xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 0b26ca68)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 
46 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47 
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 
54 extern struct workqueue_struct *ib_wq;
55 extern struct workqueue_struct *ib_comp_wq;
56 extern struct workqueue_struct *ib_comp_unbound_wq;
57 
58 struct ib_ucq_object;
59 
60 __printf(3, 4) __cold
61 void ibdev_printk(const char *level, const struct ib_device *ibdev,
62 		  const char *format, ...);
63 __printf(2, 3) __cold
64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77 
78 #if defined(CONFIG_DYNAMIC_DEBUG) || \
79 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80 #define ibdev_dbg(__dev, format, args...)                       \
81 	dynamic_ibdev_dbg(__dev, format, ##args)
82 #else
83 __printf(2, 3) __cold
84 static inline
85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86 #endif
87 
88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
89 do {                                                                    \
90 	static DEFINE_RATELIMIT_STATE(_rs,                              \
91 				      DEFAULT_RATELIMIT_INTERVAL,       \
92 				      DEFAULT_RATELIMIT_BURST);         \
93 	if (__ratelimit(&_rs))                                          \
94 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
95 } while (0)
96 
97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111 
112 #if defined(CONFIG_DYNAMIC_DEBUG) || \
113 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
116 do {                                                                    \
117 	static DEFINE_RATELIMIT_STATE(_rs,                              \
118 				      DEFAULT_RATELIMIT_INTERVAL,       \
119 				      DEFAULT_RATELIMIT_BURST);         \
120 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
121 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
122 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
123 				    ##__VA_ARGS__);                     \
124 } while (0)
125 #else
126 __printf(2, 3) __cold
127 static inline
128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129 #endif
130 
131 union ib_gid {
132 	u8	raw[16];
133 	struct {
134 		__be64	subnet_prefix;
135 		__be64	interface_id;
136 	} global;
137 };
138 
139 extern union ib_gid zgid;
140 
141 enum ib_gid_type {
142 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 	IB_GID_TYPE_SIZE
146 };
147 
148 #define ROCE_V2_UDP_DPORT      4791
149 struct ib_gid_attr {
150 	struct net_device __rcu	*ndev;
151 	struct ib_device	*device;
152 	union ib_gid		gid;
153 	enum ib_gid_type	gid_type;
154 	u16			index;
155 	u8			port_num;
156 };
157 
158 enum {
159 	/* set the local administered indication */
160 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
161 };
162 
163 enum rdma_transport_type {
164 	RDMA_TRANSPORT_IB,
165 	RDMA_TRANSPORT_IWARP,
166 	RDMA_TRANSPORT_USNIC,
167 	RDMA_TRANSPORT_USNIC_UDP,
168 	RDMA_TRANSPORT_UNSPECIFIED,
169 };
170 
171 enum rdma_protocol_type {
172 	RDMA_PROTOCOL_IB,
173 	RDMA_PROTOCOL_IBOE,
174 	RDMA_PROTOCOL_IWARP,
175 	RDMA_PROTOCOL_USNIC_UDP
176 };
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(unsigned int node_type);
180 
181 enum rdma_network_type {
182 	RDMA_NETWORK_IB,
183 	RDMA_NETWORK_ROCE_V1,
184 	RDMA_NETWORK_IPV4,
185 	RDMA_NETWORK_IPV6
186 };
187 
188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189 {
190 	if (network_type == RDMA_NETWORK_IPV4 ||
191 	    network_type == RDMA_NETWORK_IPV6)
192 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 	else if (network_type == RDMA_NETWORK_ROCE_V1)
194 		return IB_GID_TYPE_ROCE;
195 	else
196 		return IB_GID_TYPE_IB;
197 }
198 
199 static inline enum rdma_network_type
200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201 {
202 	if (attr->gid_type == IB_GID_TYPE_IB)
203 		return RDMA_NETWORK_IB;
204 
205 	if (attr->gid_type == IB_GID_TYPE_ROCE)
206 		return RDMA_NETWORK_ROCE_V1;
207 
208 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 		return RDMA_NETWORK_IPV4;
210 	else
211 		return RDMA_NETWORK_IPV6;
212 }
213 
214 enum rdma_link_layer {
215 	IB_LINK_LAYER_UNSPECIFIED,
216 	IB_LINK_LAYER_INFINIBAND,
217 	IB_LINK_LAYER_ETHERNET,
218 };
219 
220 enum ib_device_cap_flags {
221 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
222 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
223 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
224 	IB_DEVICE_RAW_MULTI			= (1 << 3),
225 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
226 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
227 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
228 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
229 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
230 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
231 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
232 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
233 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
234 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
235 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
236 
237 	/*
238 	 * This device supports a per-device lkey or stag that can be
239 	 * used without performing a memory registration for the local
240 	 * memory.  Note that ULPs should never check this flag, but
241 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
242 	 * which will always contain a usable lkey.
243 	 */
244 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
245 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
246 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
247 	/*
248 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
249 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
250 	 * messages and can verify the validity of checksum for
251 	 * incoming messages.  Setting this flag implies that the
252 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
253 	 */
254 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
255 	IB_DEVICE_UD_TSO			= (1 << 19),
256 	IB_DEVICE_XRC				= (1 << 20),
257 
258 	/*
259 	 * This device supports the IB "base memory management extension",
260 	 * which includes support for fast registrations (IB_WR_REG_MR,
261 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
262 	 * also be set by any iWarp device which must support FRs to comply
263 	 * to the iWarp verbs spec.  iWarp devices also support the
264 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
265 	 * stag.
266 	 */
267 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
268 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
269 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
270 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
271 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
272 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
273 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
274 	/*
275 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
276 	 * support execution of WQEs that involve synchronization
277 	 * of I/O operations with single completion queue managed
278 	 * by hardware.
279 	 */
280 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
281 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
282 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
283 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
284 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
285 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
286 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
287 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
288 	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
289 	/* The device supports padding incoming writes to cacheline. */
290 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
291 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
292 };
293 
294 enum ib_atomic_cap {
295 	IB_ATOMIC_NONE,
296 	IB_ATOMIC_HCA,
297 	IB_ATOMIC_GLOB
298 };
299 
300 enum ib_odp_general_cap_bits {
301 	IB_ODP_SUPPORT		= 1 << 0,
302 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
303 };
304 
305 enum ib_odp_transport_cap_bits {
306 	IB_ODP_SUPPORT_SEND	= 1 << 0,
307 	IB_ODP_SUPPORT_RECV	= 1 << 1,
308 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
309 	IB_ODP_SUPPORT_READ	= 1 << 3,
310 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
311 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
312 };
313 
314 struct ib_odp_caps {
315 	uint64_t general_caps;
316 	struct {
317 		uint32_t  rc_odp_caps;
318 		uint32_t  uc_odp_caps;
319 		uint32_t  ud_odp_caps;
320 		uint32_t  xrc_odp_caps;
321 	} per_transport_caps;
322 };
323 
324 struct ib_rss_caps {
325 	/* Corresponding bit will be set if qp type from
326 	 * 'enum ib_qp_type' is supported, e.g.
327 	 * supported_qpts |= 1 << IB_QPT_UD
328 	 */
329 	u32 supported_qpts;
330 	u32 max_rwq_indirection_tables;
331 	u32 max_rwq_indirection_table_size;
332 };
333 
334 enum ib_tm_cap_flags {
335 	/*  Support tag matching with rendezvous offload for RC transport */
336 	IB_TM_CAP_RNDV_RC = 1 << 0,
337 };
338 
339 struct ib_tm_caps {
340 	/* Max size of RNDV header */
341 	u32 max_rndv_hdr_size;
342 	/* Max number of entries in tag matching list */
343 	u32 max_num_tags;
344 	/* From enum ib_tm_cap_flags */
345 	u32 flags;
346 	/* Max number of outstanding list operations */
347 	u32 max_ops;
348 	/* Max number of SGE in tag matching entry */
349 	u32 max_sge;
350 };
351 
352 struct ib_cq_init_attr {
353 	unsigned int	cqe;
354 	u32		comp_vector;
355 	u32		flags;
356 };
357 
358 enum ib_cq_attr_mask {
359 	IB_CQ_MODERATE = 1 << 0,
360 };
361 
362 struct ib_cq_caps {
363 	u16     max_cq_moderation_count;
364 	u16     max_cq_moderation_period;
365 };
366 
367 struct ib_dm_mr_attr {
368 	u64		length;
369 	u64		offset;
370 	u32		access_flags;
371 };
372 
373 struct ib_dm_alloc_attr {
374 	u64	length;
375 	u32	alignment;
376 	u32	flags;
377 };
378 
379 struct ib_device_attr {
380 	u64			fw_ver;
381 	__be64			sys_image_guid;
382 	u64			max_mr_size;
383 	u64			page_size_cap;
384 	u32			vendor_id;
385 	u32			vendor_part_id;
386 	u32			hw_ver;
387 	int			max_qp;
388 	int			max_qp_wr;
389 	u64			device_cap_flags;
390 	int			max_send_sge;
391 	int			max_recv_sge;
392 	int			max_sge_rd;
393 	int			max_cq;
394 	int			max_cqe;
395 	int			max_mr;
396 	int			max_pd;
397 	int			max_qp_rd_atom;
398 	int			max_ee_rd_atom;
399 	int			max_res_rd_atom;
400 	int			max_qp_init_rd_atom;
401 	int			max_ee_init_rd_atom;
402 	enum ib_atomic_cap	atomic_cap;
403 	enum ib_atomic_cap	masked_atomic_cap;
404 	int			max_ee;
405 	int			max_rdd;
406 	int			max_mw;
407 	int			max_raw_ipv6_qp;
408 	int			max_raw_ethy_qp;
409 	int			max_mcast_grp;
410 	int			max_mcast_qp_attach;
411 	int			max_total_mcast_qp_attach;
412 	int			max_ah;
413 	int			max_srq;
414 	int			max_srq_wr;
415 	int			max_srq_sge;
416 	unsigned int		max_fast_reg_page_list_len;
417 	unsigned int		max_pi_fast_reg_page_list_len;
418 	u16			max_pkeys;
419 	u8			local_ca_ack_delay;
420 	int			sig_prot_cap;
421 	int			sig_guard_cap;
422 	struct ib_odp_caps	odp_caps;
423 	uint64_t		timestamp_mask;
424 	uint64_t		hca_core_clock; /* in KHZ */
425 	struct ib_rss_caps	rss_caps;
426 	u32			max_wq_type_rq;
427 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
428 	struct ib_tm_caps	tm_caps;
429 	struct ib_cq_caps       cq_caps;
430 	u64			max_dm_size;
431 	/* Max entries for sgl for optimized performance per READ */
432 	u32			max_sgl_rd;
433 };
434 
435 enum ib_mtu {
436 	IB_MTU_256  = 1,
437 	IB_MTU_512  = 2,
438 	IB_MTU_1024 = 3,
439 	IB_MTU_2048 = 4,
440 	IB_MTU_4096 = 5
441 };
442 
443 enum opa_mtu {
444 	OPA_MTU_8192 = 6,
445 	OPA_MTU_10240 = 7
446 };
447 
448 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
449 {
450 	switch (mtu) {
451 	case IB_MTU_256:  return  256;
452 	case IB_MTU_512:  return  512;
453 	case IB_MTU_1024: return 1024;
454 	case IB_MTU_2048: return 2048;
455 	case IB_MTU_4096: return 4096;
456 	default: 	  return -1;
457 	}
458 }
459 
460 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
461 {
462 	if (mtu >= 4096)
463 		return IB_MTU_4096;
464 	else if (mtu >= 2048)
465 		return IB_MTU_2048;
466 	else if (mtu >= 1024)
467 		return IB_MTU_1024;
468 	else if (mtu >= 512)
469 		return IB_MTU_512;
470 	else
471 		return IB_MTU_256;
472 }
473 
474 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
475 {
476 	switch (mtu) {
477 	case OPA_MTU_8192:
478 		return 8192;
479 	case OPA_MTU_10240:
480 		return 10240;
481 	default:
482 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
483 	}
484 }
485 
486 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
487 {
488 	if (mtu >= 10240)
489 		return OPA_MTU_10240;
490 	else if (mtu >= 8192)
491 		return OPA_MTU_8192;
492 	else
493 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
494 }
495 
496 enum ib_port_state {
497 	IB_PORT_NOP		= 0,
498 	IB_PORT_DOWN		= 1,
499 	IB_PORT_INIT		= 2,
500 	IB_PORT_ARMED		= 3,
501 	IB_PORT_ACTIVE		= 4,
502 	IB_PORT_ACTIVE_DEFER	= 5
503 };
504 
505 enum ib_port_phys_state {
506 	IB_PORT_PHYS_STATE_SLEEP = 1,
507 	IB_PORT_PHYS_STATE_POLLING = 2,
508 	IB_PORT_PHYS_STATE_DISABLED = 3,
509 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
510 	IB_PORT_PHYS_STATE_LINK_UP = 5,
511 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
512 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
513 };
514 
515 enum ib_port_width {
516 	IB_WIDTH_1X	= 1,
517 	IB_WIDTH_2X	= 16,
518 	IB_WIDTH_4X	= 2,
519 	IB_WIDTH_8X	= 4,
520 	IB_WIDTH_12X	= 8
521 };
522 
523 static inline int ib_width_enum_to_int(enum ib_port_width width)
524 {
525 	switch (width) {
526 	case IB_WIDTH_1X:  return  1;
527 	case IB_WIDTH_2X:  return  2;
528 	case IB_WIDTH_4X:  return  4;
529 	case IB_WIDTH_8X:  return  8;
530 	case IB_WIDTH_12X: return 12;
531 	default: 	  return -1;
532 	}
533 }
534 
535 enum ib_port_speed {
536 	IB_SPEED_SDR	= 1,
537 	IB_SPEED_DDR	= 2,
538 	IB_SPEED_QDR	= 4,
539 	IB_SPEED_FDR10	= 8,
540 	IB_SPEED_FDR	= 16,
541 	IB_SPEED_EDR	= 32,
542 	IB_SPEED_HDR	= 64,
543 	IB_SPEED_NDR	= 128,
544 };
545 
546 /**
547  * struct rdma_hw_stats
548  * @lock - Mutex to protect parallel write access to lifespan and values
549  *    of counters, which are 64bits and not guaranteeed to be written
550  *    atomicaly on 32bits systems.
551  * @timestamp - Used by the core code to track when the last update was
552  * @lifespan - Used by the core code to determine how old the counters
553  *   should be before being updated again.  Stored in jiffies, defaults
554  *   to 10 milliseconds, drivers can override the default be specifying
555  *   their own value during their allocation routine.
556  * @name - Array of pointers to static names used for the counters in
557  *   directory.
558  * @num_counters - How many hardware counters there are.  If name is
559  *   shorter than this number, a kernel oops will result.  Driver authors
560  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
561  *   in their code to prevent this.
562  * @value - Array of u64 counters that are accessed by the sysfs code and
563  *   filled in by the drivers get_stats routine
564  */
565 struct rdma_hw_stats {
566 	struct mutex	lock; /* Protect lifespan and values[] */
567 	unsigned long	timestamp;
568 	unsigned long	lifespan;
569 	const char * const *names;
570 	int		num_counters;
571 	u64		value[];
572 };
573 
574 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
575 /**
576  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
577  *   for drivers.
578  * @names - Array of static const char *
579  * @num_counters - How many elements in array
580  * @lifespan - How many milliseconds between updates
581  */
582 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
583 		const char * const *names, int num_counters,
584 		unsigned long lifespan)
585 {
586 	struct rdma_hw_stats *stats;
587 
588 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
589 			GFP_KERNEL);
590 	if (!stats)
591 		return NULL;
592 	stats->names = names;
593 	stats->num_counters = num_counters;
594 	stats->lifespan = msecs_to_jiffies(lifespan);
595 
596 	return stats;
597 }
598 
599 
600 /* Define bits for the various functionality this port needs to be supported by
601  * the core.
