xref: /openbmc/linux/include/net/tls.h (revision ecd25094)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/tcp.h>
47 #include <net/strparser.h>
48 #include <crypto/aead.h>
49 #include <uapi/linux/tls.h>
50 
51 
52 /* Maximum data size carried in a TLS record */
53 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
54 
55 #define TLS_HEADER_SIZE			5
56 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
57 
58 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
59 
60 #define TLS_RECORD_TYPE_DATA		0x17
61 
62 #define TLS_AAD_SPACE_SIZE		13
63 #define TLS_DEVICE_NAME_MAX		32
64 
65 #define MAX_IV_SIZE			16
66 #define TLS_MAX_REC_SEQ_SIZE		8
67 
68 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
69  *
70  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
71  *
72  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
73  * Hence b0 contains (3 - 1) = 2.
74  */
75 #define TLS_AES_CCM_IV_B0_BYTE		2
76 
77 /*
78  * This structure defines the routines for Inline TLS driver.
79  * The following routines are optional and filled with a
80  * null pointer if not defined.
81  *
82  * @name: Its the name of registered Inline tls device
83  * @dev_list: Inline tls device list
84  * int (*feature)(struct tls_device *device);
85  *     Called to return Inline TLS driver capability
86  *
87  * int (*hash)(struct tls_device *device, struct sock *sk);
88  *     This function sets Inline driver for listen and program
89  *     device specific functioanlity as required
90  *
91  * void (*unhash)(struct tls_device *device, struct sock *sk);
92  *     This function cleans listen state set by Inline TLS driver
93  *
94  * void (*release)(struct kref *kref);
95  *     Release the registered device and allocated resources
96  * @kref: Number of reference to tls_device
97  */
98 struct tls_device {
99 	char name[TLS_DEVICE_NAME_MAX];
100 	struct list_head dev_list;
101 	int  (*feature)(struct tls_device *device);
102 	int  (*hash)(struct tls_device *device, struct sock *sk);
103 	void (*unhash)(struct tls_device *device, struct sock *sk);
104 	void (*release)(struct kref *kref);
105 	struct kref kref;
106 };
107 
108 enum {
109 	TLS_BASE,
110 	TLS_SW,
111 	TLS_HW,
112 	TLS_HW_RECORD,
113 	TLS_NUM_CONFIG,
114 };
115 
116 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
117  * allocated or mapped for each TLS record. After encryption, the records are
118  * stores in a linked list.
119  */
120 struct tls_rec {
121 	struct list_head list;
122 	int tx_ready;
123 	int tx_flags;
124 	int inplace_crypto;
125 
126 	struct sk_msg msg_plaintext;
127 	struct sk_msg msg_encrypted;
128 
129 	/* AAD | msg_plaintext.sg.data | sg_tag */
130 	struct scatterlist sg_aead_in[2];
131 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
132 	struct scatterlist sg_aead_out[2];
133 
134 	char content_type;
135 	struct scatterlist sg_content_type;
136 
137 	char aad_space[TLS_AAD_SPACE_SIZE];
138 	u8 iv_data[MAX_IV_SIZE];
139 	struct aead_request aead_req;
140 	u8 aead_req_ctx[];
141 };
142 
143 struct tls_msg {
144 	struct strp_msg rxm;
145 	u8 control;
146 };
147 
148 struct tx_work {
149 	struct delayed_work work;
150 	struct sock *sk;
151 };
152 
153 struct tls_sw_context_tx {
154 	struct crypto_aead *aead_send;
155 	struct crypto_wait async_wait;
156 	struct tx_work tx_work;
157 	struct tls_rec *open_rec;
158 	struct list_head tx_list;
159 	atomic_t encrypt_pending;
160 	int async_notify;
161 	int async_capable;
162 
163 #define BIT_TX_SCHEDULED	0
164 #define BIT_TX_CLOSING		1
165 	unsigned long tx_bitmask;
166 };
167 
168 struct tls_sw_context_rx {
169 	struct crypto_aead *aead_recv;
170 	struct crypto_wait async_wait;
171 	struct strparser strp;
172 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
173 	void (*saved_data_ready)(struct sock *sk);
174 
175 	struct sk_buff *recv_pkt;
176 	u8 control;
177 	int async_capable;
178 	bool decrypted;
179 	atomic_t decrypt_pending;
180 	bool async_notify;
181 };
182 
183 struct tls_record_info {
184 	struct list_head list;
185 	u32 end_seq;
186 	int len;
187 	int num_frags;
188 	skb_frag_t frags[MAX_SKB_FRAGS];
189 };
190 
191 struct tls_offload_context_tx {
192 	struct crypto_aead *aead_send;
193 	spinlock_t lock;	/* protects records list */
194 	struct list_head records_list;
195 	struct tls_record_info *open_record;
196 	struct tls_record_info *retransmit_hint;
197 	u64 hint_record_sn;
198 	u64 unacked_record_sn;
199 
200 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
201 	void (*sk_destruct)(struct sock *sk);
202 	u8 driver_state[] __aligned(8);
203 	/* The TLS layer reserves room for driver specific state
204 	 * Currently the belief is that there is not enough
205 	 * driver specific state to justify another layer of indirection
206 	 */
207 #define TLS_DRIVER_STATE_SIZE_TX	16
208 };
209 
210 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
211 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
212 
213 enum tls_context_flags {
214 	TLS_RX_SYNC_RUNNING = 0,
215 	/* Unlike RX where resync is driven entirely by the core in TX only
216 	 * the driver knows when things went out of sync, so we need the flag
217 	 * to be atomic.
