xref: /openbmc/linux/include/net/tls.h (revision dfe94d40)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 #define __TLS_INC_STATS(net, field)				\
79 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field)				\
81 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field)				\
83 	__SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 
104 	struct sk_msg msg_plaintext;
105 	struct sk_msg msg_encrypted;
106 
107 	/* AAD | msg_plaintext.sg.data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	char content_type;
113 	struct scatterlist sg_content_type;
114 
115 	char aad_space[TLS_AAD_SPACE_SIZE];
116 	u8 iv_data[MAX_IV_SIZE];
117 	struct aead_request aead_req;
118 	u8 aead_req_ctx[];
119 };
120 
121 struct tls_msg {
122 	struct strp_msg rxm;
123 	u8 control;
124 };
125 
126 struct tx_work {
127 	struct delayed_work work;
128 	struct sock *sk;
129 };
130 
131 struct tls_sw_context_tx {
132 	struct crypto_aead *aead_send;
133 	struct crypto_wait async_wait;
134 	struct tx_work tx_work;
135 	struct tls_rec *open_rec;
136 	struct list_head tx_list;
137 	atomic_t encrypt_pending;
138 	/* protect crypto_wait with encrypt_pending */
139 	spinlock_t encrypt_compl_lock;
140 	int async_notify;
141 	u8 async_capable:1;
142 
143 #define BIT_TX_SCHEDULED	0
144 #define BIT_TX_CLOSING		1
145 	unsigned long tx_bitmask;
146 };
147 
148 struct tls_sw_context_rx {
149 	struct crypto_aead *aead_recv;
150 	struct crypto_wait async_wait;
151 	struct strparser strp;
152 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
153 	void (*saved_data_ready)(struct sock *sk);
154 
155 	struct sk_buff *recv_pkt;
156 	u8 control;
157 	u8 async_capable:1;
158 	u8 decrypted:1;
159 	atomic_t decrypt_pending;
160 	/* protect crypto_wait with decrypt_pending*/
161 	spinlock_t decrypt_compl_lock;
162 	bool async_notify;
163 };
164 
165 struct tls_record_info {
166 	struct list_head list;
167 	u32 end_seq;
168 	int len;
169 	int num_frags;
170 	skb_frag_t frags[MAX_SKB_FRAGS];
171 };
172 
173 struct tls_offload_context_tx {
174 	struct crypto_aead *aead_send;
175 	spinlock_t lock;	/* protects records list */
176 	struct list_head records_list;
177 	struct tls_record_info *open_record;
178 	struct tls_record_info *retransmit_hint;
179 	u64 hint_record_sn;
180 	u64 unacked_record_sn;
181 
182 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 	void (*sk_destruct)(struct sock *sk);
184 	u8 driver_state[] __aligned(8);
185 	/* The TLS layer reserves room for driver specific state
186 	 * Currently the belief is that there is not enough
187 	 * driver specific state to justify another layer of indirection
188 	 */
189 #define TLS_DRIVER_STATE_SIZE_TX	16
190 };
191 
192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
193 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194 
195 enum tls_context_flags {
196 	TLS_RX_SYNC_RUNNING = 0,
197 	/* Unlike RX where resync is driven entirely by the core in TX only
198 	 * the driver knows when things went out of sync, so we need the flag
199 	 * to be atomic.