602  */
603 /* Management                           0x00000FFF */
604 #define RDMA_CORE_CAP_IB_MAD            0x00000001
605 #define RDMA_CORE_CAP_IB_SMI            0x00000002
606 #define RDMA_CORE_CAP_IB_CM             0x00000004
607 #define RDMA_CORE_CAP_IW_CM             0x00000008
608 #define RDMA_CORE_CAP_IB_SA             0x00000010
609 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
610 
611 /* Address format                       0x000FF000 */
612 #define RDMA_CORE_CAP_AF_IB             0x00001000
613 #define RDMA_CORE_CAP_ETH_AH            0x00002000
614 #define RDMA_CORE_CAP_OPA_AH            0x00004000
615 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
616 
617 /* Protocol                             0xFFF00000 */
618 #define RDMA_CORE_CAP_PROT_IB           0x00100000
619 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
620 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
621 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
622 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
623 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
624 
625 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
626 					| RDMA_CORE_CAP_PROT_ROCE     \
627 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
628 
629 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
630 					| RDMA_CORE_CAP_IB_MAD \
631 					| RDMA_CORE_CAP_IB_SMI \
632 					| RDMA_CORE_CAP_IB_CM  \
633 					| RDMA_CORE_CAP_IB_SA  \
634 					| RDMA_CORE_CAP_AF_IB)
635 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
636 					| RDMA_CORE_CAP_IB_MAD  \
637 					| RDMA_CORE_CAP_IB_CM   \
638 					| RDMA_CORE_CAP_AF_IB   \
639 					| RDMA_CORE_CAP_ETH_AH)
640 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
641 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
642 					| RDMA_CORE_CAP_IB_MAD  \
643 					| RDMA_CORE_CAP_IB_CM   \
644 					| RDMA_CORE_CAP_AF_IB   \
645 					| RDMA_CORE_CAP_ETH_AH)
646 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
647 					| RDMA_CORE_CAP_IW_CM)
648 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
649 					| RDMA_CORE_CAP_OPA_MAD)
650 
651 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
652 
653 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
654 
655 struct ib_port_attr {
656 	u64			subnet_prefix;
657 	enum ib_port_state	state;
658 	enum ib_mtu		max_mtu;
659 	enum ib_mtu		active_mtu;
660 	u32                     phys_mtu;
661 	int			gid_tbl_len;
662 	unsigned int		ip_gids:1;
663 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
664 	u32			port_cap_flags;
665 	u32			max_msg_sz;
666 	u32			bad_pkey_cntr;
667 	u32			qkey_viol_cntr;
668 	u16			pkey_tbl_len;
669 	u32			sm_lid;
670 	u32			lid;
671 	u8			lmc;
672 	u8			max_vl_num;
673 	u8			sm_sl;
674 	u8			subnet_timeout;
675 	u8			init_type_reply;
676 	u8			active_width;
677 	u16			active_speed;
678 	u8                      phys_state;
679 	u16			port_cap_flags2;
680 };
681 
682 enum ib_device_modify_flags {
683 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
684 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
685 };
686 
687 #define IB_DEVICE_NODE_DESC_MAX 64
688 
689 struct ib_device_modify {
690 	u64	sys_image_guid;
691 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
692 };
693 
694 enum ib_port_modify_flags {
695 	IB_PORT_SHUTDOWN		= 1,
696 	IB_PORT_INIT_TYPE		= (1<<2),
697 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
698 	IB_PORT_OPA_MASK_CHG		= (1<<4)
699 };
700 
701 struct ib_port_modify {
702 	u32	set_port_cap_mask;
703 	u32	clr_port_cap_mask;
704 	u8	init_type;
705 };
706 
707 enum ib_event_type {
708 	IB_EVENT_CQ_ERR,
709 	IB_EVENT_QP_FATAL,
710 	IB_EVENT_QP_REQ_ERR,
711 	IB_EVENT_QP_ACCESS_ERR,
712 	IB_EVENT_COMM_EST,
713 	IB_EVENT_SQ_DRAINED,
714 	IB_EVENT_PATH_MIG,
715 	IB_EVENT_PATH_MIG_ERR,
716 	IB_EVENT_DEVICE_FATAL,
717 	IB_EVENT_PORT_ACTIVE,
718 	IB_EVENT_PORT_ERR,
719 	IB_EVENT_LID_CHANGE,
720 	IB_EVENT_PKEY_CHANGE,
721 	IB_EVENT_SM_CHANGE,
722 	IB_EVENT_SRQ_ERR,
723 	IB_EVENT_SRQ_LIMIT_REACHED,
724 	IB_EVENT_QP_LAST_WQE_REACHED,
725 	IB_EVENT_CLIENT_REREGISTER,
726 	IB_EVENT_GID_CHANGE,
727 	IB_EVENT_WQ_FATAL,
728 };
729 
730 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
731 
732 struct ib_event {
733 	struct ib_device	*device;
734 	union {
735 		struct ib_cq	*cq;
736 		struct ib_qp	*qp;
737 		struct ib_srq	*srq;
738 		struct ib_wq	*wq;
739 		u8		port_num;
740 	} element;
741 	enum ib_event_type	event;
742 };
743 
744 struct ib_event_handler {
745 	struct ib_device *device;
746 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
747 	struct list_head  list;
748 };
749 
750 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
751 	do {							\
752 		(_ptr)->device  = _device;			\
753 		(_ptr)->handler = _handler;			\
754 		INIT_LIST_HEAD(&(_ptr)->list);			\
755 	} while (0)
756 
757 struct ib_global_route {
758 	const struct ib_gid_attr *sgid_attr;
759 	union ib_gid	dgid;
760 	u32		flow_label;
761 	u8		sgid_index;
762 	u8		hop_limit;
763 	u8		traffic_class;
764 };
765 
766 struct ib_grh {
767 	__be32		version_tclass_flow;
768 	__be16		paylen;
769 	u8		next_hdr;
770 	u8		hop_limit;
771 	union ib_gid	sgid;
772 	union ib_gid	dgid;
773 };
774 
775 union rdma_network_hdr {
776 	struct ib_grh ibgrh;
777 	struct {
778 		/* The IB spec states that if it's IPv4, the header
779 		 * is located in the last 20 bytes of the header.
780 		 */
781 		u8		reserved[20];
782 		struct iphdr	roce4grh;
783 	};
784 };
785 
786 #define IB_QPN_MASK		0xFFFFFF
787 
788 enum {
789 	IB_MULTICAST_QPN = 0xffffff
790 };
791 
792 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
793 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
794 
795 enum ib_ah_flags {
796 	IB_AH_GRH	= 1
797 };
798 
799 enum ib_rate {
800 	IB_RATE_PORT_CURRENT = 0,
801 	IB_RATE_2_5_GBPS = 2,
802 	IB_RATE_5_GBPS   = 5,
803 	IB_RATE_10_GBPS  = 3,
804 	IB_RATE_20_GBPS  = 6,
805 	IB_RATE_30_GBPS  = 4,
806 	IB_RATE_40_GBPS  = 7,
807 	IB_RATE_60_GBPS  = 8,
808 	IB_RATE_80_GBPS  = 9,
809 	IB_RATE_120_GBPS = 10,
810 	IB_RATE_14_GBPS  = 11,
811 	IB_RATE_56_GBPS  = 12,
812 	IB_RATE_112_GBPS = 13,
813 	IB_RATE_168_GBPS = 14,
814 	IB_RATE_25_GBPS  = 15,
815 	IB_RATE_100_GBPS = 16,
816 	IB_RATE_200_GBPS = 17,
817 	IB_RATE_300_GBPS = 18,
818 	IB_RATE_28_GBPS  = 19,
819 	IB_RATE_50_GBPS  = 20,
820 	IB_RATE_400_GBPS = 21,
821 	IB_RATE_600_GBPS = 22,
822 };
823 
824 /**
825  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
826  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
827  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
828  * @rate: rate to convert.
829  */
830 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
831 
832 /**
833  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
834  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
835  * @rate: rate to convert.
836  */
837 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
838 
839 
840 /**
841  * enum ib_mr_type - memory region type
842  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
843  *                            normal registration
844  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
845  *                            register any arbitrary sg lists (without
846  *                            the normal mr constraints - see
847  *                            ib_map_mr_sg)
848  * @IB_MR_TYPE_DM:            memory region that is used for device
849  *                            memory registration
850  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
851  *                            application
852  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
853  *                            without address translations (VA=PA)
854  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
855  *                            data integrity operations
856  */
857 enum ib_mr_type {
858 	IB_MR_TYPE_MEM_REG,
859 	IB_MR_TYPE_SG_GAPS,
860 	IB_MR_TYPE_DM,
861 	IB_MR_TYPE_USER,
862 	IB_MR_TYPE_DMA,
863 	IB_MR_TYPE_INTEGRITY,
864 };
865 
866 enum ib_mr_status_check {
867 	IB_MR_CHECK_SIG_STATUS = 1,
868 };
869 
870 /**
871  * struct ib_mr_status - Memory region status container
872  *
873  * @fail_status: Bitmask of MR checks status. For each
874  *     failed check a corresponding status bit is set.
875  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
876  *     failure.
877  */
878 struct ib_mr_status {
879 	u32		    fail_status;
880 	struct ib_sig_err   sig_err;
881 };
882 
883 /**
884  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
885  * enum.
886  * @mult: multiple to convert.
887  */
888 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
889 
890 struct rdma_ah_init_attr {
891 	struct rdma_ah_attr *ah_attr;
892 	u32 flags;
893 	struct net_device *xmit_slave;
894 };
895 
896 enum rdma_ah_attr_type {
897 	RDMA_AH_ATTR_TYPE_UNDEFINED,
898 	RDMA_AH_ATTR_TYPE_IB,
899 	RDMA_AH_ATTR_TYPE_ROCE,
900 	RDMA_AH_ATTR_TYPE_OPA,
901 };
902 
903 struct ib_ah_attr {
904 	u16			dlid;
905 	u8			src_path_bits;
906 };
907 
908 struct roce_ah_attr {
909 	u8			dmac[ETH_ALEN];
910 };
911 
912 struct opa_ah_attr {
913 	u32			dlid;
914 	u8			src_path_bits;
915 	bool			make_grd;
916 };
917 
918 struct rdma_ah_attr {
919 	struct ib_global_route	grh;
920 	u8			sl;
921 	u8			static_rate;
922 	u8			port_num;
923 	u8			ah_flags;
924 	enum rdma_ah_attr_type type;
925 	union {
926 		struct ib_ah_attr ib;
927 		struct roce_ah_attr roce;
928 		struct opa_ah_attr opa;
929 	};
930 };
931 
932 enum ib_wc_status {
933 	IB_WC_SUCCESS,
934 	IB_WC_LOC_LEN_ERR,
935 	IB_WC_LOC_QP_OP_ERR,
936 	IB_WC_LOC_EEC_OP_ERR,
937 	IB_WC_LOC_PROT_ERR,
938 	IB_WC_WR_FLUSH_ERR,
939 	IB_WC_MW_BIND_ERR,
940 	IB_WC_BAD_RESP_ERR,
941 	IB_WC_LOC_ACCESS_ERR,
942 	IB_WC_REM_INV_REQ_ERR,
943 	IB_WC_REM_ACCESS_ERR,
944 	IB_WC_REM_OP_ERR,
945 	IB_WC_RETRY_EXC_ERR,
946 	IB_WC_RNR_RETRY_EXC_ERR,
947 	IB_WC_LOC_RDD_VIOL_ERR,
948 	IB_WC_REM_INV_RD_REQ_ERR,
949 	IB_WC_REM_ABORT_ERR,
950 	IB_WC_INV_EECN_ERR,
951 	IB_WC_INV_EEC_STATE_ERR,
952 	IB_WC_FATAL_ERR,
953 	IB_WC_RESP_TIMEOUT_ERR,
954 	IB_WC_GENERAL_ERR
955 };
956 
957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
958 
959 enum ib_wc_opcode {
960 	IB_WC_SEND = IB_UVERBS_WC_SEND,
961 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
962 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
963 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
964 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
965 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
966 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
967 	IB_WC_LSO = IB_UVERBS_WC_TSO,
968 	IB_WC_REG_MR,
969 	IB_WC_MASKED_COMP_SWAP,
970 	IB_WC_MASKED_FETCH_ADD,
971 /*
972  * Set value of IB_WC_RECV so consumers can test if a completion is a
973  * receive by testing (opcode & IB_WC_RECV).
974  */
975 	IB_WC_RECV			= 1 << 7,
976 	IB_WC_RECV_RDMA_WITH_IMM
977 };
978 
979 enum ib_wc_flags {
980 	IB_WC_GRH		= 1,
981 	IB_WC_WITH_IMM		= (1<<1),
982 	IB_WC_WITH_INVALIDATE	= (1<<2),
983 	IB_WC_IP_CSUM_OK	= (1<<3),
984 	IB_WC_WITH_SMAC		= (1<<4),
985 	IB_WC_WITH_VLAN		= (1<<5),
986 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
987 };
988 
989 struct ib_wc {
990 	union {
991 		u64		wr_id;
992 		struct ib_cqe	*wr_cqe;
993 	};
994 	enum ib_wc_status	status;
995 	enum ib_wc_opcode	opcode;
996 	u32			vendor_err;
997 	u32			byte_len;
998 	struct ib_qp	       *qp;
999 	union {
1000 		__be32		imm_data;
1001 		u32		invalidate_rkey;
1002 	} ex;
1003 	u32			src_qp;
1004 	u32			slid;
1005 	int			wc_flags;
1006 	u16			pkey_index;
1007 	u8			sl;
1008 	u8			dlid_path_bits;
1009 	u8			port_num;	/* valid only for DR SMPs on switches */
1010 	u8			smac[ETH_ALEN];
1011 	u16			vlan_id;
1012 	u8			network_hdr_type;
1013 };
1014 
1015 enum ib_cq_notify_flags {
1016 	IB_CQ_SOLICITED			= 1 << 0,
1017 	IB_CQ_NEXT_COMP			= 1 << 1,
1018 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1019 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1020 };
1021 
1022 enum ib_srq_type {
1023 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1024 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1025 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1026 };
1027 
1028 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1029 {
1030 	return srq_type == IB_SRQT_XRC ||
1031 	       srq_type == IB_SRQT_TM;
1032 }
1033 
1034 enum ib_srq_attr_mask {
1035 	IB_SRQ_MAX_WR	= 1 << 0,
1036 	IB_SRQ_LIMIT	= 1 << 1,
1037 };
1038 
1039 struct ib_srq_attr {
1040 	u32	max_wr;
1041 	u32	max_sge;
1042 	u32	srq_limit;
1043 };
1044 
1045 struct ib_srq_init_attr {
1046 	void		      (*event_handler)(struct ib_event *, void *);
1047 	void		       *srq_context;
1048 	struct ib_srq_attr	attr;
1049 	enum ib_srq_type	srq_type;
1050 
1051 	struct {
1052 		struct ib_cq   *cq;
1053 		union {
1054 			struct {
1055 				struct ib_xrcd *xrcd;
1056 			} xrc;
1057 
1058 			struct {
1059 				u32		max_num_tags;
1060 			} tag_matching;
1061 		};
1062 	} ext;
1063 };
1064 
1065 struct ib_qp_cap {
1066 	u32	max_send_wr;
1067 	u32	max_recv_wr;
1068 	u32	max_send_sge;
1069 	u32	max_recv_sge;
1070 	u32	max_inline_data;
1071 
1072 	/*
1073 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1074 	 * ib_create_qp() will calculate the right amount of neededed WRs
1075 	 * and MRs based on this.
1076 	 */
1077 	u32	max_rdma_ctxs;
1078 };
1079 
1080 enum ib_sig_type {
1081 	IB_SIGNAL_ALL_WR,
1082 	IB_SIGNAL_REQ_WR
1083 };
1084 
1085 enum ib_qp_type {
1086 	/*
1087 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1088 	 * here (and in that order) since the MAD layer uses them as
1089 	 * indices into a 2-entry table.
1090 	 */
1091 	IB_QPT_SMI,
1092 	IB_QPT_GSI,
1093 
1094 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1095 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1096 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1097 	IB_QPT_RAW_IPV6,
1098 	IB_QPT_RAW_ETHERTYPE,
1099 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1100 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1101 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1102 	IB_QPT_MAX,
1103 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1104 	/* Reserve a range for qp types internal to the low level driver.
1105 	 * These qp types will not be visible at the IB core layer, so the
1106 	 * IB_QPT_MAX usages should not be affected in the core layer
1107 	 */
1108 	IB_QPT_RESERVED1 = 0x1000,
1109 	IB_QPT_RESERVED2,
1110 	IB_QPT_RESERVED3,
1111 	IB_QPT_RESERVED4,
1112 	IB_QPT_RESERVED5,
1113 	IB_QPT_RESERVED6,
1114 	IB_QPT_RESERVED7,
1115 	IB_QPT_RESERVED8,
1116 	IB_QPT_RESERVED9,
1117 	IB_QPT_RESERVED10,
1118 };
1119 
1120 enum ib_qp_create_flags {
1121 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1122 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1123 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1124 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1125 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1126 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1127 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1128 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1129 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1130 	IB_QP_CREATE_SCATTER_FCS		=
1131 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1132 	IB_QP_CREATE_CVLAN_STRIPPING		=
1133 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1134 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1135 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1136 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1137 	/* reserve bits 26-31 for low level drivers' internal use */
1138 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1139 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1140 };
1141 
1142 /*
1143  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1144  * callback to destroy the passed in QP.
1145  */
1146 
1147 struct ib_qp_init_attr {
1148 	/* Consumer's event_handler callback must not block */
1149 	void                  (*event_handler)(struct ib_event *, void *);
1150 
1151 	void		       *qp_context;
1152 	struct ib_cq	       *send_cq;
1153 	struct ib_cq	       *recv_cq;
1154 	struct ib_srq	       *srq;
1155 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1156 	struct ib_qp_cap	cap;
1157 	enum ib_sig_type	sq_sig_type;
1158 	enum ib_qp_type		qp_type;
1159 	u32			create_flags;
1160 
1161 	/*
1162 	 * Only needed for special QP types, or when using the RW API.
