1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tls_msg { 122 struct strp_msg rxm; 123 u8 control; 124 }; 125 126 struct tx_work { 127 struct delayed_work work; 128 struct sock *sk; 129 }; 130 131 struct tls_sw_context_tx { 132 struct crypto_aead *aead_send; 133 struct crypto_wait async_wait; 134 struct tx_work tx_work; 135 struct tls_rec *open_rec; 136 struct list_head tx_list; 137 atomic_t encrypt_pending; 138 int async_notify; 139 u8 async_capable:1; 140 141 #define BIT_TX_SCHEDULED 0 142 #define BIT_TX_CLOSING 1 143 unsigned long tx_bitmask; 144 }; 145 146 struct tls_sw_context_rx { 147 struct crypto_aead *aead_recv; 148 struct crypto_wait async_wait; 149 struct strparser strp; 150 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 151 void (*saved_data_ready)(struct sock *sk); 152 153 struct sk_buff *recv_pkt; 154 u8 control; 155 u8 async_capable:1; 156 u8 decrypted:1; 157 atomic_t decrypt_pending; 158 bool async_notify; 159 }; 160 161 struct tls_record_info { 162 struct list_head list; 163 u32 end_seq; 164 int len; 165 int num_frags; 166 skb_frag_t frags[MAX_SKB_FRAGS]; 167 }; 168 169 struct tls_offload_context_tx { 170 struct crypto_aead *aead_send; 171 spinlock_t lock; /* protects records list */ 172 struct list_head records_list; 173 struct tls_record_info *open_record; 174 struct tls_record_info *retransmit_hint; 175 u64 hint_record_sn; 176 u64 unacked_record_sn; 177 178 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 179 void (*sk_destruct)(struct sock *sk); 180 u8 driver_state[] __aligned(8); 181 /* The TLS layer reserves room for driver specific state 182 * Currently the belief is that there is not enough 183 * driver specific state to justify another layer of indirection 184 */ 185 #define TLS_DRIVER_STATE_SIZE_TX 16 186 }; 187 188 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 189 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 190 191 enum tls_context_flags { 192 TLS_RX_SYNC_RUNNING = 0, 193 /* Unlike RX where resync is driven entirely by the core in TX only 194 * the driver knows when things went out of sync, so we need the flag 195 * to be atomic. 196 */ 197 TLS_TX_SYNC_SCHED = 1, 198 }; 199 200 struct cipher_context { 201 char *iv; 202 char *rec_seq; 203 }; 204 205 union tls_crypto_context { 206 struct tls_crypto_info info; 207 union { 208 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 209 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 210 }; 211 }; 212 213 struct tls_prot_info { 214 u16 version; 215 u16 cipher_type; 216 u16 prepend_size; 217 u16 tag_size; 218 u16 overhead_size; 219 u16 iv_size; 220 u16 salt_size; 221 u16 rec_seq_size; 222 u16 aad_size; 223 u16 tail_size; 224 }; 225 226 struct tls_context { 227 /* read-only cache line */ 228 struct tls_prot_info prot_info; 229 230 u8 tx_conf:3; 231 u8 rx_conf:3; 232 233 int (*push_pending_record)(struct sock *sk, int flags); 234 void (*sk_write_space)(struct sock *sk); 235 236 void *priv_ctx_tx; 237 void *priv_ctx_rx; 238 239 struct net_device *netdev; 240 241 /* rw cache line */ 242 struct cipher_context tx; 243 struct cipher_context rx; 244 245 struct scatterlist *partially_sent_record; 246 u16 partially_sent_offset; 247 248 bool in_tcp_sendpages; 249 bool pending_open_record_frags; 250 251 struct mutex tx_lock; /* protects partially_sent_* fields and 252 * per-type TX fields 253 */ 254 unsigned long flags; 255 256 /* cache cold stuff */ 257 struct proto *sk_proto; 258 259 void (*sk_destruct)(struct sock *sk); 260 261 union tls_crypto_context crypto_send; 262 union tls_crypto_context crypto_recv; 263 264 struct list_head list; 265 refcount_t refcount; 266 struct rcu_head rcu; 267 }; 268 269 enum tls_offload_ctx_dir { 270 TLS_OFFLOAD_CTX_DIR_RX, 271 TLS_OFFLOAD_CTX_DIR_TX, 272 }; 273 274 struct tlsdev_ops { 275 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 276 enum tls_offload_ctx_dir direction, 277 struct tls_crypto_info *crypto_info, 278 u32 start_offload_tcp_sn); 279 void (*tls_dev_del)(struct net_device *netdev, 280 struct tls_context *ctx, 281 enum tls_offload_ctx_dir direction); 282 int (*tls_dev_resync)(struct net_device *netdev, 283 struct sock *sk, u32 seq, u8 *rcd_sn, 284 enum tls_offload_ctx_dir direction); 285 }; 286 287 enum tls_offload_sync_type { 288 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 289 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 290 }; 291 292 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 293 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 294 295 struct tls_offload_context_rx { 296 /* sw must be the first member of tls_offload_context_rx */ 297 struct tls_sw_context_rx sw; 298 enum tls_offload_sync_type resync_type; 299 /* this member is set regardless of resync_type, to avoid branches */ 300 u8 resync_nh_reset:1; 301 /* CORE_NEXT_HINT-only member, but use the hole here */ 302 u8 resync_nh_do_now:1; 303 union { 304 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 305 struct { 306 atomic64_t resync_req; 307 }; 308 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 309 struct { 310 u32 decrypted_failed; 311 u32 decrypted_tgt; 312 } resync_nh; 313 }; 314 u8 driver_state[] __aligned(8); 315 /* The TLS layer reserves room for driver specific state 316 * Currently the belief is that there is not enough 317 * driver specific state to justify another layer of indirection 318 */ 319 #define TLS_DRIVER_STATE_SIZE_RX 8 320 }; 321 322 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 