xref: /openbmc/linux/include/net/tls.h (revision dd5b2498)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
48 
49 
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
52 
53 #define TLS_HEADER_SIZE			5
54 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
55 
56 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
57 
58 #define TLS_RECORD_TYPE_DATA		0x17
59 
60 #define TLS_AAD_SPACE_SIZE		13
61 #define TLS_DEVICE_NAME_MAX		32
62 
63 #define MAX_IV_SIZE			16
64 
65 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
66  *
67  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
68  *
69  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
70  * Hence b0 contains (3 - 1) = 2.
71  */
72 #define TLS_AES_CCM_IV_B0_BYTE		2
73 
74 /*
75  * This structure defines the routines for Inline TLS driver.
76  * The following routines are optional and filled with a
77  * null pointer if not defined.
78  *
79  * @name: Its the name of registered Inline tls device
80  * @dev_list: Inline tls device list
81  * int (*feature)(struct tls_device *device);
82  *     Called to return Inline TLS driver capability
83  *
84  * int (*hash)(struct tls_device *device, struct sock *sk);
85  *     This function sets Inline driver for listen and program
86  *     device specific functioanlity as required
87  *
88  * void (*unhash)(struct tls_device *device, struct sock *sk);
89  *     This function cleans listen state set by Inline TLS driver
90  *
91  * void (*release)(struct kref *kref);
92  *     Release the registered device and allocated resources
93  * @kref: Number of reference to tls_device
94  */
95 struct tls_device {
96 	char name[TLS_DEVICE_NAME_MAX];
97 	struct list_head dev_list;
98 	int  (*feature)(struct tls_device *device);
99 	int  (*hash)(struct tls_device *device, struct sock *sk);
100 	void (*unhash)(struct tls_device *device, struct sock *sk);
101 	void (*release)(struct kref *kref);
102 	struct kref kref;
103 };
104 
105 enum {
106 	TLS_BASE,
107 	TLS_SW,
108 #ifdef CONFIG_TLS_DEVICE
109 	TLS_HW,
110 #endif
111 	TLS_HW_RECORD,
112 	TLS_NUM_CONFIG,
113 };
114 
115 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
116  * allocated or mapped for each TLS record. After encryption, the records are
117  * stores in a linked list.
118  */
119 struct tls_rec {
120 	struct list_head list;
121 	int tx_ready;
122 	int tx_flags;
123 	int inplace_crypto;
124 
125 	struct sk_msg msg_plaintext;
126 	struct sk_msg msg_encrypted;
127 
128 	/* AAD | msg_plaintext.sg.data | sg_tag */
129 	struct scatterlist sg_aead_in[2];
130 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
131 	struct scatterlist sg_aead_out[2];
132 
133 	char content_type;
134 	struct scatterlist sg_content_type;
135 
136 	char aad_space[TLS_AAD_SPACE_SIZE];
137 	u8 iv_data[MAX_IV_SIZE];
138 	struct aead_request aead_req;
139 	u8 aead_req_ctx[];
140 };
141 
142 struct tls_msg {
143 	struct strp_msg rxm;
144 	u8 control;
145 };
146 
147 struct tx_work {
148 	struct delayed_work work;
149 	struct sock *sk;
150 };
151 
152 struct tls_sw_context_tx {
153 	struct crypto_aead *aead_send;
154 	struct crypto_wait async_wait;
155 	struct tx_work tx_work;
156 	struct tls_rec *open_rec;
157 	struct list_head tx_list;
158 	atomic_t encrypt_pending;
159 	int async_notify;
160 	int async_capable;
161 
162 #define BIT_TX_SCHEDULED	0
163 	unsigned long tx_bitmask;
164 };
165 
166 struct tls_sw_context_rx {
167 	struct crypto_aead *aead_recv;
168 	struct crypto_wait async_wait;
169 	struct strparser strp;
170 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
171 	void (*saved_data_ready)(struct sock *sk);
172 
173 	struct sk_buff *recv_pkt;
174 	u8 control;
175 	int async_capable;
176 	bool decrypted;
177 	atomic_t decrypt_pending;
178 	bool async_notify;
179 };
180 
181 struct tls_record_info {
182 	struct list_head list;
183 	u32 end_seq;
184 	int len;
185 	int num_frags;
186 	skb_frag_t frags[MAX_SKB_FRAGS];
187 };
188 
189 struct tls_offload_context_tx {
190 	struct crypto_aead *aead_send;
191 	spinlock_t lock;	/* protects records list */
192 	struct list_head records_list;
193 	struct tls_record_info *open_record;
194 	struct tls_record_info *retransmit_hint;
195 	u64 hint_record_sn;
196 	u64 unacked_record_sn;
197 
198 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
199 	void (*sk_destruct)(struct sock *sk);
200 	u8 driver_state[];
201 	/* The TLS layer reserves room for driver specific state
202 	 * Currently the belief is that there is not enough
203 	 * driver specific state to justify another layer of indirection
204 	 */
205 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
206 };
207 
208 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
209 	(ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) +        \
