1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _NET_XFRM_H 3 #define _NET_XFRM_H 4 5 #include <linux/compiler.h> 6 #include <linux/xfrm.h> 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/skbuff.h> 10 #include <linux/socket.h> 11 #include <linux/pfkeyv2.h> 12 #include <linux/ipsec.h> 13 #include <linux/in6.h> 14 #include <linux/mutex.h> 15 #include <linux/audit.h> 16 #include <linux/slab.h> 17 #include <linux/refcount.h> 18 19 #include <net/sock.h> 20 #include <net/dst.h> 21 #include <net/ip.h> 22 #include <net/route.h> 23 #include <net/ipv6.h> 24 #include <net/ip6_fib.h> 25 #include <net/flow.h> 26 27 #include <linux/interrupt.h> 28 29 #ifdef CONFIG_XFRM_STATISTICS 30 #include <net/snmp.h> 31 #endif 32 33 #define XFRM_PROTO_ESP 50 34 #define XFRM_PROTO_AH 51 35 #define XFRM_PROTO_COMP 108 36 #define XFRM_PROTO_IPIP 4 37 #define XFRM_PROTO_IPV6 41 38 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING 39 #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS 40 41 #define XFRM_ALIGN4(len) (((len) + 3) & ~3) 42 #define XFRM_ALIGN8(len) (((len) + 7) & ~7) 43 #define MODULE_ALIAS_XFRM_MODE(family, encap) \ 44 MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) 45 #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ 46 MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) 47 #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ 48 MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) 49 50 #ifdef CONFIG_XFRM_STATISTICS 51 #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) 52 #else 53 #define XFRM_INC_STATS(net, field) ((void)(net)) 54 #endif 55 56 57 /* Organization of SPD aka "XFRM rules" 58 ------------------------------------ 59 60 Basic objects: 61 - policy rule, struct xfrm_policy (=SPD entry) 62 - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) 63 - instance of a transformer, struct xfrm_state (=SA) 64 - template to clone xfrm_state, struct xfrm_tmpl 65 66 SPD is plain linear list of xfrm_policy rules, ordered by priority. 67 (To be compatible with existing pfkeyv2 implementations, 68 many rules with priority of 0x7fffffff are allowed to exist and 69 such rules are ordered in an unpredictable way, thanks to bsd folks.) 70 71 Lookup is plain linear search until the first match with selector. 72 73 If "action" is "block", then we prohibit the flow, otherwise: 74 if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, 75 policy entry has list of up to XFRM_MAX_DEPTH transformations, 76 described by templates xfrm_tmpl. Each template is resolved 77 to a complete xfrm_state (see below) and we pack bundle of transformations 78 to a dst_entry returned to requestor. 79 80 dst -. xfrm .-> xfrm_state #1 81 |---. child .-> dst -. xfrm .-> xfrm_state #2 82 |---. child .-> dst -. xfrm .-> xfrm_state #3 83 |---. child .-> NULL 84 85 Bundles are cached at xrfm_policy struct (field ->bundles). 86 87 88 Resolution of xrfm_tmpl 89 ----------------------- 90 Template contains: 91 1. ->mode Mode: transport or tunnel 92 2. ->id.proto Protocol: AH/ESP/IPCOMP 93 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. 94 Q: allow to resolve security gateway? 95 4. ->id.spi If not zero, static SPI. 96 5. ->saddr Local tunnel endpoint, ignored for transport mode. 97 6. ->algos List of allowed algos. Plain bitmask now. 98 Q: ealgos, aalgos, calgos. What a mess... 99 7. ->share Sharing mode. 100 Q: how to implement private sharing mode? To add struct sock* to 101 flow id? 102 103 Having this template we search through SAD searching for entries 104 with appropriate mode/proto/algo, permitted by selector. 105 If no appropriate entry found, it is requested from key manager. 106 107 PROBLEMS: 108 Q: How to find all the bundles referring to a physical path for 109 PMTU discovery? Seems, dst should contain list of all parents... 110 and enter to infinite locking hierarchy disaster. 111 No! It is easier, we will not search for them, let them find us. 112 We add genid to each dst plus pointer to genid of raw IP route, 113 pmtu disc will update pmtu on raw IP route and increase its genid. 114 dst_check() will see this for top level and trigger resyncing 115 metrics. Plus, it will be made via sk->sk_dst_cache. Solved. 116 */ 117 118 struct xfrm_state_walk { 119 struct list_head all; 120 u8 state; 121 u8 dying; 122 u8 proto; 123 u32 seq; 124 struct xfrm_address_filter *filter; 125 }; 126 127 struct xfrm_state_offload { 128 struct net_device *dev; 129 unsigned long offload_handle; 130 unsigned int num_exthdrs; 131 u8 flags; 132 }; 133 134 /* Full description of state of transformer. */ 135 struct xfrm_state { 136 possible_net_t xs_net; 137 union { 138 struct hlist_node gclist; 139 struct hlist_node bydst; 140 }; 141 struct hlist_node bysrc; 142 struct hlist_node byspi; 143 144 refcount_t refcnt; 145 spinlock_t lock; 146 147 struct xfrm_id id; 148 struct xfrm_selector sel; 149 struct xfrm_mark mark; 150 u32 tfcpad; 151 152 u32 genid; 153 154 /* Key manager bits */ 155 struct xfrm_state_walk km; 156 157 /* Parameters of this state. */ 158 struct { 159 u32 reqid; 160 u8 mode; 161 u8 replay_window; 162 u8 aalgo, ealgo, calgo; 163 u8 flags; 164 u16 family; 165 xfrm_address_t saddr; 166 int header_len; 167 int trailer_len; 168 u32 extra_flags; 169 u32 output_mark; 170 } props; 171 172 struct xfrm_lifetime_cfg lft; 173 174 /* Data for transformer */ 175 struct xfrm_algo_auth *aalg; 176 struct xfrm_algo *ealg; 177 struct xfrm_algo *calg; 178 struct xfrm_algo_aead *aead; 179 const char *geniv; 180 181 /* Data for encapsulator */ 182 struct xfrm_encap_tmpl *encap; 183 184 /* Data for care-of address */ 185 xfrm_address_t *coaddr; 186 187 /* IPComp needs an IPIP tunnel for handling uncompressed packets */ 188 struct xfrm_state *tunnel; 189 190 /* If a tunnel, number of users + 1 */ 191 atomic_t tunnel_users; 192 193 /* State for replay detection */ 194 struct xfrm_replay_state replay; 195 struct xfrm_replay_state_esn *replay_esn; 196 197 /* Replay detection state at the time we sent the last notification */ 198 struct xfrm_replay_state preplay; 199 struct xfrm_replay_state_esn *preplay_esn; 200 201 /* The functions for replay detection. */ 202 const struct xfrm_replay *repl; 203 204 /* internal flag that only holds state for delayed aevent at the 205 * moment 206 */ 207 u32 xflags; 208 209 /* Replay detection notification settings */ 210 u32 replay_maxage; 211 u32 replay_maxdiff; 212 213 /* Replay detection notification timer */ 214 struct timer_list rtimer; 215 216 /* Statistics */ 217 struct xfrm_stats stats; 218 219 struct xfrm_lifetime_cur curlft; 220 struct tasklet_hrtimer mtimer; 221 222 struct xfrm_state_offload xso; 223 224 /* used to fix curlft->add_time when changing date */ 225 long saved_tmo; 226 227 /* Last used time */ 228 unsigned long lastused; 229 230 struct page_frag xfrag; 231 232 /* Reference to data common to all the instances of this 233 * transformer. */ 234 const struct xfrm_type *type; 235 struct xfrm_mode *inner_mode; 236 struct xfrm_mode *inner_mode_iaf; 237 struct xfrm_mode *outer_mode; 238 239 const struct xfrm_type_offload *type_offload; 240 241 /* Security context */ 242 struct xfrm_sec_ctx *security; 243 244 /* Private data of this transformer, format is opaque, 245 * interpreted by xfrm_type methods. */ 246 void *data; 247 }; 248 249 static inline struct net *xs_net(struct xfrm_state *x) 250 { 251 return read_pnet(&x->xs_net); 252 } 253 254 /* xflags - make enum if more show up */ 255 #define XFRM_TIME_DEFER 1 256 #define XFRM_SOFT_EXPIRE 2 257 258 enum { 259 XFRM_STATE_VOID, 260 XFRM_STATE_ACQ, 261 XFRM_STATE_VALID, 262 XFRM_STATE_ERROR, 263 XFRM_STATE_EXPIRED, 264 XFRM_STATE_DEAD 265 }; 266 267 /* callback structure passed from either netlink or pfkey */ 268 struct km_event { 269 union { 270 u32 hard; 271 u32 proto; 272 u32 byid; 273 u32 aevent; 274 u32 type; 275 } data; 276 277 u32 seq; 278 u32 portid; 279 u32 event; 280 struct net *net; 281 }; 282 283 struct xfrm_replay { 284 void (*advance)(struct xfrm_state *x, __be32 net_seq); 285 int (*check)(struct xfrm_state *x, 286 struct sk_buff *skb, 287 __be32 net_seq); 288 int (*recheck)(struct xfrm_state *x, 289 struct sk_buff *skb, 290 __be32 net_seq); 291 void (*notify)(struct xfrm_state *x, int event); 292 int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); 293 }; 294 295 struct net_device; 296 struct xfrm_type; 297 struct xfrm_dst; 298 struct xfrm_policy_afinfo { 299 struct dst_ops *dst_ops; 300 struct dst_entry *(*dst_lookup)(struct net *net, 301 int tos, int oif, 302 const xfrm_address_t *saddr, 303 const xfrm_address_t *daddr, 304 u32 mark); 305 int (*get_saddr)(struct net *net, int oif, 306 xfrm_address_t *saddr, 307 xfrm_address_t *daddr, 308 u32 mark); 309 void (*decode_session)(struct sk_buff *skb, 310 struct flowi *fl, 311 int reverse); 312 int (*get_tos)(const struct flowi *fl); 313 int (*init_path)(struct xfrm_dst *path, 314 struct dst_entry *dst, 315 int nfheader_len); 316 int (*fill_dst)(struct xfrm_dst *xdst, 317 struct net_device *dev, 318 const struct flowi *fl); 319 struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); 320 }; 321 322 int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); 323 void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); 324 void km_policy_notify(struct xfrm_policy *xp, int dir, 325 const struct km_event *c); 326 void xfrm_policy_cache_flush(void); 327 void km_state_notify(struct xfrm_state *x, const struct km_event *c); 328 329 struct xfrm_tmpl; 330 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, 331 struct xfrm_policy *pol); 332 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 333 int __xfrm_state_delete(struct xfrm_state *x); 334 335 struct xfrm_state_afinfo { 336 unsigned int family; 337 unsigned int proto; 338 __be16 eth_proto; 339 struct module *owner; 340 const struct xfrm_type *type_map[IPPROTO_MAX]; 341 const struct xfrm_type_offload *type_offload_map[IPPROTO_MAX]; 342 struct xfrm_mode *mode_map[XFRM_MODE_MAX]; 343 344 int (*init_flags)(struct xfrm_state *x); 345 void (*init_tempsel)(struct xfrm_selector *sel, 346 const struct flowi *fl); 347 void (*init_temprop)(struct xfrm_state *x, 348 const struct xfrm_tmpl *tmpl, 349 const xfrm_address_t *daddr, 350 const xfrm_address_t *saddr); 351 int (*tmpl_sort)(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n); 352 int (*state_sort)(struct xfrm_state **dst, struct xfrm_state **src, int n); 353 int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); 354 int (*output_finish)(struct sock *sk, struct sk_buff *skb); 355 int (*extract_input)(struct xfrm_state *x, 356 struct sk_buff *skb); 357 int (*extract_output)(struct xfrm_state *x, 358 struct sk_buff *skb); 359 int (*transport_finish)(struct sk_buff *skb, 360 int async); 361 void (*local_error)(struct sk_buff *skb, u32 mtu); 362 }; 363 364 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); 365 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); 366 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); 367 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); 368 369 struct xfrm_input_afinfo { 370 unsigned int family; 371 int (*callback)(struct sk_buff *skb, u8 protocol, 372 int err); 373 }; 374 375 int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); 376 int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); 377 378 void xfrm_state_delete_tunnel(struct xfrm_state *x); 379 380 struct xfrm_type { 381 char *description; 382 struct module *owner; 383 u8 proto; 384 u8 flags; 385 #define XFRM_TYPE_NON_FRAGMENT 1 386 #define XFRM_TYPE_REPLAY_PROT 2 387 #define XFRM_TYPE_LOCAL_COADDR 4 388 #define XFRM_TYPE_REMOTE_COADDR 8 389 390 int (*init_state)(struct xfrm_state *x); 391 void (*destructor)(struct xfrm_state *); 392 int (*input)(struct xfrm_state *, struct sk_buff *skb); 393 int (*output)(struct xfrm_state *, struct sk_buff *pskb); 394 int (*reject)(struct xfrm_state *, struct sk_buff *, 395 const struct flowi *); 396 int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); 397 /* Estimate maximal size of result of transformation of a dgram */ 398 u32 (*get_mtu)(struct xfrm_state *, int size); 399 }; 400 401 int xfrm_register_type(const struct xfrm_type *type, unsigned short family); 402 int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); 403 404 struct xfrm_type_offload { 405 char *description; 406 struct module *owner; 407 u8 proto; 408 void (*encap)(struct xfrm_state *, struct sk_buff *pskb); 409 int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); 410 int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); 411 }; 412 413 int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); 414 int xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); 415 416 struct xfrm_mode { 417 /* 418 * Remove encapsulation header. 419 * 420 * The IP header will be moved over the top of the encapsulation 421 * header. 422 * 423 * On entry, the transport header shall point to where the IP header 424 * should be and the network header shall be set to where the IP 425 * header currently is. skb->data shall point to the start of the 426 * payload. 427 */ 428 int (*input2)(struct xfrm_state *x, struct sk_buff *skb); 429 430 /* 431 * This is the actual input entry point. 432 * 433 * For transport mode and equivalent this would be identical to 434 * input2 (which does not need to be set). While tunnel mode 435 * and equivalent would set this to the tunnel encapsulation function 436 * xfrm4_prepare_input that would in turn call input2. 437 */ 438 int (*input)(struct xfrm_state *x, struct sk_buff *skb); 439 440 /* 441 * Add encapsulation header. 442 * 443 * On exit, the transport header will be set to the start of the 444 * encapsulation header to be filled in by x->type->output and 445 * the mac header will be set to the nextheader (protocol for 446 * IPv4) field of the extension header directly preceding the 447 * encapsulation header, or in its absence, that of the top IP 448 * header. The value of the network header will always point 449 * to the top IP header while skb->data will point to the payload. 450 */ 451 int (*output2)(struct xfrm_state *x,struct sk_buff *skb); 452 453 /* 454 * This is the actual output entry point. 455 * 456 * For transport mode and equivalent this would be identical to 457 * output2 (which does not need to be set). While tunnel mode 458 * and equivalent would set this to a tunnel encapsulation function 459 * (xfrm4_prepare_output or xfrm6_prepare_output) that would in turn 460 * call output2. 461 */ 462 int (*output)(struct xfrm_state *x, struct sk_buff *skb); 463 464 /* 465 * Adjust pointers into the packet and do GSO segmentation. 466 */ 467 struct sk_buff *(*gso_segment)(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features); 468 469 /* 470 * Adjust pointers into the packet when IPsec is done at layer2. 