xref: /openbmc/linux/include/net/tls.h (revision e9b7b8b3)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 struct tls_rec;
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_AAD_SPACE_SIZE		13
63 
64 #define MAX_IV_SIZE			16
65 #define TLS_TAG_SIZE			16
66 #define TLS_MAX_REC_SEQ_SIZE		8
67 #define TLS_MAX_AAD_SIZE		TLS_AAD_SPACE_SIZE
68 
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 #define TLS_SM4_CCM_IV_B0_BYTE		2
78 
79 enum {
80 	TLS_BASE,
81 	TLS_SW,
82 	TLS_HW,
83 	TLS_HW_RECORD,
84 	TLS_NUM_CONFIG,
85 };
86 
87 struct tx_work {
88 	struct delayed_work work;
89 	struct sock *sk;
90 };
91 
92 struct tls_sw_context_tx {
93 	struct crypto_aead *aead_send;
94 	struct crypto_wait async_wait;
95 	struct tx_work tx_work;
96 	struct tls_rec *open_rec;
97 	struct list_head tx_list;
98 	atomic_t encrypt_pending;
99 	/* protect crypto_wait with encrypt_pending */
100 	spinlock_t encrypt_compl_lock;
101 	int async_notify;
102 	u8 async_capable:1;
103 
104 #define BIT_TX_SCHEDULED	0
105 #define BIT_TX_CLOSING		1
106 	unsigned long tx_bitmask;
107 };
108 
109 struct tls_strparser {
110 	struct sock *sk;
111 
112 	u32 mark : 8;
113 	u32 stopped : 1;
114 	u32 copy_mode : 1;
115 	u32 mixed_decrypted : 1;
116 	u32 msg_ready : 1;
117 
118 	struct strp_msg stm;
119 
120 	struct sk_buff *anchor;
121 	struct work_struct work;
122 };
123 
124 struct tls_sw_context_rx {
125 	struct crypto_aead *aead_recv;
126 	struct crypto_wait async_wait;
127 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
128 	void (*saved_data_ready)(struct sock *sk);
129 
130 	u8 reader_present;
131 	u8 async_capable:1;
132 	u8 zc_capable:1;
133 	u8 reader_contended:1;
134 
135 	struct tls_strparser strp;
136 
137 	atomic_t decrypt_pending;
138 	/* protect crypto_wait with decrypt_pending*/
139 	spinlock_t decrypt_compl_lock;
140 	struct sk_buff_head async_hold;
141 	struct wait_queue_head wq;
142 };
143 
144 struct tls_record_info {
145 	struct list_head list;
146 	u32 end_seq;
147 	int len;
148 	int num_frags;
149 	skb_frag_t frags[MAX_SKB_FRAGS];
150 };
151 
152 struct tls_offload_context_tx {
153 	struct crypto_aead *aead_send;
154 	spinlock_t lock;	/* protects records list */
155 	struct list_head records_list;
156 	struct tls_record_info *open_record;
157 	struct tls_record_info *retransmit_hint;
158 	u64 hint_record_sn;
159 	u64 unacked_record_sn;
160 
161 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
162 	void (*sk_destruct)(struct sock *sk);
163 	struct work_struct destruct_work;
164 	struct tls_context *ctx;
165 	u8 driver_state[] __aligned(8);
166 	/* The TLS layer reserves room for driver specific state
167 	 * Currently the belief is that there is not enough
168 	 * driver specific state to justify another layer of indirection
169 	 */
170 #define TLS_DRIVER_STATE_SIZE_TX	16
171 };
172 
173 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
174 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
175 
176 enum tls_context_flags {
177 	/* tls_device_down was called after the netdev went down, device state
178 	 * was released, and kTLS works in software, even though rx_conf is
179 	 * still TLS_HW (needed for transition).
180 	 */
181 	TLS_RX_DEV_DEGRADED = 0,
182 	/* Unlike RX where resync is driven entirely by the core in TX only
183 	 * the driver knows when things went out of sync, so we need the flag
184 	 * to be atomic.