218 	 */
219 	TLS_TX_SYNC_SCHED = 1,
220 };
221 
222 struct cipher_context {
223 	char *iv;
224 	char *rec_seq;
225 };
226 
227 union tls_crypto_context {
228 	struct tls_crypto_info info;
229 	union {
230 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
231 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
232 	};
233 };
234 
235 struct tls_prot_info {
236 	u16 version;
237 	u16 cipher_type;
238 	u16 prepend_size;
239 	u16 tag_size;
240 	u16 overhead_size;
241 	u16 iv_size;
242 	u16 salt_size;
243 	u16 rec_seq_size;
244 	u16 aad_size;
245 	u16 tail_size;
246 };
247 
248 struct tls_context {
249 	/* read-only cache line */
250 	struct tls_prot_info prot_info;
251 
252 	u8 tx_conf:3;
253 	u8 rx_conf:3;
254 
255 	int (*push_pending_record)(struct sock *sk, int flags);
256 	void (*sk_write_space)(struct sock *sk);
257 
258 	void *priv_ctx_tx;
259 	void *priv_ctx_rx;
260 
261 	struct net_device *netdev;
262 
263 	/* rw cache line */
264 	struct cipher_context tx;
265 	struct cipher_context rx;
266 
267 	struct scatterlist *partially_sent_record;
268 	u16 partially_sent_offset;
269 
270 	bool in_tcp_sendpages;
271 	bool pending_open_record_frags;
272 	unsigned long flags;
273 
274 	/* cache cold stuff */
275 	struct proto *sk_proto;
276 
277 	void (*sk_destruct)(struct sock *sk);
278 
279 	union tls_crypto_context crypto_send;
280 	union tls_crypto_context crypto_recv;
281 
282 	struct list_head list;
283 	refcount_t refcount;
284 	struct rcu_head rcu;
285 };
286 
287 enum tls_offload_ctx_dir {
288 	TLS_OFFLOAD_CTX_DIR_RX,
289 	TLS_OFFLOAD_CTX_DIR_TX,
290 };
291 
292 struct tlsdev_ops {
293 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
294 			   enum tls_offload_ctx_dir direction,
295 			   struct tls_crypto_info *crypto_info,
296 			   u32 start_offload_tcp_sn);
297 	void (*tls_dev_del)(struct net_device *netdev,
298 			    struct tls_context *ctx,
299 			    enum tls_offload_ctx_dir direction);
300 	int (*tls_dev_resync)(struct net_device *netdev,
301 			      struct sock *sk, u32 seq, u8 *rcd_sn,
302 			      enum tls_offload_ctx_dir direction);
303 };
304 
305 enum tls_offload_sync_type {
306 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
307 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
308 };
309 
310 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
311 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
312 
313 struct tls_offload_context_rx {
314 	/* sw must be the first member of tls_offload_context_rx */
315 	struct tls_sw_context_rx sw;
316 	enum tls_offload_sync_type resync_type;
317 	/* this member is set regardless of resync_type, to avoid branches */
318 	u8 resync_nh_reset:1;
319 	/* CORE_NEXT_HINT-only member, but use the hole here */
320 	u8 resync_nh_do_now:1;
321 	union {
322 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
323 		struct {
324 			atomic64_t resync_req;
325 		};
326 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
327 		struct {
328 			u32 decrypted_failed;
329 			u32 decrypted_tgt;
330 		} resync_nh;
331 	};
332 	u8 driver_state[] __aligned(8);
333 	/* The TLS layer reserves room for driver specific state
334 	 * Currently the belief is that there is not enough
335 	 * driver specific state to justify another layer of indirection
336 	 */
337 #define TLS_DRIVER_STATE_SIZE_RX	8
338 };
339 
340 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
341 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
342 
343 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
344 int wait_on_pending_writer(struct sock *sk, long *timeo);
345 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
346 		int __user *optlen);
347 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
348 		  unsigned int optlen);
349 
350 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
351 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
352 void tls_sw_strparser_done(struct tls_context *tls_ctx);
353 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
354 int tls_sw_sendpage(struct sock *sk, struct page *page,
355 		    int offset, size_t size, int flags);
356 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
357 void tls_sw_release_resources_tx(struct sock *sk);
358 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
359 void tls_sw_free_resources_rx(struct sock *sk);
