xref: /openbmc/linux/include/net/tls.h (revision e330fb14)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 #define TLS_SM4_CCM_IV_B0_BYTE		2
78 
79 #define __TLS_INC_STATS(net, field)				\
80 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
81 #define TLS_INC_STATS(net, field)				\
82 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
83 #define TLS_DEC_STATS(net, field)				\
84 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
85 
86 enum {
87 	TLS_BASE,
88 	TLS_SW,
89 	TLS_HW,
90 	TLS_HW_RECORD,
91 	TLS_NUM_CONFIG,
92 };
93 
94 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
95  * allocated or mapped for each TLS record. After encryption, the records are
96  * stores in a linked list.
97  */
98 struct tls_rec {
99 	struct list_head list;
100 	int tx_ready;
101 	int tx_flags;
102 
103 	struct sk_msg msg_plaintext;
104 	struct sk_msg msg_encrypted;
105 
106 	/* AAD | msg_plaintext.sg.data | sg_tag */
107 	struct scatterlist sg_aead_in[2];
108 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
109 	struct scatterlist sg_aead_out[2];
110 
111 	char content_type;
112 	struct scatterlist sg_content_type;
113 
114 	char aad_space[TLS_AAD_SPACE_SIZE];
115 	u8 iv_data[MAX_IV_SIZE];
116 	struct aead_request aead_req;
117 	u8 aead_req_ctx[];
118 };
119 
120 struct tls_msg {
121 	struct strp_msg rxm;
122 	u8 control;
123 };
124 
125 struct tx_work {
126 	struct delayed_work work;
127 	struct sock *sk;
128 };
129 
130 struct tls_sw_context_tx {
131 	struct crypto_aead *aead_send;
132 	struct crypto_wait async_wait;
133 	struct tx_work tx_work;
134 	struct tls_rec *open_rec;
135 	struct list_head tx_list;
136 	atomic_t encrypt_pending;
137 	/* protect crypto_wait with encrypt_pending */
138 	spinlock_t encrypt_compl_lock;
139 	int async_notify;
140 	u8 async_capable:1;
141 
142 #define BIT_TX_SCHEDULED	0
143 #define BIT_TX_CLOSING		1
144 	unsigned long tx_bitmask;
145 };
146 
147 struct tls_sw_context_rx {
148 	struct crypto_aead *aead_recv;
149 	struct crypto_wait async_wait;
150 	struct strparser strp;
151 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
152 	void (*saved_data_ready)(struct sock *sk);
153 
154 	struct sk_buff *recv_pkt;
155 	u8 control;
156 	u8 async_capable:1;
157 	u8 decrypted:1;
158 	atomic_t decrypt_pending;
159 	/* protect crypto_wait with decrypt_pending*/
160 	spinlock_t decrypt_compl_lock;
161 	bool async_notify;
162 };
163 
164 struct tls_record_info {
165 	struct list_head list;
166 	u32 end_seq;
167 	int len;
168 	int num_frags;
169 	skb_frag_t frags[MAX_SKB_FRAGS];
170 };
171 
172 struct tls_offload_context_tx {
173 	struct crypto_aead *aead_send;
174 	spinlock_t lock;	/* protects records list */
175 	struct list_head records_list;
176 	struct tls_record_info *open_record;
177 	struct tls_record_info *retransmit_hint;
178 	u64 hint_record_sn;
179 	u64 unacked_record_sn;
180 
181 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
182 	void (*sk_destruct)(struct sock *sk);
183 	u8 driver_state[] __aligned(8);
184 	/* The TLS layer reserves room for driver specific state
185 	 * Currently the belief is that there is not enough
186 	 * driver specific state to justify another layer of indirection
187 	 */
188 #define TLS_DRIVER_STATE_SIZE_TX	16
189 };
190 
191 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
192 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
193 
194 enum tls_context_flags {
195 	/* tls_device_down was called after the netdev went down, device state
196 	 * was released, and kTLS works in software, even though rx_conf is
197 	 * still TLS_HW (needed for transition).