185 	 */
186 	TLS_TX_SYNC_SCHED = 1,
187 	/* tls_dev_del was called for the RX side, device state was released,
188 	 * but tls_ctx->netdev might still be kept, because TX-side driver
189 	 * resources might not be released yet. Used to prevent the second
190 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
191 	 */
192 	TLS_RX_DEV_CLOSED = 2,
193 };
194 
195 struct cipher_context {
196 	char *iv;
197 	char *rec_seq;
198 };
199 
200 union tls_crypto_context {
201 	struct tls_crypto_info info;
202 	union {
203 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
204 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
205 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
206 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
207 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
208 	};
209 };
210 
211 struct tls_prot_info {
212 	u16 version;
213 	u16 cipher_type;
214 	u16 prepend_size;
215 	u16 tag_size;
216 	u16 overhead_size;
217 	u16 iv_size;
218 	u16 salt_size;
219 	u16 rec_seq_size;
220 	u16 aad_size;
221 	u16 tail_size;
222 };
223 
224 struct tls_context {
225 	/* read-only cache line */
226 	struct tls_prot_info prot_info;
227 
228 	u8 tx_conf:3;
229 	u8 rx_conf:3;
230 	u8 zerocopy_sendfile:1;
231 	u8 rx_no_pad:1;
232 
233 	int (*push_pending_record)(struct sock *sk, int flags);
234 	void (*sk_write_space)(struct sock *sk);
235 
236 	void *priv_ctx_tx;
237 	void *priv_ctx_rx;
238 
239 	struct net_device __rcu *netdev;
240 
241 	/* rw cache line */
242 	struct cipher_context tx;
243 	struct cipher_context rx;
244 
245 	struct scatterlist *partially_sent_record;
246 	u16 partially_sent_offset;
247 
248 	bool splicing_pages;
249 	bool pending_open_record_frags;
250 
251 	struct mutex tx_lock; /* protects partially_sent_* fields and
252 			       * per-type TX fields
253 			       */
254 	unsigned long flags;
255 
256 	/* cache cold stuff */
257 	struct proto *sk_proto;
258 	struct sock *sk;
259 
260 	void (*sk_destruct)(struct sock *sk);
261 
262 	union tls_crypto_context crypto_send;
263 	union tls_crypto_context crypto_recv;
264 
265 	struct list_head list;
266 	refcount_t refcount;
267 	struct rcu_head rcu;
268 };
269 
270 enum tls_offload_ctx_dir {
271 	TLS_OFFLOAD_CTX_DIR_RX,
272 	TLS_OFFLOAD_CTX_DIR_TX,
273 };
274 
275 struct tlsdev_ops {
276 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
277 			   enum tls_offload_ctx_dir direction,
278 			   struct tls_crypto_info *crypto_info,
279 			   u32 start_offload_tcp_sn);
280 	void (*tls_dev_del)(struct net_device *netdev,
281 			    struct tls_context *ctx,
282 			    enum tls_offload_ctx_dir direction);
283 	int (*tls_dev_resync)(struct net_device *netdev,
284 			      struct sock *sk, u32 seq, u8 *rcd_sn,
285 			      enum tls_offload_ctx_dir direction);
286 };
287 
288 enum tls_offload_sync_type {
289 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
290 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
291 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
292 };
293 
294 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
295 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
296 
297 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
298 struct tls_offload_resync_async {
299 	atomic64_t req;
300 	u16 loglen;
301 	u16 rcd_delta;
302 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
303 };
304 
305 struct tls_offload_context_rx {
306 	/* sw must be the first member of tls_offload_context_rx */
307 	struct tls_sw_context_rx sw;
308 	enum tls_offload_sync_type resync_type;
309 	/* this member is set regardless of resync_type, to avoid branches */
310 	u8 resync_nh_reset:1;
311 	/* CORE_NEXT_HINT-only member, but use the hole here */
312 	u8 resync_nh_do_now:1;
313 	union {
314 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
315 		struct {
316 			atomic64_t resync_req;
317 		};
318 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
319 		struct {
320 			u32 decrypted_failed;
321 			u32 decrypted_tgt;
322 		} resync_nh;
323 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
324 		struct {
325 			struct tls_offload_resync_async *resync_async;
326 		};
327 	};
328 	u8 driver_state[] __aligned(8);
329 	/* The TLS layer reserves room for driver specific state
330 	 * Currently the belief is that there is not enough
331 	 * driver specific state to justify another layer of indirection
332 	 */
333 #define TLS_DRIVER_STATE_SIZE_RX	8
334 };
335 
336 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
337 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
338 
339 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
340 				       u32 seq, u64 *p_record_sn);
341 
342 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