1163 	 */
1164 	u8			port_num;
1165 	struct ib_rwq_ind_table *rwq_ind_tbl;
1166 	u32			source_qpn;
1167 };
1168 
1169 struct ib_qp_open_attr {
1170 	void                  (*event_handler)(struct ib_event *, void *);
1171 	void		       *qp_context;
1172 	u32			qp_num;
1173 	enum ib_qp_type		qp_type;
1174 };
1175 
1176 enum ib_rnr_timeout {
1177 	IB_RNR_TIMER_655_36 =  0,
1178 	IB_RNR_TIMER_000_01 =  1,
1179 	IB_RNR_TIMER_000_02 =  2,
1180 	IB_RNR_TIMER_000_03 =  3,
1181 	IB_RNR_TIMER_000_04 =  4,
1182 	IB_RNR_TIMER_000_06 =  5,
1183 	IB_RNR_TIMER_000_08 =  6,
1184 	IB_RNR_TIMER_000_12 =  7,
1185 	IB_RNR_TIMER_000_16 =  8,
1186 	IB_RNR_TIMER_000_24 =  9,
1187 	IB_RNR_TIMER_000_32 = 10,
1188 	IB_RNR_TIMER_000_48 = 11,
1189 	IB_RNR_TIMER_000_64 = 12,
1190 	IB_RNR_TIMER_000_96 = 13,
1191 	IB_RNR_TIMER_001_28 = 14,
1192 	IB_RNR_TIMER_001_92 = 15,
1193 	IB_RNR_TIMER_002_56 = 16,
1194 	IB_RNR_TIMER_003_84 = 17,
1195 	IB_RNR_TIMER_005_12 = 18,
1196 	IB_RNR_TIMER_007_68 = 19,
1197 	IB_RNR_TIMER_010_24 = 20,
1198 	IB_RNR_TIMER_015_36 = 21,
1199 	IB_RNR_TIMER_020_48 = 22,
1200 	IB_RNR_TIMER_030_72 = 23,
1201 	IB_RNR_TIMER_040_96 = 24,
1202 	IB_RNR_TIMER_061_44 = 25,
1203 	IB_RNR_TIMER_081_92 = 26,
1204 	IB_RNR_TIMER_122_88 = 27,
1205 	IB_RNR_TIMER_163_84 = 28,
1206 	IB_RNR_TIMER_245_76 = 29,
1207 	IB_RNR_TIMER_327_68 = 30,
1208 	IB_RNR_TIMER_491_52 = 31
1209 };
1210 
1211 enum ib_qp_attr_mask {
1212 	IB_QP_STATE			= 1,
1213 	IB_QP_CUR_STATE			= (1<<1),
1214 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1215 	IB_QP_ACCESS_FLAGS		= (1<<3),
1216 	IB_QP_PKEY_INDEX		= (1<<4),
1217 	IB_QP_PORT			= (1<<5),
1218 	IB_QP_QKEY			= (1<<6),
1219 	IB_QP_AV			= (1<<7),
1220 	IB_QP_PATH_MTU			= (1<<8),
1221 	IB_QP_TIMEOUT			= (1<<9),
1222 	IB_QP_RETRY_CNT			= (1<<10),
1223 	IB_QP_RNR_RETRY			= (1<<11),
1224 	IB_QP_RQ_PSN			= (1<<12),
1225 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1226 	IB_QP_ALT_PATH			= (1<<14),
1227 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1228 	IB_QP_SQ_PSN			= (1<<16),
1229 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1230 	IB_QP_PATH_MIG_STATE		= (1<<18),
1231 	IB_QP_CAP			= (1<<19),
1232 	IB_QP_DEST_QPN			= (1<<20),
1233 	IB_QP_RESERVED1			= (1<<21),
1234 	IB_QP_RESERVED2			= (1<<22),
1235 	IB_QP_RESERVED3			= (1<<23),
1236 	IB_QP_RESERVED4			= (1<<24),
1237 	IB_QP_RATE_LIMIT		= (1<<25),
1238 
1239 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1240 };
1241 
1242 enum ib_qp_state {
1243 	IB_QPS_RESET,
1244 	IB_QPS_INIT,
1245 	IB_QPS_RTR,
1246 	IB_QPS_RTS,
1247 	IB_QPS_SQD,
1248 	IB_QPS_SQE,
1249 	IB_QPS_ERR
1250 };
1251 
1252 enum ib_mig_state {
1253 	IB_MIG_MIGRATED,
1254 	IB_MIG_REARM,
1255 	IB_MIG_ARMED
1256 };
1257 
1258 enum ib_mw_type {
1259 	IB_MW_TYPE_1 = 1,
1260 	IB_MW_TYPE_2 = 2
1261 };
1262 
1263 struct ib_qp_attr {
1264 	enum ib_qp_state	qp_state;
1265 	enum ib_qp_state	cur_qp_state;
1266 	enum ib_mtu		path_mtu;
1267 	enum ib_mig_state	path_mig_state;
1268 	u32			qkey;
1269 	u32			rq_psn;
1270 	u32			sq_psn;
1271 	u32			dest_qp_num;
1272 	int			qp_access_flags;
1273 	struct ib_qp_cap	cap;
1274 	struct rdma_ah_attr	ah_attr;
1275 	struct rdma_ah_attr	alt_ah_attr;
1276 	u16			pkey_index;
1277 	u16			alt_pkey_index;
1278 	u8			en_sqd_async_notify;
1279 	u8			sq_draining;
1280 	u8			max_rd_atomic;
1281 	u8			max_dest_rd_atomic;
1282 	u8			min_rnr_timer;
1283 	u8			port_num;
1284 	u8			timeout;
1285 	u8			retry_cnt;
1286 	u8			rnr_retry;
1287 	u8			alt_port_num;
1288 	u8			alt_timeout;
1289 	u32			rate_limit;
1290 	struct net_device	*xmit_slave;
1291 };
1292 
1293 enum ib_wr_opcode {
1294 	/* These are shared with userspace */
1295 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1296 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1297 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1298 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1299 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1300 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1301 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1302 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1303 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1304 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1305 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1306 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1307 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1308 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1309 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1310 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1311 
1312 	/* These are kernel only and can not be issued by userspace */
1313 	IB_WR_REG_MR = 0x20,
1314 	IB_WR_REG_MR_INTEGRITY,
1315 
1316 	/* reserve values for low level drivers' internal use.
1317 	 * These values will not be used at all in the ib core layer.
1318 	 */
1319 	IB_WR_RESERVED1 = 0xf0,
1320 	IB_WR_RESERVED2,
1321 	IB_WR_RESERVED3,
1322 	IB_WR_RESERVED4,
1323 	IB_WR_RESERVED5,
1324 	IB_WR_RESERVED6,
1325 	IB_WR_RESERVED7,
1326 	IB_WR_RESERVED8,
1327 	IB_WR_RESERVED9,
1328 	IB_WR_RESERVED10,
1329 };
1330 
1331 enum ib_send_flags {
1332 	IB_SEND_FENCE		= 1,
1333 	IB_SEND_SIGNALED	= (1<<1),
1334 	IB_SEND_SOLICITED	= (1<<2),
1335 	IB_SEND_INLINE		= (1<<3),
1336 	IB_SEND_IP_CSUM		= (1<<4),
1337 
1338 	/* reserve bits 26-31 for low level drivers' internal use */
1339 	IB_SEND_RESERVED_START	= (1 << 26),
1340 	IB_SEND_RESERVED_END	= (1 << 31),
1341 };
1342 
1343 struct ib_sge {
1344 	u64	addr;
1345 	u32	length;
1346 	u32	lkey;
1347 };
1348 
1349 struct ib_cqe {
1350 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1351 };
1352 
1353 struct ib_send_wr {
1354 	struct ib_send_wr      *next;
1355 	union {
1356 		u64		wr_id;
1357 		struct ib_cqe	*wr_cqe;
1358 	};
1359 	struct ib_sge	       *sg_list;
1360 	int			num_sge;
1361 	enum ib_wr_opcode	opcode;
1362 	int			send_flags;
1363 	union {
1364 		__be32		imm_data;
1365 		u32		invalidate_rkey;
1366 	} ex;
1367 };
1368 
1369 struct ib_rdma_wr {
1370 	struct ib_send_wr	wr;
1371 	u64			remote_addr;
1372 	u32			rkey;
1373 };
1374 
1375 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1376 {
1377 	return container_of(wr, struct ib_rdma_wr, wr);
1378 }
1379 
1380 struct ib_atomic_wr {
1381 	struct ib_send_wr	wr;
1382 	u64			remote_addr;
1383 	u64			compare_add;
1384 	u64			swap;
1385 	u64			compare_add_mask;
1386 	u64			swap_mask;
1387 	u32			rkey;
1388 };
1389 
1390 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1391 {
1392 	return container_of(wr, struct ib_atomic_wr, wr);
1393 }
1394 
1395 struct ib_ud_wr {
1396 	struct ib_send_wr	wr;
1397 	struct ib_ah		*ah;
1398 	void			*header;
1399 	int			hlen;
1400 	int			mss;
1401 	u32			remote_qpn;
1402 	u32			remote_qkey;
1403 	u16			pkey_index; /* valid for GSI only */
1404 	u8			port_num;   /* valid for DR SMPs on switch only */
1405 };
1406 
1407 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1408 {
1409 	return container_of(wr, struct ib_ud_wr, wr);
1410 }
1411 
1412 struct ib_reg_wr {
1413 	struct ib_send_wr	wr;
1414 	struct ib_mr		*mr;
1415 	u32			key;
1416 	int			access;
1417 };
1418 
1419 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1420 {
1421 	return container_of(wr, struct ib_reg_wr, wr);
1422 }
1423 
1424 struct ib_recv_wr {
1425 	struct ib_recv_wr      *next;
1426 	union {
1427 		u64		wr_id;
1428 		struct ib_cqe	*wr_cqe;
1429 	};
1430 	struct ib_sge	       *sg_list;
1431 	int			num_sge;
1432 };
1433 
1434 enum ib_access_flags {
1435 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1436 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1437 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1438 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1439 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1440 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1441 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1442 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1443 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1444 
1445 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1446 	IB_ACCESS_SUPPORTED =
1447 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1448 };
1449 
1450 /*
1451  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1452  * are hidden here instead of a uapi header!
1453  */
1454 enum ib_mr_rereg_flags {
1455 	IB_MR_REREG_TRANS	= 1,
1456 	IB_MR_REREG_PD		= (1<<1),
1457 	IB_MR_REREG_ACCESS	= (1<<2),
1458 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1459 };
1460 
1461 struct ib_umem;
1462 
1463 enum rdma_remove_reason {
1464 	/*
1465 	 * Userspace requested uobject deletion or initial try
1466 	 * to remove uobject via cleanup. Call could fail
1467 	 */
1468 	RDMA_REMOVE_DESTROY,
1469 	/* Context deletion. This call should delete the actual object itself */
1470 	RDMA_REMOVE_CLOSE,
1471 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1472 	RDMA_REMOVE_DRIVER_REMOVE,
1473 	/* uobj is being cleaned-up before being committed */
1474 	RDMA_REMOVE_ABORT,
1475 	/* The driver failed to destroy the uobject and is being disconnected */
1476 	RDMA_REMOVE_DRIVER_FAILURE,
1477 };
1478 
1479 struct ib_rdmacg_object {
1480 #ifdef CONFIG_CGROUP_RDMA
1481 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1482 #endif
1483 };
1484 
1485 struct ib_ucontext {
1486 	struct ib_device       *device;
1487 	struct ib_uverbs_file  *ufile;
1488 
1489 	struct ib_rdmacg_object	cg_obj;
1490 	/*
1491 	 * Implementation details of the RDMA core, don't use in drivers:
1492 	 */
1493 	struct rdma_restrack_entry res;
1494 	struct xarray mmap_xa;
1495 };
1496 
1497 struct ib_uobject {
1498 	u64			user_handle;	/* handle given to us by userspace */
1499 	/* ufile & ucontext owning this object */
1500 	struct ib_uverbs_file  *ufile;
1501 	/* FIXME, save memory: ufile->context == context */
1502 	struct ib_ucontext     *context;	/* associated user context */
1503 	void		       *object;		/* containing object */
1504 	struct list_head	list;		/* link to context's list */
1505 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1506 	int			id;		/* index into kernel idr */
1507 	struct kref		ref;
1508 	atomic_t		usecnt;		/* protects exclusive access */
1509 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1510 
1511 	const struct uverbs_api_object *uapi_object;
1512 };
1513 
1514 struct ib_udata {
1515 	const void __user *inbuf;
1516 	void __user *outbuf;
1517 	size_t       inlen;
1518 	size_t       outlen;
1519 };
1520 
1521 struct ib_pd {
1522 	u32			local_dma_lkey;
1523 	u32			flags;
1524 	struct ib_device       *device;
1525 	struct ib_uobject      *uobject;
1526 	atomic_t          	usecnt; /* count all resources */
1527 
1528 	u32			unsafe_global_rkey;
1529 
1530 	/*
1531 	 * Implementation details of the RDMA core, don't use in drivers:
1532 	 */
1533 	struct ib_mr	       *__internal_mr;
1534 	struct rdma_restrack_entry res;
1535 };
1536 
1537 struct ib_xrcd {
1538 	struct ib_device       *device;
1539 	atomic_t		usecnt; /* count all exposed resources */
1540 	struct inode	       *inode;
1541 	struct rw_semaphore	tgt_qps_rwsem;
1542 	struct xarray		tgt_qps;
1543 };
1544 
1545 struct ib_ah {
1546 	struct ib_device	*device;
1547 	struct ib_pd		*pd;
1548 	struct ib_uobject	*uobject;
1549 	const struct ib_gid_attr *sgid_attr;
1550 	enum rdma_ah_attr_type	type;
1551 };
1552 
1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1554 
1555 enum ib_poll_context {
1556 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1557 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1558 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1559 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1560 
1561 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1562 };
1563 
1564 struct ib_cq {
1565 	struct ib_device       *device;
1566 	struct ib_ucq_object   *uobject;
1567 	ib_comp_handler   	comp_handler;
1568 	void                  (*event_handler)(struct ib_event *, void *);
1569 	void                   *cq_context;
1570 	int               	cqe;
1571 	unsigned int		cqe_used;
1572 	atomic_t          	usecnt; /* count number of work queues */
1573 	enum ib_poll_context	poll_ctx;
1574 	struct ib_wc		*wc;
1575 	struct list_head        pool_entry;
1576 	union {
1577 		struct irq_poll		iop;
1578 		struct work_struct	work;
1579 	};
1580 	struct workqueue_struct *comp_wq;
1581 	struct dim *dim;
1582 
1583 	/* updated only by trace points */
1584 	ktime_t timestamp;
1585 	u8 interrupt:1;
1586 	u8 shared:1;
1587 	unsigned int comp_vector;
1588 
1589 	/*
1590 	 * Implementation details of the RDMA core, don't use in drivers:
1591 	 */
1592 	struct rdma_restrack_entry res;
1593 };
1594 
1595 struct ib_srq {
1596 	struct ib_device       *device;
1597 	struct ib_pd	       *pd;
1598 	struct ib_usrq_object  *uobject;
1599 	void		      (*event_handler)(struct ib_event *, void *);
1600 	void		       *srq_context;
1601 	enum ib_srq_type	srq_type;
1602 	atomic_t		usecnt;
1603 
1604 	struct {
1605 		struct ib_cq   *cq;
1606 		union {
1607 			struct {
1608 				struct ib_xrcd *xrcd;
1609 				u32		srq_num;
1610 			} xrc;
1611 		};
1612 	} ext;
1613 };
1614 
1615 enum ib_raw_packet_caps {
1616 	/* Strip cvlan from incoming packet and report it in the matching work
1617 	 * completion is supported.
1618 	 */
1619 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1620 	/* Scatter FCS field of an incoming packet to host memory is supported.
1621 	 */
1622 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1623 	/* Checksum offloads are supported (for both send and receive). */
1624 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1625 	/* When a packet is received for an RQ with no receive WQEs, the
1626 	 * packet processing is delayed.
1627 	 */
1628 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1629 };
1630 
1631 enum ib_wq_type {
1632 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1633 };
1634 
1635 enum ib_wq_state {
1636 	IB_WQS_RESET,
1637 	IB_WQS_RDY,
1638 	IB_WQS_ERR
1639 };
1640 
1641 struct ib_wq {
1642 	struct ib_device       *device;
1643 	struct ib_uwq_object   *uobject;
1644 	void		    *wq_context;
1645 	void		    (*event_handler)(struct ib_event *, void *);
1646 	struct ib_pd	       *pd;
1647 	struct ib_cq	       *cq;
1648 	u32		wq_num;
1649 	enum ib_wq_state       state;
1650 	enum ib_wq_type	wq_type;
1651 	atomic_t		usecnt;
1652 };
1653 
1654 enum ib_wq_flags {
1655 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1656 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1657 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1658 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1659 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1660 };
1661 
1662 struct ib_wq_init_attr {
1663 	void		       *wq_context;
1664 	enum ib_wq_type	wq_type;
1665 	u32		max_wr;
1666 	u32		max_sge;
1667 	struct	ib_cq	       *cq;
1668 	void		    (*event_handler)(struct ib_event *, void *);
1669 	u32		create_flags; /* Use enum ib_wq_flags */
1670 };
1671 
1672 enum ib_wq_attr_mask {
1673 	IB_WQ_STATE		= 1 << 0,
1674 	IB_WQ_CUR_STATE		= 1 << 1,
1675 	IB_WQ_FLAGS		= 1 << 2,
1676 };
1677 
1678 struct ib_wq_attr {
1679 	enum	ib_wq_state	wq_state;
1680 	enum	ib_wq_state	curr_wq_state;
1681 	u32			flags; /* Use enum ib_wq_flags */
1682 	u32			flags_mask; /* Use enum ib_wq_flags */
1683 };
1684 
1685 struct ib_rwq_ind_table {
1686 	struct ib_device	*device;
1687 	struct ib_uobject      *uobject;
1688 	atomic_t		usecnt;
1689 	u32		ind_tbl_num;
1690 	u32		log_ind_tbl_size;
1691 	struct ib_wq	**ind_tbl;
1692 };
1693 
1694 struct ib_rwq_ind_table_init_attr {
1695 	u32		log_ind_tbl_size;
1696 	/* Each entry is a pointer to Receive Work Queue */
1697 	struct ib_wq	**ind_tbl;
1698 };
1699 
1700 enum port_pkey_state {
1701 	IB_PORT_PKEY_NOT_VALID = 0,
1702 	IB_PORT_PKEY_VALID = 1,
1703 	IB_PORT_PKEY_LISTED = 2,
1704 };
1705 
1706 struct ib_qp_security;
1707 
1708 struct ib_port_pkey {
1709 	enum port_pkey_state	state;
1710 	u16			pkey_index;
1711 	u8			port_num;
1712 	struct list_head	qp_list;
1713 	struct list_head	to_error_list;
1714 	struct ib_qp_security  *sec;
1715 };
1716 
1717 struct ib_ports_pkeys {
1718 	struct ib_port_pkey	main;
1719 	struct ib_port_pkey	alt;
1720 };
1721 
1722 struct ib_qp_security {
1723 	struct ib_qp	       *qp;
1724 	struct ib_device       *dev;
1725 	/* Hold this mutex when changing port and pkey settings. */
1726 	struct mutex		mutex;
1727 	struct ib_ports_pkeys  *ports_pkeys;
1728 	/* A list of all open shared QP handles.  Required to enforce security
1729 	 * properly for all users of a shared QP.
