 	void		    (*event_handler)(struct ib_event *, void *);
1653 	u32		create_flags; /* Use enum ib_wq_flags */
1654 };
1655 
1656 enum ib_wq_attr_mask {
1657 	IB_WQ_STATE		= 1 << 0,
1658 	IB_WQ_CUR_STATE		= 1 << 1,
1659 	IB_WQ_FLAGS		= 1 << 2,
1660 };
1661 
1662 struct ib_wq_attr {
1663 	enum	ib_wq_state	wq_state;
1664 	enum	ib_wq_state	curr_wq_state;
1665 	u32			flags; /* Use enum ib_wq_flags */
1666 	u32			flags_mask; /* Use enum ib_wq_flags */
1667 };
1668 
1669 struct ib_rwq_ind_table {
1670 	struct ib_device	*device;
1671 	struct ib_uobject      *uobject;
1672 	atomic_t		usecnt;
1673 	u32		ind_tbl_num;
1674 	u32		log_ind_tbl_size;
1675 	struct ib_wq	**ind_tbl;
1676 };
1677 
1678 struct ib_rwq_ind_table_init_attr {
1679 	u32		log_ind_tbl_size;
1680 	/* Each entry is a pointer to Receive Work Queue */
1681 	struct ib_wq	**ind_tbl;
1682 };
1683 
1684 enum port_pkey_state {
1685 	IB_PORT_PKEY_NOT_VALID = 0,
1686 	IB_PORT_PKEY_VALID = 1,
1687 	IB_PORT_PKEY_LISTED = 2,
1688 };
1689 
1690 struct ib_qp_security;
1691 
1692 struct ib_port_pkey {
1693 	enum port_pkey_state	state;
1694 	u16			pkey_index;
1695 	u8			port_num;
1696 	struct list_head	qp_list;
1697 	struct list_head	to_error_list;
1698 	struct ib_qp_security  *sec;
1699 };
1700 
1701 struct ib_ports_pkeys {
1702 	struct ib_port_pkey	main;
1703 	struct ib_port_pkey	alt;
1704 };
1705 
1706 struct ib_qp_security {
1707 	struct ib_qp	       *qp;
1708 	struct ib_device       *dev;
1709 	/* Hold this mutex when changing port and pkey settings. */
1710 	struct mutex		mutex;
1711 	struct ib_ports_pkeys  *ports_pkeys;
1712 	/* A list of all open shared QP handles.  Required to enforce security
1713 	 * properly for all users of a shared QP.
1714 	 */
1715 	struct list_head        shared_qp_list;
1716 	void                   *security;
1717 	bool			destroying;
1718 	atomic_t		error_list_count;
1719 	struct completion	error_complete;
1720 	int			error_comps_pending;
1721 };
1722 
1723 /*
1724  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1725  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1726  */
1727 struct ib_qp {
1728 	struct ib_device       *device;
1729 	struct ib_pd	       *pd;
1730 	struct ib_cq	       *send_cq;
1731 	struct ib_cq	       *recv_cq;
1732 	spinlock_t		mr_lock;
1733 	int			mrs_used;
1734 	struct list_head	rdma_mrs;
1735 	struct list_head	sig_mrs;
1736 	struct ib_srq	       *srq;
1737 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1738 	struct list_head	xrcd_list;
1739 
1740 	/* count times opened, mcast attaches, flow attaches */
1741 	atomic_t		usecnt;
1742 	struct list_head	open_list;
1743 	struct ib_qp           *real_qp;
1744 	struct ib_uqp_object   *uobject;
1745 	void                  (*event_handler)(struct ib_event *, void *);
1746 	void		       *qp_context;
1747 	/* sgid_attrs associated with the AV's */
1748 	const struct ib_gid_attr *av_sgid_attr;
1749 	const struct ib_gid_attr *alt_path_sgid_attr;
1750 	u32			qp_num;
1751 	u32			max_write_sge;
1752 	u32			max_read_sge;
1753 	enum ib_qp_type		qp_type;
1754 	struct ib_rwq_ind_table *rwq_ind_tbl;
1755 	struct ib_qp_security  *qp_sec;
1756 	u8			port;
1757 
1758 	bool			integrity_en;
1759 	/*
1760 	 * Implementation details of the RDMA core, don't use in drivers:
1761 	 */
1762 	struct rdma_restrack_entry     res;
1763 
1764 	/* The counter the qp is bind to */
1765 	struct rdma_counter    *counter;
1766 };
1767 
1768 struct ib_dm {
1769 	struct ib_device  *device;
1770 	u32		   length;
1771 	u32		   flags;
1772 	struct ib_uobject *uobject;
1773 	atomic_t	   usecnt;
1774 };
1775 
1776 struct ib_mr {
1777 	struct ib_device  *device;
1778 	struct ib_pd	  *pd;
1779 	u32		   lkey;
1780 	u32		   rkey;
1781 	u64		   iova;
1782 	u64		   length;
1783 	unsigned int	   page_size;
1784 	enum ib_mr_type	   type;
1785 	bool		   need_inval;
1786 	union {
1787 		struct ib_uobject	*uobject;	/* user */
1788 		struct list_head	qp_entry;	/* FR */
1789 	};
1790 
1791 	struct ib_dm      *dm;
1792 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1793 	/*
1794 	 * Implementation details of the RDMA core, don't use in drivers:
1795 	 */
1796 	struct rdma_restrack_entry res;
1797 };
1798 
1799 struct ib_mw {
1800 	struct ib_device	*device;
1801 	struct ib_pd		*pd;
1802 	struct ib_uobject	*uobject;
1803 	u32			rkey;
1804 	enum ib_mw_type         type;
1805 };
1806 
1807 struct ib_fmr {
1808 	struct ib_device	*device;
1809 	struct ib_pd		*pd;
1810 	struct list_head	list;
1811 	u32			lkey;
1812 	u32			rkey;
1813 };
1814 
1815 /* Supported steering options */
1816 enum ib_flow_attr_type {
1817 	/* steering according to rule specifications */
1818 	IB_FLOW_ATTR_NORMAL		= 0x0,
1819 	/* default unicast and multicast rule -
1820 	 * receive all Eth traffic which isn't steered to any QP
1821 	 */
1822 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1823 	/* default multicast rule -
1824 	 * receive all Eth multicast traffic which isn't steered to any QP
1825 	 */
1826 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1827 	/* sniffer rule - receive all port traffic */
1828 	IB_FLOW_ATTR_SNIFFER		= 0x3
1829 };
1830 
1831 /* Supported steering header types */
1832 enum ib_flow_spec_type {
1833 	/* L2 headers*/
1834 	IB_FLOW_SPEC_ETH		= 0x20,
1835 	IB_FLOW_SPEC_IB			= 0x22,
1836 	/* L3 header*/
1837 	IB_FLOW_SPEC_IPV4		= 0x30,
1838 	IB_FLOW_SPEC_IPV6		= 0x31,
1839 	IB_FLOW_SPEC_ESP                = 0x34,
1840 	/* L4 headers*/
1841 	IB_FLOW_SPEC_TCP		= 0x40,
1842 	IB_FLOW_SPEC_UDP		= 0x41,
1843 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1844 	IB_FLOW_SPEC_GRE		= 0x51,
1845 	IB_FLOW_SPEC_MPLS		= 0x60,
1846 	IB_FLOW_SPEC_INNER		= 0x100,
1847 	/* Actions */
1848 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1849 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1850 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1851 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1852 };
1853 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1854 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1855 
1856 /* Flow steering rule priority is set according to it's domain.
1857  * Lower domain value means higher priority.
1858  */
1859 enum ib_flow_domain {
1860 	IB_FLOW_DOMAIN_USER,
1861 	IB_FLOW_DOMAIN_ETHTOOL,
1862 	IB_FLOW_DOMAIN_RFS,
1863 	IB_FLOW_DOMAIN_NIC,
1864 	IB_FLOW_DOMAIN_NUM /* Must be last */
1865 };
1866 
1867 enum ib_flow_flags {
1868 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1869 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1870 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1871 };
1872 
1873 struct ib_flow_eth_filter {
1874 	u8	dst_mac[6];
1875 	u8	src_mac[6];
1876 	__be16	ether_type;
1877 	__be16	vlan_tag;
1878 	/* Must be last */
1879 	u8	real_sz[];
1880 };
1881 
1882 struct ib_flow_spec_eth {
1883 	u32			  type;
1884 	u16			  size;
1885 	struct ib_flow_eth_filter val;
1886 	struct ib_flow_eth_filter mask;
1887 };
1888 
1889 struct ib_flow_ib_filter {
1890 	__be16 dlid;
1891 	__u8   sl;
1892 	/* Must be last */
1893 	u8	real_sz[];
1894 };
1895 
1896 struct ib_flow_spec_ib {
1897 	u32			 type;
1898 	u16			 size;
1899 	struct ib_flow_ib_filter val;
1900 	struct ib_flow_ib_filter mask;
1901 };
1902 
1903 /* IPv4 header flags */
1904 enum ib_ipv4_flags {
1905 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1906 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1907 				    last have this flag set */
1908 };
1909 
1910 struct ib_flow_ipv4_filter {
1911 	__be32	src_ip;
1912 	__be32	dst_ip;
1913 	u8	proto;
1914 	u8	tos;
1915 	u8	ttl;
1916 	u8	flags;
1917 	/* Must be last */
1918 	u8	real_sz[];
1919 };
1920 
1921 struct ib_flow_spec_ipv4 {
1922 	u32			   type;
1923 	u16			   size;
1924 	struct ib_flow_ipv4_filter val;
1925 	struct ib_flow_ipv4_filter mask;
1926 };
1927 
1928 struct ib_flow_ipv6_filter {
1929 	u8	src_ip[16];
1930 	u8	dst_ip[16];
1931 	__be32	flow_label;
1932 	u8	next_hdr;
1933 	u8	traffic_class;
1934 	u8	hop_limit;
1935 	/* Must be last */
1936 	u8	real_sz[];
1937 };
1938 
1939 struct ib_flow_spec_ipv6 {
1940 	u32			   type;
1941 	u16			   size;
1942 	struct ib_flow_ipv6_filter val;
1943 	struct ib_flow_ipv6_filter mask;
1944 };
1945 
1946 struct ib_flow_tcp_udp_filter {
1947 	__be16	dst_port;
1948 	__be16	src_port;
1949 	/* Must be last */
1950 	u8	real_sz[];
1951 };
1952 
1953 struct ib_flow_spec_tcp_udp {
1954 	u32			      type;
1955 	u16			      size;
1956 	struct ib_flow_tcp_udp_filter val;
1957 	struct ib_flow_tcp_udp_filter mask;
1958 };
1959 
1960 struct ib_flow_tunnel_filter {
1961 	__be32	tunnel_id;
1962 	u8	real_sz[];
1963 };
1964 
1965 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1966  * the tunnel_id from val has the vni value
1967  */
1968 struct ib_flow_spec_tunnel {
1969 	u32			      type;
1970 	u16			      size;
1971 	struct ib_flow_tunnel_filter  val;
1972 	struct ib_flow_tunnel_filter  mask;
1973 };
1974 
1975 struct ib_flow_esp_filter {
1976 	__be32	spi;
1977 	__be32  seq;
1978 	/* Must be last */
1979 	u8	real_sz[];
1980 };
1981 
1982 struct ib_flow_spec_esp {
1983 	u32                           type;
1984 	u16			      size;
1985 	struct ib_flow_esp_filter     val;
1986 	struct ib_flow_esp_filter     mask;
1987 };
1988 
1989 struct ib_flow_gre_filter {
1990 	__be16 c_ks_res0_ver;
1991 	__be16 protocol;
1992 	__be32 key;
1993 	/* Must be last */
1994 	u8	real_sz[];
1995 };
1996 
1997 struct ib_flow_spec_gre {
1998 	u32                           type;
1999 	u16			      size;
2000 	struct ib_flow_gre_filter     val;
2001 	struct ib_flow_gre_filter     mask;
2002 };
2003 
2004 struct ib_flow_mpls_filter {
2005 	__be32 tag;
2006 	/* Must be last */
2007 	u8	real_sz[];
2008 };
2009 
2010 struct ib_flow_spec_mpls {
2011 	u32                           type;
2012 	u16			      size;
2013 	struct ib_flow_mpls_filter     val;
2014 	struct ib_flow_mpls_filter     mask;
2015 };
2016 
2017 struct ib_flow_spec_action_tag {
2018 	enum ib_flow_spec_type	      type;
2019 	u16			      size;
2020 	u32                           tag_id;
2021 };
2022 
2023 struct ib_flow_spec_action_drop {
2024 	enum ib_flow_spec_type	      type;
2025 	u16			      size;
2026 };
2027 
2028 struct ib_flow_spec_action_handle {
2029 	enum ib_flow_spec_type	      type;
2030 	u16			      size;
2031 	struct ib_flow_action	     *act;
2032 };
2033 
2034 enum ib_counters_description {
2035 	IB_COUNTER_PACKETS,
2036 	IB_COUNTER_BYTES,
2037 };
2038 
2039 struct ib_flow_spec_action_count {
2040 	enum ib_flow_spec_type type;
2041 	u16 size;
2042 	struct ib_counters *counters;
2043 };
2044 
2045 union ib_flow_spec {
2046 	struct {
2047 		u32			type;
2048 		u16			size;
2049 	};
2050 	struct ib_flow_spec_eth		eth;
2051 	struct ib_flow_spec_ib		ib;
2052 	struct ib_flow_spec_ipv4        ipv4;
2053 	struct ib_flow_spec_tcp_udp	tcp_udp;
2054 	struct ib_flow_spec_ipv6        ipv6;
2055 	struct ib_flow_spec_tunnel      tunnel;
2056 	struct ib_flow_spec_esp		esp;
2057 	struct ib_flow_spec_gre		gre;
2058 	struct ib_flow_spec_mpls	mpls;
2059 	struct ib_flow_spec_action_tag  flow_tag;
2060 	struct ib_flow_spec_action_drop drop;
2061 	struct ib_flow_spec_action_handle action;
2062 	struct ib_flow_spec_action_count flow_count;
2063 };
2064 
2065 struct ib_flow_attr {
2066 	enum ib_flow_attr_type type;
2067 	u16	     size;
2068 	u16	     priority;
2069 	u32	     flags;
2070 	u8	     num_of_specs;
2071 	u8	     port;
2072 	union ib_flow_spec flows[];
2073 };
2074 
2075 struct ib_flow {
2076 	struct ib_qp		*qp;
2077 	struct ib_device	*device;
2078 	struct ib_uobject	*uobject;
2079 };
2080 
2081 enum ib_flow_action_type {
2082 	IB_FLOW_ACTION_UNSPECIFIED,
2083 	IB_FLOW_ACTION_ESP = 1,
2084 };
2085 
2086 struct ib_flow_action_attrs_esp_keymats {
2087 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2088 	union {
2089 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2090 	} keymat;
2091 };
2092 
2093 struct ib_flow_action_attrs_esp_replays {
2094 	enum ib_uverbs_flow_action_esp_replay			protocol;
2095 	union {
2096 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2097 	} replay;
2098 };
2099 
2100 enum ib_flow_action_attrs_esp_flags {
2101 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2102 	 * This is done in order to share the same flags between user-space and
2103 	 * kernel and spare an unnecessary translation.