210 	 TLS_DRIVER_STATE_SIZE)
211 
212 struct cipher_context {
213 	char *iv;
214 	char *rec_seq;
215 };
216 
217 union tls_crypto_context {
218 	struct tls_crypto_info info;
219 	union {
220 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
221 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
222 	};
223 };
224 
225 struct tls_prot_info {
226 	u16 version;
227 	u16 cipher_type;
228 	u16 prepend_size;
229 	u16 tag_size;
230 	u16 overhead_size;
231 	u16 iv_size;
232 	u16 salt_size;
233 	u16 rec_seq_size;
234 	u16 aad_size;
235 	u16 tail_size;
236 };
237 
238 struct tls_context {
239 	struct tls_prot_info prot_info;
240 
241 	union tls_crypto_context crypto_send;
242 	union tls_crypto_context crypto_recv;
243 
244 	struct list_head list;
245 	struct net_device *netdev;
246 	refcount_t refcount;
247 
248 	void *priv_ctx_tx;
249 	void *priv_ctx_rx;
250 
251 	u8 tx_conf:3;
252 	u8 rx_conf:3;
253 
254 	struct cipher_context tx;
255 	struct cipher_context rx;
256 
257 	struct scatterlist *partially_sent_record;
258 	u16 partially_sent_offset;
259 
260 	unsigned long flags;
261 	bool in_tcp_sendpages;
262 	bool pending_open_record_frags;
263 
264 	int (*push_pending_record)(struct sock *sk, int flags);
265 
266 	void (*sk_write_space)(struct sock *sk);
267 	void (*sk_destruct)(struct sock *sk);
268 	void (*sk_proto_close)(struct sock *sk, long timeout);
269 
270 	int  (*setsockopt)(struct sock *sk, int level,
271 			   int optname, char __user *optval,
272 			   unsigned int optlen);
273 	int  (*getsockopt)(struct sock *sk, int level,
274 			   int optname, char __user *optval,
275 			   int __user *optlen);
276 	int  (*hash)(struct sock *sk);
277 	void (*unhash)(struct sock *sk);
278 };
279 
280 struct tls_offload_context_rx {
281 	/* sw must be the first member of tls_offload_context_rx */
282 	struct tls_sw_context_rx sw;
283 	atomic64_t resync_req;
284 	u8 driver_state[];
285 	/* The TLS layer reserves room for driver specific state
286 	 * Currently the belief is that there is not enough
287 	 * driver specific state to justify another layer of indirection
288 	 */
289 };
290 
291 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
292 	(ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
293 	 TLS_DRIVER_STATE_SIZE)
294 
295 int wait_on_pending_writer(struct sock *sk, long *timeo);
296 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
297 		int __user *optlen);
298 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
299 		  unsigned int optlen);
300 
301 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
302 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
303 int tls_sw_sendpage(struct sock *sk, struct page *page,
304 		    int offset, size_t size, int flags);
305 void tls_sw_close(struct sock *sk, long timeout);
306 void tls_sw_free_resources_tx(struct sock *sk);
307 void tls_sw_free_resources_rx(struct sock *sk);
308 void tls_sw_release_resources_rx(struct sock *sk);
309 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
310 		   int nonblock, int flags, int *addr_len);
311 bool tls_sw_stream_read(const struct sock *sk);
312 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
313 			   struct pipe_inode_info *pipe,
314 			   size_t len, unsigned int flags);
315 
316 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
317 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
318 int tls_device_sendpage(struct sock *sk, struct page *page,
319 			int offset, size_t size, int flags);
320 void tls_device_sk_destruct(struct sock *sk);
321 void tls_device_init(void);
322 void tls_device_cleanup(void);
323 int tls_tx_records(struct sock *sk, int flags);
324 
325 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
326 				       u32 seq, u64 *p_record_sn);
327 
328 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
329 {
330 	return rec->len == 0;
331 }
332 
333 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
334 {
335 	return rec->end_seq - rec->len;
336 }
337 
338 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
339 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
340 		struct scatterlist *sg, u16 first_offset,
341 		int flags);
342 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
343 			    int flags);
344 
345 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
346 {
347 	return (struct tls_msg *)strp_msg(skb);
348 }
349 
350 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
351 {
352 	return !!ctx->partially_sent_record;
353 }
354 
355 static inline int tls_complete_pending_work(struct sock *sk,
356 					    struct tls_context *ctx,
357 					    int flags, long *timeo)
358 {
359 	int rc = 0;
360 
361 	if (unlikely(sk->sk_write_pending))
362 		rc = wait_on_pending_writer(sk, timeo);
363 
364 	if (!rc && tls_is_partially_sent_record(ctx))