471 */ 472 void (*xmit)(struct xfrm_state *x, struct sk_buff *skb); 473 474 struct xfrm_state_afinfo *afinfo; 475 struct module *owner; 476 unsigned int encap; 477 int flags; 478 }; 479 480 /* Flags for xfrm_mode. */ 481 enum { 482 XFRM_MODE_FLAG_TUNNEL = 1, 483 }; 484 485 int xfrm_register_mode(struct xfrm_mode *mode, int family); 486 int xfrm_unregister_mode(struct xfrm_mode *mode, int family); 487 488 static inline int xfrm_af2proto(unsigned int family) 489 { 490 switch(family) { 491 case AF_INET: 492 return IPPROTO_IPIP; 493 case AF_INET6: 494 return IPPROTO_IPV6; 495 default: 496 return 0; 497 } 498 } 499 500 static inline struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) 501 { 502 if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || 503 (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) 504 return x->inner_mode; 505 else 506 return x->inner_mode_iaf; 507 } 508 509 struct xfrm_tmpl { 510 /* id in template is interpreted as: 511 * daddr - destination of tunnel, may be zero for transport mode. 512 * spi - zero to acquire spi. Not zero if spi is static, then 513 * daddr must be fixed too. 514 * proto - AH/ESP/IPCOMP 515 */ 516 struct xfrm_id id; 517 518 /* Source address of tunnel. Ignored, if it is not a tunnel. */ 519 xfrm_address_t saddr; 520 521 unsigned short encap_family; 522 523 u32 reqid; 524 525 /* Mode: transport, tunnel etc. */ 526 u8 mode; 527 528 /* Sharing mode: unique, this session only, this user only etc. */ 529 u8 share; 530 531 /* May skip this transfomration if no SA is found */ 532 u8 optional; 533 534 /* Skip aalgos/ealgos/calgos checks. */ 535 u8 allalgs; 536 537 /* Bit mask of algos allowed for acquisition */ 538 u32 aalgos; 539 u32 ealgos; 540 u32 calgos; 541 }; 542 543 #define XFRM_MAX_DEPTH 6 544 #define XFRM_MAX_OFFLOAD_DEPTH 1 545 546 struct xfrm_policy_walk_entry { 547 struct list_head all; 548 u8 dead; 549 }; 550 551 struct xfrm_policy_walk { 552 struct xfrm_policy_walk_entry walk; 553 u8 type; 554 u32 seq; 555 }; 556 557 struct xfrm_policy_queue { 558 struct sk_buff_head hold_queue; 559 struct timer_list hold_timer; 560 unsigned long timeout; 561 }; 562 563 struct xfrm_policy { 564 possible_net_t xp_net; 565 struct hlist_node bydst; 566 struct hlist_node byidx; 567 568 /* This lock only affects elements except for entry. */ 569 rwlock_t lock; 570 refcount_t refcnt; 571 struct timer_list timer; 572 573 atomic_t genid; 574 u32 priority; 575 u32 index; 576 struct xfrm_mark mark; 577 struct xfrm_selector selector; 578 struct xfrm_lifetime_cfg lft; 579 struct xfrm_lifetime_cur curlft; 580 struct xfrm_policy_walk_entry walk; 581 struct xfrm_policy_queue polq; 582 u8 type; 583 u8 action; 584 u8 flags; 585 u8 xfrm_nr; 586 u16 family; 587 struct xfrm_sec_ctx *security; 588 struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; 589 struct rcu_head rcu; 590 }; 591 592 static inline struct net *xp_net(const struct xfrm_policy *xp) 593 { 594 return read_pnet(&xp->xp_net); 595 } 596 597 struct xfrm_kmaddress { 598 xfrm_address_t local; 599 xfrm_address_t remote; 600 u32 reserved; 601 u16 family; 602 }; 603 604 struct xfrm_migrate { 605 xfrm_address_t old_daddr; 606 xfrm_address_t old_saddr; 607 xfrm_address_t new_daddr; 608 xfrm_address_t new_saddr; 609 u8 proto; 610 u8 mode; 611 u16 reserved; 612 u32 reqid; 613 u16 old_family; 614 u16 new_family; 615 }; 616 617 #define XFRM_KM_TIMEOUT 30 618 /* what happened */ 619 #define XFRM_REPLAY_UPDATE XFRM_AE_CR 620 #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE 621 622 /* default aevent timeout in units of 100ms */ 623 #define XFRM_AE_ETIME 10 624 /* Async Event timer multiplier */ 625 #define XFRM_AE_ETH_M 10 626 /* default seq threshold size */ 627 #define XFRM_AE_SEQT_SIZE 2 628 629 struct xfrm_mgr { 630 struct list_head list; 631 int (*notify)(struct xfrm_state *x, const struct km_event *c); 632 int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); 633 struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); 634 int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); 635 int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); 636 int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); 637 int (*migrate)(const struct xfrm_selector *sel, 638 u8 dir, u8 type, 639 const struct xfrm_migrate *m, 640 int num_bundles, 641 const struct xfrm_kmaddress *k, 642 const struct xfrm_encap_tmpl *encap); 643 bool (*is_alive)(const struct km_event *c); 644 }; 645 646 int xfrm_register_km(struct xfrm_mgr *km); 647 int xfrm_unregister_km(struct xfrm_mgr *km); 648 649 struct xfrm_tunnel_skb_cb { 650 union { 651 struct inet_skb_parm h4; 652 struct inet6_skb_parm h6; 653 } header; 654 655 union { 656 struct ip_tunnel *ip4; 657 struct ip6_tnl *ip6; 658 } tunnel; 659 }; 660 661 #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) 662 663 /* 664 * This structure is used for the duration where packets are being 665 * transformed by IPsec. As soon as the packet leaves IPsec the 666 * area beyond the generic IP part may be overwritten. 667 */ 668 struct xfrm_skb_cb { 669 struct xfrm_tunnel_skb_cb header; 670 671 /* Sequence number for replay protection. */ 672 union { 673 struct { 674 __u32 low; 675 __u32 hi; 676 } output; 677 struct { 678 __be32 low; 679 __be32 hi; 680 } input; 681 } seq; 682 }; 683 684 #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) 685 686 /* 687 * This structure is used by the afinfo prepare_input/prepare_output functions 688 * to transmit header information to the mode input/output functions. 689 */ 690 struct xfrm_mode_skb_cb { 691 struct xfrm_tunnel_skb_cb header; 692 693 /* Copied from header for IPv4, always set to zero and DF for IPv6. */ 694 __be16 id; 695 __be16 frag_off; 696 697 /* IP header length (excluding options or extension headers). */ 698 u8 ihl; 699 700 /* TOS for IPv4, class for IPv6. */ 701 u8 tos; 702 703 /* TTL for IPv4, hop limitfor IPv6. */ 704 u8 ttl; 705 706 /* Protocol for IPv4, NH for IPv6. */ 707 u8 protocol; 708 709 /* Option length for IPv4, zero for IPv6. */ 710 u8 optlen; 711 712 /* Used by IPv6 only, zero for IPv4. */ 713 u8 flow_lbl[3]; 714 }; 715 716 #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) 717 718 /* 719 * This structure is used by the input processing to locate the SPI and 720 * related information. 721 */ 722 struct xfrm_spi_skb_cb { 723 struct xfrm_tunnel_skb_cb header; 724 725 unsigned int daddroff; 726 unsigned int family; 727 __be32 seq; 728 }; 729 730 #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) 731 732 #ifdef CONFIG_AUDITSYSCALL 733 static inline struct audit_buffer *xfrm_audit_start(const char *op) 734 { 735 struct audit_buffer *audit_buf = NULL; 736 737 if (audit_enabled == 0) 738 return NULL; 739 audit_buf = audit_log_start(current->audit_context, GFP_ATOMIC, 740 AUDIT_MAC_IPSEC_EVENT); 741 if (audit_buf == NULL) 742 return NULL; 743 audit_log_format(audit_buf, "op=%s", op); 744 return audit_buf; 745 } 746 747 static inline void xfrm_audit_helper_usrinfo(bool task_valid, 748 struct audit_buffer *audit_buf) 749 { 750 const unsigned int auid = from_kuid(&init_user_ns, task_valid ? 