2104 	 */
2105 
2106 	/* Kernel flags */
2107 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2108 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2109 };
2110 
2111 struct ib_flow_spec_list {
2112 	struct ib_flow_spec_list	*next;
2113 	union ib_flow_spec		spec;
2114 };
2115 
2116 struct ib_flow_action_attrs_esp {
2117 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2118 	struct ib_flow_action_attrs_esp_replays		*replay;
2119 	struct ib_flow_spec_list			*encap;
2120 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2121 	 * Value of 0 is a valid value.
2122 	 */
2123 	u32						esn;
2124 	u32						spi;
2125 	u32						seq;
2126 	u32						tfc_pad;
2127 	/* Use enum ib_flow_action_attrs_esp_flags */
2128 	u64						flags;
2129 	u64						hard_limit_pkts;
2130 };
2131 
2132 struct ib_flow_action {
2133 	struct ib_device		*device;
2134 	struct ib_uobject		*uobject;
2135 	enum ib_flow_action_type	type;
2136 	atomic_t			usecnt;
2137 };
2138 
2139 struct ib_mad;
2140 struct ib_grh;
2141 
2142 enum ib_process_mad_flags {
2143 	IB_MAD_IGNORE_MKEY	= 1,
2144 	IB_MAD_IGNORE_BKEY	= 2,
2145 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2146 };
2147 
2148 enum ib_mad_result {
2149 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2150 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2151 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2152 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2153 };
2154 
2155 struct ib_port_cache {
2156 	u64		      subnet_prefix;
2157 	struct ib_pkey_cache  *pkey;
2158 	struct ib_gid_table   *gid;
2159 	u8                     lmc;
2160 	enum ib_port_state     port_state;
2161 };
2162 
2163 struct ib_port_immutable {
2164 	int                           pkey_tbl_len;
2165 	int                           gid_tbl_len;
2166 	u32                           core_cap_flags;
2167 	u32                           max_mad_size;
2168 };
2169 
2170 struct ib_port_data {
2171 	struct ib_device *ib_dev;
2172 
2173 	struct ib_port_immutable immutable;
2174 
2175 	spinlock_t pkey_list_lock;
2176 	struct list_head pkey_list;
2177 
2178 	struct ib_port_cache cache;
2179 
2180 	spinlock_t netdev_lock;
2181 	struct net_device __rcu *netdev;
2182 	struct hlist_node ndev_hash_link;
2183 	struct rdma_port_counter port_counter;
2184 	struct rdma_hw_stats *hw_stats;
2185 };
2186 
2187 /* rdma netdev type - specifies protocol type */
2188 enum rdma_netdev_t {
2189 	RDMA_NETDEV_OPA_VNIC,
2190 	RDMA_NETDEV_IPOIB,
2191 };
2192 
2193 /**
2194  * struct rdma_netdev - rdma netdev
2195  * For cases where netstack interfacing is required.
2196  */
2197 struct rdma_netdev {
2198 	void              *clnt_priv;
2199 	struct ib_device  *hca;
2200 	u8                 port_num;
2201 
2202 	/*
2203 	 * cleanup function must be specified.
2204 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2205 	 * removed too.
2206 	 */
2207 	void (*free_rdma_netdev)(struct net_device *netdev);
2208 
2209 	/* control functions */
2210 	void (*set_id)(struct net_device *netdev, int id);
2211 	/* send packet */
2212 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2213 		    struct ib_ah *address, u32 dqpn);
2214 	/* multicast */
2215 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2216 			    union ib_gid *gid, u16 mlid,
2217 			    int set_qkey, u32 qkey);
2218 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2219 			    union ib_gid *gid, u16 mlid);
2220 };
2221 
2222 struct rdma_netdev_alloc_params {
2223 	size_t sizeof_priv;
2224 	unsigned int txqs;
2225 	unsigned int rxqs;
2226 	void *param;
2227 
2228 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2229 				      struct net_device *netdev, void *param);
2230 };
2231 
2232 struct ib_odp_counters {
2233 	atomic64_t faults;
2234 	atomic64_t invalidations;
2235 };
2236 
2237 struct ib_counters {
2238 	struct ib_device	*device;
2239 	struct ib_uobject	*uobject;
2240 	/* num of objects attached */
2241 	atomic_t	usecnt;
2242 };
2243 
2244 struct ib_counters_read_attr {
2245 	u64	*counters_buff;
2246 	u32	ncounters;
2247 	u32	flags; /* use enum ib_read_counters_flags */
2248 };
2249 
2250 struct uverbs_attr_bundle;
2251 struct iw_cm_id;
2252 struct iw_cm_conn_param;
2253 
2254 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2255 	.size_##ib_struct =                                                    \
2256 		(sizeof(struct drv_struct) +                                   \
2257 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2258 		 BUILD_BUG_ON_ZERO(                                            \
2259 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2260 				      struct ib_struct)))
2261 
2262 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2263 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2264 
2265 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2266 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2267 
2268 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2269 
2270 struct rdma_user_mmap_entry {
2271 	struct kref ref;
2272 	struct ib_ucontext *ucontext;
2273 	unsigned long start_pgoff;
2274 	size_t npages;
2275 	bool driver_removed;
2276 };
2277 
2278 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2279 static inline u64
2280 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2281 {
2282 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2283 }
2284 
2285 /**
2286  * struct ib_device_ops - InfiniBand device operations
2287  * This structure defines all the InfiniBand device operations, providers will
2288  * need to define the supported operations, otherwise they will be set to null.
2289  */
2290 struct ib_device_ops {
2291 	struct module *owner;
2292 	enum rdma_driver_id driver_id;
2293 	u32 uverbs_abi_ver;
2294 	unsigned int uverbs_no_driver_id_binding:1;
2295 
2296 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2297 			 const struct ib_send_wr **bad_send_wr);
2298 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2299 			 const struct ib_recv_wr **bad_recv_wr);
2300 	void (*drain_rq)(struct ib_qp *qp);
2301 	void (*drain_sq)(struct ib_qp *qp);
2302 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2303 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2304 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2305 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2306 	int (*post_srq_recv)(struct ib_srq *srq,
2307 			     const struct ib_recv_wr *recv_wr,
2308 			     const struct ib_recv_wr **bad_recv_wr);
2309 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2310 			   u8 port_num, const struct ib_wc *in_wc,
2311 			   const struct ib_grh *in_grh,
2312 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2313 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2314 	int (*query_device)(struct ib_device *device,
2315 			    struct ib_device_attr *device_attr,
2316 			    struct ib_udata *udata);
2317 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2318 			     struct ib_device_modify *device_modify);
2319 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2320 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2321 						     int comp_vector);
2322 	int (*query_port)(struct ib_device *device, u8 port_num,
2323 			  struct ib_port_attr *port_attr);
2324 	int (*modify_port)(struct ib_device *device, u8 port_num,
2325 			   int port_modify_mask,
2326 			   struct ib_port_modify *port_modify);
2327 	/**
2328 	 * The following mandatory functions are used only at device
2329 	 * registration.  Keep functions such as these at the end of this
2330 	 * structure to avoid cache line misses when accessing struct ib_device
2331 	 * in fast paths.
2332 	 */
2333 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2334 				  struct ib_port_immutable *immutable);
2335 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2336 					       u8 port_num);
2337 	/**
2338 	 * When calling get_netdev, the HW vendor's driver should return the
2339 	 * net device of device @device at port @port_num or NULL if such
2340 	 * a net device doesn't exist. The vendor driver should call dev_hold
2341 	 * on this net device. The HW vendor's device driver must guarantee
2342 	 * that this function returns NULL before the net device has finished
2343 	 * NETDEV_UNREGISTER state.
2344 	 */
2345 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2346 	/**
2347 	 * rdma netdev operation
2348 	 *
2349 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2350 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2351 	 */
2352 	struct net_device *(*alloc_rdma_netdev)(
2353 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2354 		const char *name, unsigned char name_assign_type,
2355 		void (*setup)(struct net_device *));
2356 
2357 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2358 				      enum rdma_netdev_t type,
2359 				      struct rdma_netdev_alloc_params *params);
2360 	/**
2361 	 * query_gid should be return GID value for @device, when @port_num
2362 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2363 	 * is RoCE link layer.
2364 	 */
2365 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2366 			 union ib_gid *gid);
2367 	/**
2368 	 * When calling add_gid, the HW vendor's driver should add the gid
2369 	 * of device of port at gid index available at @attr. Meta-info of
2370 	 * that gid (for example, the network device related to this gid) is
2371 	 * available at @attr. @context allows the HW vendor driver to store
2372 	 * extra information together with a GID entry. The HW vendor driver may
2373 	 * allocate memory to contain this information and store it in @context
2374 	 * when a new GID entry is written to. Params are consistent until the
2375 	 * next call of add_gid or delete_gid. The function should return 0 on
2376 	 * success or error otherwise. The function could be called
2377 	 * concurrently for different ports. This function is only called when
2378 	 * roce_gid_table is used.
2379 	 */
2380 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2381 	/**
2382 	 * When calling del_gid, the HW vendor's driver should delete the
2383 	 * gid of device @device at gid index gid_index of port port_num
2384 	 * available in @attr.