200 	 */
201 	TLS_TX_SYNC_SCHED = 1,
202 	/* tls_dev_del was called for the RX side, device state was released,
203 	 * but tls_ctx->netdev might still be kept, because TX-side driver
204 	 * resources might not be released yet. Used to prevent the second
205 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
206 	 */
207 	TLS_RX_DEV_CLOSED = 2,
208 };
209 
210 struct cipher_context {
211 	char *iv;
212 	char *rec_seq;
213 };
214 
215 union tls_crypto_context {
216 	struct tls_crypto_info info;
217 	union {
218 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
219 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
220 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
221 	};
222 };
223 
224 struct tls_prot_info {
225 	u16 version;
226 	u16 cipher_type;
227 	u16 prepend_size;
228 	u16 tag_size;
229 	u16 overhead_size;
230 	u16 iv_size;
231 	u16 salt_size;
232 	u16 rec_seq_size;
233 	u16 aad_size;
234 	u16 tail_size;
235 };
236 
237 struct tls_context {
238 	/* read-only cache line */
239 	struct tls_prot_info prot_info;
240 
241 	u8 tx_conf:3;
242 	u8 rx_conf:3;
243 
244 	int (*push_pending_record)(struct sock *sk, int flags);
245 	void (*sk_write_space)(struct sock *sk);
246 
247 	void *priv_ctx_tx;
248 	void *priv_ctx_rx;
249 
250 	struct net_device *netdev;
251 
252 	/* rw cache line */
253 	struct cipher_context tx;
254 	struct cipher_context rx;
255 
256 	struct scatterlist *partially_sent_record;
257 	u16 partially_sent_offset;
258 
259 	bool in_tcp_sendpages;
260 	bool pending_open_record_frags;
261 
262 	struct mutex tx_lock; /* protects partially_sent_* fields and
263 			       * per-type TX fields
264 			       */
265 	unsigned long flags;
266 
267 	/* cache cold stuff */
268 	struct proto *sk_proto;
269 
270 	void (*sk_destruct)(struct sock *sk);
271 
272 	union tls_crypto_context crypto_send;
273 	union tls_crypto_context crypto_recv;
274 
275 	struct list_head list;
276 	refcount_t refcount;
277 	struct rcu_head rcu;
278 };
279 
280 enum tls_offload_ctx_dir {
281 	TLS_OFFLOAD_CTX_DIR_RX,
282 	TLS_OFFLOAD_CTX_DIR_TX,
283 };
284 
285 struct tlsdev_ops {
286 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
287 			   enum tls_offload_ctx_dir direction,
288 			   struct tls_crypto_info *crypto_info,
289 			   u32 start_offload_tcp_sn);
290 	void (*tls_dev_del)(struct net_device *netdev,
291 			    struct tls_context *ctx,
292 			    enum tls_offload_ctx_dir direction);
293 	int (*tls_dev_resync)(struct net_device *netdev,
294 			      struct sock *sk, u32 seq, u8 *rcd_sn,
295 			      enum tls_offload_ctx_dir direction);
296 };
297 
298 enum tls_offload_sync_type {
299 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
300 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
301 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
302 };
303 
304 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
305 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
306 
307 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
308 struct tls_offload_resync_async {
309 	atomic64_t req;
310 	u16 loglen;
311 	u16 rcd_delta;
312 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
313 };
314 
315 struct tls_offload_context_rx {
316 	/* sw must be the first member of tls_offload_context_rx */
317 	struct tls_sw_context_rx sw;
318 	enum tls_offload_sync_type resync_type;
319 	/* this member is set regardless of resync_type, to avoid branches */
320 	u8 resync_nh_reset:1;
321 	/* CORE_NEXT_HINT-only member, but use the hole here */
322 	u8 resync_nh_do_now:1;
323 	union {
324 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
325 		struct {
326 			atomic64_t resync_req;
327 		};
328 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
329 		struct {
330 			u32 decrypted_failed;
331 			u32 decrypted_tgt;
332 		} resync_nh;
333 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
334 		struct {
335 			struct tls_offload_resync_async *resync_async;
336 		};
337 	};
338 	u8 driver_state[] __aligned(8);
339 	/* The TLS layer reserves room for driver specific state
340 	 * Currently the belief is that there is not enough
341 	 * driver specific state to justify another layer of indirection
342 	 */
343 #define TLS_DRIVER_STATE_SIZE_RX	8
344 };
345 
346 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
347 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
348 
349 struct tls_context *tls_ctx_create(struct sock *sk);
350 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
351 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
352 
353 int wait_on_pending_writer(struct sock *sk, long *timeo);
354 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
355 		int __user *optlen);
356 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
357 		  unsigned int optlen);
358 
359 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
360 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
361 void tls_sw_strparser_done(struct tls_context *tls_ctx);
362 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
363 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
364 			   int offset, size_t size, int flags);
365 int tls_sw_sendpage(struct sock *sk, struct page *page,
366 		    int offset, size_t size, int flags);
367 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
368 void tls_sw_release_resources_tx(struct sock *sk);
369 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
370 void tls_sw_free_resources_rx(struct sock *sk);