343 {
344 	return rec->len == 0;
345 }
346 
347 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
348 {
349 	return rec->end_seq - rec->len;
350 }
351 
352 struct sk_buff *
353 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
354 		      struct sk_buff *skb);
355 struct sk_buff *
356 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
357 			 struct sk_buff *skb);
358 
359 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
360 {
361 #ifdef CONFIG_TLS_DEVICE
362 	struct sock *sk = skb->sk;
363 
364 	return sk && sk_fullsock(sk) &&
365 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
366 	       &tls_validate_xmit_skb);
367 #else
368 	return false;
369 #endif
370 }
371 
372 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 
376 	/* Use RCU on icsk_ulp_data only for sock diag code,
377 	 * TLS data path doesn't need rcu_dereference().
378 	 */
379 	return (__force void *)icsk->icsk_ulp_data;
380 }
381 
382 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
383 		const struct tls_context *tls_ctx)
384 {
385 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
386 }
387 
388 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
389 		const struct tls_context *tls_ctx)
390 {
391 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
392 }
393 
394 static inline struct tls_offload_context_tx *
395 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
396 {
397 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
398 }
399 
400 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
401 {
402 	struct tls_context *ctx = tls_get_ctx(sk);
403 
404 	if (!ctx)
405 		return false;
406 	return !!tls_sw_ctx_tx(ctx);
407 }
408 
409 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
410 {
411 	struct tls_context *ctx = tls_get_ctx(sk);
412 
413 	if (!ctx)
414 		return false;
415 	return !!tls_sw_ctx_rx(ctx);
416 }
417 
418 static inline struct tls_offload_context_rx *
419 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
420 {
421 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
422 }
423 
424 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
425 				     enum tls_offload_ctx_dir direction)
426 {
427 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
428 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
429 	else
430 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
431 }
432 
433 static inline void *
434 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
435 {
436 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
437 }
438 
439 #define RESYNC_REQ BIT(0)
440 #define RESYNC_REQ_ASYNC BIT(1)
441 /* The TLS context is valid until sk_destruct is called */
442 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
443 {
444 	struct tls_context *tls_ctx = tls_get_ctx(sk);
445 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
446 
447 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
448 }
449 
450 /* Log all TLS record header TCP sequences in [seq, seq+len] */
451 static inline void
452 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
453 {
454 	struct tls_context *tls_ctx = tls_get_ctx(sk);
455 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
456 
457 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
458 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
459 	rx_ctx->resync_async->loglen = 0;
460 	rx_ctx->resync_async->rcd_delta = 0;
461 }
462 
463 static inline void
464 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
465 {
466 	struct tls_context *tls_ctx = tls_get_ctx(sk);
467 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
468 
469 	atomic64_set(&rx_ctx->resync_async->req,
470 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
471 }
472 
473 static inline void
474 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
475 {
476 	struct tls_context *tls_ctx = tls_get_ctx(sk);
477 
478 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
479 }
480 
481 /* Driver's seq tracking has to be disabled until resync succeeded */
482 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
483 {
484 	struct tls_context *tls_ctx = tls_get_ctx(sk);
485 	bool ret;
486 
487 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
488 	smp_mb__after_atomic();
489 	return ret;
490 }
491 
492 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
493 
494 #ifdef CONFIG_TLS_DEVICE
495 void tls_device_sk_destruct(struct sock *sk);
496 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
497 
498 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
499 {
500 	if (!sk_fullsock(sk) ||
501 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
502 		return false;
503 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
504 }
505 #endif
506 #endif /* _TLS_OFFLOAD_H */
507