2385 	 * Upon the deletion of a GID entry, the HW vendor must free any
2386 	 * allocated memory. The caller will clear @context afterwards.
2387 	 * This function is only called when roce_gid_table is used.
2388 	 */
2389 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2390 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2391 			  u16 *pkey);
2392 	int (*alloc_ucontext)(struct ib_ucontext *context,
2393 			      struct ib_udata *udata);
2394 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2395 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2396 	/**
2397 	 * This will be called once refcount of an entry in mmap_xa reaches
2398 	 * zero. The type of the memory that was mapped may differ between
2399 	 * entries and is opaque to the rdma_user_mmap interface.
2400 	 * Therefore needs to be implemented by the driver in mmap_free.
2401 	 */
2402 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2403 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2404 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2405 	void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2406 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2407 			 u32 flags, struct ib_udata *udata);
2408 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2409 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2410 	void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2411 	int (*create_srq)(struct ib_srq *srq,
2412 			  struct ib_srq_init_attr *srq_init_attr,
2413 			  struct ib_udata *udata);
2414 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2415 			  enum ib_srq_attr_mask srq_attr_mask,
2416 			  struct ib_udata *udata);
2417 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2418 	void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2419 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2420 				   struct ib_qp_init_attr *qp_init_attr,
2421 				   struct ib_udata *udata);
2422 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2423 			 int qp_attr_mask, struct ib_udata *udata);
2424 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2425 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2426 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2427 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2428 			 struct ib_udata *udata);
2429 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2430 	void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2431 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2432 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2433 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2434 				     u64 virt_addr, int mr_access_flags,
2435 				     struct ib_udata *udata);
2436 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2437 			     u64 virt_addr, int mr_access_flags,
2438 			     struct ib_pd *pd, struct ib_udata *udata);
2439 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2440 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2441 				  u32 max_num_sg, struct ib_udata *udata);
2442 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2443 					    u32 max_num_data_sg,
2444 					    u32 max_num_meta_sg);
2445 	int (*advise_mr)(struct ib_pd *pd,
2446 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2447 			 struct ib_sge *sg_list, u32 num_sge,
2448 			 struct uverbs_attr_bundle *attrs);
2449 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2450 			 unsigned int *sg_offset);
2451 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2452 			       struct ib_mr_status *mr_status);
2453 	struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2454 				  struct ib_udata *udata);
2455 	int (*dealloc_mw)(struct ib_mw *mw);
2456 	struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2457 				    struct ib_fmr_attr *fmr_attr);
2458 	int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2459 			    u64 iova);
2460 	int (*unmap_fmr)(struct list_head *fmr_list);
2461 	int (*dealloc_fmr)(struct ib_fmr *fmr);
2462 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2463 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2464 	struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2465 				      struct ib_udata *udata);
2466 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2467 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2468 				       struct ib_flow_attr *flow_attr,
2469 				       int domain, struct ib_udata *udata);
2470 	int (*destroy_flow)(struct ib_flow *flow_id);
2471 	struct ib_flow_action *(*create_flow_action_esp)(
2472 		struct ib_device *device,
2473 		const struct ib_flow_action_attrs_esp *attr,
2474 		struct uverbs_attr_bundle *attrs);
2475 	int (*destroy_flow_action)(struct ib_flow_action *action);
2476 	int (*modify_flow_action_esp)(
2477 		struct ib_flow_action *action,
2478 		const struct ib_flow_action_attrs_esp *attr,
2479 		struct uverbs_attr_bundle *attrs);
2480 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2481 				 int state);
2482 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2483 			     struct ifla_vf_info *ivf);
2484 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2485 			    struct ifla_vf_stats *stats);
2486 	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2487 			    struct ifla_vf_guid *node_guid,
2488 			    struct ifla_vf_guid *port_guid);
2489 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2490 			   int type);
2491 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2492 				   struct ib_wq_init_attr *init_attr,
2493 				   struct ib_udata *udata);
2494 	void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2495 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2496 			 u32 wq_attr_mask, struct ib_udata *udata);
2497 	struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2498 		struct ib_device *device,
2499 		struct ib_rwq_ind_table_init_attr *init_attr,
2500 		struct ib_udata *udata);
2501 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2502 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2503 				  struct ib_ucontext *context,
2504 				  struct ib_dm_alloc_attr *attr,
2505 				  struct uverbs_attr_bundle *attrs);
2506 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2507 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2508 				   struct ib_dm_mr_attr *attr,
2509 				   struct uverbs_attr_bundle *attrs);
2510 	struct ib_counters *(*create_counters)(
2511 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2512 	int (*destroy_counters)(struct ib_counters *counters);
2513 	int (*read_counters)(struct ib_counters *counters,
2514 			     struct ib_counters_read_attr *counters_read_attr,
2515 			     struct uverbs_attr_bundle *attrs);
2516 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2517 			    int data_sg_nents, unsigned int *data_sg_offset,
2518 			    struct scatterlist *meta_sg, int meta_sg_nents,
2519 			    unsigned int *meta_sg_offset);
2520 
2521 	/**
2522 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2523 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2524 	 *   core when the device is removed.  A lifespan of -1 in the return
2525 	 *   struct tells the core to set a default lifespan.
2526 	 */
2527 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2528 						u8 port_num);
2529 	/**
2530 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2531 	 * @index - The index in the value array we wish to have updated, or
2532 	 *   num_counters if we want all stats updated
2533 	 * Return codes -
2534 	 *   < 0 - Error, no counters updated
2535 	 *   index - Updated the single counter pointed to by index
2536 	 *   num_counters - Updated all counters (will reset the timestamp
2537 	 *     and prevent further calls for lifespan milliseconds)
2538 	 * Drivers are allowed to update all counters in leiu of just the
2539 	 *   one given in index at their option
2540 	 */
2541 	int (*get_hw_stats)(struct ib_device *device,
2542 			    struct rdma_hw_stats *stats, u8 port, int index);
2543 	/*
2544 	 * This function is called once for each port when a ib device is
2545 	 * registered.
2546 	 */
2547 	int (*init_port)(struct ib_device *device, u8 port_num,
2548 			 struct kobject *port_sysfs);
2549 	/**
2550 	 * Allows rdma drivers to add their own restrack attributes.
2551 	 */
2552 	int (*fill_res_entry)(struct sk_buff *msg,
2553 			      struct rdma_restrack_entry *entry);
2554 
2555 	/* Device lifecycle callbacks */
2556 	/*
2557 	 * Called after the device becomes registered, before clients are
2558 	 * attached
2559 	 */
2560 	int (*enable_driver)(struct ib_device *dev);
2561 	/*
2562 	 * This is called as part of ib_dealloc_device().
2563 	 */
2564 	void (*dealloc_driver)(struct ib_device *dev);
2565 
2566 	/* iWarp CM callbacks */
2567 	void (*iw_add_ref)(struct ib_qp *qp);
2568 	void (*iw_rem_ref)(struct ib_qp *qp);
2569 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2570 	int (*iw_connect)(struct iw_cm_id *cm_id,
2571 			  struct iw_cm_conn_param *conn_param);
2572 	int (*iw_accept)(struct iw_cm_id *cm_id,
2573 			 struct iw_cm_conn_param *conn_param);
2574 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2575 			 u8 pdata_len);
2576 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2577 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2578 	/**
2579 	 * counter_bind_qp - Bind a QP to a counter.
2580 	 * @counter - The counter to be bound. If counter->id is zero then
2581 	 *   the driver needs to allocate a new counter and set counter->id
2582 	 */
2583 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2584 	/**
2585 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2586 	 *   counter and bind it onto the default one
2587 	 */
2588 	int (*counter_unbind_qp)(struct ib_qp *qp);
2589 	/**
2590 	 * counter_dealloc -De-allocate the hw counter
2591 	 */
2592 	int (*counter_dealloc)(struct rdma_counter *counter);
2593 	/**
2594 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2595 	 * the driver initialized data.
2596 	 */
2597 	struct rdma_hw_stats *(*counter_alloc_stats)(
2598 		struct rdma_counter *counter);
2599 	/**
2600 	 * counter_update_stats - Query the stats value of this counter
2601 	 */
2602 	int (*counter_update_stats)(struct rdma_counter *counter);
2603 
2604 	/**
2605 	 * Allows rdma drivers to add their own restrack attributes
2606 	 * dumped via 'rdma stat' iproute2 command.
2607 	 */
2608 	int (*fill_stat_entry)(struct sk_buff *msg,
2609 			       struct rdma_restrack_entry *entry);
2610 
2611 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2612 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2613 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2614 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2615 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2616 };
2617 
2618 struct ib_core_device {
2619 	/* device must be the first element in structure until,
2620 	 * union of ib_core_device and device exists in ib_device.
2621 	 */
2622 	struct device dev;
2623 	possible_net_t rdma_net;
2624 	struct kobject *ports_kobj;
2625 	struct list_head port_list;
2626 	struct ib_device *owner; /* reach back to owner ib_device */
2627 };
2628 
2629 struct rdma_restrack_root;
2630 struct ib_device {
2631 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2632 	struct device                *dma_device;
2633 	struct ib_device_ops	     ops;
2634 	char                          name[IB_DEVICE_NAME_MAX];
2635 	struct rcu_head rcu_head;
2636 
2637 	struct list_head              event_handler_list;
2638 	/* Protects event_handler_list */
2639 	struct rw_semaphore event_handler_rwsem;
2640 
2641 	/* Protects QP's event_handler calls and open_qp list */
2642 	spinlock_t qp_open_list_lock;
2643 
2644 	struct rw_semaphore	      client_data_rwsem;
2645 	struct xarray                 client_data;
2646 	struct mutex                  unregistration_lock;
2647 
2648 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2649 	rwlock_t cache_lock;
2650 	/**
2651 	 * port_data is indexed by port number
2652 	 */
2653 	struct ib_port_data *port_data;
2654 
2655 	int			      num_comp_vectors;
2656 
2657 	union {
2658 		struct device		dev;
2659 		struct ib_core_device	coredev;
2660 	};
2661 
2662 	/* First group for device attributes,
2663 	 * Second group for driver provided attributes (optional).
2664 	 * It is NULL terminated array.
2665 	 */
2666 	const struct attribute_group	*groups[3];
2667 
2668 	u64			     uverbs_cmd_mask;
2669 	u64			     uverbs_ex_cmd_mask;
2670 
2671 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2672 	__be64			     node_guid;
2673 	u32			     local_dma_lkey;
2674 	u16                          is_switch:1;
2675 	/* Indicates kernel verbs support, should not be used in drivers */
2676 	u16                          kverbs_provider:1;
2677 	/* CQ adaptive moderation (RDMA DIM) */
2678 	u16                          use_cq_dim:1;
2679 	u8                           node_type;
2680 	u8                           phys_port_cnt;
2681 	struct ib_device_attr        attrs;
2682 	struct attribute_group	     *hw_stats_ag;
2683 	struct rdma_hw_stats         *hw_stats;
2684 
2685 #ifdef CONFIG_CGROUP_RDMA
2686 	struct rdmacg_device         cg_device;
2687 #endif
2688 
2689 	u32                          index;
2690 	struct rdma_restrack_root *res;
2691 
2692 	const struct uapi_definition   *driver_def;
2693 
2694 	/*
2695 	 * Positive refcount indicates that the device is currently
2696 	 * registered and cannot be unregistered.
2697 	 */
2698 	refcount_t refcount;
2699 	struct completion unreg_completion;
2700 	struct work_struct unregistration_work;
2701 
2702 	const struct rdma_link_ops *link_ops;
2703 
2704 	/* Protects compat_devs xarray modifications */
2705 	struct mutex compat_devs_mutex;
2706 	/* Maintains compat devices for each net namespace */
2707 	struct xarray compat_devs;
2708 
2709 	/* Used by iWarp CM */
2710 	char iw_ifname[IFNAMSIZ];
2711 	u32 iw_driver_flags;
2712 };
2713 
2714 struct ib_client_nl_info;
2715 struct ib_client {
2716 	const char *name;
2717 	void (*add)   (struct ib_device *);
2718 	void (*remove)(struct ib_device *, void *client_data);
2719 	void (*rename)(struct ib_device *dev, void *client_data);
2720 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2721 			   struct ib_client_nl_info *res);
2722 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2723 
2724 	/* Returns the net_dev belonging to this ib_client and matching the
2725 	 * given parameters.