198 	 */
199 	TLS_RX_DEV_DEGRADED = 0,
200 	/* Unlike RX where resync is driven entirely by the core in TX only
201 	 * the driver knows when things went out of sync, so we need the flag
202 	 * to be atomic.
203 	 */
204 	TLS_TX_SYNC_SCHED = 1,
205 	/* tls_dev_del was called for the RX side, device state was released,
206 	 * but tls_ctx->netdev might still be kept, because TX-side driver
207 	 * resources might not be released yet. Used to prevent the second
208 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
209 	 */
210 	TLS_RX_DEV_CLOSED = 2,
211 };
212 
213 struct cipher_context {
214 	char *iv;
215 	char *rec_seq;
216 };
217 
218 union tls_crypto_context {
219 	struct tls_crypto_info info;
220 	union {
221 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
222 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
223 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
224 	};
225 };
226 
227 struct tls_prot_info {
228 	u16 version;
229 	u16 cipher_type;
230 	u16 prepend_size;
231 	u16 tag_size;
232 	u16 overhead_size;
233 	u16 iv_size;
234 	u16 salt_size;
235 	u16 rec_seq_size;
236 	u16 aad_size;
237 	u16 tail_size;
238 };
239 
240 struct tls_context {
241 	/* read-only cache line */
242 	struct tls_prot_info prot_info;
243 
244 	u8 tx_conf:3;
245 	u8 rx_conf:3;
246 
247 	int (*push_pending_record)(struct sock *sk, int flags);
248 	void (*sk_write_space)(struct sock *sk);
249 
250 	void *priv_ctx_tx;
251 	void *priv_ctx_rx;
252 
253 	struct net_device *netdev;
254 
255 	/* rw cache line */
256 	struct cipher_context tx;
257 	struct cipher_context rx;
258 
259 	struct scatterlist *partially_sent_record;
260 	u16 partially_sent_offset;
261 
262 	bool in_tcp_sendpages;
263 	bool pending_open_record_frags;
264 
265 	struct mutex tx_lock; /* protects partially_sent_* fields and
266 			       * per-type TX fields
267 			       */
268 	unsigned long flags;
269 
270 	/* cache cold stuff */
271 	struct proto *sk_proto;
272 	struct sock *sk;
273 
274 	void (*sk_destruct)(struct sock *sk);
275 
276 	union tls_crypto_context crypto_send;
277 	union tls_crypto_context crypto_recv;
278 
279 	struct list_head list;
280 	refcount_t refcount;
281 	struct rcu_head rcu;
282 };
283 
284 enum tls_offload_ctx_dir {
285 	TLS_OFFLOAD_CTX_DIR_RX,
286 	TLS_OFFLOAD_CTX_DIR_TX,
287 };
288 
289 struct tlsdev_ops {
290 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
291 			   enum tls_offload_ctx_dir direction,
292 			   struct tls_crypto_info *crypto_info,
293 			   u32 start_offload_tcp_sn);
294 	void (*tls_dev_del)(struct net_device *netdev,
295 			    struct tls_context *ctx,
296 			    enum tls_offload_ctx_dir direction);
297 	int (*tls_dev_resync)(struct net_device *netdev,
298 			      struct sock *sk, u32 seq, u8 *rcd_sn,
299 			      enum tls_offload_ctx_dir direction);
300 };
301 
302 enum tls_offload_sync_type {
303 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
304 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
305 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
306 };
307 
308 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
309 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
310 
311 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
312 struct tls_offload_resync_async {
313 	atomic64_t req;
314 	u16 loglen;
315 	u16 rcd_delta;
316 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
317 };
318 
319 struct tls_offload_context_rx {
320 	/* sw must be the first member of tls_offload_context_rx */
321 	struct tls_sw_context_rx sw;
322 	enum tls_offload_sync_type resync_type;
323 	/* this member is set regardless of resync_type, to avoid branches */
324 	u8 resync_nh_reset:1;
325 	/* CORE_NEXT_HINT-only member, but use the hole here */
326 	u8 resync_nh_do_now:1;
327 	union {
328 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
329 		struct {
330 			atomic64_t resync_req;
331 		};
332 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
333 		struct {
334 			u32 decrypted_failed;
335 			u32 decrypted_tgt;
336 		} resync_nh;
337 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
338 		struct {
339 			struct tls_offload_resync_async *resync_async;
340 		};
341 	};
342 	u8 driver_state[] __aligned(8);
343 	/* The TLS layer reserves room for driver specific state
344 	 * Currently the belief is that there is not enough
345 	 * driver specific state to justify another layer of indirection
346 	 */
347 #define TLS_DRIVER_STATE_SIZE_RX	8
348 };
349 
350 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
351 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
352 
353 struct tls_context *tls_ctx_create(struct sock *sk);