1730 	 */
1731 	struct list_head        shared_qp_list;
1732 	void                   *security;
1733 	bool			destroying;
1734 	atomic_t		error_list_count;
1735 	struct completion	error_complete;
1736 	int			error_comps_pending;
1737 };
1738 
1739 /*
1740  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1741  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1742  */
1743 struct ib_qp {
1744 	struct ib_device       *device;
1745 	struct ib_pd	       *pd;
1746 	struct ib_cq	       *send_cq;
1747 	struct ib_cq	       *recv_cq;
1748 	spinlock_t		mr_lock;
1749 	int			mrs_used;
1750 	struct list_head	rdma_mrs;
1751 	struct list_head	sig_mrs;
1752 	struct ib_srq	       *srq;
1753 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1754 	struct list_head	xrcd_list;
1755 
1756 	/* count times opened, mcast attaches, flow attaches */
1757 	atomic_t		usecnt;
1758 	struct list_head	open_list;
1759 	struct ib_qp           *real_qp;
1760 	struct ib_uqp_object   *uobject;
1761 	void                  (*event_handler)(struct ib_event *, void *);
1762 	void		       *qp_context;
1763 	/* sgid_attrs associated with the AV's */
1764 	const struct ib_gid_attr *av_sgid_attr;
1765 	const struct ib_gid_attr *alt_path_sgid_attr;
1766 	u32			qp_num;
1767 	u32			max_write_sge;
1768 	u32			max_read_sge;
1769 	enum ib_qp_type		qp_type;
1770 	struct ib_rwq_ind_table *rwq_ind_tbl;
1771 	struct ib_qp_security  *qp_sec;
1772 	u8			port;
1773 
1774 	bool			integrity_en;
1775 	/*
1776 	 * Implementation details of the RDMA core, don't use in drivers:
1777 	 */
1778 	struct rdma_restrack_entry     res;
1779 
1780 	/* The counter the qp is bind to */
1781 	struct rdma_counter    *counter;
1782 };
1783 
1784 struct ib_dm {
1785 	struct ib_device  *device;
1786 	u32		   length;
1787 	u32		   flags;
1788 	struct ib_uobject *uobject;
1789 	atomic_t	   usecnt;
1790 };
1791 
1792 struct ib_mr {
1793 	struct ib_device  *device;
1794 	struct ib_pd	  *pd;
1795 	u32		   lkey;
1796 	u32		   rkey;
1797 	u64		   iova;
1798 	u64		   length;
1799 	unsigned int	   page_size;
1800 	enum ib_mr_type	   type;
1801 	bool		   need_inval;
1802 	union {
1803 		struct ib_uobject	*uobject;	/* user */
1804 		struct list_head	qp_entry;	/* FR */
1805 	};
1806 
1807 	struct ib_dm      *dm;
1808 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1809 	/*
1810 	 * Implementation details of the RDMA core, don't use in drivers:
1811 	 */
1812 	struct rdma_restrack_entry res;
1813 };
1814 
1815 struct ib_mw {
1816 	struct ib_device	*device;
1817 	struct ib_pd		*pd;
1818 	struct ib_uobject	*uobject;
1819 	u32			rkey;
1820 	enum ib_mw_type         type;
1821 };
1822 
1823 /* Supported steering options */
1824 enum ib_flow_attr_type {
1825 	/* steering according to rule specifications */
1826 	IB_FLOW_ATTR_NORMAL		= 0x0,
1827 	/* default unicast and multicast rule -
1828 	 * receive all Eth traffic which isn't steered to any QP
1829 	 */
1830 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1831 	/* default multicast rule -
1832 	 * receive all Eth multicast traffic which isn't steered to any QP
1833 	 */
1834 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1835 	/* sniffer rule - receive all port traffic */
1836 	IB_FLOW_ATTR_SNIFFER		= 0x3
1837 };
1838 
1839 /* Supported steering header types */
1840 enum ib_flow_spec_type {
1841 	/* L2 headers*/
1842 	IB_FLOW_SPEC_ETH		= 0x20,
1843 	IB_FLOW_SPEC_IB			= 0x22,
1844 	/* L3 header*/
1845 	IB_FLOW_SPEC_IPV4		= 0x30,
1846 	IB_FLOW_SPEC_IPV6		= 0x31,
1847 	IB_FLOW_SPEC_ESP                = 0x34,
1848 	/* L4 headers*/
1849 	IB_FLOW_SPEC_TCP		= 0x40,
1850 	IB_FLOW_SPEC_UDP		= 0x41,
1851 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1852 	IB_FLOW_SPEC_GRE		= 0x51,
1853 	IB_FLOW_SPEC_MPLS		= 0x60,
1854 	IB_FLOW_SPEC_INNER		= 0x100,
1855 	/* Actions */
1856 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1857 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1858 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1859 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1860 };
1861 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1862 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1863 
1864 enum ib_flow_flags {
1865 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1866 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1867 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1868 };
1869 
1870 struct ib_flow_eth_filter {
1871 	u8	dst_mac[6];
1872 	u8	src_mac[6];
1873 	__be16	ether_type;
1874 	__be16	vlan_tag;
1875 	/* Must be last */
1876 	u8	real_sz[];
1877 };
1878 
1879 struct ib_flow_spec_eth {
1880 	u32			  type;
1881 	u16			  size;
1882 	struct ib_flow_eth_filter val;
1883 	struct ib_flow_eth_filter mask;
1884 };
1885 
1886 struct ib_flow_ib_filter {
1887 	__be16 dlid;
1888 	__u8   sl;
1889 	/* Must be last */
1890 	u8	real_sz[];
1891 };
1892 
1893 struct ib_flow_spec_ib {
1894 	u32			 type;
1895 	u16			 size;
1896 	struct ib_flow_ib_filter val;
1897 	struct ib_flow_ib_filter mask;
1898 };
1899 
1900 /* IPv4 header flags */
1901 enum ib_ipv4_flags {
1902 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1903 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1904 				    last have this flag set */
1905 };
1906 
1907 struct ib_flow_ipv4_filter {
1908 	__be32	src_ip;
1909 	__be32	dst_ip;
1910 	u8	proto;
1911 	u8	tos;
1912 	u8	ttl;
1913 	u8	flags;
1914 	/* Must be last */
1915 	u8	real_sz[];
1916 };
1917 
1918 struct ib_flow_spec_ipv4 {
1919 	u32			   type;
1920 	u16			   size;
1921 	struct ib_flow_ipv4_filter val;
1922 	struct ib_flow_ipv4_filter mask;
1923 };
1924 
1925 struct ib_flow_ipv6_filter {
1926 	u8	src_ip[16];
1927 	u8	dst_ip[16];
1928 	__be32	flow_label;
1929 	u8	next_hdr;
1930 	u8	traffic_class;
1931 	u8	hop_limit;
1932 	/* Must be last */
1933 	u8	real_sz[];
1934 };
1935 
1936 struct ib_flow_spec_ipv6 {
1937 	u32			   type;
1938 	u16			   size;
1939 	struct ib_flow_ipv6_filter val;
1940 	struct ib_flow_ipv6_filter mask;
1941 };
1942 
1943 struct ib_flow_tcp_udp_filter {
1944 	__be16	dst_port;
1945 	__be16	src_port;
1946 	/* Must be last */
1947 	u8	real_sz[];
1948 };
1949 
1950 struct ib_flow_spec_tcp_udp {
1951 	u32			      type;
1952 	u16			      size;
1953 	struct ib_flow_tcp_udp_filter val;
1954 	struct ib_flow_tcp_udp_filter mask;
1955 };
1956 
1957 struct ib_flow_tunnel_filter {
1958 	__be32	tunnel_id;
1959 	u8	real_sz[];
1960 };
1961 
1962 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1963  * the tunnel_id from val has the vni value
1964  */
1965 struct ib_flow_spec_tunnel {
1966 	u32			      type;
1967 	u16			      size;
1968 	struct ib_flow_tunnel_filter  val;
1969 	struct ib_flow_tunnel_filter  mask;
1970 };
1971 
1972 struct ib_flow_esp_filter {
1973 	__be32	spi;
1974 	__be32  seq;
1975 	/* Must be last */
1976 	u8	real_sz[];
1977 };
1978 
1979 struct ib_flow_spec_esp {
1980 	u32                           type;
1981 	u16			      size;
1982 	struct ib_flow_esp_filter     val;
1983 	struct ib_flow_esp_filter     mask;
1984 };
1985 
1986 struct ib_flow_gre_filter {
1987 	__be16 c_ks_res0_ver;
1988 	__be16 protocol;
1989 	__be32 key;
1990 	/* Must be last */
1991 	u8	real_sz[];
1992 };
1993 
1994 struct ib_flow_spec_gre {
1995 	u32                           type;
1996 	u16			      size;
1997 	struct ib_flow_gre_filter     val;
1998 	struct ib_flow_gre_filter     mask;
1999 };
2000 
2001 struct ib_flow_mpls_filter {
2002 	__be32 tag;
2003 	/* Must be last */
2004 	u8	real_sz[];
2005 };
2006 
2007 struct ib_flow_spec_mpls {
2008 	u32                           type;
2009 	u16			      size;
2010 	struct ib_flow_mpls_filter     val;
2011 	struct ib_flow_mpls_filter     mask;
2012 };
2013 
2014 struct ib_flow_spec_action_tag {
2015 	enum ib_flow_spec_type	      type;
2016 	u16			      size;
2017 	u32                           tag_id;
2018 };
2019 
2020 struct ib_flow_spec_action_drop {
2021 	enum ib_flow_spec_type	      type;
2022 	u16			      size;
2023 };
2024 
2025 struct ib_flow_spec_action_handle {
2026 	enum ib_flow_spec_type	      type;
2027 	u16			      size;
2028 	struct ib_flow_action	     *act;
2029 };
2030 
2031 enum ib_counters_description {
2032 	IB_COUNTER_PACKETS,
2033 	IB_COUNTER_BYTES,
2034 };
2035 
2036 struct ib_flow_spec_action_count {
2037 	enum ib_flow_spec_type type;
2038 	u16 size;
2039 	struct ib_counters *counters;
2040 };
2041 
2042 union ib_flow_spec {
2043 	struct {
2044 		u32			type;
2045 		u16			size;
2046 	};
2047 	struct ib_flow_spec_eth		eth;
2048 	struct ib_flow_spec_ib		ib;
2049 	struct ib_flow_spec_ipv4        ipv4;
2050 	struct ib_flow_spec_tcp_udp	tcp_udp;
2051 	struct ib_flow_spec_ipv6        ipv6;
2052 	struct ib_flow_spec_tunnel      tunnel;
2053 	struct ib_flow_spec_esp		esp;
2054 	struct ib_flow_spec_gre		gre;
2055 	struct ib_flow_spec_mpls	mpls;
2056 	struct ib_flow_spec_action_tag  flow_tag;
2057 	struct ib_flow_spec_action_drop drop;
2058 	struct ib_flow_spec_action_handle action;
2059 	struct ib_flow_spec_action_count flow_count;
2060 };
2061 
2062 struct ib_flow_attr {
2063 	enum ib_flow_attr_type type;
2064 	u16	     size;
2065 	u16	     priority;
2066 	u32	     flags;
2067 	u8	     num_of_specs;
2068 	u8	     port;
2069 	union ib_flow_spec flows[];
2070 };
2071 
2072 struct ib_flow {
2073 	struct ib_qp		*qp;
2074 	struct ib_device	*device;
2075 	struct ib_uobject	*uobject;
2076 };
2077 
2078 enum ib_flow_action_type {
2079 	IB_FLOW_ACTION_UNSPECIFIED,
2080 	IB_FLOW_ACTION_ESP = 1,
2081 };
2082 
2083 struct ib_flow_action_attrs_esp_keymats {
2084 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2085 	union {
2086 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2087 	} keymat;
2088 };
2089 
2090 struct ib_flow_action_attrs_esp_replays {
2091 	enum ib_uverbs_flow_action_esp_replay			protocol;
2092 	union {
2093 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2094 	} replay;
2095 };
2096 
2097 enum ib_flow_action_attrs_esp_flags {
2098 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2099 	 * This is done in order to share the same flags between user-space and
2100 	 * kernel and spare an unnecessary translation.
2101 	 */
2102 
2103 	/* Kernel flags */
2104 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2105 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2106 };
2107 
2108 struct ib_flow_spec_list {
2109 	struct ib_flow_spec_list	*next;
2110 	union ib_flow_spec		spec;
2111 };
2112 
2113 struct ib_flow_action_attrs_esp {
2114 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2115 	struct ib_flow_action_attrs_esp_replays		*replay;
2116 	struct ib_flow_spec_list			*encap;
2117 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2118 	 * Value of 0 is a valid value.
2119 	 */
2120 	u32						esn;
2121 	u32						spi;
2122 	u32						seq;
2123 	u32						tfc_pad;
2124 	/* Use enum ib_flow_action_attrs_esp_flags */
2125 	u64						flags;
2126 	u64						hard_limit_pkts;
2127 };
2128 
2129 struct ib_flow_action {
2130 	struct ib_device		*device;
2131 	struct ib_uobject		*uobject;
2132 	enum ib_flow_action_type	type;
2133 	atomic_t			usecnt;
2134 };
2135 
2136 struct ib_mad;
2137 struct ib_grh;
2138 
2139 enum ib_process_mad_flags {
2140 	IB_MAD_IGNORE_MKEY	= 1,
2141 	IB_MAD_IGNORE_BKEY	= 2,
2142 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2143 };
2144 
2145 enum ib_mad_result {
2146 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2147 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2148 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2149 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2150 };
2151 
2152 struct ib_port_cache {
2153 	u64		      subnet_prefix;
2154 	struct ib_pkey_cache  *pkey;
2155 	struct ib_gid_table   *gid;
2156 	u8                     lmc;
2157 	enum ib_port_state     port_state;
2158 };
2159 
2160 struct ib_port_immutable {
2161 	int                           pkey_tbl_len;
2162 	int                           gid_tbl_len;
2163 	u32                           core_cap_flags;
2164 	u32                           max_mad_size;
2165 };
2166 
2167 struct ib_port_data {
2168 	struct ib_device *ib_dev;
2169 
2170 	struct ib_port_immutable immutable;
2171 
2172 	spinlock_t pkey_list_lock;
2173 	struct list_head pkey_list;
2174 
2175 	struct ib_port_cache cache;
2176 
2177 	spinlock_t netdev_lock;
2178 	struct net_device __rcu *netdev;
2179 	struct hlist_node ndev_hash_link;
2180 	struct rdma_port_counter port_counter;
2181 	struct rdma_hw_stats *hw_stats;
2182 };
2183 
2184 /* rdma netdev type - specifies protocol type */
2185 enum rdma_netdev_t {
2186 	RDMA_NETDEV_OPA_VNIC,
2187 	RDMA_NETDEV_IPOIB,
2188 };
2189 
2190 /**
2191  * struct rdma_netdev - rdma netdev
2192  * For cases where netstack interfacing is required.
2193  */
2194 struct rdma_netdev {
2195 	void              *clnt_priv;
2196 	struct ib_device  *hca;
2197 	u8                 port_num;
2198 	int                mtu;
2199 
2200 	/*
2201 	 * cleanup function must be specified.
2202 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2203 	 * removed too.
2204 	 */
2205 	void (*free_rdma_netdev)(struct net_device *netdev);
2206 
2207 	/* control functions */
2208 	void (*set_id)(struct net_device *netdev, int id);
2209 	/* send packet */
2210 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2211 		    struct ib_ah *address, u32 dqpn);
2212 	/* multicast */
2213 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2214 			    union ib_gid *gid, u16 mlid,
2215 			    int set_qkey, u32 qkey);
2216 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2217 			    union ib_gid *gid, u16 mlid);
2218 };
2219 
2220 struct rdma_netdev_alloc_params {
2221 	size_t sizeof_priv;
2222 	unsigned int txqs;
2223 	unsigned int rxqs;
2224 	void *param;
2225 
2226 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2227 				      struct net_device *netdev, void *param);
2228 };
2229 
2230 struct ib_odp_counters {
2231 	atomic64_t faults;
2232 	atomic64_t invalidations;
2233 	atomic64_t prefetch;
2234 };
2235 
2236 struct ib_counters {
2237 	struct ib_device	*device;
2238 	struct ib_uobject	*uobject;
2239 	/* num of objects attached */
2240 	atomic_t	usecnt;
2241 };
2242 
2243 struct ib_counters_read_attr {
2244 	u64	*counters_buff;
2245 	u32	ncounters;
2246 	u32	flags; /* use enum ib_read_counters_flags */
2247 };
2248 
2249 struct uverbs_attr_bundle;
2250 struct iw_cm_id;
2251 struct iw_cm_conn_param;
2252 
2253 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2254 	.size_##ib_struct =                                                    \
2255 		(sizeof(struct drv_struct) +                                   \
2256 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2257 		 BUILD_BUG_ON_ZERO(                                            \
2258 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2259 				      struct ib_struct)))
2260 
2261 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2262 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2263 
2264 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2265 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2266 
2267 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2268 
2269 struct rdma_user_mmap_entry {
2270 	struct kref ref;
2271 	struct ib_ucontext *ucontext;
2272 	unsigned long start_pgoff;
2273 	size_t npages;
2274 	bool driver_removed;
2275 };
2276 
2277 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2278 static inline u64
2279 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2280 {
2281 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2282 }
2283 
2284 /**
2285  * struct ib_device_ops - InfiniBand device operations
2286  * This structure defines all the InfiniBand device operations, providers will
2287  * need to define the supported operations, otherwise they will be set to null.
2288  */
2289 struct ib_device_ops {
2290 	struct module *owner;
2291 	enum rdma_driver_id driver_id;
2292 	u32 uverbs_abi_ver;
2293 	unsigned int uverbs_no_driver_id_binding:1;
2294 
2295 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2296 			 const struct ib_send_wr **bad_send_wr);
2297 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2298 			 const struct ib_recv_wr **bad_recv_wr);
2299 	void (*drain_rq)(struct ib_qp *qp);
2300 	void (*drain_sq)(struct ib_qp *qp);
2301 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2302 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2303 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2304 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2305 	int (*post_srq_recv)(struct ib_srq *srq,
2306 			     const struct ib_recv_wr *recv_wr,
2307 			     const struct ib_recv_wr **bad_recv_wr);
2308 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2309 			   u8 port_num, const struct ib_wc *in_wc,
2310 			   const struct ib_grh *in_grh,
2311 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2312 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2313 	int (*query_device)(struct ib_device *device,
2314 			    struct ib_device_attr *device_attr,
2315 			    struct ib_udata *udata);
2316 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2317 			     struct ib_device_modify *device_modify);
2318 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2319 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2320 						     int comp_vector);
2321 	int (*query_port)(struct ib_device *device, u8 port_num,
2322 			  struct ib_port_attr *port_attr);
2323 	int (*modify_port)(struct ib_device *device, u8 port_num,
2324 			   int port_modify_mask,
2325 			   struct ib_port_modify *port_modify);
2326 	/**
2327 	 * The following mandatory functions are used only at device
2328 	 * registration.  Keep functions such as these at the end of this
2329 	 * structure to avoid cache line misses when accessing struct ib_device
2330 	 * in fast paths.