2726 	 * @dev:	 An RDMA device that the net_dev use for communication.
2727 	 * @port:	 A physical port number on the RDMA device.
2728 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2729 	 * @gid:	 A GID that the net_dev uses to communicate.
2730 	 * @addr:	 An IP address the net_dev is configured with.
2731 	 * @client_data: The device's client data set by ib_set_client_data().
2732 	 *
2733 	 * An ib_client that implements a net_dev on top of RDMA devices
2734 	 * (such as IP over IB) should implement this callback, allowing the
2735 	 * rdma_cm module to find the right net_dev for a given request.
2736 	 *
2737 	 * The caller is responsible for calling dev_put on the returned
2738 	 * netdev. */
2739 	struct net_device *(*get_net_dev_by_params)(
2740 			struct ib_device *dev,
2741 			u8 port,
2742 			u16 pkey,
2743 			const union ib_gid *gid,
2744 			const struct sockaddr *addr,
2745 			void *client_data);
2746 
2747 	refcount_t uses;
2748 	struct completion uses_zero;
2749 	u32 client_id;
2750 
2751 	/* kverbs are not required by the client */
2752 	u8 no_kverbs_req:1;
2753 };
2754 
2755 /*
2756  * IB block DMA iterator
2757  *
2758  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2759  * to a HW supported page size.
2760  */
2761 struct ib_block_iter {
2762 	/* internal states */
2763 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2764 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2765 	unsigned int __sg_nents;	/* number of SG entries */
2766 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2767 	unsigned int __pg_bit;		/* alignment of current block */
2768 };
2769 
2770 struct ib_device *_ib_alloc_device(size_t size);
2771 #define ib_alloc_device(drv_struct, member)                                    \
2772 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2773 				      BUILD_BUG_ON_ZERO(offsetof(              \
2774 					      struct drv_struct, member))),    \
2775 		     struct drv_struct, member)
2776 
2777 void ib_dealloc_device(struct ib_device *device);
2778 
2779 void ib_get_device_fw_str(struct ib_device *device, char *str);
2780 
2781 int ib_register_device(struct ib_device *device, const char *name);
2782 void ib_unregister_device(struct ib_device *device);
2783 void ib_unregister_driver(enum rdma_driver_id driver_id);
2784 void ib_unregister_device_and_put(struct ib_device *device);
2785 void ib_unregister_device_queued(struct ib_device *ib_dev);
2786 
2787 int ib_register_client   (struct ib_client *client);
2788 void ib_unregister_client(struct ib_client *client);
2789 
2790 void __rdma_block_iter_start(struct ib_block_iter *biter,
2791 			     struct scatterlist *sglist,
2792 			     unsigned int nents,
2793 			     unsigned long pgsz);
2794 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2795 
2796 /**
2797  * rdma_block_iter_dma_address - get the aligned dma address of the current
2798  * block held by the block iterator.
2799  * @biter: block iterator holding the memory block
2800  */
2801 static inline dma_addr_t
2802 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2803 {
2804 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2805 }
2806 
2807 /**
2808  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2809  * @sglist: sglist to iterate over
2810  * @biter: block iterator holding the memory block
2811  * @nents: maximum number of sg entries to iterate over
2812  * @pgsz: best HW supported page size to use
2813  *
2814  * Callers may use rdma_block_iter_dma_address() to get each
2815  * blocks aligned DMA address.
2816  */
2817 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2818 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2819 				     pgsz);			\
2820 	     __rdma_block_iter_next(biter);)
2821 
2822 /**
2823  * ib_get_client_data - Get IB client context
2824  * @device:Device to get context for
2825  * @client:Client to get context for
2826  *
2827  * ib_get_client_data() returns the client context data set with
2828  * ib_set_client_data(). This can only be called while the client is
2829  * registered to the device, once the ib_client remove() callback returns this
2830  * cannot be called.
2831  */
2832 static inline void *ib_get_client_data(struct ib_device *device,
2833 				       struct ib_client *client)
2834 {
2835 	return xa_load(&device->client_data, client->client_id);
2836 }
2837 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2838 			 void *data);
2839 void ib_set_device_ops(struct ib_device *device,
2840 		       const struct ib_device_ops *ops);
2841 
2842 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2843 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2844 		      struct rdma_user_mmap_entry *entry);
2845 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2846 				struct rdma_user_mmap_entry *entry,
2847 				size_t length);
2848 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2849 				      struct rdma_user_mmap_entry *entry,
2850 				      size_t length, u32 min_pgoff,
2851 				      u32 max_pgoff);
2852 
2853 struct rdma_user_mmap_entry *
2854 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2855 			       unsigned long pgoff);
2856 struct rdma_user_mmap_entry *
2857 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2858 			 struct vm_area_struct *vma);
2859 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2860 
2861 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2862 
2863 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2864 {
2865 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2866 }
2867 
2868 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2869 {
2870 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2871 }
2872 
2873 static inline bool ib_is_buffer_cleared(const void __user *p,
2874 					size_t len)
2875 {
2876 	bool ret;
2877 	u8 *buf;
2878 
2879 	if (len > USHRT_MAX)
2880 		return false;
2881 
2882 	buf = memdup_user(p, len);
2883 	if (IS_ERR(buf))
2884 		return false;
2885 
2886 	ret = !memchr_inv(buf, 0, len);
2887 	kfree(buf);
2888 	return ret;
2889 }
2890 
2891 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2892 				       size_t offset,
2893 				       size_t len)
2894 {
2895 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2896 }
2897 
2898 /**
2899  * ib_is_destroy_retryable - Check whether the uobject destruction
2900  * is retryable.
2901  * @ret: The initial destruction return code
2902  * @why: remove reason
2903  * @uobj: The uobject that is destroyed
2904  *
2905  * This function is a helper function that IB layer and low-level drivers
2906  * can use to consider whether the destruction of the given uobject is
2907  * retry-able.
2908  * It checks the original return code, if it wasn't success the destruction
2909  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2910  * the remove reason. (i.e. why).
2911  * Must be called with the object locked for destroy.
2912  */
2913 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2914 					   struct ib_uobject *uobj)
2915 {
2916 	return ret && (why == RDMA_REMOVE_DESTROY ||
2917 		       uobj->context->cleanup_retryable);
2918 }
2919 
2920 /**
2921  * ib_destroy_usecnt - Called during destruction to check the usecnt
2922  * @usecnt: The usecnt atomic
2923  * @why: remove reason
2924  * @uobj: The uobject that is destroyed
2925  *
2926  * Non-zero usecnts will block destruction unless destruction was triggered by
2927  * a ucontext cleanup.
2928  */
2929 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2930 				    enum rdma_remove_reason why,
2931 				    struct ib_uobject *uobj)
2932 {
2933 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2934 		return -EBUSY;
2935 	return 0;
2936 }
2937 
2938 /**
2939  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2940  * contains all required attributes and no attributes not allowed for
2941  * the given QP state transition.
2942  * @cur_state: Current QP state
2943  * @next_state: Next QP state
2944  * @type: QP type
2945  * @mask: Mask of supplied QP attributes
2946  *
2947  * This function is a helper function that a low-level driver's
2948  * modify_qp method can use to validate the consumer's input.  It
2949  * checks that cur_state and next_state are valid QP states, that a
2950  * transition from cur_state to next_state is allowed by the IB spec,
2951  * and that the attribute mask supplied is allowed for the transition.
2952  */
2953 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2954 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2955 
2956 void ib_register_event_handler(struct ib_event_handler *event_handler);
2957 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2958 void ib_dispatch_event(const struct ib_event *event);
2959 
2960 int ib_query_port(struct ib_device *device,
2961 		  u8 port_num, struct ib_port_attr *port_attr);
2962 
2963 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2964 					       u8 port_num);
2965 
2966 /**
2967  * rdma_cap_ib_switch - Check if the device is IB switch
2968  * @device: Device to check
2969  *
2970  * Device driver is responsible for setting is_switch bit on
2971  * in ib_device structure at init time.
2972  *
2973  * Return: true if the device is IB switch.
2974  */
2975 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2976 {
2977 	return device->is_switch;
2978 }
2979 
2980 /**
2981  * rdma_start_port - Return the first valid port number for the device
2982  * specified
2983  *
2984  * @device: Device to be checked
2985  *
2986  * Return start port number
2987  */
2988 static inline u8 rdma_start_port(const struct ib_device *device)
2989 {
2990 	return rdma_cap_ib_switch(device) ? 0 : 1;
2991 }
2992 
2993 /**
2994  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2995  * @device - The struct ib_device * to iterate over
2996  * @iter - The unsigned int to store the port number
2997  */
2998 #define rdma_for_each_port(device, iter)                                       \
2999 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
3000 						     unsigned int, iter)));    \
3001 	     iter <= rdma_end_port(device); (iter)++)
3002 
3003 /**
3004  * rdma_end_port - Return the last valid port number for the device
3005  * specified
3006  *
3007  * @device: Device to be checked
3008  *
3009  * Return last port number
3010  */
3011 static inline u8 rdma_end_port(const struct ib_device *device)
3012 {
3013 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3014 }
3015 
3016 static inline int rdma_is_port_valid(const struct ib_device *device,
3017 				     unsigned int port)
3018 {
3019 	return (port >= rdma_start_port(device) &&
3020 		port <= rdma_end_port(device));
3021 }
3022 
3023 static inline bool rdma_is_grh_required(const struct ib_device *device,
3024 					u8 port_num)
3025 {
3026 	return device->port_data[port_num].immutable.core_cap_flags &
3027 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3028 }
3029 
3030 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3031 {
3032 	return device->port_data[port_num].immutable.core_cap_flags &
3033 	       RDMA_CORE_CAP_PROT_IB;
3034 }
3035 
3036 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3037 {
3038 	return device->port_data[port_num].immutable.core_cap_flags &
3039 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3040 }
3041 
3042 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3043 {
3044 	return device->port_data[port_num].immutable.core_cap_flags &
3045 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3046 }
3047 
3048 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3049 {
3050 	return device->port_data[port_num].immutable.core_cap_flags &
3051 	       RDMA_CORE_CAP_PROT_ROCE;
3052 }
3053 
3054 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3055 {
3056 	return device->port_data[port_num].immutable.core_cap_flags &
3057 	       RDMA_CORE_CAP_PROT_IWARP;
3058 }
3059 
3060 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3061 {
3062 	return rdma_protocol_ib(device, port_num) ||
3063 		rdma_protocol_roce(device, port_num);
3064 }
3065 
3066 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3067 {
3068 	return device->port_data[port_num].immutable.core_cap_flags &
3069 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3070 }
3071 
3072 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3073 {
3074 	return device->port_data[port_num].immutable.core_cap_flags &
3075 	       RDMA_CORE_CAP_PROT_USNIC;
3076 }
3077 
3078 /**
3079  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3080  * Management Datagrams.
3081  * @device: Device to check
3082  * @port_num: Port number to check
3083  *
3084  * Management Datagrams (MAD) are a required part of the InfiniBand
3085  * specification and are supported on all InfiniBand devices.  A slightly
3086  * extended version are also supported on OPA interfaces.
3087  *
3088  * Return: true if the port supports sending/receiving of MAD packets.
3089  */
3090 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3091 {
3092 	return device->port_data[port_num].immutable.core_cap_flags &
3093 	       RDMA_CORE_CAP_IB_MAD;
3094 }
3095 
3096 /**
3097  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3098  * Management Datagrams.
3099  * @device: Device to check
3100  * @port_num: Port number to check
3101  *
3102  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3103  * datagrams with their own versions.  These OPA MADs share many but not all of
3104  * the characteristics of InfiniBand MADs.
3105  *
3106  * OPA MADs differ in the following ways:
3107  *
3108  *    1) MADs are variable size up to 2K
3109  *       IBTA defined MADs remain fixed at 256 bytes
3110  *    2) OPA SMPs must carry valid PKeys
3111  *    3) OPA SMP packets are a different format
3112  *
3113  * Return: true if the port supports OPA MAD packet formats.