751 audit_get_loginuid(current) : 752 INVALID_UID); 753 const unsigned int ses = task_valid ? audit_get_sessionid(current) : 754 (unsigned int) -1; 755 756 audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); 757 audit_log_task_context(audit_buf); 758 } 759 760 void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); 761 void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, 762 bool task_valid); 763 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); 764 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); 765 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 766 struct sk_buff *skb); 767 void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, 768 __be32 net_seq); 769 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); 770 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, 771 __be32 net_seq); 772 void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, 773 u8 proto); 774 #else 775 776 static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, 777 bool task_valid) 778 { 779 } 780 781 static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, 782 bool task_valid) 783 { 784 } 785 786 static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, 787 bool task_valid) 788 { 789 } 790 791 static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, 792 bool task_valid) 793 { 794 } 795 796 static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 797 struct sk_buff *skb) 798 { 799 } 800 801 static inline void xfrm_audit_state_replay(struct xfrm_state *x, 802 struct sk_buff *skb, __be32 net_seq) 803 { 804 } 805 806 static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, 807 u16 family) 808 { 809 } 810 811 static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 812 __be32 net_spi, __be32 net_seq) 813 { 814 } 815 816 static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, 817 struct sk_buff *skb, u8 proto) 818 { 819 } 820 #endif /* CONFIG_AUDITSYSCALL */ 821 822 static inline void xfrm_pol_hold(struct xfrm_policy *policy) 823 { 824 if (likely(policy != NULL)) 825 refcount_inc(&policy->refcnt); 826 } 827 828 void xfrm_policy_destroy(struct xfrm_policy *policy); 829 830 static inline void xfrm_pol_put(struct xfrm_policy *policy) 831 { 832 if (refcount_dec_and_test(&policy->refcnt)) 833 xfrm_policy_destroy(policy); 834 } 835 836 static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) 837 { 838 int i; 839 for (i = npols - 1; i >= 0; --i) 840 xfrm_pol_put(pols[i]); 841 } 842 843 void __xfrm_state_destroy(struct xfrm_state *); 844 845 static inline void __xfrm_state_put(struct xfrm_state *x) 846 { 847 refcount_dec(&x->refcnt); 848 } 849 850 static inline void xfrm_state_put(struct xfrm_state *x) 851 { 852 if (refcount_dec_and_test(&x->refcnt)) 853 __xfrm_state_destroy(x); 854 } 855 856 static inline void xfrm_state_hold(struct xfrm_state *x) 857 { 858 refcount_inc(&x->refcnt); 859 } 860 861 static inline bool addr_match(const void *token1, const void *token2, 862 unsigned int prefixlen) 863 { 864 const __be32 *a1 = token1; 865 const __be32 *a2 = token2; 866 unsigned int pdw; 867 unsigned int pbi; 868 869 pdw = prefixlen >> 5; /* num of whole u32 in prefix */ 870 pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ 871 872 if (pdw) 873 if (memcmp(a1, a2, pdw << 2)) 874 return false; 875 876 if (pbi) { 877 __be32 mask; 878 879 mask = htonl((0xffffffff) << (32 - pbi)); 880 881 if ((a1[pdw] ^ a2[pdw]) & mask) 882 return false; 883 } 884 885 return true; 886 } 887 888 static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) 889 { 890 /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ 891 if (sizeof(long) == 4 && prefixlen == 0) 892 return true; 893 return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); 894 } 895 896 static __inline__ 897 __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) 898 { 899 __be16 port; 900 switch(fl->flowi_proto) { 901 case IPPROTO_TCP: 902 case IPPROTO_UDP: 903 case IPPROTO_UDPLITE: 904 case IPPROTO_SCTP: 905 port = uli->ports.sport; 906 break; 907 case IPPROTO_ICMP: 908 case IPPROTO_ICMPV6: 909 port = htons(uli->icmpt.type); 910 break; 911 case IPPROTO_MH: 912 port = htons(uli->mht.type); 913 break; 914 case IPPROTO_GRE: 915 port = htons(ntohl(uli->gre_key) >> 16); 916 break; 917 default: 918 port = 0; /*XXX*/ 919 } 920 return port; 921 } 922 923 static __inline__ 924 __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) 925 { 926 __be16 port; 927 switch(fl->flowi_proto) { 928 case IPPROTO_TCP: 929 case IPPROTO_UDP: 930 case IPPROTO_UDPLITE: 931 case IPPROTO_SCTP: 932 port = uli->ports.dport; 933 break; 934 case IPPROTO_ICMP: 935 case IPPROTO_ICMPV6: 936 port = htons(uli->icmpt.code); 937 break; 938 case IPPROTO_GRE: 939 port = htons(ntohl(uli->gre_key) & 0xffff); 940 break; 941 default: 942 port = 0; /*XXX*/ 943 } 944 return port; 945 } 946 947 bool xfrm_selector_match(const struct xfrm_selector *sel, 948 const struct flowi *fl, unsigned short family); 949 950 #ifdef CONFIG_SECURITY_NETWORK_XFRM 951 /* If neither has a context --> match 952 * Otherwise, both must have a context and the sids, doi, alg must match 953 */ 954 static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) 955 { 956 return ((!s1 && !s2) || 957 (s1 && s2 && 958 (s1->ctx_sid == s2->ctx_sid) && 959 (s1->ctx_doi == s2->ctx_doi) && 960 (s1->ctx_alg == s2->ctx_alg))); 961 } 962 #else 963 static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) 964 { 965 return true; 966 } 967 #endif 968 969 /* A struct encoding bundle of transformations to apply to some set of flow. 970 * 971 * xdst->child points to the next element of bundle. 972 * dst->xfrm points to an instanse of transformer. 973 * 974 * Due to unfortunate limitations of current routing cache, which we 975 * have no time to fix, it mirrors struct rtable and bound to the same 976 * routing key, including saddr,daddr. However, we can have many of 977 * bundles differing by session id. All the bundles grow from a parent 978 * policy rule. 979 */ 980 struct xfrm_dst { 981 union { 982 struct dst_entry dst; 983 struct rtable rt; 984 struct rt6_info rt6; 985 } u; 986 struct dst_entry *route; 987 struct dst_entry *child; 988 struct dst_entry *path; 989 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; 990 int num_pols, num_xfrms; 991 u32 xfrm_genid; 992 u32 policy_genid; 993 u32 route_mtu_cached; 994 u32 child_mtu_cached; 995 u32 route_cookie; 996 u32 path_cookie; 997 }; 998 999 static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst) 1000 { 1001 #ifdef CONFIG_XFRM 1002 if (dst->xfrm) { 1003 const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst; 1004 1005 return xdst->path; 1006 } 1007 #endif 1008 return (struct dst_entry *) dst; 1009 } 1010 1011 static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst) 1012 { 1013 #ifdef CONFIG_XFRM 1014 if (dst->xfrm) { 1015 struct xfrm_dst *xdst = (struct xfrm_dst *) dst; 1016 return xdst->child; 1017 } 1018 #endif 1019 return NULL; 1020 } 1021 1022 #ifdef CONFIG_XFRM 1023 static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child) 1024 { 1025 xdst->child = child; 1026 } 1027 1028 static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) 1029 { 1030 xfrm_pols_put(xdst->pols, xdst->num_pols); 1031 dst_release(xdst->route); 1032 if (likely(xdst->u.dst.xfrm)) 1033 xfrm_state_put(xdst->u.dst.xfrm); 1034 } 1035 #endif 1036 1037 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); 1038 1039 struct xfrm_offload { 1040 /* Output sequence number for replay protection on offloading. */ 1041 struct { 1042 __u32 low; 1043 __u32 hi; 1044 } seq; 1045 1046 __u32 flags; 1047 #define SA_DELETE_REQ 1 1048 #define CRYPTO_DONE 2 1049 #define CRYPTO_NEXT_DONE 4 1050 #define CRYPTO_FALLBACK 8 1051 #define XFRM_GSO_SEGMENT 16 1052 #define XFRM_GRO 32 