354 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
355 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
356 
357 int wait_on_pending_writer(struct sock *sk, long *timeo);
358 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
359 		int __user *optlen);
360 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
361 		  unsigned int optlen);
362 
363 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
364 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
365 void tls_sw_strparser_done(struct tls_context *tls_ctx);
366 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
367 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
368 			   int offset, size_t size, int flags);
369 int tls_sw_sendpage(struct sock *sk, struct page *page,
370 		    int offset, size_t size, int flags);
371 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
372 void tls_sw_release_resources_tx(struct sock *sk);
373 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
374 void tls_sw_free_resources_rx(struct sock *sk);
375 void tls_sw_release_resources_rx(struct sock *sk);
376 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
377 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
378 		   int nonblock, int flags, int *addr_len);
379 bool tls_sw_stream_read(const struct sock *sk);
380 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
381 			   struct pipe_inode_info *pipe,
382 			   size_t len, unsigned int flags);
383 
384 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
385 int tls_device_sendpage(struct sock *sk, struct page *page,
386 			int offset, size_t size, int flags);
387 int tls_tx_records(struct sock *sk, int flags);
388 
389 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
390 				       u32 seq, u64 *p_record_sn);
391 
392 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
393 {
394 	return rec->len == 0;
395 }
396 
397 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
398 {
399 	return rec->end_seq - rec->len;
400 }
401 
402 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
403 		struct scatterlist *sg, u16 first_offset,
404 		int flags);
405 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
406 			    int flags);
407 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
408 
409 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
410 {
411 	return (struct tls_msg *)strp_msg(skb);
412 }
413 
414 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
415 {
416 	return !!ctx->partially_sent_record;
417 }
418 
419 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
420 {
421 	return tls_ctx->pending_open_record_frags;
422 }
423 
424 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
425 {
426 	struct tls_rec *rec;
427 
428 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
429 	if (!rec)
430 		return false;
431 
432 	return READ_ONCE(rec->tx_ready);
433 }
434 
435 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
436 {
437 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
438 
439 	switch (config) {
440 	case TLS_BASE:
441 		return TLS_CONF_BASE;
442 	case TLS_SW:
443 		return TLS_CONF_SW;
444 	case TLS_HW:
445 		return TLS_CONF_HW;
446 	case TLS_HW_RECORD:
447 		return TLS_CONF_HW_RECORD;
448 	}
449 	return 0;
450 }
451 
452 struct sk_buff *
453 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
454 		      struct sk_buff *skb);
455 struct sk_buff *
456 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
457 			 struct sk_buff *skb);
458 
459 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
460 {
461 #ifdef CONFIG_SOCK_VALIDATE_XMIT
462 	return sk_fullsock(sk) &&
463 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
464 	       &tls_validate_xmit_skb);
465 #else
466 	return false;
467 #endif
468 }
469 
470 static inline void tls_err_abort(struct sock *sk, int err)
471 {
472 	sk->sk_err = err;
473 	sk_error_report(sk);
474 }
475 
476 static inline bool tls_bigint_increment(unsigned char *seq, int len)
477 {
478 	int i;
479 
480 	for (i = len - 1; i >= 0; i--) {
481 		++seq[i];
482 		if (seq[i] != 0)
483 			break;
484 	}
485 
486 	return (i == -1);
487 }
488 
489 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
490 {
491 	u64 rcd_sn;
492 	__be64 *p;
493 
494 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
495 
496 	p = (__be64 *)seq;
497 	rcd_sn = be64_to_cpu(*p);
498 	*p = cpu_to_be64(rcd_sn - n);
499 }
500 
501 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
502 {
503 	struct inet_connection_sock *icsk = inet_csk(sk);
504 
505 	/* Use RCU on icsk_ulp_data only for sock diag code,
506 	 * TLS data path doesn't need rcu_dereference().