323 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 324 325 struct tls_context *tls_ctx_create(struct sock *sk); 326 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 327 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 328 329 int wait_on_pending_writer(struct sock *sk, long *timeo); 330 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 331 int __user *optlen); 332 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 333 unsigned int optlen); 334 335 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 336 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 337 void tls_sw_strparser_done(struct tls_context *tls_ctx); 338 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 339 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 340 int offset, size_t size, int flags); 341 int tls_sw_sendpage(struct sock *sk, struct page *page, 342 int offset, size_t size, int flags); 343 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 344 void tls_sw_release_resources_tx(struct sock *sk); 345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 346 void tls_sw_free_resources_rx(struct sock *sk); 347 void tls_sw_release_resources_rx(struct sock *sk); 348 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 349 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 350 int nonblock, int flags, int *addr_len); 351 bool tls_sw_stream_read(const struct sock *sk); 352 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 353 struct pipe_inode_info *pipe, 354 size_t len, unsigned int flags); 355 356 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 357 int tls_device_sendpage(struct sock *sk, struct page *page, 358 int offset, size_t size, int flags); 359 int tls_tx_records(struct sock *sk, int flags); 360 361 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 362 u32 seq, u64 *p_record_sn); 363 364 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 365 { 366 return rec->len == 0; 367 } 368 369 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 370 { 371 return rec->end_seq - rec->len; 372 } 373 374 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 375 struct scatterlist *sg, u16 first_offset, 376 int flags); 377 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 378 int flags); 379 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 380 381 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 382 { 383 return (struct tls_msg *)strp_msg(skb); 384 } 385 386 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 387 { 388 return !!ctx->partially_sent_record; 389 } 390 391 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 392 { 393 return tls_ctx->pending_open_record_frags; 394 } 395 396 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 397 { 398 struct tls_rec *rec; 399 400 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 401 if (!rec) 402 return false; 403 404 return READ_ONCE(rec->tx_ready); 405 } 406 407 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 408 { 409 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 410 411 switch (config) { 412 case TLS_BASE: 413 return TLS_CONF_BASE; 414 case TLS_SW: 415 return TLS_CONF_SW; 416 case TLS_HW: 417 return TLS_CONF_HW; 418 case TLS_HW_RECORD: 419 return TLS_CONF_HW_RECORD; 420 } 421 return 0; 422 } 423 424 struct sk_buff * 425 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 426 struct sk_buff *skb); 427 428 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 429 { 430 #ifdef CONFIG_SOCK_VALIDATE_XMIT 431 return sk_fullsock(sk) && 432 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 433 &tls_validate_xmit_skb); 434 #else 435 return false; 436 #endif 437 } 438 439 static inline void tls_err_abort(struct sock *sk, int err) 440 { 441 sk->sk_err = err; 442 sk->sk_error_report(sk); 443 } 444 445 static inline bool tls_bigint_increment(unsigned char *seq, int len) 446 { 447 int i; 448 449 for (i = len - 1; i >= 0; i--) { 450 ++seq[i]; 451 if (seq[i] != 0) 452 break; 453 } 454 455 return (i == -1); 456 } 457 458 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 459 { 460 struct inet_connection_sock *icsk = inet_csk(sk); 461 462 /* Use RCU on icsk_ulp_data only for sock diag code, 463 * TLS data path doesn't need rcu_dereference(). 464 */ 465 return (__force void *)icsk->icsk_ulp_data; 466 } 467 468 static inline void tls_advance_record_sn(struct sock *sk, 469 struct tls_prot_info *prot, 470 struct cipher_context *ctx) 471 { 472 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 473 tls_err_abort(sk, EBADMSG); 474 475 if (prot->version != TLS_1_3_VERSION) 476 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 477 prot->iv_size); 478 } 479 480 static inline void tls_fill_prepend(struct tls_context *ctx, 481 char *buf, 482 size_t plaintext_len, 483 unsigned char record_type, 484 int version) 485 { 486 struct tls_prot_info *prot = &ctx->prot_info; 487 size_t pkt_len, iv_size = prot->iv_size; 488 489 pkt_len = plaintext_len + prot->tag_size; 490 if (version != TLS_1_3_VERSION) { 491 pkt_len += iv_size; 492 493 memcpy(buf + TLS_NONCE_OFFSET, 494 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 495 } 496 497 /* we cover nonce explicit here as well, so buf should be of 498 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 499 */ 500 buf[0] = version == TLS_1_3_VERSION ? 