1053 #define XFRM_ESP_NO_TRAILER 64 1054 #define XFRM_DEV_RESUME 128 1055 1056 __u32 status; 1057 #define CRYPTO_SUCCESS 1 1058 #define CRYPTO_GENERIC_ERROR 2 1059 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 1060 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 1061 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 1062 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 1063 #define CRYPTO_INVALID_PACKET_SYNTAX 64 1064 #define CRYPTO_INVALID_PROTOCOL 128 1065 1066 __u8 proto; 1067 }; 1068 1069 struct sec_path { 1070 refcount_t refcnt; 1071 int len; 1072 int olen; 1073 1074 struct xfrm_state *xvec[XFRM_MAX_DEPTH]; 1075 struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; 1076 }; 1077 1078 static inline int secpath_exists(struct sk_buff *skb) 1079 { 1080 #ifdef CONFIG_XFRM 1081 return skb->sp != NULL; 1082 #else 1083 return 0; 1084 #endif 1085 } 1086 1087 static inline struct sec_path * 1088 secpath_get(struct sec_path *sp) 1089 { 1090 if (sp) 1091 refcount_inc(&sp->refcnt); 1092 return sp; 1093 } 1094 1095 void __secpath_destroy(struct sec_path *sp); 1096 1097 static inline void 1098 secpath_put(struct sec_path *sp) 1099 { 1100 if (sp && refcount_dec_and_test(&sp->refcnt)) 1101 __secpath_destroy(sp); 1102 } 1103 1104 struct sec_path *secpath_dup(struct sec_path *src); 1105 int secpath_set(struct sk_buff *skb); 1106 1107 static inline void 1108 secpath_reset(struct sk_buff *skb) 1109 { 1110 #ifdef CONFIG_XFRM 1111 secpath_put(skb->sp); 1112 skb->sp = NULL; 1113 #endif 1114 } 1115 1116 static inline int 1117 xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) 1118 { 1119 switch (family) { 1120 case AF_INET: 1121 return addr->a4 == 0; 1122 case AF_INET6: 1123 return ipv6_addr_any(&addr->in6); 1124 } 1125 return 0; 1126 } 1127 1128 static inline int 1129 __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) 1130 { 1131 return (tmpl->saddr.a4 && 1132 tmpl->saddr.a4 != x->props.saddr.a4); 1133 } 1134 1135 static inline int 1136 __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) 1137 { 1138 return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && 1139 !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); 1140 } 1141 1142 static inline int 1143 xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) 1144 { 1145 switch (family) { 1146 case AF_INET: 1147 return __xfrm4_state_addr_cmp(tmpl, x); 1148 case AF_INET6: 1149 return __xfrm6_state_addr_cmp(tmpl, x); 1150 } 1151 return !0; 1152 } 1153 1154 #ifdef CONFIG_XFRM 1155 int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, 1156 unsigned short family); 1157 1158 static inline int __xfrm_policy_check2(struct sock *sk, int dir, 1159 struct sk_buff *skb, 1160 unsigned int family, int reverse) 1161 { 1162 struct net *net = dev_net(skb->dev); 1163 int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); 1164 1165 if (sk && sk->sk_policy[XFRM_POLICY_IN]) 1166 return __xfrm_policy_check(sk, ndir, skb, family); 1167 1168 return (!net->xfrm.policy_count[dir] && !skb->sp) || 1169 (skb_dst(skb)->flags & DST_NOPOLICY) || 1170 __xfrm_policy_check(sk, ndir, skb, family); 1171 } 1172 1173 static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) 1174 { 1175 return __xfrm_policy_check2(sk, dir, skb, family, 0); 1176 } 1177 1178 static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1179 { 1180 return xfrm_policy_check(sk, dir, skb, AF_INET); 1181 } 1182 1183 static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1184 { 1185 return xfrm_policy_check(sk, dir, skb, AF_INET6); 1186 } 1187 1188 static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, 1189 struct sk_buff *skb) 1190 { 1191 return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); 1192 } 1193 1194 static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, 1195 struct sk_buff *skb) 1196 { 1197 return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); 1198 } 1199 1200 int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, 1201 unsigned int family, int reverse); 1202 1203 static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, 1204 unsigned int family) 1205 { 1206 return __xfrm_decode_session(skb, fl, family, 0); 1207 } 1208 1209 static inline int xfrm_decode_session_reverse(struct sk_buff *skb, 1210 struct flowi *fl, 1211 unsigned int family) 1212 { 1213 return __xfrm_decode_session(skb, fl, family, 1); 1214 } 1215 1216 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); 1217 1218 static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) 1219 { 1220 struct net *net = dev_net(skb->dev); 1221 1222 return !net->xfrm.policy_count[XFRM_POLICY_OUT] || 1223 (skb_dst(skb)->flags & DST_NOXFRM) || 1224 __xfrm_route_forward(skb, family); 1225 } 1226 1227 static inline int xfrm4_route_forward(struct sk_buff *skb) 1228 { 1229 return xfrm_route_forward(skb, AF_INET); 1230 } 1231 1232 static inline int xfrm6_route_forward(struct sk_buff *skb) 1233 { 1234 return xfrm_route_forward(skb, AF_INET6); 1235 } 1236 1237 int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); 1238 1239 static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) 1240 { 1241 sk->sk_policy[0] = NULL; 1242 sk->sk_policy[1] = NULL; 1243 if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) 1244 return __xfrm_sk_clone_policy(sk, osk); 1245 return 0; 1246 } 1247 1248 int xfrm_policy_delete(struct xfrm_policy *pol, int dir); 1249 1250 static inline void xfrm_sk_free_policy(struct sock *sk) 1251 { 1252 struct xfrm_policy *pol; 1253 1254 pol = rcu_dereference_protected(sk->sk_policy[0], 1); 1255 if (unlikely(pol != NULL)) { 1256 xfrm_policy_delete(pol, XFRM_POLICY_MAX); 1257 sk->sk_policy[0] = NULL; 1258 } 1259 pol = rcu_dereference_protected(sk->sk_policy[1], 1); 1260 if (unlikely(pol != NULL)) { 1261 xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); 1262 sk->sk_policy[1] = NULL; 1263 } 1264 } 1265 1266 #else 1267 1268 static inline void xfrm_sk_free_policy(struct sock *sk) {} 1269 static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } 1270 static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } 1271 static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } 1272 static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1273 { 1274 return 1; 1275 } 1276 static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1277 { 1278 return 1; 1279 } 1280 static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) 1281 { 1282 return 1; 1283 } 1284 static inline int xfrm_decode_session_reverse(struct sk_buff *skb, 1285 struct flowi *fl, 1286 unsigned int family) 1287 { 1288 return -ENOSYS; 1289 } 1290 static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, 1291 struct sk_buff *skb) 1292 { 1293 return 1; 1294 } 1295 static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, 1296 struct sk_buff *skb) 1297 { 1298 return 1; 1299 } 1300 #endif 1301 1302 static __inline__ 1303 xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) 1304 { 1305 switch (family){ 1306 case AF_INET: 1307 return (xfrm_address_t *)&fl->u.ip4.daddr; 1308 case AF_INET6: 1309 return (xfrm_address_t *)&fl->u.ip6.daddr; 1310 } 1311 return NULL; 1312 } 1313 1314 static __inline__ 1315 xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) 1316 { 1317 switch (family){ 1318 case AF_INET: 1319 return (xfrm_address_t *)&fl->u.ip4.saddr; 1320 case AF_INET6: 1321 return (xfrm_address_t *)&fl->u.ip6.saddr; 1322 } 1323 return NULL; 1324 } 1325 1326 static __inline__ 