371 void tls_sw_release_resources_rx(struct sock *sk);
372 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
373 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
374 		   int nonblock, int flags, int *addr_len);
375 bool tls_sw_stream_read(const struct sock *sk);
376 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
377 			   struct pipe_inode_info *pipe,
378 			   size_t len, unsigned int flags);
379 
380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
381 int tls_device_sendpage(struct sock *sk, struct page *page,
382 			int offset, size_t size, int flags);
383 int tls_tx_records(struct sock *sk, int flags);
384 
385 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
386 				       u32 seq, u64 *p_record_sn);
387 
388 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
389 {
390 	return rec->len == 0;
391 }
392 
393 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
394 {
395 	return rec->end_seq - rec->len;
396 }
397 
398 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
399 		struct scatterlist *sg, u16 first_offset,
400 		int flags);
401 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
402 			    int flags);
403 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
404 
405 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
406 {
407 	return (struct tls_msg *)strp_msg(skb);
408 }
409 
410 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
411 {
412 	return !!ctx->partially_sent_record;
413 }
414 
415 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
416 {
417 	return tls_ctx->pending_open_record_frags;
418 }
419 
420 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
421 {
422 	struct tls_rec *rec;
423 
424 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
425 	if (!rec)
426 		return false;
427 
428 	return READ_ONCE(rec->tx_ready);
429 }
430 
431 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
432 {
433 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
434 
435 	switch (config) {
436 	case TLS_BASE:
437 		return TLS_CONF_BASE;
438 	case TLS_SW:
439 		return TLS_CONF_SW;
440 	case TLS_HW:
441 		return TLS_CONF_HW;
442 	case TLS_HW_RECORD:
443 		return TLS_CONF_HW_RECORD;
444 	}
445 	return 0;
446 }
447 
448 struct sk_buff *
449 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
450 		      struct sk_buff *skb);
451 
452 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
453 {
454 #ifdef CONFIG_SOCK_VALIDATE_XMIT
455 	return sk_fullsock(sk) &&
456 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
457 	       &tls_validate_xmit_skb);
458 #else
459 	return false;
460 #endif
461 }
462 
463 static inline void tls_err_abort(struct sock *sk, int err)
464 {
465 	sk->sk_err = err;
466 	sk->sk_error_report(sk);
467 }
468 
469 static inline bool tls_bigint_increment(unsigned char *seq, int len)
470 {
471 	int i;
472 
473 	for (i = len - 1; i >= 0; i--) {
474 		++seq[i];
475 		if (seq[i] != 0)
476 			break;
477 	}
478 
479 	return (i == -1);
480 }
481 
482 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
483 {
484 	u64 rcd_sn;
485 	__be64 *p;
486 
487 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
488 
489 	p = (__be64 *)seq;
490 	rcd_sn = be64_to_cpu(*p);
491 	*p = cpu_to_be64(rcd_sn - n);
492 }
493 
494 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
495 {
496 	struct inet_connection_sock *icsk = inet_csk(sk);
497 
498 	/* Use RCU on icsk_ulp_data only for sock diag code,
499 	 * TLS data path doesn't need rcu_dereference().
500 	 */
501 	return (__force void *)icsk->icsk_ulp_data;
502 }
503 
504 static inline void tls_advance_record_sn(struct sock *sk,
505 					 struct tls_prot_info *prot,
506 					 struct cipher_context *ctx)
507 {
508 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
509 		tls_err_abort(sk, EBADMSG);
510 
511 	if (prot->version != TLS_1_3_VERSION &&
512 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
513 		tls_bigint_increment(ctx->iv + prot->salt_size,
514 				     prot->iv_size);
515 }
516 
517 static inline void tls_fill_prepend(struct tls_context *ctx,
518 			     char *buf,
519 			     size_t plaintext_len,
520 			     unsigned char record_type)
521 {
522 	struct tls_prot_info *prot = &ctx->prot_info;
523 	size_t pkt_len, iv_size = prot->iv_size;
524 
525 	pkt_len = plaintext_len + prot->tag_size;
526 	if (prot->version != TLS_1_3_VERSION &&
527 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
528 		pkt_len += iv_size;
529 
530 		memcpy(buf + TLS_NONCE_OFFSET,
531 		       ctx->tx.iv + prot->salt_size, iv_size);
532 	}
533 
534 	/* we cover nonce explicit here as well, so buf should be of
535 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
536 	 */
537 	buf[0] = prot->version == TLS_1_3_VERSION ?
538 		   TLS_RECORD_TYPE_DATA : record_type;
539 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
540 	buf[1] = TLS_1_2_VERSION_MINOR;
541 	buf[2] = TLS_1_2_VERSION_MAJOR;
542 	/* we can use IV for nonce explicit according to spec */
543 	buf[3] = pkt_len >> 8;
544 	buf[4] = pkt_len & 0xFF;
545 }
546 
547 static inline void tls_make_aad(char *buf,
548 				size_t size,
549 				char *record_sequence,
550 				unsigned char record_type,
551 				struct tls_prot_info *prot)
552 {
553 	if (prot->version != TLS_1_3_VERSION) {
554 		memcpy(buf, record_sequence, prot->rec_seq_size);
555 		buf += 8;
556 	} else {
557 		size += prot->tag_size;
558 	}
559 
560 	buf[0] = prot->version == TLS_1_3_VERSION ?