360 void tls_sw_release_resources_rx(struct sock *sk);
361 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
362 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
363 		   int nonblock, int flags, int *addr_len);
364 bool tls_sw_stream_read(const struct sock *sk);
365 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
366 			   struct pipe_inode_info *pipe,
367 			   size_t len, unsigned int flags);
368 
369 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
370 int tls_device_sendpage(struct sock *sk, struct page *page,
371 			int offset, size_t size, int flags);
372 int tls_tx_records(struct sock *sk, int flags);
373 
374 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
375 				       u32 seq, u64 *p_record_sn);
376 
377 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
378 {
379 	return rec->len == 0;
380 }
381 
382 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
383 {
384 	return rec->end_seq - rec->len;
385 }
386 
387 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
388 		struct scatterlist *sg, u16 first_offset,
389 		int flags);
390 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
391 			    int flags);
392 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
393 
394 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
395 {
396 	return (struct tls_msg *)strp_msg(skb);
397 }
398 
399 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
400 {
401 	return !!ctx->partially_sent_record;
402 }
403 
404 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
405 {
406 	return tls_ctx->pending_open_record_frags;
407 }
408 
409 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
410 {
411 	struct tls_rec *rec;
412 
413 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
414 	if (!rec)
415 		return false;
416 
417 	return READ_ONCE(rec->tx_ready);
418 }
419 
420 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
421 {
422 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
423 
424 	switch (config) {
425 	case TLS_BASE:
426 		return TLS_CONF_BASE;
427 	case TLS_SW:
428 		return TLS_CONF_SW;
429 	case TLS_HW:
430 		return TLS_CONF_HW;
431 	case TLS_HW_RECORD:
432 		return TLS_CONF_HW_RECORD;
433 	}
434 	return 0;
435 }
436 
437 struct sk_buff *
438 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
439 		      struct sk_buff *skb);
440 
441 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
442 {
443 #ifdef CONFIG_SOCK_VALIDATE_XMIT
444 	return sk_fullsock(sk) &&
445 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
446 	       &tls_validate_xmit_skb);
447 #else
448 	return false;
449 #endif
450 }
451 
452 static inline void tls_err_abort(struct sock *sk, int err)
453 {
454 	sk->sk_err = err;
455 	sk->sk_error_report(sk);
456 }
457 
458 static inline bool tls_bigint_increment(unsigned char *seq, int len)
459 {
460 	int i;
461 
462 	for (i = len - 1; i >= 0; i--) {
463 		++seq[i];
464 		if (seq[i] != 0)
465 			break;
466 	}
467 
468 	return (i == -1);
469 }
470 
471 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
472 {
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	/* Use RCU on icsk_ulp_data only for sock diag code,
476 	 * TLS data path doesn't need rcu_dereference().
477 	 */
478 	return (__force void *)icsk->icsk_ulp_data;
479 }
480 
481 static inline void tls_advance_record_sn(struct sock *sk,
482 					 struct tls_prot_info *prot,
483 					 struct cipher_context *ctx)
484 {
485 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
486 		tls_err_abort(sk, EBADMSG);
487 
488 	if (prot->version != TLS_1_3_VERSION)
489 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
490 				     prot->iv_size);
491 }
492 
493 static inline void tls_fill_prepend(struct tls_context *ctx,
494 			     char *buf,
495 			     size_t plaintext_len,
496 			     unsigned char record_type,
497 			     int version)
498 {
499 	struct tls_prot_info *prot = &ctx->prot_info;
500 	size_t pkt_len, iv_size = prot->iv_size;
501 
502 	pkt_len = plaintext_len + prot->tag_size;
503 	if (version != TLS_1_3_VERSION) {
504 		pkt_len += iv_size;
505 
506 		memcpy(buf + TLS_NONCE_OFFSET,
507 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
508 	}
509 
510 	/* we cover nonce explicit here as well, so buf should be of
511 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
512 	 */
513 	buf[0] = version == TLS_1_3_VERSION ?