507 	 */
508 	return (__force void *)icsk->icsk_ulp_data;
509 }
510 
511 static inline void tls_advance_record_sn(struct sock *sk,
512 					 struct tls_prot_info *prot,
513 					 struct cipher_context *ctx)
514 {
515 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
516 		tls_err_abort(sk, EBADMSG);
517 
518 	if (prot->version != TLS_1_3_VERSION &&
519 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
520 		tls_bigint_increment(ctx->iv + prot->salt_size,
521 				     prot->iv_size);
522 }
523 
524 static inline void tls_fill_prepend(struct tls_context *ctx,
525 			     char *buf,
526 			     size_t plaintext_len,
527 			     unsigned char record_type)
528 {
529 	struct tls_prot_info *prot = &ctx->prot_info;
530 	size_t pkt_len, iv_size = prot->iv_size;
531 
532 	pkt_len = plaintext_len + prot->tag_size;
533 	if (prot->version != TLS_1_3_VERSION &&
534 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
535 		pkt_len += iv_size;
536 
537 		memcpy(buf + TLS_NONCE_OFFSET,
538 		       ctx->tx.iv + prot->salt_size, iv_size);
539 	}
540 
541 	/* we cover nonce explicit here as well, so buf should be of
542 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
543 	 */
544 	buf[0] = prot->version == TLS_1_3_VERSION ?
545 		   TLS_RECORD_TYPE_DATA : record_type;
546 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
547 	buf[1] = TLS_1_2_VERSION_MINOR;
548 	buf[2] = TLS_1_2_VERSION_MAJOR;
549 	/* we can use IV for nonce explicit according to spec */
550 	buf[3] = pkt_len >> 8;
551 	buf[4] = pkt_len & 0xFF;
552 }
553 
554 static inline void tls_make_aad(char *buf,
555 				size_t size,
556 				char *record_sequence,
557 				unsigned char record_type,
558 				struct tls_prot_info *prot)
559 {
560 	if (prot->version != TLS_1_3_VERSION) {
561 		memcpy(buf, record_sequence, prot->rec_seq_size);
562 		buf += 8;
563 	} else {
564 		size += prot->tag_size;
565 	}
566 
567 	buf[0] = prot->version == TLS_1_3_VERSION ?