561 		  TLS_RECORD_TYPE_DATA : record_type;
562 	buf[1] = TLS_1_2_VERSION_MAJOR;
563 	buf[2] = TLS_1_2_VERSION_MINOR;
564 	buf[3] = size >> 8;
565 	buf[4] = size & 0xFF;
566 }
567 
568 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
569 {
570 	int i;
571 
572 	if (prot->version == TLS_1_3_VERSION ||
573 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
574 		for (i = 0; i < 8; i++)
575 			iv[i + 4] ^= seq[i];
576 	}
577 }
578 
579 
580 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
581 		const struct tls_context *tls_ctx)
582 {
583 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
584 }
585 
586 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
587 		const struct tls_context *tls_ctx)
588 {
589 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
590 }
591 
592 static inline struct tls_offload_context_tx *
593 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
594 {
595 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
596 }
597 
598 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
599 {
600 	struct tls_context *ctx = tls_get_ctx(sk);
601 
602 	if (!ctx)
603 		return false;
604 	return !!tls_sw_ctx_tx(ctx);
605 }
606 
607 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
608 {
609 	struct tls_context *ctx = tls_get_ctx(sk);
610 
611 	if (!ctx)
612 		return false;
613 	return !!tls_sw_ctx_rx(ctx);
614 }
615 
616 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
617 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
618 
619 static inline struct tls_offload_context_rx *
620 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
621 {
622 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
623 }
624 
625 #if IS_ENABLED(CONFIG_TLS_DEVICE)
626 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
627 				     enum tls_offload_ctx_dir direction)
628 {
629 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
630 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
631 	else
632 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
633 }
634 
635 static inline void *
636 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
637 {
638 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
639 }
640 #endif
641 
642 #define RESYNC_REQ BIT(0)
643 #define RESYNC_REQ_ASYNC BIT(1)
644 /* The TLS context is valid until sk_destruct is called */
645 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
646 {
647 	struct tls_context *tls_ctx = tls_get_ctx(sk);
648 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
649 
650 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
651 }
652 
653 /* Log all TLS record header TCP sequences in [seq, seq+len] */
654 static inline void
655 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
656 {
657 	struct tls_context *tls_ctx = tls_get_ctx(sk);
658 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
659 
660 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
661 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
662 	rx_ctx->resync_async->loglen = 0;
663 	rx_ctx->resync_async->rcd_delta = 0;
664 }
665 
666 static inline void
667 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
668 {
669 	struct tls_context *tls_ctx = tls_get_ctx(sk);
670 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
671 
672 	atomic64_set(&rx_ctx->resync_async->req,
673 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
674 }
675 
676 static inline void
677 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
678 {
679 	struct tls_context *tls_ctx = tls_get_ctx(sk);
680 
681 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
682 }
683 
684 /* Driver's seq tracking has to be disabled until resync succeeded */
685 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
686 {
687 	struct tls_context *tls_ctx = tls_get_ctx(sk);
688 	bool ret;
689 
690 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
691 	smp_mb__after_atomic();
692 	return ret;
693 }
694 
695 int __net_init tls_proc_init(struct net *net);
696 void __net_exit tls_proc_fini(struct net *net);
697 
698 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
699 		      unsigned char *record_type);
700 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
701 		struct scatterlist *sgout);
702 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
703 
704 int tls_sw_fallback_init(struct sock *sk,
705 			 struct tls_offload_context_tx *offload_ctx,
706 			 struct tls_crypto_info *crypto_info);
707 
708 #ifdef CONFIG_TLS_DEVICE
709 void tls_device_init(void);
710 void tls_device_cleanup(void);
711 void tls_device_sk_destruct(struct sock *sk);
712 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
713 void tls_device_free_resources_tx(struct sock *sk);
714 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
715 void tls_device_offload_cleanup_rx(struct sock *sk);
716 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
717 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
718 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
719 			 struct sk_buff *skb, struct strp_msg *rxm);
720 
721 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
722 {
723 	if (!sk_fullsock(sk) ||
724 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
725 		return false;
726 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
727 }
728 #else
729 static inline void tls_device_init(void) {}
730 static inline void tls_device_cleanup(void) {}
731 
732 static inline int
733 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
734 {
735 	return -EOPNOTSUPP;
736 }
737 
738 static inline void tls_device_free_resources_tx(struct sock *sk) {}
739 
740 static inline int
741 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
742 {
743 	return -EOPNOTSUPP;
744 }
745 
746 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
747 static inline void
748 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
749 
750 static inline int
751 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
752 		     struct sk_buff *skb, struct strp_msg *rxm)
753 {
754 	return 0;
755 }
756 #endif
757 #endif /* _TLS_OFFLOAD_H */
758