2331 	 */
2332 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2333 				  struct ib_port_immutable *immutable);
2334 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2335 					       u8 port_num);
2336 	/**
2337 	 * When calling get_netdev, the HW vendor's driver should return the
2338 	 * net device of device @device at port @port_num or NULL if such
2339 	 * a net device doesn't exist. The vendor driver should call dev_hold
2340 	 * on this net device. The HW vendor's device driver must guarantee
2341 	 * that this function returns NULL before the net device has finished
2342 	 * NETDEV_UNREGISTER state.
2343 	 */
2344 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2345 	/**
2346 	 * rdma netdev operation
2347 	 *
2348 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2349 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2350 	 */
2351 	struct net_device *(*alloc_rdma_netdev)(
2352 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2353 		const char *name, unsigned char name_assign_type,
2354 		void (*setup)(struct net_device *));
2355 
2356 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2357 				      enum rdma_netdev_t type,
2358 				      struct rdma_netdev_alloc_params *params);
2359 	/**
2360 	 * query_gid should be return GID value for @device, when @port_num
2361 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2362 	 * is RoCE link layer.
2363 	 */
2364 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2365 			 union ib_gid *gid);
2366 	/**
2367 	 * When calling add_gid, the HW vendor's driver should add the gid
2368 	 * of device of port at gid index available at @attr. Meta-info of
2369 	 * that gid (for example, the network device related to this gid) is
2370 	 * available at @attr. @context allows the HW vendor driver to store
2371 	 * extra information together with a GID entry. The HW vendor driver may
2372 	 * allocate memory to contain this information and store it in @context
2373 	 * when a new GID entry is written to. Params are consistent until the
2374 	 * next call of add_gid or delete_gid. The function should return 0 on
2375 	 * success or error otherwise. The function could be called
2376 	 * concurrently for different ports. This function is only called when
2377 	 * roce_gid_table is used.
2378 	 */
2379 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2380 	/**
2381 	 * When calling del_gid, the HW vendor's driver should delete the
2382 	 * gid of device @device at gid index gid_index of port port_num
2383 	 * available in @attr.
2384 	 * Upon the deletion of a GID entry, the HW vendor must free any
2385 	 * allocated memory. The caller will clear @context afterwards.
2386 	 * This function is only called when roce_gid_table is used.
2387 	 */
2388 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2389 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2390 			  u16 *pkey);
2391 	int (*alloc_ucontext)(struct ib_ucontext *context,
2392 			      struct ib_udata *udata);
2393 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2394 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2395 	/**
2396 	 * This will be called once refcount of an entry in mmap_xa reaches
2397 	 * zero. The type of the memory that was mapped may differ between
2398 	 * entries and is opaque to the rdma_user_mmap interface.
2399 	 * Therefore needs to be implemented by the driver in mmap_free.
2400 	 */
2401 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2402 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2403 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2404 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2405 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2406 			 struct ib_udata *udata);
2407 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2408 			      struct ib_udata *udata);
2409 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2410 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2411 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2412 	int (*create_srq)(struct ib_srq *srq,
2413 			  struct ib_srq_init_attr *srq_init_attr,
2414 			  struct ib_udata *udata);
2415 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2416 			  enum ib_srq_attr_mask srq_attr_mask,
2417 			  struct ib_udata *udata);
2418 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2419 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2420 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2421 				   struct ib_qp_init_attr *qp_init_attr,
2422 				   struct ib_udata *udata);
2423 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2424 			 int qp_attr_mask, struct ib_udata *udata);
2425 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2426 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2427 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2428 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2429 			 struct ib_udata *udata);
2430 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2431 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2432 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2433 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2434 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2435 				     u64 virt_addr, int mr_access_flags,
2436 				     struct ib_udata *udata);
2437 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2438 				       u64 length, u64 virt_addr,
2439 				       int mr_access_flags, struct ib_pd *pd,
2440 				       struct ib_udata *udata);
2441 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2442 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2443 				  u32 max_num_sg);
2444 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2445 					    u32 max_num_data_sg,
2446 					    u32 max_num_meta_sg);
2447 	int (*advise_mr)(struct ib_pd *pd,
2448 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2449 			 struct ib_sge *sg_list, u32 num_sge,
2450 			 struct uverbs_attr_bundle *attrs);
2451 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2452 			 unsigned int *sg_offset);
2453 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2454 			       struct ib_mr_status *mr_status);
2455 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2456 	int (*dealloc_mw)(struct ib_mw *mw);
2457 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2458 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2459 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2460 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2461 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2462 				       struct ib_flow_attr *flow_attr,
2463 				       struct ib_udata *udata);
2464 	int (*destroy_flow)(struct ib_flow *flow_id);
2465 	struct ib_flow_action *(*create_flow_action_esp)(
2466 		struct ib_device *device,
2467 		const struct ib_flow_action_attrs_esp *attr,
2468 		struct uverbs_attr_bundle *attrs);
2469 	int (*destroy_flow_action)(struct ib_flow_action *action);
2470 	int (*modify_flow_action_esp)(
2471 		struct ib_flow_action *action,
2472 		const struct ib_flow_action_attrs_esp *attr,
2473 		struct uverbs_attr_bundle *attrs);
2474 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2475 				 int state);
2476 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2477 			     struct ifla_vf_info *ivf);
2478 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2479 			    struct ifla_vf_stats *stats);
2480 	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2481 			    struct ifla_vf_guid *node_guid,
2482 			    struct ifla_vf_guid *port_guid);
2483 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2484 			   int type);
2485 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2486 				   struct ib_wq_init_attr *init_attr,
2487 				   struct ib_udata *udata);
2488 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2489 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2490 			 u32 wq_attr_mask, struct ib_udata *udata);
2491 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2492 				    struct ib_rwq_ind_table_init_attr *init_attr,
2493 				    struct ib_udata *udata);
2494 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2495 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2496 				  struct ib_ucontext *context,
2497 				  struct ib_dm_alloc_attr *attr,
2498 				  struct uverbs_attr_bundle *attrs);
2499 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2500 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2501 				   struct ib_dm_mr_attr *attr,
2502 				   struct uverbs_attr_bundle *attrs);
2503 	int (*create_counters)(struct ib_counters *counters,
2504 			       struct uverbs_attr_bundle *attrs);
2505 	int (*destroy_counters)(struct ib_counters *counters);
2506 	int (*read_counters)(struct ib_counters *counters,
2507 			     struct ib_counters_read_attr *counters_read_attr,
2508 			     struct uverbs_attr_bundle *attrs);
2509 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2510 			    int data_sg_nents, unsigned int *data_sg_offset,
2511 			    struct scatterlist *meta_sg, int meta_sg_nents,
2512 			    unsigned int *meta_sg_offset);
2513 
2514 	/**
2515 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2516 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2517 	 *   core when the device is removed.  A lifespan of -1 in the return
2518 	 *   struct tells the core to set a default lifespan.
2519 	 */
2520 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2521 						u8 port_num);
2522 	/**
2523 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2524 	 * @index - The index in the value array we wish to have updated, or
2525 	 *   num_counters if we want all stats updated
2526 	 * Return codes -
2527 	 *   < 0 - Error, no counters updated
2528 	 *   index - Updated the single counter pointed to by index
2529 	 *   num_counters - Updated all counters (will reset the timestamp
2530 	 *     and prevent further calls for lifespan milliseconds)
2531 	 * Drivers are allowed to update all counters in leiu of just the
2532 	 *   one given in index at their option
2533 	 */
2534 	int (*get_hw_stats)(struct ib_device *device,
2535 			    struct rdma_hw_stats *stats, u8 port, int index);
2536 	/*
2537 	 * This function is called once for each port when a ib device is
2538 	 * registered.
2539 	 */
2540 	int (*init_port)(struct ib_device *device, u8 port_num,
2541 			 struct kobject *port_sysfs);
2542 	/**
2543 	 * Allows rdma drivers to add their own restrack attributes.
2544 	 */
2545 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2546 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2547 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2548 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2549 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2550 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2551 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2552 
2553 	/* Device lifecycle callbacks */
2554 	/*
2555 	 * Called after the device becomes registered, before clients are
2556 	 * attached
2557 	 */
2558 	int (*enable_driver)(struct ib_device *dev);
2559 	/*
2560 	 * This is called as part of ib_dealloc_device().
2561 	 */
2562 	void (*dealloc_driver)(struct ib_device *dev);
2563 
2564 	/* iWarp CM callbacks */
2565 	void (*iw_add_ref)(struct ib_qp *qp);
2566 	void (*iw_rem_ref)(struct ib_qp *qp);
2567 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2568 	int (*iw_connect)(struct iw_cm_id *cm_id,
2569 			  struct iw_cm_conn_param *conn_param);
2570 	int (*iw_accept)(struct iw_cm_id *cm_id,
2571 			 struct iw_cm_conn_param *conn_param);
2572 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2573 			 u8 pdata_len);
2574 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2575 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2576 	/**
2577 	 * counter_bind_qp - Bind a QP to a counter.
2578 	 * @counter - The counter to be bound. If counter->id is zero then
2579 	 *   the driver needs to allocate a new counter and set counter->id
2580 	 */
2581 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2582 	/**
2583 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2584 	 *   counter and bind it onto the default one
2585 	 */
2586 	int (*counter_unbind_qp)(struct ib_qp *qp);
2587 	/**
2588 	 * counter_dealloc -De-allocate the hw counter
2589 	 */
2590 	int (*counter_dealloc)(struct rdma_counter *counter);
2591 	/**
2592 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2593 	 * the driver initialized data.
2594 	 */
2595 	struct rdma_hw_stats *(*counter_alloc_stats)(
2596 		struct rdma_counter *counter);
2597 	/**
2598 	 * counter_update_stats - Query the stats value of this counter
2599 	 */
2600 	int (*counter_update_stats)(struct rdma_counter *counter);
2601 
2602 	/**
2603 	 * Allows rdma drivers to add their own restrack attributes
2604 	 * dumped via 'rdma stat' iproute2 command.
2605 	 */
2606 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2607 
2608 	/* query driver for its ucontext properties */
2609 	int (*query_ucontext)(struct ib_ucontext *context,
2610 			      struct uverbs_attr_bundle *attrs);
2611 
2612 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2613 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2614 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2615 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2616 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2617 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2618 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2619 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2620 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2621 };
2622 
2623 struct ib_core_device {
2624 	/* device must be the first element in structure until,
2625 	 * union of ib_core_device and device exists in ib_device.
2626 	 */
2627 	struct device dev;
2628 	possible_net_t rdma_net;
2629 	struct kobject *ports_kobj;
2630 	struct list_head port_list;
2631 	struct ib_device *owner; /* reach back to owner ib_device */
2632 };
2633 
2634 struct rdma_restrack_root;
2635 struct ib_device {
2636 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2637 	struct device                *dma_device;
2638 	struct ib_device_ops	     ops;
2639 	char                          name[IB_DEVICE_NAME_MAX];
2640 	struct rcu_head rcu_head;
2641 
2642 	struct list_head              event_handler_list;
2643 	/* Protects event_handler_list */
2644 	struct rw_semaphore event_handler_rwsem;
2645 
2646 	/* Protects QP's event_handler calls and open_qp list */
2647 	spinlock_t qp_open_list_lock;
2648 
2649 	struct rw_semaphore	      client_data_rwsem;
2650 	struct xarray                 client_data;
2651 	struct mutex                  unregistration_lock;
2652 
2653 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2654 	rwlock_t cache_lock;
2655 	/**
2656 	 * port_data is indexed by port number
2657 	 */
2658 	struct ib_port_data *port_data;
2659 
2660 	int			      num_comp_vectors;
2661 
2662 	union {
2663 		struct device		dev;
2664 		struct ib_core_device	coredev;
2665 	};
2666 
2667 	/* First group for device attributes,
2668 	 * Second group for driver provided attributes (optional).
2669 	 * It is NULL terminated array.
2670 	 */
2671 	const struct attribute_group	*groups[3];
2672 
2673 	u64			     uverbs_cmd_mask;
2674 
2675 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2676 	__be64			     node_guid;
2677 	u32			     local_dma_lkey;
2678 	u16                          is_switch:1;
2679 	/* Indicates kernel verbs support, should not be used in drivers */
2680 	u16                          kverbs_provider:1;
2681 	/* CQ adaptive moderation (RDMA DIM) */
2682 	u16                          use_cq_dim:1;
2683 	u8                           node_type;
2684 	u8                           phys_port_cnt;
2685 	struct ib_device_attr        attrs;
2686 	struct attribute_group	     *hw_stats_ag;
2687 	struct rdma_hw_stats         *hw_stats;
2688 
2689 #ifdef CONFIG_CGROUP_RDMA
2690 	struct rdmacg_device         cg_device;
2691 #endif
2692 
2693 	u32                          index;
2694 
2695 	spinlock_t                   cq_pools_lock;
2696 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2697 
2698 	struct rdma_restrack_root *res;
2699 
2700 	const struct uapi_definition   *driver_def;
2701 
2702 	/*
2703 	 * Positive refcount indicates that the device is currently
2704 	 * registered and cannot be unregistered.
2705 	 */
2706 	refcount_t refcount;
2707 	struct completion unreg_completion;
2708 	struct work_struct unregistration_work;
2709 
2710 	const struct rdma_link_ops *link_ops;
2711 
2712 	/* Protects compat_devs xarray modifications */
2713 	struct mutex compat_devs_mutex;
2714 	/* Maintains compat devices for each net namespace */
2715 	struct xarray compat_devs;
2716 
2717 	/* Used by iWarp CM */
2718 	char iw_ifname[IFNAMSIZ];
2719 	u32 iw_driver_flags;
2720 	u32 lag_flags;
2721 };
2722 
2723 struct ib_client_nl_info;
2724 struct ib_client {
2725 	const char *name;
2726 	int (*add)(struct ib_device *ibdev);
2727 	void (*remove)(struct ib_device *, void *client_data);
2728 	void (*rename)(struct ib_device *dev, void *client_data);
2729 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2730 			   struct ib_client_nl_info *res);
2731 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2732 
2733 	/* Returns the net_dev belonging to this ib_client and matching the
2734 	 * given parameters.
2735 	 * @dev:	 An RDMA device that the net_dev use for communication.
2736 	 * @port:	 A physical port number on the RDMA device.
2737 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2738 	 * @gid:	 A GID that the net_dev uses to communicate.
2739 	 * @addr:	 An IP address the net_dev is configured with.
2740 	 * @client_data: The device's client data set by ib_set_client_data().
2741 	 *
2742 	 * An ib_client that implements a net_dev on top of RDMA devices
2743 	 * (such as IP over IB) should implement this callback, allowing the
2744 	 * rdma_cm module to find the right net_dev for a given request.
2745 	 *
2746 	 * The caller is responsible for calling dev_put on the returned
2747 	 * netdev. */
2748 	struct net_device *(*get_net_dev_by_params)(
2749 			struct ib_device *dev,
2750 			u8 port,
2751 			u16 pkey,
2752 			const union ib_gid *gid,
2753 			const struct sockaddr *addr,
2754 			void *client_data);
2755 
2756 	refcount_t uses;
2757 	struct completion uses_zero;
2758 	u32 client_id;
2759 
2760 	/* kverbs are not required by the client */
2761 	u8 no_kverbs_req:1;
2762 };
2763 
2764 /*
2765  * IB block DMA iterator
2766  *
2767  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2768  * to a HW supported page size.
2769  */
2770 struct ib_block_iter {
2771 	/* internal states */
2772 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2773 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2774 	unsigned int __sg_nents;	/* number of SG entries */
2775 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2776 	unsigned int __pg_bit;		/* alignment of current block */
2777 };
2778 
2779 struct ib_device *_ib_alloc_device(size_t size);
2780 #define ib_alloc_device(drv_struct, member)                                    \
2781 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2782 				      BUILD_BUG_ON_ZERO(offsetof(              \
2783 					      struct drv_struct, member))),    \
2784 		     struct drv_struct, member)
2785 
2786 void ib_dealloc_device(struct ib_device *device);
2787 
2788 void ib_get_device_fw_str(struct ib_device *device, char *str);
2789 
2790 int ib_register_device(struct ib_device *device, const char *name,
2791 		       struct device *dma_device);
2792 void ib_unregister_device(struct ib_device *device);
2793 void ib_unregister_driver(enum rdma_driver_id driver_id);
2794 void ib_unregister_device_and_put(struct ib_device *device);
2795 void ib_unregister_device_queued(struct ib_device *ib_dev);
2796 
2797 int ib_register_client   (struct ib_client *client);
2798 void ib_unregister_client(struct ib_client *client);
2799 
2800 void __rdma_block_iter_start(struct ib_block_iter *biter,
2801 			     struct scatterlist *sglist,
2802 			     unsigned int nents,
2803 			     unsigned long pgsz);
2804 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2805 
2806 /**
2807  * rdma_block_iter_dma_address - get the aligned dma address of the current
2808  * block held by the block iterator.
2809  * @biter: block iterator holding the memory block
2810  */
2811 static inline dma_addr_t
2812 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2813 {
2814 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2815 }
2816 
2817 /**
2818  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2819  * @sglist: sglist to iterate over
2820  * @biter: block iterator holding the memory block
2821  * @nents: maximum number of sg entries to iterate over
2822  * @pgsz: best HW supported page size to use
2823  *
2824  * Callers may use rdma_block_iter_dma_address() to get each
2825  * blocks aligned DMA address.
2826  */
2827 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2828 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2829 				     pgsz);			\
2830 	     __rdma_block_iter_next(biter);)
2831 
2832 /**
2833  * ib_get_client_data - Get IB client context
2834  * @device:Device to get context for
2835  * @client:Client to get context for
2836  *
2837  * ib_get_client_data() returns the client context data set with
2838  * ib_set_client_data(). This can only be called while the client is
2839  * registered to the device, once the ib_client remove() callback returns this
2840  * cannot be called.