501 TLS_RECORD_TYPE_DATA : record_type; 502 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 503 buf[1] = TLS_1_2_VERSION_MINOR; 504 buf[2] = TLS_1_2_VERSION_MAJOR; 505 /* we can use IV for nonce explicit according to spec */ 506 buf[3] = pkt_len >> 8; 507 buf[4] = pkt_len & 0xFF; 508 } 509 510 static inline void tls_make_aad(char *buf, 511 size_t size, 512 char *record_sequence, 513 int record_sequence_size, 514 unsigned char record_type, 515 int version) 516 { 517 if (version != TLS_1_3_VERSION) { 518 memcpy(buf, record_sequence, record_sequence_size); 519 buf += 8; 520 } else { 521 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 522 } 523 524 buf[0] = version == TLS_1_3_VERSION ? 525 TLS_RECORD_TYPE_DATA : record_type; 526 buf[1] = TLS_1_2_VERSION_MAJOR; 527 buf[2] = TLS_1_2_VERSION_MINOR; 528 buf[3] = size >> 8; 529 buf[4] = size & 0xFF; 530 } 531 532 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 533 { 534 int i; 535 536 if (version == TLS_1_3_VERSION) { 537 for (i = 0; i < 8; i++) 538 iv[i + 4] ^= seq[i]; 539 } 540 } 541 542 543 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 544 const struct tls_context *tls_ctx) 545 { 546 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 547 } 548 549 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 550 const struct tls_context *tls_ctx) 551 { 552 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 553 } 554 555 static inline struct tls_offload_context_tx * 556 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 557 { 558 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 559 } 560 561 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 562 { 563 struct tls_context *ctx = tls_get_ctx(sk); 564 565 if (!ctx) 566 return false; 567 return !!tls_sw_ctx_tx(ctx); 568 } 569 570 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 571 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 572 573 static inline struct tls_offload_context_rx * 574 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 575 { 576 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 577 } 578 579 #if IS_ENABLED(CONFIG_TLS_DEVICE) 580 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 581 enum tls_offload_ctx_dir direction) 582 { 583 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 584 return tls_offload_ctx_tx(tls_ctx)->driver_state; 585 else 586 return tls_offload_ctx_rx(tls_ctx)->driver_state; 587 } 588 589 static inline void * 590 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 591 { 592 return __tls_driver_ctx(tls_get_ctx(sk), direction); 593 } 594 #endif 595 596 /* The TLS context is valid until sk_destruct is called */ 597 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 598 { 599 struct tls_context *tls_ctx = tls_get_ctx(sk); 600 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 601 602 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); 603 } 604 605 static inline void 606 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 607 { 608 struct tls_context *tls_ctx = tls_get_ctx(sk); 609 610 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 611 } 612 613 /* Driver's seq tracking has to be disabled until resync succeeded */ 614 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 615 { 616 struct tls_context *tls_ctx = tls_get_ctx(sk); 617 bool ret; 618 619 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 620 smp_mb__after_atomic(); 621 return ret; 622 } 623 624 int __net_init tls_proc_init(struct net *net); 625 void __net_exit tls_proc_fini(struct net *net); 626 627 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 628 unsigned char *record_type); 629 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 630 struct scatterlist *sgout); 631 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 632 633 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 634 struct net_device *dev, 635 struct sk_buff *skb); 636 637 int tls_sw_fallback_init(struct sock *sk, 638 struct tls_offload_context_tx *offload_ctx, 639 struct tls_crypto_info *crypto_info); 640 641 #ifdef CONFIG_TLS_DEVICE 642 void tls_device_init(void); 643 void tls_device_cleanup(void); 644 void tls_device_sk_destruct(struct sock *sk); 645 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 646 void tls_device_free_resources_tx(struct sock *sk); 647 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 648 void tls_device_offload_cleanup_rx(struct sock *sk); 649 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 650 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 651 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 652 struct sk_buff *skb, struct strp_msg *rxm); 653 654 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 655 { 656 if (!sk_fullsock(sk) || 657 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 658 return false; 659 return tls_get_ctx(sk)->rx_conf == TLS_HW; 660 } 661 #else 662 static inline void tls_device_init(void) {} 663 static inline void tls_device_cleanup(void) {} 664 665 static inline int 666 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 667 { 668 return -EOPNOTSUPP; 669 } 670 671 static inline void tls_device_free_resources_tx(struct sock *sk) {} 672 673 static inline int 674 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 675 { 676 return -EOPNOTSUPP; 677 } 678 679 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 680 static inline void 681 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 682 683 static inline int 684 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 685 struct sk_buff *skb, struct strp_msg *rxm) 686 { 687 return 0; 688 } 689 #endif 690 #endif /* _TLS_OFFLOAD_H */ 691