3114  */
3115 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3116 {
3117 	return device->port_data[port_num].immutable.core_cap_flags &
3118 		RDMA_CORE_CAP_OPA_MAD;
3119 }
3120 
3121 /**
3122  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3123  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3124  * @device: Device to check
3125  * @port_num: Port number to check
3126  *
3127  * Each InfiniBand node is required to provide a Subnet Management Agent
3128  * that the subnet manager can access.  Prior to the fabric being fully
3129  * configured by the subnet manager, the SMA is accessed via a well known
3130  * interface called the Subnet Management Interface (SMI).  This interface
3131  * uses directed route packets to communicate with the SM to get around the
3132  * chicken and egg problem of the SM needing to know what's on the fabric
3133  * in order to configure the fabric, and needing to configure the fabric in
3134  * order to send packets to the devices on the fabric.  These directed
3135  * route packets do not need the fabric fully configured in order to reach
3136  * their destination.  The SMI is the only method allowed to send
3137  * directed route packets on an InfiniBand fabric.
3138  *
3139  * Return: true if the port provides an SMI.
3140  */
3141 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3142 {
3143 	return device->port_data[port_num].immutable.core_cap_flags &
3144 	       RDMA_CORE_CAP_IB_SMI;
3145 }
3146 
3147 /**
3148  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3149  * Communication Manager.
3150  * @device: Device to check
3151  * @port_num: Port number to check
3152  *
3153  * The InfiniBand Communication Manager is one of many pre-defined General
3154  * Service Agents (GSA) that are accessed via the General Service
3155  * Interface (GSI).  It's role is to facilitate establishment of connections
3156  * between nodes as well as other management related tasks for established
3157  * connections.
3158  *
3159  * Return: true if the port supports an IB CM (this does not guarantee that
3160  * a CM is actually running however).
3161  */
3162 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3163 {
3164 	return device->port_data[port_num].immutable.core_cap_flags &
3165 	       RDMA_CORE_CAP_IB_CM;
3166 }
3167 
3168 /**
3169  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3170  * Communication Manager.
3171  * @device: Device to check
3172  * @port_num: Port number to check
3173  *
3174  * Similar to above, but specific to iWARP connections which have a different
3175  * managment protocol than InfiniBand.
3176  *
3177  * Return: true if the port supports an iWARP CM (this does not guarantee that
3178  * a CM is actually running however).
3179  */
3180 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3181 {
3182 	return device->port_data[port_num].immutable.core_cap_flags &
3183 	       RDMA_CORE_CAP_IW_CM;
3184 }
3185 
3186 /**
3187  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3188  * Subnet Administration.
3189  * @device: Device to check
3190  * @port_num: Port number to check
3191  *
3192  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3193  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3194  * fabrics, devices should resolve routes to other hosts by contacting the
3195  * SA to query the proper route.
3196  *
3197  * Return: true if the port should act as a client to the fabric Subnet
3198  * Administration interface.  This does not imply that the SA service is
3199  * running locally.
3200  */
3201 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3202 {
3203 	return device->port_data[port_num].immutable.core_cap_flags &
3204 	       RDMA_CORE_CAP_IB_SA;
3205 }
3206 
3207 /**
3208  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3209  * Multicast.
3210  * @device: Device to check
3211  * @port_num: Port number to check
3212  *
3213  * InfiniBand multicast registration is more complex than normal IPv4 or
3214  * IPv6 multicast registration.  Each Host Channel Adapter must register
3215  * with the Subnet Manager when it wishes to join a multicast group.  It
3216  * should do so only once regardless of how many queue pairs it subscribes
3217  * to this group.  And it should leave the group only after all queue pairs
3218  * attached to the group have been detached.
3219  *
3220  * Return: true if the port must undertake the additional adminstrative
3221  * overhead of registering/unregistering with the SM and tracking of the
3222  * total number of queue pairs attached to the multicast group.
3223  */
3224 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3225 {
3226 	return rdma_cap_ib_sa(device, port_num);
3227 }
3228 
3229 /**
3230  * rdma_cap_af_ib - Check if the port of device has the capability
3231  * Native Infiniband Address.
3232  * @device: Device to check
3233  * @port_num: Port number to check
3234  *
3235  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3236  * GID.  RoCE uses a different mechanism, but still generates a GID via
3237  * a prescribed mechanism and port specific data.
3238  *
3239  * Return: true if the port uses a GID address to identify devices on the
3240  * network.
3241  */
3242 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3243 {
3244 	return device->port_data[port_num].immutable.core_cap_flags &
3245 	       RDMA_CORE_CAP_AF_IB;
3246 }
3247 
3248 /**
3249  * rdma_cap_eth_ah - Check if the port of device has the capability
3250  * Ethernet Address Handle.
3251  * @device: Device to check
3252  * @port_num: Port number to check
3253  *
3254  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3255  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3256  * port.  Normally, packet headers are generated by the sending host
3257  * adapter, but when sending connectionless datagrams, we must manually
3258  * inject the proper headers for the fabric we are communicating over.
3259  *
3260  * Return: true if we are running as a RoCE port and must force the
3261  * addition of a Global Route Header built from our Ethernet Address
3262  * Handle into our header list for connectionless packets.
3263  */
3264 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3265 {
3266 	return device->port_data[port_num].immutable.core_cap_flags &
3267 	       RDMA_CORE_CAP_ETH_AH;
3268 }
3269 
3270 /**
3271  * rdma_cap_opa_ah - Check if the port of device supports
3272  * OPA Address handles
3273  * @device: Device to check
3274  * @port_num: Port number to check
3275  *
3276  * Return: true if we are running on an OPA device which supports
3277  * the extended OPA addressing.
3278  */
3279 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3280 {
3281 	return (device->port_data[port_num].immutable.core_cap_flags &
3282 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3283 }
3284 
3285 /**
3286  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3287  *
3288  * @device: Device
3289  * @port_num: Port number
3290  *
3291  * This MAD size includes the MAD headers and MAD payload.  No other headers
3292  * are included.
3293  *
3294  * Return the max MAD size required by the Port.  Will return 0 if the port
3295  * does not support MADs
3296  */
3297 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3298 {
3299 	return device->port_data[port_num].immutable.max_mad_size;
3300 }
3301 
3302 /**
3303  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3304  * @device: Device to check
3305  * @port_num: Port number to check
3306  *
3307  * RoCE GID table mechanism manages the various GIDs for a device.
3308  *
3309  * NOTE: if allocating the port's GID table has failed, this call will still
3310  * return true, but any RoCE GID table API will fail.
3311  *
3312  * Return: true if the port uses RoCE GID table mechanism in order to manage
3313  * its GIDs.
3314  */
3315 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3316 					   u8 port_num)
3317 {
3318 	return rdma_protocol_roce(device, port_num) &&
3319 		device->ops.add_gid && device->ops.del_gid;
3320 }
3321 
3322 /*
3323  * Check if the device supports READ W/ INVALIDATE.
3324  */
3325 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3326 {
3327 	/*
3328 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3329 	 * has support for it yet.
3330 	 */
3331 	return rdma_protocol_iwarp(dev, port_num);
3332 }
3333 
3334 /**
3335  * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3336  *
3337  * @addr: address
3338  * @pgsz_bitmap: bitmap of HW supported page sizes
3339  */
3340 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3341 					    unsigned long pgsz_bitmap)
3342 {
3343 	unsigned long align;
3344 	unsigned long pgsz;
3345 
3346 	align = addr & -addr;
3347 
3348 	/* Find page bit such that addr is aligned to the highest supported
3349 	 * HW page size
3350 	 */
3351 	pgsz = pgsz_bitmap & ~(-align << 1);
3352 	if (!pgsz)
3353 		return __ffs(pgsz_bitmap);
3354 
3355 	return __fls(pgsz);
3356 }
3357 
3358 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3359 			 int state);
3360 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3361 		     struct ifla_vf_info *info);
3362 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3363 		    struct ifla_vf_stats *stats);
3364 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3365 		    struct ifla_vf_guid *node_guid,
3366 		    struct ifla_vf_guid *port_guid);
3367 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3368 		   int type);
3369 
3370 int ib_query_pkey(struct ib_device *device,
3371 		  u8 port_num, u16 index, u16 *pkey);
3372 
3373 int ib_modify_device(struct ib_device *device,
3374 		     int device_modify_mask,
3375 		     struct ib_device_modify *device_modify);
3376 
3377 int ib_modify_port(struct ib_device *device,
3378 		   u8 port_num, int port_modify_mask,
3379 		   struct ib_port_modify *port_modify);
3380 
3381 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3382 		u8 *port_num, u16 *index);
3383 
3384 int ib_find_pkey(struct ib_device *device,
3385 		 u8 port_num, u16 pkey, u16 *index);
3386 
3387 enum ib_pd_flags {
3388 	/*
3389 	 * Create a memory registration for all memory in the system and place
3390 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3391 	 * ULPs to avoid the overhead of dynamic MRs.
3392 	 *
3393 	 * This flag is generally considered unsafe and must only be used in
3394 	 * extremly trusted environments.  Every use of it will log a warning
3395 	 * in the kernel log.
3396 	 */
3397 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3398 };
3399 
3400 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3401 		const char *caller);
3402 
3403 #define ib_alloc_pd(device, flags) \
3404 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3405 
3406 /**
3407  * ib_dealloc_pd_user - Deallocate kernel/user PD
3408  * @pd: The protection domain
3409  * @udata: Valid user data or NULL for kernel objects
3410  */
3411 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3412 
3413 /**
3414  * ib_dealloc_pd - Deallocate kernel PD
3415  * @pd: The protection domain
3416  *
3417  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3418  */
3419 static inline void ib_dealloc_pd(struct ib_pd *pd)
3420 {
3421 	ib_dealloc_pd_user(pd, NULL);
3422 }
3423 
3424 enum rdma_create_ah_flags {
3425 	/* In a sleepable context */
3426 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3427 };
3428 
3429 /**
3430  * rdma_create_ah - Creates an address handle for the given address vector.
3431  * @pd: The protection domain associated with the address handle.
3432  * @ah_attr: The attributes of the address vector.
3433  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3434  *
3435  * The address handle is used to reference a local or global destination
3436  * in all UD QP post sends.
3437  */
3438 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3439 			     u32 flags);
3440 
3441 /**
3442  * rdma_create_user_ah - Creates an address handle for the given address vector.
3443  * It resolves destination mac address for ah attribute of RoCE type.
3444  * @pd: The protection domain associated with the address handle.
3445  * @ah_attr: The attributes of the address vector.
3446  * @udata: pointer to user's input output buffer information need by
3447  *         provider driver.
3448  *
3449  * It returns 0 on success and returns appropriate error code on error.
3450  * The address handle is used to reference a local or global destination
3451  * in all UD QP post sends.
3452  */
3453 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3454 				  struct rdma_ah_attr *ah_attr,
3455 				  struct ib_udata *udata);
3456 /**
3457  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3458  *   work completion.
3459  * @hdr: the L3 header to parse
3460  * @net_type: type of header to parse
3461  * @sgid: place to store source gid
3462  * @dgid: place to store destination gid
3463  */
3464 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3465 			      enum rdma_network_type net_type,
3466 			      union ib_gid *sgid, union ib_gid *dgid);
3467 
3468 /**
3469  * ib_get_rdma_header_version - Get the header version
3470  * @hdr: the L3 header to parse
3471  */
3472 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3473 
3474 /**
3475  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3476  *   work completion.
3477  * @device: Device on which the received message arrived.
3478  * @port_num: Port on which the received message arrived.
3479  * @wc: Work completion associated with the received message.
3480  * @grh: References the received global route header.  This parameter is
3481  *   ignored unless the work completion indicates that the GRH is valid.
3482  * @ah_attr: Returned attributes that can be used when creating an address
3483  *   handle for replying to the message.
3484  * When ib_init_ah_attr_from_wc() returns success,
3485  * (a) for IB link layer it optionally contains a reference to SGID attribute
3486  * when GRH is present for IB link layer.
3487  * (b) for RoCE link layer it contains a reference to SGID attribute.
3488  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3489  * attributes which are initialized using ib_init_ah_attr_from_wc().
3490  *
3491  */
3492 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3493 			    const struct ib_wc *wc, const struct ib_grh *grh,
3494 			    struct rdma_ah_attr *ah_attr);
3495 
3496 /**
3497  * ib_create_ah_from_wc - Creates an address handle associated with the
3498  *   sender of the specified work completion.