568 		  TLS_RECORD_TYPE_DATA : record_type;
569 	buf[1] = TLS_1_2_VERSION_MAJOR;
570 	buf[2] = TLS_1_2_VERSION_MINOR;
571 	buf[3] = size >> 8;
572 	buf[4] = size & 0xFF;
573 }
574 
575 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
576 {
577 	int i;
578 
579 	if (prot->version == TLS_1_3_VERSION ||
580 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
581 		for (i = 0; i < 8; i++)
582 			iv[i + 4] ^= seq[i];
583 	}
584 }
585 
586 
587 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
588 		const struct tls_context *tls_ctx)
589 {
590 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
591 }
592 
593 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
594 		const struct tls_context *tls_ctx)
595 {
596 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
597 }
598 
599 static inline struct tls_offload_context_tx *
600 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
601 {
602 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
603 }
604 
605 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
606 {
607 	struct tls_context *ctx = tls_get_ctx(sk);
608 
609 	if (!ctx)
610 		return false;
611 	return !!tls_sw_ctx_tx(ctx);
612 }
613 
614 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
615 {
616 	struct tls_context *ctx = tls_get_ctx(sk);
617 
618 	if (!ctx)
619 		return false;
620 	return !!tls_sw_ctx_rx(ctx);
621 }
622 
623 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
624 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
625 
626 static inline struct tls_offload_context_rx *
627 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
628 {
629 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
630 }
631 
632 #if IS_ENABLED(CONFIG_TLS_DEVICE)
633 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
634 				     enum tls_offload_ctx_dir direction)
635 {
636 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
637 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
638 	else
639 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
640 }
641 
642 static inline void *
643 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
644 {
645 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
646 }
647 #endif
648 
649 #define RESYNC_REQ BIT(0)
650 #define RESYNC_REQ_ASYNC BIT(1)
651 /* The TLS context is valid until sk_destruct is called */
652 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
653 {
654 	struct tls_context *tls_ctx = tls_get_ctx(sk);
655 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
656 
657 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
658 }
659 
660 /* Log all TLS record header TCP sequences in [seq, seq+len] */
661 static inline void
662 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
663 {
664 	struct tls_context *tls_ctx = tls_get_ctx(sk);
665 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
666 
667 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
668 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
669 	rx_ctx->resync_async->loglen = 0;
670 	rx_ctx->resync_async->rcd_delta = 0;
671 }
672 
673 static inline void
674 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
675 {
676 	struct tls_context *tls_ctx = tls_get_ctx(sk);
677 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
678 
679 	atomic64_set(&rx_ctx->resync_async->req,
680 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
681 }
682 
683 static inline void
684 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
685 {
686 	struct tls_context *tls_ctx = tls_get_ctx(sk);
687 
688 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
689 }
690 
691 /* Driver's seq tracking has to be disabled until resync succeeded */
692 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
693 {
694 	struct tls_context *tls_ctx = tls_get_ctx(sk);
695 	bool ret;
696 
697 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
698 	smp_mb__after_atomic();
699 	return ret;
700 }
701 
702 int __net_init tls_proc_init(struct net *net);
703 void __net_exit tls_proc_fini(struct net *net);
704 
705 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
706 		      unsigned char *record_type);
707 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
708 		struct scatterlist *sgout);
709 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
710 
711 int tls_sw_fallback_init(struct sock *sk,
712 			 struct tls_offload_context_tx *offload_ctx,
713 			 struct tls_crypto_info *crypto_info);
714 
715 #ifdef CONFIG_TLS_DEVICE
716 void tls_device_init(void);
717 void tls_device_cleanup(void);
718 void tls_device_sk_destruct(struct sock *sk);
719 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
720 void tls_device_free_resources_tx(struct sock *sk);
721 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
722 void tls_device_offload_cleanup_rx(struct sock *sk);
723 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
724 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
725 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
726 			 struct sk_buff *skb, struct strp_msg *rxm);
727 
728 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
729 {
730 	if (!sk_fullsock(sk) ||
731 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
732 		return false;
733 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
734 }
735 #else
736 static inline void tls_device_init(void) {}
737 static inline void tls_device_cleanup(void) {}
738 
739 static inline int
740 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
741 {
742 	return -EOPNOTSUPP;
743 }
744 
745 static inline void tls_device_free_resources_tx(struct sock *sk) {}
746 
747 static inline int
748 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
749 {
750 	return -EOPNOTSUPP;
751 }
752 
753 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
754 static inline void
755 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
756 
757 static inline int
758 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
759 		     struct sk_buff *skb, struct strp_msg *rxm)
760 {
761 	return 0;
762 }
763 #endif
764 #endif /* _TLS_OFFLOAD_H */
765