2841  */
2842 static inline void *ib_get_client_data(struct ib_device *device,
2843 				       struct ib_client *client)
2844 {
2845 	return xa_load(&device->client_data, client->client_id);
2846 }
2847 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2848 			 void *data);
2849 void ib_set_device_ops(struct ib_device *device,
2850 		       const struct ib_device_ops *ops);
2851 
2852 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2853 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2854 		      struct rdma_user_mmap_entry *entry);
2855 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2856 				struct rdma_user_mmap_entry *entry,
2857 				size_t length);
2858 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2859 				      struct rdma_user_mmap_entry *entry,
2860 				      size_t length, u32 min_pgoff,
2861 				      u32 max_pgoff);
2862 
2863 struct rdma_user_mmap_entry *
2864 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2865 			       unsigned long pgoff);
2866 struct rdma_user_mmap_entry *
2867 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2868 			 struct vm_area_struct *vma);
2869 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2870 
2871 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2872 
2873 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2874 {
2875 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2876 }
2877 
2878 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2879 {
2880 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2881 }
2882 
2883 static inline bool ib_is_buffer_cleared(const void __user *p,
2884 					size_t len)
2885 {
2886 	bool ret;
2887 	u8 *buf;
2888 
2889 	if (len > USHRT_MAX)
2890 		return false;
2891 
2892 	buf = memdup_user(p, len);
2893 	if (IS_ERR(buf))
2894 		return false;
2895 
2896 	ret = !memchr_inv(buf, 0, len);
2897 	kfree(buf);
2898 	return ret;
2899 }
2900 
2901 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2902 				       size_t offset,
2903 				       size_t len)
2904 {
2905 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2906 }
2907 
2908 /**
2909  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2910  * contains all required attributes and no attributes not allowed for
2911  * the given QP state transition.
2912  * @cur_state: Current QP state
2913  * @next_state: Next QP state
2914  * @type: QP type
2915  * @mask: Mask of supplied QP attributes
2916  *
2917  * This function is a helper function that a low-level driver's
2918  * modify_qp method can use to validate the consumer's input.  It
2919  * checks that cur_state and next_state are valid QP states, that a
2920  * transition from cur_state to next_state is allowed by the IB spec,
2921  * and that the attribute mask supplied is allowed for the transition.
2922  */
2923 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2924 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2925 
2926 void ib_register_event_handler(struct ib_event_handler *event_handler);
2927 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2928 void ib_dispatch_event(const struct ib_event *event);
2929 
2930 int ib_query_port(struct ib_device *device,
2931 		  u8 port_num, struct ib_port_attr *port_attr);
2932 
2933 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2934 					       u8 port_num);
2935 
2936 /**
2937  * rdma_cap_ib_switch - Check if the device is IB switch
2938  * @device: Device to check
2939  *
2940  * Device driver is responsible for setting is_switch bit on
2941  * in ib_device structure at init time.
2942  *
2943  * Return: true if the device is IB switch.
2944  */
2945 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2946 {
2947 	return device->is_switch;
2948 }
2949 
2950 /**
2951  * rdma_start_port - Return the first valid port number for the device
2952  * specified
2953  *
2954  * @device: Device to be checked
2955  *
2956  * Return start port number
2957  */
2958 static inline u8 rdma_start_port(const struct ib_device *device)
2959 {
2960 	return rdma_cap_ib_switch(device) ? 0 : 1;
2961 }
2962 
2963 /**
2964  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2965  * @device - The struct ib_device * to iterate over
2966  * @iter - The unsigned int to store the port number
2967  */
2968 #define rdma_for_each_port(device, iter)                                       \
2969 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2970 						     unsigned int, iter)));    \
2971 	     iter <= rdma_end_port(device); (iter)++)
2972 
2973 /**
2974  * rdma_end_port - Return the last valid port number for the device
2975  * specified
2976  *
2977  * @device: Device to be checked
2978  *
2979  * Return last port number
2980  */
2981 static inline u8 rdma_end_port(const struct ib_device *device)
2982 {
2983 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2984 }
2985 
2986 static inline int rdma_is_port_valid(const struct ib_device *device,
2987 				     unsigned int port)
2988 {
2989 	return (port >= rdma_start_port(device) &&
2990 		port <= rdma_end_port(device));
2991 }
2992 
2993 static inline bool rdma_is_grh_required(const struct ib_device *device,
2994 					u8 port_num)
2995 {
2996 	return device->port_data[port_num].immutable.core_cap_flags &
2997 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
2998 }
2999 
3000 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3001 {
3002 	return device->port_data[port_num].immutable.core_cap_flags &
3003 	       RDMA_CORE_CAP_PROT_IB;
3004 }
3005 
3006 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3007 {
3008 	return device->port_data[port_num].immutable.core_cap_flags &
3009 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3010 }
3011 
3012 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3013 {
3014 	return device->port_data[port_num].immutable.core_cap_flags &
3015 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3016 }
3017 
3018 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3019 {
3020 	return device->port_data[port_num].immutable.core_cap_flags &
3021 	       RDMA_CORE_CAP_PROT_ROCE;
3022 }
3023 
3024 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3025 {
3026 	return device->port_data[port_num].immutable.core_cap_flags &
3027 	       RDMA_CORE_CAP_PROT_IWARP;
3028 }
3029 
3030 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3031 {
3032 	return rdma_protocol_ib(device, port_num) ||
3033 		rdma_protocol_roce(device, port_num);
3034 }
3035 
3036 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3037 {
3038 	return device->port_data[port_num].immutable.core_cap_flags &
3039 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3040 }
3041 
3042 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3043 {
3044 	return device->port_data[port_num].immutable.core_cap_flags &
3045 	       RDMA_CORE_CAP_PROT_USNIC;
3046 }
3047 
3048 /**
3049  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3050  * Management Datagrams.
3051  * @device: Device to check
3052  * @port_num: Port number to check
3053  *
3054  * Management Datagrams (MAD) are a required part of the InfiniBand
3055  * specification and are supported on all InfiniBand devices.  A slightly
3056  * extended version are also supported on OPA interfaces.
3057  *
3058  * Return: true if the port supports sending/receiving of MAD packets.
3059  */
3060 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3061 {
3062 	return device->port_data[port_num].immutable.core_cap_flags &
3063 	       RDMA_CORE_CAP_IB_MAD;
3064 }
3065 
3066 /**
3067  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3068  * Management Datagrams.
3069  * @device: Device to check
3070  * @port_num: Port number to check
3071  *
3072  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3073  * datagrams with their own versions.  These OPA MADs share many but not all of
3074  * the characteristics of InfiniBand MADs.
3075  *
3076  * OPA MADs differ in the following ways:
3077  *
3078  *    1) MADs are variable size up to 2K
3079  *       IBTA defined MADs remain fixed at 256 bytes
3080  *    2) OPA SMPs must carry valid PKeys
3081  *    3) OPA SMP packets are a different format
3082  *
3083  * Return: true if the port supports OPA MAD packet formats.
3084  */
3085 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3086 {
3087 	return device->port_data[port_num].immutable.core_cap_flags &
3088 		RDMA_CORE_CAP_OPA_MAD;
3089 }
3090 
3091 /**
3092  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3093  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3094  * @device: Device to check
3095  * @port_num: Port number to check
3096  *
3097  * Each InfiniBand node is required to provide a Subnet Management Agent
3098  * that the subnet manager can access.  Prior to the fabric being fully
3099  * configured by the subnet manager, the SMA is accessed via a well known
3100  * interface called the Subnet Management Interface (SMI).  This interface
3101  * uses directed route packets to communicate with the SM to get around the
3102  * chicken and egg problem of the SM needing to know what's on the fabric
3103  * in order to configure the fabric, and needing to configure the fabric in
3104  * order to send packets to the devices on the fabric.  These directed
3105  * route packets do not need the fabric fully configured in order to reach
3106  * their destination.  The SMI is the only method allowed to send
3107  * directed route packets on an InfiniBand fabric.
3108  *
3109  * Return: true if the port provides an SMI.
3110  */
3111 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3112 {
3113 	return device->port_data[port_num].immutable.core_cap_flags &
3114 	       RDMA_CORE_CAP_IB_SMI;
3115 }
3116 
3117 /**
3118  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3119  * Communication Manager.
3120  * @device: Device to check
3121  * @port_num: Port number to check
3122  *
3123  * The InfiniBand Communication Manager is one of many pre-defined General
3124  * Service Agents (GSA) that are accessed via the General Service
3125  * Interface (GSI).  It's role is to facilitate establishment of connections
3126  * between nodes as well as other management related tasks for established
3127  * connections.
3128  *
3129  * Return: true if the port supports an IB CM (this does not guarantee that
3130  * a CM is actually running however).
3131  */
3132 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3133 {
3134 	return device->port_data[port_num].immutable.core_cap_flags &
3135 	       RDMA_CORE_CAP_IB_CM;
3136 }
3137 
3138 /**
3139  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3140  * Communication Manager.
3141  * @device: Device to check
3142  * @port_num: Port number to check
3143  *
3144  * Similar to above, but specific to iWARP connections which have a different
3145  * managment protocol than InfiniBand.
3146  *
3147  * Return: true if the port supports an iWARP CM (this does not guarantee that
3148  * a CM is actually running however).
3149  */
3150 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3151 {
3152 	return device->port_data[port_num].immutable.core_cap_flags &
3153 	       RDMA_CORE_CAP_IW_CM;
3154 }
3155 
3156 /**
3157  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3158  * Subnet Administration.
3159  * @device: Device to check
3160  * @port_num: Port number to check
3161  *
3162  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3163  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3164  * fabrics, devices should resolve routes to other hosts by contacting the
3165  * SA to query the proper route.
3166  *
3167  * Return: true if the port should act as a client to the fabric Subnet
3168  * Administration interface.  This does not imply that the SA service is
3169  * running locally.
3170  */
3171 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3172 {
3173 	return device->port_data[port_num].immutable.core_cap_flags &
3174 	       RDMA_CORE_CAP_IB_SA;
3175 }
3176 
3177 /**
3178  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3179  * Multicast.
3180  * @device: Device to check
3181  * @port_num: Port number to check
3182  *
3183  * InfiniBand multicast registration is more complex than normal IPv4 or
3184  * IPv6 multicast registration.  Each Host Channel Adapter must register
3185  * with the Subnet Manager when it wishes to join a multicast group.  It
3186  * should do so only once regardless of how many queue pairs it subscribes
3187  * to this group.  And it should leave the group only after all queue pairs
3188  * attached to the group have been detached.
3189  *
3190  * Return: true if the port must undertake the additional adminstrative
3191  * overhead of registering/unregistering with the SM and tracking of the
3192  * total number of queue pairs attached to the multicast group.
3193  */
3194 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3195 {
3196 	return rdma_cap_ib_sa(device, port_num);
3197 }
3198 
3199 /**
3200  * rdma_cap_af_ib - Check if the port of device has the capability
3201  * Native Infiniband Address.
3202  * @device: Device to check
3203  * @port_num: Port number to check
3204  *
3205  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3206  * GID.  RoCE uses a different mechanism, but still generates a GID via
3207  * a prescribed mechanism and port specific data.
3208  *
3209  * Return: true if the port uses a GID address to identify devices on the
3210  * network.
3211  */
3212 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3213 {
3214 	return device->port_data[port_num].immutable.core_cap_flags &
3215 	       RDMA_CORE_CAP_AF_IB;
3216 }
3217 
3218 /**
3219  * rdma_cap_eth_ah - Check if the port of device has the capability
3220  * Ethernet Address Handle.
3221  * @device: Device to check
3222  * @port_num: Port number to check
3223  *
3224  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3225  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3226  * port.  Normally, packet headers are generated by the sending host
3227  * adapter, but when sending connectionless datagrams, we must manually
3228  * inject the proper headers for the fabric we are communicating over.
3229  *
3230  * Return: true if we are running as a RoCE port and must force the
3231  * addition of a Global Route Header built from our Ethernet Address
3232  * Handle into our header list for connectionless packets.
3233  */
3234 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3235 {
3236 	return device->port_data[port_num].immutable.core_cap_flags &
3237 	       RDMA_CORE_CAP_ETH_AH;
3238 }
3239 
3240 /**
3241  * rdma_cap_opa_ah - Check if the port of device supports
3242  * OPA Address handles
3243  * @device: Device to check
3244  * @port_num: Port number to check
3245  *
3246  * Return: true if we are running on an OPA device which supports
3247  * the extended OPA addressing.
3248  */
3249 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3250 {
3251 	return (device->port_data[port_num].immutable.core_cap_flags &
3252 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3253 }
3254 
3255 /**
3256  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3257  *
3258  * @device: Device
3259  * @port_num: Port number
3260  *
3261  * This MAD size includes the MAD headers and MAD payload.  No other headers
3262  * are included.
3263  *
3264  * Return the max MAD size required by the Port.  Will return 0 if the port
3265  * does not support MADs
3266  */
3267 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3268 {
3269 	return device->port_data[port_num].immutable.max_mad_size;
3270 }
3271 
3272 /**
3273  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3274  * @device: Device to check
3275  * @port_num: Port number to check
3276  *
3277  * RoCE GID table mechanism manages the various GIDs for a device.
3278  *
3279  * NOTE: if allocating the port's GID table has failed, this call will still
3280  * return true, but any RoCE GID table API will fail.
3281  *
3282  * Return: true if the port uses RoCE GID table mechanism in order to manage
3283  * its GIDs.
3284  */
3285 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3286 					   u8 port_num)
3287 {
3288 	return rdma_protocol_roce(device, port_num) &&
3289 		device->ops.add_gid && device->ops.del_gid;
3290 }
3291 
3292 /*
3293  * Check if the device supports READ W/ INVALIDATE.
3294  */
3295 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3296 {
3297 	/*
3298 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3299 	 * has support for it yet.
3300 	 */
3301 	return rdma_protocol_iwarp(dev, port_num);
3302 }
3303 
3304 /**
3305  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3306  * @device: Device
3307  * @port_num: 1 based Port number
3308  *
3309  * Return true if port is an Intel OPA port , false if not
3310  */
3311 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3312 					  u32 port_num)
3313 {
3314 	return (device->port_data[port_num].immutable.core_cap_flags &
3315 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3316 }
3317 
3318 /**
3319  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3320  * @device: Device
3321  * @port_num: Port number
3322  * @mtu: enum value of MTU
3323  *
3324  * Return the MTU size supported by the port as an integer value. Will return
3325  * -1 if enum value of mtu is not supported.
3326  */
3327 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3328 				       int mtu)
3329 {
3330 	if (rdma_core_cap_opa_port(device, port))
3331 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3332 	else
3333 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3334 }
3335 
3336 /**
3337  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3338  * @device: Device
3339  * @port_num: Port number
3340  * @attr: port attribute
3341  *
3342  * Return the MTU size supported by the port as an integer value.
3343  */
3344 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3345 				     struct ib_port_attr *attr)
3346 {
3347 	if (rdma_core_cap_opa_port(device, port))
3348 		return attr->phys_mtu;
3349 	else
3350 		return ib_mtu_enum_to_int(attr->max_mtu);
3351 }
3352 
3353 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3354 			 int state);
3355 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3356 		     struct ifla_vf_info *info);
3357 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3358 		    struct ifla_vf_stats *stats);
3359 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3360 		    struct ifla_vf_guid *node_guid,
3361 		    struct ifla_vf_guid *port_guid);
3362 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3363 		   int type);
3364 
3365 int ib_query_pkey(struct ib_device *device,
3366 		  u8 port_num, u16 index, u16 *pkey);
3367 
3368 int ib_modify_device(struct ib_device *device,
3369 		     int device_modify_mask,
3370 		     struct ib_device_modify *device_modify);
3371 
3372 int ib_modify_port(struct ib_device *device,
3373 		   u8 port_num, int port_modify_mask,
3374 		   struct ib_port_modify *port_modify);
3375 
3376 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3377 		u8 *port_num, u16 *index);
3378 
3379 int ib_find_pkey(struct ib_device *device,
3380 		 u8 port_num, u16 pkey, u16 *index);
3381 
3382 enum ib_pd_flags {
3383 	/*
3384 	 * Create a memory registration for all memory in the system and place
3385 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3386 	 * ULPs to avoid the overhead of dynamic MRs.
3387 	 *
3388 	 * This flag is generally considered unsafe and must only be used in
3389 	 * extremly trusted environments.  Every use of it will log a warning
3390 	 * in the kernel log.
3391 	 */
3392 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3393 };
3394 
3395 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3396 		const char *caller);
3397 
3398 /**
3399  * ib_alloc_pd - Allocates an unused protection domain.
3400  * @device: The device on which to allocate the protection domain.
3401  * @flags: protection domain flags
3402  *
3403  * A protection domain object provides an association between QPs, shared
3404  * receive queues, address handles, memory regions, and memory windows.
3405  *
3406  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3407  * memory operations.
3408  */
3409 #define ib_alloc_pd(device, flags) \
3410 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3411 
3412 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3413 
3414 /**
3415  * ib_dealloc_pd - Deallocate kernel PD
3416  * @pd: The protection domain
3417  *
3418  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3419  */
3420 static inline void ib_dealloc_pd(struct ib_pd *pd)
3421 {
3422 	int ret = ib_dealloc_pd_user(pd, NULL);
3423 
3424 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3425 }
3426 
3427 enum rdma_create_ah_flags {
3428 	/* In a sleepable context */
3429 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3430 };
3431 
3432 /**
3433  * rdma_create_ah - Creates an address handle for the given address vector.
3434  * @pd: The protection domain associated with the address handle.
3435  * @ah_attr: The attributes of the address vector.
3436  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3437  *
3438  * The address handle is used to reference a local or global destination
3439  * in all UD QP post sends.
3440  */
3441 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3442 			     u32 flags);
3443 
3444 /**
3445  * rdma_create_user_ah - Creates an address handle for the given address vector.
3446  * It resolves destination mac address for ah attribute of RoCE type.
3447  * @pd: The protection domain associated with the address handle.
3448  * @ah_attr: The attributes of the address vector.
3449  * @udata: pointer to user's input output buffer information need by
3450  *         provider driver.
3451  *
3452  * It returns 0 on success and returns appropriate error code on error.
3453  * The address handle is used to reference a local or global destination
3454  * in all UD QP post sends.