3499  * @pd: The protection domain associated with the address handle.
3500  * @wc: Work completion information associated with a received message.
3501  * @grh: References the received global route header.  This parameter is
3502  *   ignored unless the work completion indicates that the GRH is valid.
3503  * @port_num: The outbound port number to associate with the address.
3504  *
3505  * The address handle is used to reference a local or global destination
3506  * in all UD QP post sends.
3507  */
3508 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3509 				   const struct ib_grh *grh, u8 port_num);
3510 
3511 /**
3512  * rdma_modify_ah - Modifies the address vector associated with an address
3513  *   handle.
3514  * @ah: The address handle to modify.
3515  * @ah_attr: The new address vector attributes to associate with the
3516  *   address handle.
3517  */
3518 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3519 
3520 /**
3521  * rdma_query_ah - Queries the address vector associated with an address
3522  *   handle.
3523  * @ah: The address handle to query.
3524  * @ah_attr: The address vector attributes associated with the address
3525  *   handle.
3526  */
3527 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3528 
3529 enum rdma_destroy_ah_flags {
3530 	/* In a sleepable context */
3531 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3532 };
3533 
3534 /**
3535  * rdma_destroy_ah_user - Destroys an address handle.
3536  * @ah: The address handle to destroy.
3537  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3538  * @udata: Valid user data or NULL for kernel objects
3539  */
3540 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3541 
3542 /**
3543  * rdma_destroy_ah - Destroys an kernel address handle.
3544  * @ah: The address handle to destroy.
3545  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3546  *
3547  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3548  */
3549 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3550 {
3551 	return rdma_destroy_ah_user(ah, flags, NULL);
3552 }
3553 
3554 /**
3555  * ib_create_srq - Creates a SRQ associated with the specified protection
3556  *   domain.
3557  * @pd: The protection domain associated with the SRQ.
3558  * @srq_init_attr: A list of initial attributes required to create the
3559  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3560  *   the actual capabilities of the created SRQ.
3561  *
3562  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3563  * requested size of the SRQ, and set to the actual values allocated
3564  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3565  * will always be at least as large as the requested values.
3566  */
3567 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3568 			     struct ib_srq_init_attr *srq_init_attr);
3569 
3570 /**
3571  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3572  * @srq: The SRQ to modify.
3573  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3574  *   the current values of selected SRQ attributes are returned.
3575  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3576  *   are being modified.
3577  *
3578  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3579  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3580  * the number of receives queued drops below the limit.
3581  */
3582 int ib_modify_srq(struct ib_srq *srq,
3583 		  struct ib_srq_attr *srq_attr,
3584 		  enum ib_srq_attr_mask srq_attr_mask);
3585 
3586 /**
3587  * ib_query_srq - Returns the attribute list and current values for the
3588  *   specified SRQ.
3589  * @srq: The SRQ to query.
3590  * @srq_attr: The attributes of the specified SRQ.
3591  */
3592 int ib_query_srq(struct ib_srq *srq,
3593 		 struct ib_srq_attr *srq_attr);
3594 
3595 /**
3596  * ib_destroy_srq_user - Destroys the specified SRQ.
3597  * @srq: The SRQ to destroy.
3598  * @udata: Valid user data or NULL for kernel objects
3599  */
3600 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3601 
3602 /**
3603  * ib_destroy_srq - Destroys the specified kernel SRQ.
3604  * @srq: The SRQ to destroy.
3605  *
3606  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3607  */
3608 static inline int ib_destroy_srq(struct ib_srq *srq)
3609 {
3610 	return ib_destroy_srq_user(srq, NULL);
3611 }
3612 
3613 /**
3614  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3615  * @srq: The SRQ to post the work request on.
3616  * @recv_wr: A list of work requests to post on the receive queue.
3617  * @bad_recv_wr: On an immediate failure, this parameter will reference
3618  *   the work request that failed to be posted on the QP.
3619  */
3620 static inline int ib_post_srq_recv(struct ib_srq *srq,
3621 				   const struct ib_recv_wr *recv_wr,
3622 				   const struct ib_recv_wr **bad_recv_wr)
3623 {
3624 	const struct ib_recv_wr *dummy;
3625 
3626 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3627 					      bad_recv_wr ? : &dummy);
3628 }
3629 
3630 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3631 			   struct ib_qp_init_attr *qp_init_attr);
3632 
3633 /**
3634  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3635  * @qp: The QP to modify.
3636  * @attr: On input, specifies the QP attributes to modify.  On output,
3637  *   the current values of selected QP attributes are returned.
3638  * @attr_mask: A bit-mask used to specify which attributes of the QP
3639  *   are being modified.
3640  * @udata: pointer to user's input output buffer information
3641  *   are being modified.
3642  * It returns 0 on success and returns appropriate error code on error.
3643  */
3644 int ib_modify_qp_with_udata(struct ib_qp *qp,
3645 			    struct ib_qp_attr *attr,
3646 			    int attr_mask,
3647 			    struct ib_udata *udata);
3648 
3649 /**
3650  * ib_modify_qp - Modifies the attributes for the specified QP and then
3651  *   transitions the QP to the given state.
3652  * @qp: The QP to modify.
3653  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3654  *   the current values of selected QP attributes are returned.
3655  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3656  *   are being modified.
3657  */
3658 int ib_modify_qp(struct ib_qp *qp,
3659 		 struct ib_qp_attr *qp_attr,
3660 		 int qp_attr_mask);
3661 
3662 /**
3663  * ib_query_qp - Returns the attribute list and current values for the
3664  *   specified QP.
3665  * @qp: The QP to query.
3666  * @qp_attr: The attributes of the specified QP.
3667  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3668  * @qp_init_attr: Additional attributes of the selected QP.
3669  *
3670  * The qp_attr_mask may be used to limit the query to gathering only the
3671  * selected attributes.
3672  */
3673 int ib_query_qp(struct ib_qp *qp,
3674 		struct ib_qp_attr *qp_attr,
3675 		int qp_attr_mask,
3676 		struct ib_qp_init_attr *qp_init_attr);
3677 
3678 /**
3679  * ib_destroy_qp - Destroys the specified QP.
3680  * @qp: The QP to destroy.
3681  * @udata: Valid udata or NULL for kernel objects
3682  */
3683 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3684 
3685 /**
3686  * ib_destroy_qp - Destroys the specified kernel QP.
3687  * @qp: The QP to destroy.
3688  *
3689  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3690  */
3691 static inline int ib_destroy_qp(struct ib_qp *qp)
3692 {
3693 	return ib_destroy_qp_user(qp, NULL);
3694 }
3695 
3696 /**
3697  * ib_open_qp - Obtain a reference to an existing sharable QP.
3698  * @xrcd - XRC domain
3699  * @qp_open_attr: Attributes identifying the QP to open.
3700  *
3701  * Returns a reference to a sharable QP.
3702  */
3703 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3704 			 struct ib_qp_open_attr *qp_open_attr);
3705 
3706 /**
3707  * ib_close_qp - Release an external reference to a QP.
3708  * @qp: The QP handle to release
3709  *
3710  * The opened QP handle is released by the caller.  The underlying
3711  * shared QP is not destroyed until all internal references are released.
3712  */
3713 int ib_close_qp(struct ib_qp *qp);
3714 
3715 /**
3716  * ib_post_send - Posts a list of work requests to the send queue of
3717  *   the specified QP.
3718  * @qp: The QP to post the work request on.
3719  * @send_wr: A list of work requests to post on the send queue.
3720  * @bad_send_wr: On an immediate failure, this parameter will reference
3721  *   the work request that failed to be posted on the QP.
3722  *
3723  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3724  * error is returned, the QP state shall not be affected,
3725  * ib_post_send() will return an immediate error after queueing any
3726  * earlier work requests in the list.
3727  */
3728 static inline int ib_post_send(struct ib_qp *qp,
3729 			       const struct ib_send_wr *send_wr,
3730 			       const struct ib_send_wr **bad_send_wr)
3731 {
3732 	const struct ib_send_wr *dummy;
3733 
3734 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3735 }
3736 
3737 /**
3738  * ib_post_recv - Posts a list of work requests to the receive queue of
3739  *   the specified QP.
3740  * @qp: The QP to post the work request on.
3741  * @recv_wr: A list of work requests to post on the receive queue.
3742  * @bad_recv_wr: On an immediate failure, this parameter will reference
3743  *   the work request that failed to be posted on the QP.
3744  */
3745 static inline int ib_post_recv(struct ib_qp *qp,
3746 			       const struct ib_recv_wr *recv_wr,
3747 			       const struct ib_recv_wr **bad_recv_wr)
3748 {
3749 	const struct ib_recv_wr *dummy;
3750 
3751 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3752 }
3753 
3754 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3755 				 int nr_cqe, int comp_vector,
3756 				 enum ib_poll_context poll_ctx,
3757 				 const char *caller, struct ib_udata *udata);
3758 
3759 /**
3760  * ib_alloc_cq_user: Allocate kernel/user CQ
3761  * @dev: The IB device
3762  * @private: Private data attached to the CQE
3763  * @nr_cqe: Number of CQEs in the CQ
3764  * @comp_vector: Completion vector used for the IRQs
3765  * @poll_ctx: Context used for polling the CQ
3766  * @udata: Valid user data or NULL for kernel objects
3767  */
3768 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3769 					     void *private, int nr_cqe,
3770 					     int comp_vector,
3771 					     enum ib_poll_context poll_ctx,
3772 					     struct ib_udata *udata)
3773 {
3774 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3775 				  KBUILD_MODNAME, udata);
3776 }
3777 
3778 /**
3779  * ib_alloc_cq: Allocate kernel CQ
3780  * @dev: The IB device
3781  * @private: Private data attached to the CQE
3782  * @nr_cqe: Number of CQEs in the CQ
3783  * @comp_vector: Completion vector used for the IRQs
3784  * @poll_ctx: Context used for polling the CQ
3785  *
3786  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3787  */
3788 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3789 					int nr_cqe, int comp_vector,
3790 					enum ib_poll_context poll_ctx)
3791 {
3792 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3793 				NULL);
3794 }
3795 
3796 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3797 				int nr_cqe, enum ib_poll_context poll_ctx,
3798 				const char *caller);
3799 
3800 /**
3801  * ib_alloc_cq_any: Allocate kernel CQ
3802  * @dev: The IB device
3803  * @private: Private data attached to the CQE
3804  * @nr_cqe: Number of CQEs in the CQ
3805  * @poll_ctx: Context used for polling the CQ
3806  */
3807 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3808 					    void *private, int nr_cqe,
3809 					    enum ib_poll_context poll_ctx)
3810 {
3811 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3812 				 KBUILD_MODNAME);
3813 }
3814 
3815 /**
3816  * ib_free_cq_user - Free kernel/user CQ
3817  * @cq: The CQ to free
3818  * @udata: Valid user data or NULL for kernel objects
3819  */
3820 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3821 
3822 /**
3823  * ib_free_cq - Free kernel CQ
3824  * @cq: The CQ to free
3825  *
3826  * NOTE: for user cq use ib_free_cq_user with valid udata!
3827  */
3828 static inline void ib_free_cq(struct ib_cq *cq)
3829 {
3830 	ib_free_cq_user(cq, NULL);
3831 }
3832 
3833 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3834 
3835 /**
3836  * ib_create_cq - Creates a CQ on the specified device.
3837  * @device: The device on which to create the CQ.
3838  * @comp_handler: A user-specified callback that is invoked when a
3839  *   completion event occurs on the CQ.
3840  * @event_handler: A user-specified callback that is invoked when an
3841  *   asynchronous event not associated with a completion occurs on the CQ.
3842  * @cq_context: Context associated with the CQ returned to the user via
3843  *   the associated completion and event handlers.
3844  * @cq_attr: The attributes the CQ should be created upon.
3845  *
3846  * Users can examine the cq structure to determine the actual CQ size.
3847  */
3848 struct ib_cq *__ib_create_cq(struct ib_device *device,
3849 			     ib_comp_handler comp_handler,
3850 			     void (*event_handler)(struct ib_event *, void *),
3851 			     void *cq_context,
3852 			     const struct ib_cq_init_attr *cq_attr,
3853 			     const char *caller);
3854 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3855 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3856 
3857 /**
3858  * ib_resize_cq - Modifies the capacity of the CQ.