1327 void xfrm_flowi_addr_get(const struct flowi *fl, 1328 xfrm_address_t *saddr, xfrm_address_t *daddr, 1329 unsigned short family) 1330 { 1331 switch(family) { 1332 case AF_INET: 1333 memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); 1334 memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); 1335 break; 1336 case AF_INET6: 1337 saddr->in6 = fl->u.ip6.saddr; 1338 daddr->in6 = fl->u.ip6.daddr; 1339 break; 1340 } 1341 } 1342 1343 static __inline__ int 1344 __xfrm4_state_addr_check(const struct xfrm_state *x, 1345 const xfrm_address_t *daddr, const xfrm_address_t *saddr) 1346 { 1347 if (daddr->a4 == x->id.daddr.a4 && 1348 (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) 1349 return 1; 1350 return 0; 1351 } 1352 1353 static __inline__ int 1354 __xfrm6_state_addr_check(const struct xfrm_state *x, 1355 const xfrm_address_t *daddr, const xfrm_address_t *saddr) 1356 { 1357 if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && 1358 (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || 1359 ipv6_addr_any((struct in6_addr *)saddr) || 1360 ipv6_addr_any((struct in6_addr *)&x->props.saddr))) 1361 return 1; 1362 return 0; 1363 } 1364 1365 static __inline__ int 1366 xfrm_state_addr_check(const struct xfrm_state *x, 1367 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1368 unsigned short family) 1369 { 1370 switch (family) { 1371 case AF_INET: 1372 return __xfrm4_state_addr_check(x, daddr, saddr); 1373 case AF_INET6: 1374 return __xfrm6_state_addr_check(x, daddr, saddr); 1375 } 1376 return 0; 1377 } 1378 1379 static __inline__ int 1380 xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, 1381 unsigned short family) 1382 { 1383 switch (family) { 1384 case AF_INET: 1385 return __xfrm4_state_addr_check(x, 1386 (const xfrm_address_t *)&fl->u.ip4.daddr, 1387 (const xfrm_address_t *)&fl->u.ip4.saddr); 1388 case AF_INET6: 1389 return __xfrm6_state_addr_check(x, 1390 (const xfrm_address_t *)&fl->u.ip6.daddr, 1391 (const xfrm_address_t *)&fl->u.ip6.saddr); 1392 } 1393 return 0; 1394 } 1395 1396 static inline int xfrm_state_kern(const struct xfrm_state *x) 1397 { 1398 return atomic_read(&x->tunnel_users); 1399 } 1400 1401 static inline int xfrm_id_proto_match(u8 proto, u8 userproto) 1402 { 1403 return (!userproto || proto == userproto || 1404 (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || 1405 proto == IPPROTO_ESP || 1406 proto == IPPROTO_COMP))); 1407 } 1408 1409 /* 1410 * xfrm algorithm information 1411 */ 1412 struct xfrm_algo_aead_info { 1413 char *geniv; 1414 u16 icv_truncbits; 1415 }; 1416 1417 struct xfrm_algo_auth_info { 1418 u16 icv_truncbits; 1419 u16 icv_fullbits; 1420 }; 1421 1422 struct xfrm_algo_encr_info { 1423 char *geniv; 1424 u16 blockbits; 1425 u16 defkeybits; 1426 }; 1427 1428 struct xfrm_algo_comp_info { 1429 u16 threshold; 1430 }; 1431 1432 struct xfrm_algo_desc { 1433 char *name; 1434 char *compat; 1435 u8 available:1; 1436 u8 pfkey_supported:1; 1437 union { 1438 struct xfrm_algo_aead_info aead; 1439 struct xfrm_algo_auth_info auth; 1440 struct xfrm_algo_encr_info encr; 1441 struct xfrm_algo_comp_info comp; 1442 } uinfo; 1443 struct sadb_alg desc; 1444 }; 1445 1446 /* XFRM protocol handlers. */ 1447 struct xfrm4_protocol { 1448 int (*handler)(struct sk_buff *skb); 1449 int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, 1450 int encap_type); 1451 int (*cb_handler)(struct sk_buff *skb, int err); 1452 int (*err_handler)(struct sk_buff *skb, u32 info); 1453 1454 struct xfrm4_protocol __rcu *next; 1455 int priority; 1456 }; 1457 1458 struct xfrm6_protocol { 1459 int (*handler)(struct sk_buff *skb); 1460 int (*cb_handler)(struct sk_buff *skb, int err); 1461 int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, 1462 u8 type, u8 code, int offset, __be32 info); 1463 1464 struct xfrm6_protocol __rcu *next; 1465 int priority; 1466 }; 1467 1468 /* XFRM tunnel handlers. */ 1469 struct xfrm_tunnel { 1470 int (*handler)(struct sk_buff *skb); 1471 int (*err_handler)(struct sk_buff *skb, u32 info); 1472 1473 struct xfrm_tunnel __rcu *next; 1474 int priority; 1475 }; 1476 1477 struct xfrm6_tunnel { 1478 int (*handler)(struct sk_buff *skb); 1479 int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, 1480 u8 type, u8 code, int offset, __be32 info); 1481 struct xfrm6_tunnel __rcu *next; 1482 int priority; 1483 }; 1484 1485 void xfrm_init(void); 1486 void xfrm4_init(void); 1487 int xfrm_state_init(struct net *net); 1488 void xfrm_state_fini(struct net *net); 1489 void xfrm4_state_init(void); 1490 void xfrm4_protocol_init(void); 1491 #ifdef CONFIG_XFRM 1492 int xfrm6_init(void); 1493 void xfrm6_fini(void); 1494 int xfrm6_state_init(void); 1495 void xfrm6_state_fini(void); 1496 int xfrm6_protocol_init(void); 1497 void xfrm6_protocol_fini(void); 1498 #else 1499 static inline int xfrm6_init(void) 1500 { 1501 return 0; 1502 } 1503 static inline void xfrm6_fini(void) 1504 { 1505 ; 1506 } 1507 #endif 1508 1509 #ifdef CONFIG_XFRM_STATISTICS 1510 int xfrm_proc_init(struct net *net); 1511 void xfrm_proc_fini(struct net *net); 1512 #endif 1513 1514 int xfrm_sysctl_init(struct net *net); 1515 #ifdef CONFIG_SYSCTL 1516 void xfrm_sysctl_fini(struct net *net); 1517 #else 1518 static inline void xfrm_sysctl_fini(struct net *net) 1519 { 1520 } 1521 #endif 1522 1523 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 1524 struct xfrm_address_filter *filter); 1525 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 1526 int (*func)(struct xfrm_state *, int, void*), void *); 1527 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); 1528 struct xfrm_state *xfrm_state_alloc(struct net *net); 1529 struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, 1530 const xfrm_address_t *saddr, 1531 const struct flowi *fl, 1532 struct xfrm_tmpl *tmpl, 1533 struct xfrm_policy *pol, int *err, 1534 unsigned short family); 1535 struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, 1536 xfrm_address_t *daddr, 1537 xfrm_address_t *saddr, 1538 unsigned short family, 1539 u8 mode, u8 proto, u32 reqid); 1540 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1541 unsigned short family); 1542 int xfrm_state_check_expire(struct xfrm_state *x); 1543 void xfrm_state_insert(struct xfrm_state *x); 1544 int xfrm_state_add(struct xfrm_state *x); 1545 int xfrm_state_update(struct xfrm_state *x); 1546 struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, 1547 const xfrm_address_t *daddr, __be32 spi, 1548 u8 proto, unsigned short family); 1549 struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1550 const xfrm_address_t *daddr, 1551 const xfrm_address_t *saddr, 1552 u8 proto, 1553 unsigned short family); 1554 #ifdef CONFIG_XFRM_SUB_POLICY 1555 int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1556 unsigned short family, struct net *net); 1557 int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1558 unsigned short family); 1559 #else 1560 static inline int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, 1561 int n, unsigned short family, struct net *net) 1562 { 1563 return -ENOSYS; 1564 } 1565 1566 static inline int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, 1567 int n, unsigned short family) 1568 { 1569 return -ENOSYS; 1570 } 1571 #endif 1572 1573 struct xfrmk_sadinfo { 1574 u32 sadhcnt; /* current hash bkts */ 1575 u32 sadhmcnt; /* max allowed hash bkts */ 1576 u32 sadcnt; /* current running count */ 1577 }; 1578 1579 struct xfrmk_spdinfo { 1580 u32 incnt; 1581 u32 outcnt; 1582 u32 fwdcnt; 1583 u32 inscnt; 1584 u32 outscnt; 1585 u32 fwdscnt; 1586 u32 spdhcnt; 1587 u32 spdhmcnt; 1588 }; 1589 1590 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1591 int xfrm_state_delete(struct xfrm_state *x); 1592 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid); 1593 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); 1594 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); 1595 void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); 1596 u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); 1597 int xfrm_init_replay(struct xfrm_state *x); 1598 int xfrm_state_mtu(struct xfrm_state *x, int mtu); 1599 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); 1600 int xfrm_init_state(struct xfrm_state *x); 1601 int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb); 1602 int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); 1603 int xfrm_input_resume(struct sk_buff *skb, int nexthdr); 1604 int xfrm_trans_queue(struct sk_buff *skb, 1605 int (*finish)(struct net *, struct sock *, 1606 struct sk_buff *)); 1607 int xfrm_output_resume(struct sk_buff *skb, int err); 1608 int xfrm_output(struct sock *sk, struct sk_buff *skb); 1609 int xfrm_inner_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1610 void xfrm_local_error(struct sk_buff *skb, int mtu); 1611 int xfrm4_extract_header(struct sk_buff *skb); 1612 int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); 1613 int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, 1614 int encap_type); 1615 int xfrm4_transport_finish(struct sk_buff *skb, int async); 1616 int xfrm4_rcv(struct sk_buff *skb); 1617 int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); 1618 1619 static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) 1620 { 1621 XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; 1622 XFRM_SPI_SKB_CB(skb)->family = AF_INET; 1623 XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); 1624 return xfrm_input(skb, nexthdr, spi, 0); 1625 } 1626 1627 int xfrm4_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1628 int xfrm4_prepare_output(struct xfrm_state *x, struct sk_buff *skb); 1629 int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1630 int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); 1631 int xfrm4_rcv_cb(struct sk_buff *skb, u8 protocol, int err); 1632 int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); 1633 int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); 1634 int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); 1635 int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); 1636 void xfrm4_local_error(struct sk_buff *skb, u32 mtu); 1637 int xfrm6_extract_header(struct sk_buff *skb); 1638 int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); 1639 int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, 1640 struct ip6_tnl *t); 1641 int xfrm6_transport_finish(struct sk_buff *skb, int async); 1642 int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); 1643 int xfrm6_rcv(struct sk_buff *skb); 1644 int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, 1645 xfrm_address_t *saddr, u8 proto); 1646 void xfrm6_local_error(struct sk_buff *skb, u32 mtu); 1647 int xfrm6_rcv_cb(struct sk_buff *skb, u8 protocol, int err); 1648 int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); 1649 int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); 1650 int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); 1651 int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); 1652 __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); 1653 __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); 1654 int xfrm6_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1655 int xfrm6_prepare_output(struct xfrm_state *x, struct sk_buff *skb); 1656 int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1657 int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); 1658 int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, 1659 u8 **prevhdr); 1660 1661 #ifdef CONFIG_XFRM 1662 int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); 1663 int xfrm_user_policy(struct sock *sk, int optname, 1664 u8 __user *optval, int optlen); 1665 #else 1666 static inline int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 1667 { 1668 return -ENOPROTOOPT; 1669 } 1670 1671 static inline int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb) 1672 { 1673 /* should not happen */ 1674 kfree_skb(skb); 1675 return 0; 1676 } 1677 #endif 1678 1679 struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, 1680 const xfrm_address_t *saddr, 1681 const xfrm_address_t *daddr, 1682 int family, u32 mark); 1683 1684 struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); 1685 1686 void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); 1687 int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, 1688 int (*func)(struct xfrm_policy *, int, int, void*), 1689 void *); 1690 void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); 1691 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); 1692 struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, u32 mark, 1693 u8 type, int dir, 1694 struct xfrm_selector *sel, 1695 struct xfrm_sec_ctx *ctx, int delete, 1696 int *err); 1697 struct xfrm_policy *xfrm_policy_byid(struct net *net, u32 mark, u8, int dir, 1698 u32 id, int delete, int *err); 1699 int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); 1700 void xfrm_policy_hash_rebuild(struct net *net); 1701 u32 xfrm_get_acqseq(void); 1702 int verify_spi_info(u8 proto, u32 min, u32 max); 1703 int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); 1704 struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, 1705 u8 mode, u32 reqid, u8 proto, 1706 const xfrm_address_t *daddr, 1707 const xfrm_address_t *saddr, int create, 1708 unsigned short family); 1709 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); 1710 1711 #ifdef CONFIG_XFRM_MIGRATE 1712 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 1713 const struct xfrm_migrate *m, int num_bundles, 1714 const struct xfrm_kmaddress *k, 1715 const struct xfrm_encap_tmpl *encap); 1716 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); 1717 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1718 struct xfrm_migrate *m, 1719 struct xfrm_encap_tmpl *encap); 1720 int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 1721 struct xfrm_migrate *m, int num_bundles, 1722 struct xfrm_kmaddress *k, struct net *net, 1723 struct xfrm_encap_tmpl *encap); 1724 #endif 1725 1726 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); 1727 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); 1728 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, 1729 xfrm_address_t *addr); 1730 1731 void xfrm_input_init(void); 1732 int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); 1733 1734 void xfrm_probe_algs(void); 1735 int xfrm_count_pfkey_auth_supported(void); 1736 int xfrm_count_pfkey_enc_supported(void); 1737 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); 1738 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); 1739 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); 1740 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); 1741 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); 1742 struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); 1743 struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); 1744 struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); 1745 struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, 1746 int probe); 1747 1748 static inline bool xfrm6_addr_equal(const xfrm_address_t *a, 1749 const xfrm_address_t *b) 1750 { 1751 return ipv6_addr_equal((const struct in6_addr *)a, 1752 (const struct in6_addr *)b); 1753 } 1754 1755 static inline bool xfrm_addr_equal(const xfrm_address_t *a, 1756 const xfrm_address_t *b, 1757 sa_family_t family) 1758 { 1759 switch (family) { 1760 default: 1761 case AF_INET: 1762 return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; 1763 case AF_INET6: 1764 return xfrm6_addr_equal(a, b); 1765 } 1766 } 1767 1768 static inline int xfrm_policy_id2dir(u32 index) 1769 { 1770 return index & 7; 1771 } 1772 1773 #ifdef CONFIG_XFRM 1774 static inline int xfrm_aevent_is_on(struct net *net) 1775 { 1776 struct sock *nlsk; 1777 int ret = 0; 1778 1779 rcu_read_lock(); 1780 nlsk = rcu_dereference(net->xfrm.nlsk); 1781 if (nlsk) 1782 ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); 1783 rcu_read_unlock(); 1784 return ret; 1785 } 1786 1787 static inline int xfrm_acquire_is_on(struct net *net) 1788 { 1789 struct sock *nlsk; 1790 int ret = 0; 1791 1792 rcu_read_lock(); 1793 nlsk = rcu_dereference(net->xfrm.nlsk); 1794 if (nlsk) 1795 ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); 1796 rcu_read_unlock(); 1797 1798 return ret; 1799 } 1800 #endif 1801 1802 static inline unsigned int aead_len(struct xfrm_algo_aead *alg) 1803 { 1804 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1805 } 1806 1807 static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) 1808 { 1809 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1810 } 1811 1812 static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) 1813 { 1814 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1815 } 1816 1817 static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) 1818 { 1819 return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); 1820 } 1821 1822 #ifdef CONFIG_XFRM_MIGRATE 1823 static inline int xfrm_replay_clone(struct xfrm_state *x, 1824 struct xfrm_state *orig) 1825 { 1826 x->replay_esn = kzalloc(xfrm_replay_state_esn_len(orig->replay_esn), 1827 GFP_KERNEL); 1828 if (!x->replay_esn) 1829 return -ENOMEM; 1830 1831 x->replay_esn->bmp_len = orig->replay_esn->bmp_len; 1832 x->replay_esn->replay_window = orig->replay_esn->replay_window; 1833 1834 x->preplay_esn = kmemdup(x->replay_esn, 1835 xfrm_replay_state_esn_len(x->replay_esn), 1836 GFP_KERNEL); 1837 if (!x->preplay_esn) { 1838 kfree(x->replay_esn); 1839 return -ENOMEM; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) 1846 { 1847 return kmemdup(orig, aead_len(orig), GFP_KERNEL); 1848 } 1849 1850 1851 static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) 1852 { 1853 return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); 1854 } 1855 1856 static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) 1857 { 1858 return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); 1859 } 1860 1861 static inline void xfrm_states_put(struct xfrm_state **states, int n) 1862 { 1863 int i; 1864 for (i = 0; i < n; i++) 1865 xfrm_state_put(*(states + i)); 1866 } 1867 1868 static inline void xfrm_states_delete(struct xfrm_state **states, int n) 1869 { 1870 int i; 1871 for (i = 0; i < n; i++) 1872 xfrm_state_delete(*(states + i)); 1873 } 1874 #endif 1875 1876 #ifdef CONFIG_XFRM 1877 static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) 1878 { 1879 return skb->sp->xvec[skb->sp->len - 1]; 1880 } 1881 #endif 1882 1883 static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) 1884 { 1885 #ifdef CONFIG_XFRM 1886 struct sec_path *sp = skb->sp; 1887 1888 if (!sp || !sp->olen || sp->len != sp->olen) 1889 return NULL; 1890 1891 return &sp->ovec[sp->olen - 1]; 1892 #else 1893 return NULL; 1894 #endif 1895 } 1896 1897 void __net_init xfrm_dev_init(void); 1898 1899 #ifdef CONFIG_XFRM_OFFLOAD 1900 void xfrm_dev_resume(struct sk_buff *skb); 1901 void xfrm_dev_backlog(struct softnet_data *sd); 1902 struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again); 1903 int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, 1904 struct xfrm_user_offload *xuo); 1905 bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); 1906 1907 static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) 1908 { 1909 struct xfrm_state_offload *xso = &x->xso; 1910 1911 if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn) 1912 xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x); 1913 } 1914 1915 static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) 1916 { 1917 struct xfrm_state *x = dst->xfrm; 1918 struct xfrm_dst *xdst; 1919 1920 if (!x || !x->type_offload) 1921 return false; 1922 1923 xdst = (struct xfrm_dst *) dst; 1924 if (!x->xso.offload_handle && !xdst->child->xfrm) 1925 return true; 1926 if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) && 1927 !xdst->child->xfrm) 1928 return true; 1929 1930 return false; 1931 } 1932 1933 static inline void xfrm_dev_state_delete(struct xfrm_state *x) 1934 { 1935 struct xfrm_state_offload *xso = &x->xso; 1936 1937 if (xso->dev) 1938 xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); 1939 } 1940 1941 static inline void xfrm_dev_state_free(struct xfrm_state *x) 1942 { 1943 struct xfrm_state_offload *xso = &x->xso; 1944 struct net_device *dev = xso->dev; 1945 1946 if (dev && dev->xfrmdev_ops) { 1947 if (dev->xfrmdev_ops->xdo_dev_state_free) 1948 dev->xfrmdev_ops->xdo_dev_state_free(x); 1949 xso->dev = NULL; 1950 dev_put(dev); 1951 } 1952 } 1953 #else 1954 static inline void xfrm_dev_resume(struct sk_buff *skb) 1955 { 1956 } 1957 1958 static inline void xfrm_dev_backlog(struct softnet_data *sd) 1959 { 1960 } 1961 1962 static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) 1963 { 1964 return skb; 1965 } 1966 1967 static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) 1968 { 1969 return 0; 1970 } 1971 1972 static inline void xfrm_dev_state_delete(struct xfrm_state *x) 1973 { 1974 } 1975 1976 static inline void xfrm_dev_state_free(struct xfrm_state *x) 1977 { 1978 } 1979 1980 static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 1981 { 1982 return false; 1983 } 1984 1985 static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) 1986 { 1987 } 1988 1989 static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) 1990 { 1991 return false; 1992 } 1993 #endif 1994 1995 static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) 1996 { 1997 if (attrs[XFRMA_MARK]) 1998 memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); 1999 else 2000 m->v = m->m = 0; 2001 2002 return m->v & m->m; 2003 } 2004 2005 static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) 2006 { 2007 int ret = 0; 2008 2009 if (m->m | m->v) 2010 ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); 2011 return ret; 2012 } 2013 2014 static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, 2015 unsigned int family) 2016 { 2017 bool tunnel = false; 2018 2019 switch(family) { 2020 case AF_INET: 2021 if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) 2022 tunnel = true; 2023 break; 2024 case AF_INET6: 2025 if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) 2026 tunnel = true; 2027 break; 2028 } 2029 if (tunnel && !(x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL)) 2030 return -EINVAL; 2031 2032 return 0; 2033 } 2034 #endif /* _NET_XFRM_H */ 2035