3455  */
3456 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3457 				  struct rdma_ah_attr *ah_attr,
3458 				  struct ib_udata *udata);
3459 /**
3460  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3461  *   work completion.
3462  * @hdr: the L3 header to parse
3463  * @net_type: type of header to parse
3464  * @sgid: place to store source gid
3465  * @dgid: place to store destination gid
3466  */
3467 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3468 			      enum rdma_network_type net_type,
3469 			      union ib_gid *sgid, union ib_gid *dgid);
3470 
3471 /**
3472  * ib_get_rdma_header_version - Get the header version
3473  * @hdr: the L3 header to parse
3474  */
3475 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3476 
3477 /**
3478  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3479  *   work completion.
3480  * @device: Device on which the received message arrived.
3481  * @port_num: Port on which the received message arrived.
3482  * @wc: Work completion associated with the received message.
3483  * @grh: References the received global route header.  This parameter is
3484  *   ignored unless the work completion indicates that the GRH is valid.
3485  * @ah_attr: Returned attributes that can be used when creating an address
3486  *   handle for replying to the message.
3487  * When ib_init_ah_attr_from_wc() returns success,
3488  * (a) for IB link layer it optionally contains a reference to SGID attribute
3489  * when GRH is present for IB link layer.
3490  * (b) for RoCE link layer it contains a reference to SGID attribute.
3491  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3492  * attributes which are initialized using ib_init_ah_attr_from_wc().
3493  *
3494  */
3495 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3496 			    const struct ib_wc *wc, const struct ib_grh *grh,
3497 			    struct rdma_ah_attr *ah_attr);
3498 
3499 /**
3500  * ib_create_ah_from_wc - Creates an address handle associated with the
3501  *   sender of the specified work completion.
3502  * @pd: The protection domain associated with the address handle.
3503  * @wc: Work completion information associated with a received message.
3504  * @grh: References the received global route header.  This parameter is
3505  *   ignored unless the work completion indicates that the GRH is valid.
3506  * @port_num: The outbound port number to associate with the address.
3507  *
3508  * The address handle is used to reference a local or global destination
3509  * in all UD QP post sends.
3510  */
3511 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3512 				   const struct ib_grh *grh, u8 port_num);
3513 
3514 /**
3515  * rdma_modify_ah - Modifies the address vector associated with an address
3516  *   handle.
3517  * @ah: The address handle to modify.
3518  * @ah_attr: The new address vector attributes to associate with the
3519  *   address handle.
3520  */
3521 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3522 
3523 /**
3524  * rdma_query_ah - Queries the address vector associated with an address
3525  *   handle.
3526  * @ah: The address handle to query.
3527  * @ah_attr: The address vector attributes associated with the address
3528  *   handle.
3529  */
3530 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3531 
3532 enum rdma_destroy_ah_flags {
3533 	/* In a sleepable context */
3534 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3535 };
3536 
3537 /**
3538  * rdma_destroy_ah_user - Destroys an address handle.
3539  * @ah: The address handle to destroy.
3540  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3541  * @udata: Valid user data or NULL for kernel objects
3542  */
3543 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3544 
3545 /**
3546  * rdma_destroy_ah - Destroys an kernel address handle.
3547  * @ah: The address handle to destroy.
3548  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3549  *
3550  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3551  */
3552 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3553 {
3554 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3555 
3556 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3557 }
3558 
3559 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3560 				  struct ib_srq_init_attr *srq_init_attr,
3561 				  struct ib_usrq_object *uobject,
3562 				  struct ib_udata *udata);
3563 static inline struct ib_srq *
3564 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3565 {
3566 	if (!pd->device->ops.create_srq)
3567 		return ERR_PTR(-EOPNOTSUPP);
3568 
3569 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3570 }
3571 
3572 /**
3573  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3574  * @srq: The SRQ to modify.
3575  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3576  *   the current values of selected SRQ attributes are returned.
3577  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3578  *   are being modified.
3579  *
3580  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3581  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3582  * the number of receives queued drops below the limit.
3583  */
3584 int ib_modify_srq(struct ib_srq *srq,
3585 		  struct ib_srq_attr *srq_attr,
3586 		  enum ib_srq_attr_mask srq_attr_mask);
3587 
3588 /**
3589  * ib_query_srq - Returns the attribute list and current values for the
3590  *   specified SRQ.
3591  * @srq: The SRQ to query.
3592  * @srq_attr: The attributes of the specified SRQ.
3593  */
3594 int ib_query_srq(struct ib_srq *srq,
3595 		 struct ib_srq_attr *srq_attr);
3596 
3597 /**
3598  * ib_destroy_srq_user - Destroys the specified SRQ.
3599  * @srq: The SRQ to destroy.
3600  * @udata: Valid user data or NULL for kernel objects
3601  */
3602 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3603 
3604 /**
3605  * ib_destroy_srq - Destroys the specified kernel SRQ.
3606  * @srq: The SRQ to destroy.
3607  *
3608  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3609  */
3610 static inline void ib_destroy_srq(struct ib_srq *srq)
3611 {
3612 	int ret = ib_destroy_srq_user(srq, NULL);
3613 
3614 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3615 }
3616 
3617 /**
3618  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3619  * @srq: The SRQ to post the work request on.
3620  * @recv_wr: A list of work requests to post on the receive queue.
3621  * @bad_recv_wr: On an immediate failure, this parameter will reference
3622  *   the work request that failed to be posted on the QP.
3623  */
3624 static inline int ib_post_srq_recv(struct ib_srq *srq,
3625 				   const struct ib_recv_wr *recv_wr,
3626 				   const struct ib_recv_wr **bad_recv_wr)
3627 {
3628 	const struct ib_recv_wr *dummy;
3629 
3630 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3631 					      bad_recv_wr ? : &dummy);
3632 }
3633 
3634 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
3635 				 struct ib_qp_init_attr *qp_init_attr,
3636 				 const char *caller);
3637 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3638 					 struct ib_qp_init_attr *init_attr)
3639 {
3640 	return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME);
3641 }
3642 
3643 /**
3644  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3645  * @qp: The QP to modify.
3646  * @attr: On input, specifies the QP attributes to modify.  On output,
3647  *   the current values of selected QP attributes are returned.
3648  * @attr_mask: A bit-mask used to specify which attributes of the QP
3649  *   are being modified.
3650  * @udata: pointer to user's input output buffer information
3651  *   are being modified.
3652  * It returns 0 on success and returns appropriate error code on error.
3653  */
3654 int ib_modify_qp_with_udata(struct ib_qp *qp,
3655 			    struct ib_qp_attr *attr,
3656 			    int attr_mask,
3657 			    struct ib_udata *udata);
3658 
3659 /**
3660  * ib_modify_qp - Modifies the attributes for the specified QP and then
3661  *   transitions the QP to the given state.
3662  * @qp: The QP to modify.
3663  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3664  *   the current values of selected QP attributes are returned.
3665  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3666  *   are being modified.
3667  */
3668 int ib_modify_qp(struct ib_qp *qp,
3669 		 struct ib_qp_attr *qp_attr,
3670 		 int qp_attr_mask);
3671 
3672 /**
3673  * ib_query_qp - Returns the attribute list and current values for the
3674  *   specified QP.
3675  * @qp: The QP to query.
3676  * @qp_attr: The attributes of the specified QP.
3677  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3678  * @qp_init_attr: Additional attributes of the selected QP.
3679  *
3680  * The qp_attr_mask may be used to limit the query to gathering only the
3681  * selected attributes.
3682  */
3683 int ib_query_qp(struct ib_qp *qp,
3684 		struct ib_qp_attr *qp_attr,
3685 		int qp_attr_mask,
3686 		struct ib_qp_init_attr *qp_init_attr);
3687 
3688 /**
3689  * ib_destroy_qp - Destroys the specified QP.
3690  * @qp: The QP to destroy.
3691  * @udata: Valid udata or NULL for kernel objects
3692  */
3693 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3694 
3695 /**
3696  * ib_destroy_qp - Destroys the specified kernel QP.
3697  * @qp: The QP to destroy.
3698  *
3699  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3700  */
3701 static inline int ib_destroy_qp(struct ib_qp *qp)
3702 {
3703 	return ib_destroy_qp_user(qp, NULL);
3704 }
3705 
3706 /**
3707  * ib_open_qp - Obtain a reference to an existing sharable QP.
3708  * @xrcd - XRC domain
3709  * @qp_open_attr: Attributes identifying the QP to open.
3710  *
3711  * Returns a reference to a sharable QP.
3712  */
3713 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3714 			 struct ib_qp_open_attr *qp_open_attr);
3715 
3716 /**
3717  * ib_close_qp - Release an external reference to a QP.
3718  * @qp: The QP handle to release
3719  *
3720  * The opened QP handle is released by the caller.  The underlying
3721  * shared QP is not destroyed until all internal references are released.
3722  */
3723 int ib_close_qp(struct ib_qp *qp);
3724 
3725 /**
3726  * ib_post_send - Posts a list of work requests to the send queue of
3727  *   the specified QP.
3728  * @qp: The QP to post the work request on.
3729  * @send_wr: A list of work requests to post on the send queue.
3730  * @bad_send_wr: On an immediate failure, this parameter will reference
3731  *   the work request that failed to be posted on the QP.
3732  *
3733  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3734  * error is returned, the QP state shall not be affected,
3735  * ib_post_send() will return an immediate error after queueing any
3736  * earlier work requests in the list.
3737  */
3738 static inline int ib_post_send(struct ib_qp *qp,
3739 			       const struct ib_send_wr *send_wr,
3740 			       const struct ib_send_wr **bad_send_wr)
3741 {
3742 	const struct ib_send_wr *dummy;
3743 
3744 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3745 }
3746 
3747 /**
3748  * ib_post_recv - Posts a list of work requests to the receive queue of
3749  *   the specified QP.
3750  * @qp: The QP to post the work request on.
3751  * @recv_wr: A list of work requests to post on the receive queue.
3752  * @bad_recv_wr: On an immediate failure, this parameter will reference
3753  *   the work request that failed to be posted on the QP.
3754  */
3755 static inline int ib_post_recv(struct ib_qp *qp,
3756 			       const struct ib_recv_wr *recv_wr,
3757 			       const struct ib_recv_wr **bad_recv_wr)
3758 {
3759 	const struct ib_recv_wr *dummy;
3760 
3761 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3762 }
3763 
3764 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3765 			    int comp_vector, enum ib_poll_context poll_ctx,
3766 			    const char *caller);
3767 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3768 					int nr_cqe, int comp_vector,
3769 					enum ib_poll_context poll_ctx)
3770 {
3771 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3772 			     KBUILD_MODNAME);
3773 }
3774 
3775 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3776 				int nr_cqe, enum ib_poll_context poll_ctx,
3777 				const char *caller);
3778 
3779 /**
3780  * ib_alloc_cq_any: Allocate kernel CQ
3781  * @dev: The IB device
3782  * @private: Private data attached to the CQE
3783  * @nr_cqe: Number of CQEs in the CQ
3784  * @poll_ctx: Context used for polling the CQ
3785  */
3786 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3787 					    void *private, int nr_cqe,
3788 					    enum ib_poll_context poll_ctx)
3789 {
3790 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3791 				 KBUILD_MODNAME);
3792 }
3793 
3794 void ib_free_cq(struct ib_cq *cq);
3795 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3796 
3797 /**
3798  * ib_create_cq - Creates a CQ on the specified device.
3799  * @device: The device on which to create the CQ.
3800  * @comp_handler: A user-specified callback that is invoked when a
3801  *   completion event occurs on the CQ.
3802  * @event_handler: A user-specified callback that is invoked when an
3803  *   asynchronous event not associated with a completion occurs on the CQ.
3804  * @cq_context: Context associated with the CQ returned to the user via
3805  *   the associated completion and event handlers.
3806  * @cq_attr: The attributes the CQ should be created upon.
3807  *
3808  * Users can examine the cq structure to determine the actual CQ size.
3809  */
3810 struct ib_cq *__ib_create_cq(struct ib_device *device,
3811 			     ib_comp_handler comp_handler,
3812 			     void (*event_handler)(struct ib_event *, void *),
3813 			     void *cq_context,
3814 			     const struct ib_cq_init_attr *cq_attr,
3815 			     const char *caller);
3816 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3817 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3818 
3819 /**
3820  * ib_resize_cq - Modifies the capacity of the CQ.
3821  * @cq: The CQ to resize.
3822  * @cqe: The minimum size of the CQ.
3823  *
3824  * Users can examine the cq structure to determine the actual CQ size.
3825  */
3826 int ib_resize_cq(struct ib_cq *cq, int cqe);
3827 
3828 /**
3829  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3830  * @cq: The CQ to modify.
3831  * @cq_count: number of CQEs that will trigger an event
3832  * @cq_period: max period of time in usec before triggering an event
3833  *
3834  */
3835 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3836 
3837 /**
3838  * ib_destroy_cq_user - Destroys the specified CQ.
3839  * @cq: The CQ to destroy.
3840  * @udata: Valid user data or NULL for kernel objects
3841  */
3842 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3843 
3844 /**
3845  * ib_destroy_cq - Destroys the specified kernel CQ.
3846  * @cq: The CQ to destroy.
3847  *
3848  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3849  */
3850 static inline void ib_destroy_cq(struct ib_cq *cq)
3851 {
3852 	int ret = ib_destroy_cq_user(cq, NULL);
3853 
3854 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3855 }
3856 
3857 /**
3858  * ib_poll_cq - poll a CQ for completion(s)
3859  * @cq:the CQ being polled
3860  * @num_entries:maximum number of completions to return
3861  * @wc:array of at least @num_entries &struct ib_wc where completions
3862  *   will be returned
3863  *
3864  * Poll a CQ for (possibly multiple) completions.  If the return value
3865  * is < 0, an error occurred.  If the return value is >= 0, it is the
3866  * number of completions returned.  If the return value is
3867  * non-negative and < num_entries, then the CQ was emptied.
3868  */
3869 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3870 			     struct ib_wc *wc)
3871 {
3872 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3873 }
3874 
3875 /**
3876  * ib_req_notify_cq - Request completion notification on a CQ.
3877  * @cq: The CQ to generate an event for.
3878  * @flags:
3879  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3880  *   to request an event on the next solicited event or next work
3881  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3882  *   may also be |ed in to request a hint about missed events, as
3883  *   described below.
3884  *
3885  * Return Value:
3886  *    < 0 means an error occurred while requesting notification
3887  *   == 0 means notification was requested successfully, and if
3888  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3889  *        were missed and it is safe to wait for another event.  In
3890  *        this case is it guaranteed that any work completions added
3891  *        to the CQ since the last CQ poll will trigger a completion
3892  *        notification event.
3893  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3894  *        in.  It means that the consumer must poll the CQ again to
3895  *        make sure it is empty to avoid missing an event because of a
3896  *        race between requesting notification and an entry being
3897  *        added to the CQ.  This return value means it is possible
3898  *        (but not guaranteed) that a work completion has been added
3899  *        to the CQ since the last poll without triggering a
3900  *        completion notification event.
3901  */
3902 static inline int ib_req_notify_cq(struct ib_cq *cq,
3903 				   enum ib_cq_notify_flags flags)
3904 {
3905 	return cq->device->ops.req_notify_cq(cq, flags);
3906 }
3907 
3908 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3909 			     int comp_vector_hint,
3910 			     enum ib_poll_context poll_ctx);
3911 
3912 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3913 
3914 /**
3915  * ib_req_ncomp_notif - Request completion notification when there are
3916  *   at least the specified number of unreaped completions on the CQ.
3917  * @cq: The CQ to generate an event for.
3918  * @wc_cnt: The number of unreaped completions that should be on the
3919  *   CQ before an event is generated.
3920  */
3921 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3922 {
3923 	return cq->device->ops.req_ncomp_notif ?
3924 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3925 		-ENOSYS;
3926 }
3927 
3928 /*
3929  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3930  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3931  * address into the dma address.
3932  */
3933 static inline bool ib_uses_virt_dma(struct ib_device *dev)
3934 {
3935 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3936 }
3937 
3938 /**
3939  * ib_dma_mapping_error - check a DMA addr for error
3940  * @dev: The device for which the dma_addr was created
3941  * @dma_addr: The DMA address to check
3942  */
3943 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3944 {
3945 	if (ib_uses_virt_dma(dev))
3946 		return 0;
3947 	return dma_mapping_error(dev->dma_device, dma_addr);
3948 }
3949 
3950 /**
3951  * ib_dma_map_single - Map a kernel virtual address to DMA address
3952  * @dev: The device for which the dma_addr is to be created
3953  * @cpu_addr: The kernel virtual address
3954  * @size: The size of the region in bytes
3955  * @direction: The direction of the DMA
3956  */
3957 static inline u64 ib_dma_map_single(struct ib_device *dev,
3958 				    void *cpu_addr, size_t size,
3959 				    enum dma_data_direction direction)
3960 {
3961 	if (ib_uses_virt_dma(dev))
3962 		return (uintptr_t)cpu_addr;
3963 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3964 }
3965 
3966 /**
3967  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3968  * @dev: The device for which the DMA address was created
3969  * @addr: The DMA address
3970  * @size: The size of the region in bytes
3971  * @direction: The direction of the DMA
3972  */
3973 static inline void ib_dma_unmap_single(struct ib_device *dev,
3974 				       u64 addr, size_t size,
3975 				       enum dma_data_direction direction)
3976 {
3977 	if (!ib_uses_virt_dma(dev))
3978 		dma_unmap_single(dev->dma_device, addr, size, direction);
3979 }
3980 
3981 /**
3982  * ib_dma_map_page - Map a physical page to DMA address
3983  * @dev: The device for which the dma_addr is to be created
3984  * @page: The page to be mapped
3985  * @offset: The offset within the page
3986  * @size: The size of the region in bytes
3987  * @direction: The direction of the DMA
3988  */
3989 static inline u64 ib_dma_map_page(struct ib_device *dev,
3990 				  struct page *page,
3991 				  unsigned long offset,
3992 				  size_t size,
3993 					 enum dma_data_direction direction)
3994 {
3995 	if (ib_uses_virt_dma(dev))
3996 		return (uintptr_t)(page_address(page) + offset);
3997 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3998 }
3999 
4000 /**
4001  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4002  * @dev: The device for which the DMA address was created
4003  * @addr: The DMA address
4004  * @size: The size of the region in bytes
4005  * @direction: The direction of the DMA
4006  */
4007 static inline void ib_dma_unmap_page(struct ib_device *dev,
4008 				     u64 addr, size_t size,
4009 				     enum dma_data_direction direction)
4010 {
4011 	if (!ib_uses_virt_dma(dev))
4012 		dma_unmap_page(dev->dma_device, addr, size, direction);
4013 }
4014 
4015 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4016 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4017 				      struct scatterlist *sg, int nents,
4018 				      enum dma_data_direction direction,
4019 				      unsigned long dma_attrs)
4020 {
4021 	if (ib_uses_virt_dma(dev))
4022 		return ib_dma_virt_map_sg(dev, sg, nents);
4023 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4024 				dma_attrs);
4025 }
4026 
4027 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4028 					 struct scatterlist *sg, int nents,
4029 					 enum dma_data_direction direction,
4030 					 unsigned long dma_attrs)
4031 {
4032 	if (!ib_uses_virt_dma(dev))
4033 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4034 				   dma_attrs);
4035 }
4036 
4037 /**
4038  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4039  * @dev: The device for which the DMA addresses are to be created
4040  * @sg: The array of scatter/gather entries
4041  * @nents: The number of scatter/gather entries
4042  * @direction: The direction of the DMA
4043  */
4044 static inline int ib_dma_map_sg(struct ib_device *dev,
4045 				struct scatterlist *sg, int nents,
4046 				enum dma_data_direction direction)
4047 {
4048 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4049 }
4050 
4051 /**
4052  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4053  * @dev: The device for which the DMA addresses were created
4054  * @sg: The array of scatter/gather entries
4055  * @nents: The number of scatter/gather entries
4056  * @direction: The direction of the DMA
4057  */
4058 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4059 				   struct scatterlist *sg, int nents,
4060 				   enum dma_data_direction direction)
4061 {
4062 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4063 }
4064 
4065 /**
4066  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4067  * @dev: The device to query
4068  *
4069  * The returned value represents a size in bytes.