3859  * @cq: The CQ to resize.
3860  * @cqe: The minimum size of the CQ.
3861  *
3862  * Users can examine the cq structure to determine the actual CQ size.
3863  */
3864 int ib_resize_cq(struct ib_cq *cq, int cqe);
3865 
3866 /**
3867  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3868  * @cq: The CQ to modify.
3869  * @cq_count: number of CQEs that will trigger an event
3870  * @cq_period: max period of time in usec before triggering an event
3871  *
3872  */
3873 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3874 
3875 /**
3876  * ib_destroy_cq_user - Destroys the specified CQ.
3877  * @cq: The CQ to destroy.
3878  * @udata: Valid user data or NULL for kernel objects
3879  */
3880 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3881 
3882 /**
3883  * ib_destroy_cq - Destroys the specified kernel CQ.
3884  * @cq: The CQ to destroy.
3885  *
3886  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3887  */
3888 static inline void ib_destroy_cq(struct ib_cq *cq)
3889 {
3890 	ib_destroy_cq_user(cq, NULL);
3891 }
3892 
3893 /**
3894  * ib_poll_cq - poll a CQ for completion(s)
3895  * @cq:the CQ being polled
3896  * @num_entries:maximum number of completions to return
3897  * @wc:array of at least @num_entries &struct ib_wc where completions
3898  *   will be returned
3899  *
3900  * Poll a CQ for (possibly multiple) completions.  If the return value
3901  * is < 0, an error occurred.  If the return value is >= 0, it is the
3902  * number of completions returned.  If the return value is
3903  * non-negative and < num_entries, then the CQ was emptied.
3904  */
3905 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3906 			     struct ib_wc *wc)
3907 {
3908 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3909 }
3910 
3911 /**
3912  * ib_req_notify_cq - Request completion notification on a CQ.
3913  * @cq: The CQ to generate an event for.
3914  * @flags:
3915  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3916  *   to request an event on the next solicited event or next work
3917  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3918  *   may also be |ed in to request a hint about missed events, as
3919  *   described below.
3920  *
3921  * Return Value:
3922  *    < 0 means an error occurred while requesting notification
3923  *   == 0 means notification was requested successfully, and if
3924  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3925  *        were missed and it is safe to wait for another event.  In
3926  *        this case is it guaranteed that any work completions added
3927  *        to the CQ since the last CQ poll will trigger a completion
3928  *        notification event.
3929  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3930  *        in.  It means that the consumer must poll the CQ again to
3931  *        make sure it is empty to avoid missing an event because of a
3932  *        race between requesting notification and an entry being
3933  *        added to the CQ.  This return value means it is possible
3934  *        (but not guaranteed) that a work completion has been added
3935  *        to the CQ since the last poll without triggering a
3936  *        completion notification event.
3937  */
3938 static inline int ib_req_notify_cq(struct ib_cq *cq,
3939 				   enum ib_cq_notify_flags flags)
3940 {
3941 	return cq->device->ops.req_notify_cq(cq, flags);
3942 }
3943 
3944 /**
3945  * ib_req_ncomp_notif - Request completion notification when there are
3946  *   at least the specified number of unreaped completions on the CQ.
3947  * @cq: The CQ to generate an event for.
3948  * @wc_cnt: The number of unreaped completions that should be on the
3949  *   CQ before an event is generated.
3950  */
3951 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3952 {
3953 	return cq->device->ops.req_ncomp_notif ?
3954 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3955 		-ENOSYS;
3956 }
3957 
3958 /**
3959  * ib_dma_mapping_error - check a DMA addr for error
3960  * @dev: The device for which the dma_addr was created
3961  * @dma_addr: The DMA address to check
3962  */
3963 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3964 {
3965 	return dma_mapping_error(dev->dma_device, dma_addr);
3966 }
3967 
3968 /**
3969  * ib_dma_map_single - Map a kernel virtual address to DMA address
3970  * @dev: The device for which the dma_addr is to be created
3971  * @cpu_addr: The kernel virtual address
3972  * @size: The size of the region in bytes
3973  * @direction: The direction of the DMA
3974  */
3975 static inline u64 ib_dma_map_single(struct ib_device *dev,
3976 				    void *cpu_addr, size_t size,
3977 				    enum dma_data_direction direction)
3978 {
3979 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3980 }
3981 
3982 /**
3983  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3984  * @dev: The device for which the DMA address was created
3985  * @addr: The DMA address
3986  * @size: The size of the region in bytes
3987  * @direction: The direction of the DMA
3988  */
3989 static inline void ib_dma_unmap_single(struct ib_device *dev,
3990 				       u64 addr, size_t size,
3991 				       enum dma_data_direction direction)
3992 {
3993 	dma_unmap_single(dev->dma_device, addr, size, direction);
3994 }
3995 
3996 /**
3997  * ib_dma_map_page - Map a physical page to DMA address
3998  * @dev: The device for which the dma_addr is to be created
3999  * @page: The page to be mapped
4000  * @offset: The offset within the page
4001  * @size: The size of the region in bytes
4002  * @direction: The direction of the DMA
4003  */
4004 static inline u64 ib_dma_map_page(struct ib_device *dev,
4005 				  struct page *page,
4006 				  unsigned long offset,
4007 				  size_t size,
4008 					 enum dma_data_direction direction)
4009 {
4010 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4011 }
4012 
4013 /**
4014  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4015  * @dev: The device for which the DMA address was created
4016  * @addr: The DMA address
4017  * @size: The size of the region in bytes
4018  * @direction: The direction of the DMA
4019  */
4020 static inline void ib_dma_unmap_page(struct ib_device *dev,
4021 				     u64 addr, size_t size,
4022 				     enum dma_data_direction direction)
4023 {
4024 	dma_unmap_page(dev->dma_device, addr, size, direction);
4025 }
4026 
4027 /**
4028  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4029  * @dev: The device for which the DMA addresses are to be created
4030  * @sg: The array of scatter/gather entries
4031  * @nents: The number of scatter/gather entries
4032  * @direction: The direction of the DMA
4033  */
4034 static inline int ib_dma_map_sg(struct ib_device *dev,
4035 				struct scatterlist *sg, int nents,
4036 				enum dma_data_direction direction)
4037 {
4038 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4039 }
4040 
4041 /**
4042  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4043  * @dev: The device for which the DMA addresses were created
4044  * @sg: The array of scatter/gather entries
4045  * @nents: The number of scatter/gather entries
4046  * @direction: The direction of the DMA
4047  */
4048 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4049 				   struct scatterlist *sg, int nents,
4050 				   enum dma_data_direction direction)
4051 {
4052 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4053 }
4054 
4055 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4056 				      struct scatterlist *sg, int nents,
4057 				      enum dma_data_direction direction,
4058 				      unsigned long dma_attrs)
4059 {
4060 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4061 				dma_attrs);
4062 }
4063 
4064 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4065 					 struct scatterlist *sg, int nents,
4066 					 enum dma_data_direction direction,
4067 					 unsigned long dma_attrs)
4068 {
4069 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4070 }
4071 
4072 /**
4073  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4074  * @dev: The device to query
4075  *
4076  * The returned value represents a size in bytes.
4077  */
4078 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4079 {
4080 	return dma_get_max_seg_size(dev->dma_device);
4081 }
4082 
4083 /**
4084  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4085  * @dev: The device for which the DMA address was created
4086  * @addr: The DMA address
4087  * @size: The size of the region in bytes
4088  * @dir: The direction of the DMA
4089  */
4090 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4091 					      u64 addr,
4092 					      size_t size,
4093 					      enum dma_data_direction dir)
4094 {
4095 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4096 }
4097 
4098 /**
4099  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4100  * @dev: The device for which the DMA address was created
4101  * @addr: The DMA address
4102  * @size: The size of the region in bytes
4103  * @dir: The direction of the DMA
4104  */
4105 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4106 						 u64 addr,
4107 						 size_t size,
4108 						 enum dma_data_direction dir)
4109 {
4110 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4111 }
4112 
4113 /**
4114  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4115  * @dev: The device for which the DMA address is requested
4116  * @size: The size of the region to allocate in bytes
4117  * @dma_handle: A pointer for returning the DMA address of the region
4118  * @flag: memory allocator flags
4119  */
4120 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4121 					   size_t size,
4122 					   dma_addr_t *dma_handle,
4123 					   gfp_t flag)
4124 {
4125 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4126 }
4127 
4128 /**
4129  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4130  * @dev: The device for which the DMA addresses were allocated
4131  * @size: The size of the region
4132  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4133  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4134  */
4135 static inline void ib_dma_free_coherent(struct ib_device *dev,
4136 					size_t size, void *cpu_addr,
4137 					dma_addr_t dma_handle)
4138 {
4139 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4140 }
4141 
4142 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4143  * space. This function should be called when 'current' is the owning MM.
4144  */
4145 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4146 			     u64 virt_addr, int mr_access_flags);
4147 
4148 /* ib_advise_mr -  give an advice about an address range in a memory region */
4149 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4150 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4151 /**
4152  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4153  *   HCA translation table.
4154  * @mr: The memory region to deregister.
4155  * @udata: Valid user data or NULL for kernel object
4156  *
4157  * This function can fail, if the memory region has memory windows bound to it.
4158  */
4159 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4160 
4161 /**
4162  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4163  *   HCA translation table.
4164  * @mr: The memory region to deregister.
4165  *
4166  * This function can fail, if the memory region has memory windows bound to it.
4167  *
4168  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4169  */
4170 static inline int ib_dereg_mr(struct ib_mr *mr)
4171 {
4172 	return ib_dereg_mr_user(mr, NULL);
4173 }
4174 
4175 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4176 			       u32 max_num_sg, struct ib_udata *udata);
4177 
4178 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4179 					enum ib_mr_type mr_type, u32 max_num_sg)
4180 {
4181 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4182 }
4183 
4184 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4185 				    u32 max_num_data_sg,
4186 				    u32 max_num_meta_sg);
4187 
4188 /**
4189  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4190  *   R_Key and L_Key.
4191  * @mr - struct ib_mr pointer to be updated.
4192  * @newkey - new key to be used.
4193  */
4194 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4195 {
4196 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4197 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4198 }
4199 
4200 /**
4201  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4202  * for calculating a new rkey for type 2 memory windows.
4203  * @rkey - the rkey to increment.
4204  */
4205 static inline u32 ib_inc_rkey(u32 rkey)
4206 {
4207 	const u32 mask = 0x000000ff;
4208 	return ((rkey + 1) & mask) | (rkey & ~mask);
4209 }
4210 
4211 /**
4212  * ib_alloc_fmr - Allocates a unmapped fast memory region.
4213  * @pd: The protection domain associated with the unmapped region.
4214  * @mr_access_flags: Specifies the memory access rights.
4215  * @fmr_attr: Attributes of the unmapped region.
4216  *
4217  * A fast memory region must be mapped before it can be used as part of
4218  * a work request.
4219  */
4220 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4221 			    int mr_access_flags,
4222 			    struct ib_fmr_attr *fmr_attr);
4223 
4224 /**
4225  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4226  * @fmr: The fast memory region to associate with the pages.
4227  * @page_list: An array of physical pages to map to the fast memory region.
4228  * @list_len: The number of pages in page_list.
4229  * @iova: The I/O virtual address to use with the mapped region.
4230  */
4231 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4232 				  u64 *page_list, int list_len,
4233 				  u64 iova)
4234 {
4235 	return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4236 }
4237 
4238 /**
4239  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4240  * @fmr_list: A linked list of fast memory regions to unmap.
4241  */
4242 int ib_unmap_fmr(struct list_head *fmr_list);
4243 
4244 /**
4245  * ib_dealloc_fmr - Deallocates a fast memory region.
4246  * @fmr: The fast memory region to deallocate.
4247  */
4248 int ib_dealloc_fmr(struct ib_fmr *fmr);
4249 
4250 /**
4251  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4252  * @qp: QP to attach to the multicast group.  The QP must be type
4253  *   IB_QPT_UD.
4254  * @gid: Multicast group GID.
4255  * @lid: Multicast group LID in host byte order.