514 		   TLS_RECORD_TYPE_DATA : record_type;
515 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
516 	buf[1] = TLS_1_2_VERSION_MINOR;
517 	buf[2] = TLS_1_2_VERSION_MAJOR;
518 	/* we can use IV for nonce explicit according to spec */
519 	buf[3] = pkt_len >> 8;
520 	buf[4] = pkt_len & 0xFF;
521 }
522 
523 static inline void tls_make_aad(char *buf,
524 				size_t size,
525 				char *record_sequence,
526 				int record_sequence_size,
527 				unsigned char record_type,
528 				int version)
529 {
530 	if (version != TLS_1_3_VERSION) {
531 		memcpy(buf, record_sequence, record_sequence_size);
532 		buf += 8;
533 	} else {
534 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
535 	}
536 
537 	buf[0] = version == TLS_1_3_VERSION ?
538 		  TLS_RECORD_TYPE_DATA : record_type;
539 	buf[1] = TLS_1_2_VERSION_MAJOR;
540 	buf[2] = TLS_1_2_VERSION_MINOR;
541 	buf[3] = size >> 8;
542 	buf[4] = size & 0xFF;
543 }
544 
545 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
546 {
547 	int i;
548 
549 	if (version == TLS_1_3_VERSION) {
550 		for (i = 0; i < 8; i++)
551 			iv[i + 4] ^= seq[i];
552 	}
553 }
554 
555 
556 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
557 		const struct tls_context *tls_ctx)
558 {
559 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
560 }
561 
562 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
563 		const struct tls_context *tls_ctx)
564 {
565 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
566 }
567 
568 static inline struct tls_offload_context_tx *
569 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
570 {
571 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
572 }
573 
574 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
575 {
576 	struct tls_context *ctx = tls_get_ctx(sk);
577 
578 	if (!ctx)
579 		return false;
580 	return !!tls_sw_ctx_tx(ctx);
581 }
582 
583 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
584 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
585 
586 static inline struct tls_offload_context_rx *
587 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
588 {
589 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
590 }
591 
592 #if IS_ENABLED(CONFIG_TLS_DEVICE)
593 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
594 				     enum tls_offload_ctx_dir direction)
595 {
596 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
597 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
598 	else
599 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
600 }
601 
602 static inline void *
603 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
604 {
605 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
606 }
607 #endif
608 
609 /* The TLS context is valid until sk_destruct is called */
610 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
611 {
612 	struct tls_context *tls_ctx = tls_get_ctx(sk);
613 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
614 
615 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
616 }
617 
618 static inline void
619 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
620 {
621 	struct tls_context *tls_ctx = tls_get_ctx(sk);
622 
623 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
624 }
625 
626 static inline void tls_offload_tx_resync_request(struct sock *sk)
627 {
628 	struct tls_context *tls_ctx = tls_get_ctx(sk);
629 
630 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
631 }
632 
633 /* Driver's seq tracking has to be disabled until resync succeeded */
634 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
635 {
636 	struct tls_context *tls_ctx = tls_get_ctx(sk);
637 	bool ret;
638 
639 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
640 	smp_mb__after_atomic();
641 	return ret;
642 }
643 
644 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
645 		      unsigned char *record_type);
646 void tls_register_device(struct tls_device *device);
647 void tls_unregister_device(struct tls_device *device);
648 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
649 		struct scatterlist *sgout);
650 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
651 
652 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
653 				      struct net_device *dev,
654 				      struct sk_buff *skb);
655 
656 int tls_sw_fallback_init(struct sock *sk,
657 			 struct tls_offload_context_tx *offload_ctx,
658 			 struct tls_crypto_info *crypto_info);
659 
660 #ifdef CONFIG_TLS_DEVICE
661 void tls_device_init(void);
662 void tls_device_cleanup(void);
663 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
664 void tls_device_free_resources_tx(struct sock *sk);
665 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
666 void tls_device_offload_cleanup_rx(struct sock *sk);
667 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
668 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
669 #else
670 static inline void tls_device_init(void) {}
671 static inline void tls_device_cleanup(void) {}
672 
673 static inline int
674 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
675 {
676 	return -EOPNOTSUPP;
677 }
678 
679 static inline void tls_device_free_resources_tx(struct sock *sk) {}
680 
681 static inline int
682 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
683 {
684 	return -EOPNOTSUPP;
685 }
686 
687 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
688 static inline void
689 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
690 
691 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
692 {
693 	return 0;
694 }
695 #endif
696 #endif /* _TLS_OFFLOAD_H */
697