4070  */
4071 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4072 {
4073 	if (ib_uses_virt_dma(dev))
4074 		return UINT_MAX;
4075 	return dma_get_max_seg_size(dev->dma_device);
4076 }
4077 
4078 /**
4079  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4080  * @dev: The device for which the DMA address was created
4081  * @addr: The DMA address
4082  * @size: The size of the region in bytes
4083  * @dir: The direction of the DMA
4084  */
4085 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4086 					      u64 addr,
4087 					      size_t size,
4088 					      enum dma_data_direction dir)
4089 {
4090 	if (!ib_uses_virt_dma(dev))
4091 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4092 }
4093 
4094 /**
4095  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4096  * @dev: The device for which the DMA address was created
4097  * @addr: The DMA address
4098  * @size: The size of the region in bytes
4099  * @dir: The direction of the DMA
4100  */
4101 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4102 						 u64 addr,
4103 						 size_t size,
4104 						 enum dma_data_direction dir)
4105 {
4106 	if (!ib_uses_virt_dma(dev))
4107 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4108 }
4109 
4110 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4111  * space. This function should be called when 'current' is the owning MM.
4112  */
4113 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4114 			     u64 virt_addr, int mr_access_flags);
4115 
4116 /* ib_advise_mr -  give an advice about an address range in a memory region */
4117 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4118 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4119 /**
4120  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4121  *   HCA translation table.
4122  * @mr: The memory region to deregister.
4123  * @udata: Valid user data or NULL for kernel object
4124  *
4125  * This function can fail, if the memory region has memory windows bound to it.
4126  */
4127 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4128 
4129 /**
4130  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4131  *   HCA translation table.
4132  * @mr: The memory region to deregister.
4133  *
4134  * This function can fail, if the memory region has memory windows bound to it.
4135  *
4136  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4137  */
4138 static inline int ib_dereg_mr(struct ib_mr *mr)
4139 {
4140 	return ib_dereg_mr_user(mr, NULL);
4141 }
4142 
4143 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4144 			  u32 max_num_sg);
4145 
4146 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4147 				    u32 max_num_data_sg,
4148 				    u32 max_num_meta_sg);
4149 
4150 /**
4151  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4152  *   R_Key and L_Key.
4153  * @mr - struct ib_mr pointer to be updated.
4154  * @newkey - new key to be used.
4155  */
4156 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4157 {
4158 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4159 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4160 }
4161 
4162 /**
4163  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4164  * for calculating a new rkey for type 2 memory windows.
4165  * @rkey - the rkey to increment.
4166  */
4167 static inline u32 ib_inc_rkey(u32 rkey)
4168 {
4169 	const u32 mask = 0x000000ff;
4170 	return ((rkey + 1) & mask) | (rkey & ~mask);
4171 }
4172 
4173 /**
4174  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4175  * @qp: QP to attach to the multicast group.  The QP must be type
4176  *   IB_QPT_UD.
4177  * @gid: Multicast group GID.
4178  * @lid: Multicast group LID in host byte order.
4179  *
4180  * In order to send and receive multicast packets, subnet
4181  * administration must have created the multicast group and configured
4182  * the fabric appropriately.  The port associated with the specified
4183  * QP must also be a member of the multicast group.
4184  */
4185 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4186 
4187 /**
4188  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4189  * @qp: QP to detach from the multicast group.
4190  * @gid: Multicast group GID.
4191  * @lid: Multicast group LID in host byte order.
4192  */
4193 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4194 
4195 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4196 				   struct inode *inode, struct ib_udata *udata);
4197 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4198 
4199 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4200 				     unsigned int flags)
4201 {
4202 	/*
4203 	 * Local write permission is required if remote write or
4204 	 * remote atomic permission is also requested.
4205 	 */
4206 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4207 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4208 		return -EINVAL;
4209 
4210 	if (flags & ~IB_ACCESS_SUPPORTED)
4211 		return -EINVAL;
4212 
4213 	if (flags & IB_ACCESS_ON_DEMAND &&
4214 	    !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4215 		return -EINVAL;
4216 	return 0;
4217 }
4218 
4219 static inline bool ib_access_writable(int access_flags)
4220 {
4221 	/*
4222 	 * We have writable memory backing the MR if any of the following
4223 	 * access flags are set.  "Local write" and "remote write" obviously
4224 	 * require write access.  "Remote atomic" can do things like fetch and
4225 	 * add, which will modify memory, and "MW bind" can change permissions
4226 	 * by binding a window.
4227 	 */
4228 	return access_flags &
4229 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4230 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4231 }
4232 
4233 /**
4234  * ib_check_mr_status: lightweight check of MR status.
4235  *     This routine may provide status checks on a selected
4236  *     ib_mr. first use is for signature status check.
4237  *
4238  * @mr: A memory region.
4239  * @check_mask: Bitmask of which checks to perform from
4240  *     ib_mr_status_check enumeration.
4241  * @mr_status: The container of relevant status checks.
4242  *     failed checks will be indicated in the status bitmask
4243  *     and the relevant info shall be in the error item.
4244  */
4245 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4246 		       struct ib_mr_status *mr_status);
4247 
4248 /**
4249  * ib_device_try_get: Hold a registration lock
4250  * device: The device to lock
4251  *
4252  * A device under an active registration lock cannot become unregistered. It
4253  * is only possible to obtain a registration lock on a device that is fully
4254  * registered, otherwise this function returns false.
4255  *
4256  * The registration lock is only necessary for actions which require the
4257  * device to still be registered. Uses that only require the device pointer to
4258  * be valid should use get_device(&ibdev->dev) to hold the memory.
4259  *
4260  */
4261 static inline bool ib_device_try_get(struct ib_device *dev)
4262 {
4263 	return refcount_inc_not_zero(&dev->refcount);
4264 }
4265 
4266 void ib_device_put(struct ib_device *device);
4267 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4268 					  enum rdma_driver_id driver_id);
4269 struct ib_device *ib_device_get_by_name(const char *name,
4270 					enum rdma_driver_id driver_id);
4271 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4272 					    u16 pkey, const union ib_gid *gid,
4273 					    const struct sockaddr *addr);
4274 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4275 			 unsigned int port);
4276 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4277 
4278 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4279 			   struct ib_wq_init_attr *init_attr);
4280 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4281 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4282 		 u32 wq_attr_mask);
4283 
4284 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4285 		 unsigned int *sg_offset, unsigned int page_size);
4286 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4287 		    int data_sg_nents, unsigned int *data_sg_offset,
4288 		    struct scatterlist *meta_sg, int meta_sg_nents,
4289 		    unsigned int *meta_sg_offset, unsigned int page_size);
4290 
4291 static inline int
4292 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4293 		  unsigned int *sg_offset, unsigned int page_size)
4294 {
4295 	int n;
4296 
4297 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4298 	mr->iova = 0;
4299 
4300 	return n;
4301 }
4302 
4303 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4304 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4305 
4306 void ib_drain_rq(struct ib_qp *qp);
4307 void ib_drain_sq(struct ib_qp *qp);
4308 void ib_drain_qp(struct ib_qp *qp);
4309 
4310 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width);
4311 
4312 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4313 {
4314 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4315 		return attr->roce.dmac;
4316 	return NULL;
4317 }
4318 
4319 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4320 {
4321 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4322 		attr->ib.dlid = (u16)dlid;
4323 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4324 		attr->opa.dlid = dlid;
4325 }
4326 
4327 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4328 {
4329 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4330 		return attr->ib.dlid;
4331 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4332 		return attr->opa.dlid;
4333 	return 0;
4334 }
4335 
4336 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4337 {
4338 	attr->sl = sl;
4339 }
4340 
4341 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4342 {
4343 	return attr->sl;
4344 }
4345 
4346 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4347 					 u8 src_path_bits)
4348 {
4349 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4350 		attr->ib.src_path_bits = src_path_bits;
4351 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4352 		attr->opa.src_path_bits = src_path_bits;
4353 }
4354 
4355 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4356 {
4357 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4358 		return attr->ib.src_path_bits;
4359 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4360 		return attr->opa.src_path_bits;
4361 	return 0;
4362 }
4363 
4364 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4365 					bool make_grd)
4366 {
4367 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4368 		attr->opa.make_grd = make_grd;
4369 }
4370 
4371 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4372 {
4373 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4374 		return attr->opa.make_grd;
4375 	return false;
4376 }
4377 
4378 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4379 {
4380 	attr->port_num = port_num;
4381 }
4382 
4383 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4384 {
4385 	return attr->port_num;
4386 }
4387 
4388 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4389 					   u8 static_rate)
4390 {
4391 	attr->static_rate = static_rate;
4392 }
4393 
4394 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4395 {
4396 	return attr->static_rate;
4397 }
4398 
4399 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4400 					enum ib_ah_flags flag)
4401 {
4402 	attr->ah_flags = flag;
4403 }
4404 
4405 static inline enum ib_ah_flags
4406 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4407 {
4408 	return attr->ah_flags;
4409 }
4410 
4411 static inline const struct ib_global_route
4412 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4413 {
4414 	return &attr->grh;
4415 }
4416 
4417 /*To retrieve and modify the grh */
4418 static inline struct ib_global_route
4419 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4420 {
4421 	return &attr->grh;
4422 }
4423 
4424 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4425 {
4426 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4427 
4428 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4429 }
4430 
4431 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4432 					     __be64 prefix)
4433 {
4434 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4435 
4436 	grh->dgid.global.subnet_prefix = prefix;
4437 }
4438 
4439 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4440 					    __be64 if_id)
4441 {
4442 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4443 
4444 	grh->dgid.global.interface_id = if_id;
4445 }
4446 
4447 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4448 				   union ib_gid *dgid, u32 flow_label,
4449 				   u8 sgid_index, u8 hop_limit,
4450 				   u8 traffic_class)
4451 {
4452 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4453 
4454 	attr->ah_flags = IB_AH_GRH;
4455 	if (dgid)
4456 		grh->dgid = *dgid;
4457 	grh->flow_label = flow_label;
4458 	grh->sgid_index = sgid_index;
4459 	grh->hop_limit = hop_limit;
4460 	grh->traffic_class = traffic_class;
4461 	grh->sgid_attr = NULL;
4462 }
4463 
4464 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4465 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4466 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4467 			     const struct ib_gid_attr *sgid_attr);
4468 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4469 		       const struct rdma_ah_attr *src);
4470 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4471 			  const struct rdma_ah_attr *new);
4472 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4473 
4474 /**
4475  * rdma_ah_find_type - Return address handle type.
4476  *
4477  * @dev: Device to be checked
4478  * @port_num: Port number
4479  */
4480 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4481 						       u8 port_num)
4482 {
4483 	if (rdma_protocol_roce(dev, port_num))
4484 		return RDMA_AH_ATTR_TYPE_ROCE;
4485 	if (rdma_protocol_ib(dev, port_num)) {
4486 		if (rdma_cap_opa_ah(dev, port_num))
4487 			return RDMA_AH_ATTR_TYPE_OPA;
4488 		return RDMA_AH_ATTR_TYPE_IB;
4489 	}
4490 
4491 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4492 }
4493 
4494 /**
4495  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4496  *     In the current implementation the only way to get
4497  *     get the 32bit lid is from other sources for OPA.
4498  *     For IB, lids will always be 16bits so cast the
4499  *     value accordingly.
4500  *
4501  * @lid: A 32bit LID
4502  */
4503 static inline u16 ib_lid_cpu16(u32 lid)
4504 {
4505 	WARN_ON_ONCE(lid & 0xFFFF0000);
4506 	return (u16)lid;
4507 }
4508 
4509 /**
4510  * ib_lid_be16 - Return lid in 16bit BE encoding.
4511  *
4512  * @lid: A 32bit LID
4513  */
4514 static inline __be16 ib_lid_be16(u32 lid)
4515 {
4516 	WARN_ON_ONCE(lid & 0xFFFF0000);
4517 	return cpu_to_be16((u16)lid);
4518 }
4519 
4520 /**
4521  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4522  *   vector
4523  * @device:         the rdma device
4524  * @comp_vector:    index of completion vector
4525  *
4526  * Returns NULL on failure, otherwise a corresponding cpu map of the
4527  * completion vector (returns all-cpus map if the device driver doesn't
4528  * implement get_vector_affinity).
4529  */
4530 static inline const struct cpumask *
4531 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4532 {
4533 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4534 	    !device->ops.get_vector_affinity)
4535 		return NULL;
4536 
4537 	return device->ops.get_vector_affinity(device, comp_vector);
4538 
4539 }
4540 
4541 /**
4542  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4543  * and add their gids, as needed, to the relevant RoCE devices.
4544  *
4545  * @device:         the rdma device
4546  */
4547 void rdma_roce_rescan_device(struct ib_device *ibdev);
4548 
4549 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4550 
4551 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4552 
4553 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4554 				     enum rdma_netdev_t type, const char *name,
4555 				     unsigned char name_assign_type,
4556 				     void (*setup)(struct net_device *));
4557 
4558 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4559 		     enum rdma_netdev_t type, const char *name,
4560 		     unsigned char name_assign_type,
4561 		     void (*setup)(struct net_device *),
4562 		     struct net_device *netdev);
4563 
4564 /**
4565  * rdma_set_device_sysfs_group - Set device attributes group to have
4566  *				 driver specific sysfs entries at
4567  *				 for infiniband class.
4568  *
4569  * @device:	device pointer for which attributes to be created
4570  * @group:	Pointer to group which should be added when device
4571  *		is registered with sysfs.
4572  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4573  * group per device to have sysfs attributes.
4574  *
4575  * NOTE: New drivers should not make use of this API; instead new device
4576  * parameter should be exposed via netlink command. This API and mechanism
4577  * exist only for existing drivers.
4578  */
4579 static inline void
4580 rdma_set_device_sysfs_group(struct ib_device *dev,
4581 			    const struct attribute_group *group)
4582 {
4583 	dev->groups[1] = group;
4584 }
4585 
4586 /**
4587  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4588  *
4589  * @device:	device pointer for which ib_device pointer to retrieve
4590  *
4591  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4592  *
4593  */
4594 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4595 {
4596 	struct ib_core_device *coredev =
4597 		container_of(device, struct ib_core_device, dev);
4598 
4599 	return coredev->owner;
4600 }
4601 
4602 /**
4603  * ibdev_to_node - return the NUMA node for a given ib_device
4604  * @dev:	device to get the NUMA node for.
4605  */
4606 static inline int ibdev_to_node(struct ib_device *ibdev)
4607 {
4608 	struct device *parent = ibdev->dev.parent;
4609 
4610 	if (!parent)
4611 		return NUMA_NO_NODE;
4612 	return dev_to_node(parent);
4613 }
4614 
4615 /**
4616  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4617  *			       ib_device holder structure from device pointer.
4618  *
4619  * NOTE: New drivers should not make use of this API; This API is only for
4620  * existing drivers who have exposed sysfs entries using
4621  * rdma_set_device_sysfs_group().
4622  */
4623 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4624 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4625 
4626 bool rdma_dev_access_netns(const struct ib_device *device,
4627 			   const struct net *net);
4628 
4629 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4630 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4631 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4632 
4633 /**
4634  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4635  *                               on the flow_label
4636  *
4637  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4638  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4639  * convention.
4640  */
4641 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4642 {
4643 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4644 
4645 	fl_low ^= fl_high >> 14;
4646 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4647 }
4648 
4649 /**
4650  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4651  *                        local and remote qpn values
4652  *
4653  * This function folded the multiplication results of two qpns, 24 bit each,
4654  * fields, and converts it to a 20 bit results.
4655  *
4656  * This function will create symmetric flow_label value based on the local
4657  * and remote qpn values. this will allow both the requester and responder
4658  * to calculate the same flow_label for a given connection.
4659  *
4660  * This helper function should be used by driver in case the upper layer
4661  * provide a zero flow_label value. This is to improve entropy of RDMA
4662  * traffic in the network.
4663  */
4664 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4665 {
4666 	u64 v = (u64)lqpn * rqpn;
4667 
4668 	v ^= v >> 20;
4669 	v ^= v >> 40;
4670 
4671 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4672 }
4673 #endif /* IB_VERBS_H */
4674