4256  *
4257  * In order to send and receive multicast packets, subnet
4258  * administration must have created the multicast group and configured
4259  * the fabric appropriately.  The port associated with the specified
4260  * QP must also be a member of the multicast group.
4261  */
4262 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4263 
4264 /**
4265  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4266  * @qp: QP to detach from the multicast group.
4267  * @gid: Multicast group GID.
4268  * @lid: Multicast group LID in host byte order.
4269  */
4270 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4271 
4272 /**
4273  * ib_alloc_xrcd - Allocates an XRC domain.
4274  * @device: The device on which to allocate the XRC domain.
4275  * @caller: Module name for kernel consumers
4276  */
4277 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4278 #define ib_alloc_xrcd(device) \
4279 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
4280 
4281 /**
4282  * ib_dealloc_xrcd - Deallocates an XRC domain.
4283  * @xrcd: The XRC domain to deallocate.
4284  * @udata: Valid user data or NULL for kernel object
4285  */
4286 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4287 
4288 static inline int ib_check_mr_access(int flags)
4289 {
4290 	/*
4291 	 * Local write permission is required if remote write or
4292 	 * remote atomic permission is also requested.
4293 	 */
4294 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4295 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4296 		return -EINVAL;
4297 
4298 	if (flags & ~IB_ACCESS_SUPPORTED)
4299 		return -EINVAL;
4300 
4301 	return 0;
4302 }
4303 
4304 static inline bool ib_access_writable(int access_flags)
4305 {
4306 	/*
4307 	 * We have writable memory backing the MR if any of the following
4308 	 * access flags are set.  "Local write" and "remote write" obviously
4309 	 * require write access.  "Remote atomic" can do things like fetch and
4310 	 * add, which will modify memory, and "MW bind" can change permissions
4311 	 * by binding a window.
4312 	 */
4313 	return access_flags &
4314 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4315 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4316 }
4317 
4318 /**
4319  * ib_check_mr_status: lightweight check of MR status.
4320  *     This routine may provide status checks on a selected
4321  *     ib_mr. first use is for signature status check.
4322  *
4323  * @mr: A memory region.
4324  * @check_mask: Bitmask of which checks to perform from
4325  *     ib_mr_status_check enumeration.
4326  * @mr_status: The container of relevant status checks.
4327  *     failed checks will be indicated in the status bitmask
4328  *     and the relevant info shall be in the error item.
4329  */
4330 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4331 		       struct ib_mr_status *mr_status);
4332 
4333 /**
4334  * ib_device_try_get: Hold a registration lock
4335  * device: The device to lock
4336  *
4337  * A device under an active registration lock cannot become unregistered. It
4338  * is only possible to obtain a registration lock on a device that is fully
4339  * registered, otherwise this function returns false.
4340  *
4341  * The registration lock is only necessary for actions which require the
4342  * device to still be registered. Uses that only require the device pointer to
4343  * be valid should use get_device(&ibdev->dev) to hold the memory.
4344  *
4345  */
4346 static inline bool ib_device_try_get(struct ib_device *dev)
4347 {
4348 	return refcount_inc_not_zero(&dev->refcount);
4349 }
4350 
4351 void ib_device_put(struct ib_device *device);
4352 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4353 					  enum rdma_driver_id driver_id);
4354 struct ib_device *ib_device_get_by_name(const char *name,
4355 					enum rdma_driver_id driver_id);
4356 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4357 					    u16 pkey, const union ib_gid *gid,
4358 					    const struct sockaddr *addr);
4359 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4360 			 unsigned int port);
4361 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4362 
4363 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4364 			   struct ib_wq_init_attr *init_attr);
4365 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4366 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4367 		 u32 wq_attr_mask);
4368 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4369 						 struct ib_rwq_ind_table_init_attr*
4370 						 wq_ind_table_init_attr);
4371 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4372 
4373 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4374 		 unsigned int *sg_offset, unsigned int page_size);
4375 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4376 		    int data_sg_nents, unsigned int *data_sg_offset,
4377 		    struct scatterlist *meta_sg, int meta_sg_nents,
4378 		    unsigned int *meta_sg_offset, unsigned int page_size);
4379 
4380 static inline int
4381 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4382 		  unsigned int *sg_offset, unsigned int page_size)
4383 {
4384 	int n;
4385 
4386 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4387 	mr->iova = 0;
4388 
4389 	return n;
4390 }
4391 
4392 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4393 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4394 
4395 void ib_drain_rq(struct ib_qp *qp);
4396 void ib_drain_sq(struct ib_qp *qp);
4397 void ib_drain_qp(struct ib_qp *qp);
4398 
4399 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4400 
4401 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4402 {
4403 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4404 		return attr->roce.dmac;
4405 	return NULL;
4406 }
4407 
4408 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4409 {
4410 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4411 		attr->ib.dlid = (u16)dlid;
4412 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4413 		attr->opa.dlid = dlid;
4414 }
4415 
4416 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4417 {
4418 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4419 		return attr->ib.dlid;
4420 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4421 		return attr->opa.dlid;
4422 	return 0;
4423 }
4424 
4425 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4426 {
4427 	attr->sl = sl;
4428 }
4429 
4430 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4431 {
4432 	return attr->sl;
4433 }
4434 
4435 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4436 					 u8 src_path_bits)
4437 {
4438 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4439 		attr->ib.src_path_bits = src_path_bits;
4440 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4441 		attr->opa.src_path_bits = src_path_bits;
4442 }
4443 
4444 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4445 {
4446 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4447 		return attr->ib.src_path_bits;
4448 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4449 		return attr->opa.src_path_bits;
4450 	return 0;
4451 }
4452 
4453 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4454 					bool make_grd)
4455 {
4456 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4457 		attr->opa.make_grd = make_grd;
4458 }
4459 
4460 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4461 {
4462 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4463 		return attr->opa.make_grd;
4464 	return false;
4465 }
4466 
4467 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4468 {
4469 	attr->port_num = port_num;
4470 }
4471 
4472 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4473 {
4474 	return attr->port_num;
4475 }
4476 
4477 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4478 					   u8 static_rate)
4479 {
4480 	attr->static_rate = static_rate;
4481 }
4482 
4483 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4484 {
4485 	return attr->static_rate;
4486 }
4487 
4488 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4489 					enum ib_ah_flags flag)
4490 {
4491 	attr->ah_flags = flag;
4492 }
4493 
4494 static inline enum ib_ah_flags
4495 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4496 {
4497 	return attr->ah_flags;
4498 }
4499 
4500 static inline const struct ib_global_route
4501 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4502 {
4503 	return &attr->grh;
4504 }
4505 
4506 /*To retrieve and modify the grh */
4507 static inline struct ib_global_route
4508 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4509 {
4510 	return &attr->grh;
4511 }
4512 
4513 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4514 {
4515 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4516 
4517 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4518 }
4519 
4520 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4521 					     __be64 prefix)
4522 {
4523 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4524 
4525 	grh->dgid.global.subnet_prefix = prefix;
4526 }
4527 
4528 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4529 					    __be64 if_id)
4530 {
4531 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4532 
4533 	grh->dgid.global.interface_id = if_id;
4534 }
4535 
4536 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4537 				   union ib_gid *dgid, u32 flow_label,
4538 				   u8 sgid_index, u8 hop_limit,
4539 				   u8 traffic_class)
4540 {
4541 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4542 
4543 	attr->ah_flags = IB_AH_GRH;
4544 	if (dgid)
4545 		grh->dgid = *dgid;
4546 	grh->flow_label = flow_label;
4547 	grh->sgid_index = sgid_index;
4548 	grh->hop_limit = hop_limit;
4549 	grh->traffic_class = traffic_class;
4550 	grh->sgid_attr = NULL;
4551 }
4552 
4553 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4554 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4555 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4556 			     const struct ib_gid_attr *sgid_attr);
4557 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4558 		       const struct rdma_ah_attr *src);
4559 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4560 			  const struct rdma_ah_attr *new);
4561 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4562 
4563 /**
4564  * rdma_ah_find_type - Return address handle type.
4565  *
4566  * @dev: Device to be checked
4567  * @port_num: Port number
4568  */
4569 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4570 						       u8 port_num)
4571 {
4572 	if (rdma_protocol_roce(dev, port_num))
4573 		return RDMA_AH_ATTR_TYPE_ROCE;
4574 	if (rdma_protocol_ib(dev, port_num)) {
4575 		if (rdma_cap_opa_ah(dev, port_num))
4576 			return RDMA_AH_ATTR_TYPE_OPA;
4577 		return RDMA_AH_ATTR_TYPE_IB;
4578 	}
4579 
4580 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4581 }
4582 
4583 /**
4584  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4585  *     In the current implementation the only way to get
4586  *     get the 32bit lid is from other sources for OPA.
4587  *     For IB, lids will always be 16bits so cast the
4588  *     value accordingly.
4589  *
4590  * @lid: A 32bit LID
4591  */
4592 static inline u16 ib_lid_cpu16(u32 lid)
4593 {
4594 	WARN_ON_ONCE(lid & 0xFFFF0000);
4595 	return (u16)lid;
4596 }
4597 
4598 /**
4599  * ib_lid_be16 - Return lid in 16bit BE encoding.
4600  *
4601  * @lid: A 32bit LID
4602  */
4603 static inline __be16 ib_lid_be16(u32 lid)
4604 {
4605 	WARN_ON_ONCE(lid & 0xFFFF0000);
4606 	return cpu_to_be16((u16)lid);
4607 }
4608 
4609 /**
4610  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4611  *   vector
4612  * @device:         the rdma device
4613  * @comp_vector:    index of completion vector
4614  *
4615  * Returns NULL on failure, otherwise a corresponding cpu map of the
4616  * completion vector (returns all-cpus map if the device driver doesn't
4617  * implement get_vector_affinity).
4618  */
4619 static inline const struct cpumask *
4620 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4621 {
4622 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4623 	    !device->ops.get_vector_affinity)
4624 		return NULL;
4625 
4626 	return device->ops.get_vector_affinity(device, comp_vector);
4627 
4628 }
4629 
4630 /**
4631  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4632  * and add their gids, as needed, to the relevant RoCE devices.
4633  *
4634  * @device:         the rdma device
4635  */
4636 void rdma_roce_rescan_device(struct ib_device *ibdev);
4637 
4638 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4639 
4640 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4641 
4642 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4643 				     enum rdma_netdev_t type, const char *name,
4644 				     unsigned char name_assign_type,
4645 				     void (*setup)(struct net_device *));
4646 
4647 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4648 		     enum rdma_netdev_t type, const char *name,
4649 		     unsigned char name_assign_type,
4650 		     void (*setup)(struct net_device *),
4651 		     struct net_device *netdev);
4652 
4653 /**
4654  * rdma_set_device_sysfs_group - Set device attributes group to have
4655  *				 driver specific sysfs entries at
4656  *				 for infiniband class.
4657  *
4658  * @device:	device pointer for which attributes to be created
4659  * @group:	Pointer to group which should be added when device
4660  *		is registered with sysfs.
4661  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4662  * group per device to have sysfs attributes.
4663  *
4664  * NOTE: New drivers should not make use of this API; instead new device
4665  * parameter should be exposed via netlink command. This API and mechanism
4666  * exist only for existing drivers.
4667  */
4668 static inline void
4669 rdma_set_device_sysfs_group(struct ib_device *dev,
4670 			    const struct attribute_group *group)
4671 {
4672 	dev->groups[1] = group;
4673 }
4674 
4675 /**
4676  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4677  *
4678  * @device:	device pointer for which ib_device pointer to retrieve
4679  *
4680  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4681  *
4682  */
4683 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4684 {
4685 	struct ib_core_device *coredev =
4686 		container_of(device, struct ib_core_device, dev);
4687 
4688 	return coredev->owner;
4689 }
4690 
4691 /**
4692  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4693  *			       ib_device holder structure from device pointer.
4694  *
4695  * NOTE: New drivers should not make use of this API; This API is only for
4696  * existing drivers who have exposed sysfs entries using
4697  * rdma_set_device_sysfs_group().
4698  */
4699 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4700 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4701 
4702 bool rdma_dev_access_netns(const struct ib_device *device,
4703 			   const struct net *net);
4704 #endif /* IB_VERBS_H */
4705