365 		rc = tls_push_partial_record(sk, ctx, flags);
366 
367 	return rc;
368 }
369 
370 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
371 {
372 	return tls_ctx->pending_open_record_frags;
373 }
374 
375 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
376 {
377 	struct tls_rec *rec;
378 
379 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
380 	if (!rec)
381 		return false;
382 
383 	return READ_ONCE(rec->tx_ready);
384 }
385 
386 struct sk_buff *
387 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
388 		      struct sk_buff *skb);
389 
390 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
391 {
392 #ifdef CONFIG_SOCK_VALIDATE_XMIT
393 	return sk_fullsock(sk) &
394 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
395 	       &tls_validate_xmit_skb);
396 #else
397 	return false;
398 #endif
399 }
400 
401 static inline void tls_err_abort(struct sock *sk, int err)
402 {
403 	sk->sk_err = err;
404 	sk->sk_error_report(sk);
405 }
406 
407 static inline bool tls_bigint_increment(unsigned char *seq, int len)
408 {
409 	int i;
410 
411 	for (i = len - 1; i >= 0; i--) {
412 		++seq[i];
413 		if (seq[i] != 0)
414 			break;
415 	}
416 
417 	return (i == -1);
418 }
419 
420 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 
424 	return icsk->icsk_ulp_data;
425 }
426 
427 static inline void tls_advance_record_sn(struct sock *sk,
428 					 struct cipher_context *ctx,
429 					 int version)
430 {
431 	struct tls_context *tls_ctx = tls_get_ctx(sk);
432 	struct tls_prot_info *prot = &tls_ctx->prot_info;
433 
434 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
435 		tls_err_abort(sk, EBADMSG);
436 
437 	if (version != TLS_1_3_VERSION) {
438 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
439 				     prot->iv_size);
440 	}
441 }
442 
443 static inline void tls_fill_prepend(struct tls_context *ctx,
444 			     char *buf,
445 			     size_t plaintext_len,
446 			     unsigned char record_type,
447 			     int version)
448 {
449 	struct tls_prot_info *prot = &ctx->prot_info;
450 	size_t pkt_len, iv_size = prot->iv_size;
451 
452 	pkt_len = plaintext_len + prot->tag_size;
453 	if (version != TLS_1_3_VERSION) {
454 		pkt_len += iv_size;
455 
456 		memcpy(buf + TLS_NONCE_OFFSET,
457 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
458 	}
459 
460 	/* we cover nonce explicit here as well, so buf should be of
461 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
462 	 */
463 	buf[0] = version == TLS_1_3_VERSION ?
464 		   TLS_RECORD_TYPE_DATA : record_type;
465 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
466 	buf[1] = TLS_1_2_VERSION_MINOR;
467 	buf[2] = TLS_1_2_VERSION_MAJOR;
468 	/* we can use IV for nonce explicit according to spec */
469 	buf[3] = pkt_len >> 8;
470 	buf[4] = pkt_len & 0xFF;
471 }
472 
473 static inline void tls_make_aad(char *buf,
474 				size_t size,
475 				char *record_sequence,
476 				int record_sequence_size,
477 				unsigned char record_type,
478 				int version)
479 {
480 	if (version != TLS_1_3_VERSION) {
481 		memcpy(buf, record_sequence, record_sequence_size);
482 		buf += 8;
483 	} else {
484 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
485 	}
486 
487 	buf[0] = version == TLS_1_3_VERSION ?
488 		  TLS_RECORD_TYPE_DATA : record_type;
489 	buf[1] = TLS_1_2_VERSION_MAJOR;
490 	buf[2] = TLS_1_2_VERSION_MINOR;
491 	buf[3] = size >> 8;
492 	buf[4] = size & 0xFF;
493 }
494 
495 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
496 {
497 	int i;
498 
499 	if (version == TLS_1_3_VERSION) {
500 		for (i = 0; i < 8; i++)
501 			iv[i + 4] ^= seq[i];
502 	}
503 }
504 
505 
506 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
507 		const struct tls_context *tls_ctx)
508 {
509 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
510 }
511 
512 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
513 		const struct tls_context *tls_ctx)
514 {
515 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
516 }
517 
518 static inline struct tls_offload_context_tx *
519 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
520 {
521 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
522 }
523 
524 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
525 {
526 	struct tls_context *ctx = tls_get_ctx(sk);
527 
528 	if (!ctx)
529 		return false;
530 	return !!tls_sw_ctx_tx(ctx);
531 }
532 
533 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
534 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
535 
536 static inline struct tls_offload_context_rx *
537 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
538 {
539 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
540 }
541 
542 /* The TLS context is valid until sk_destruct is called */
543 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
544 {
545 	struct tls_context *tls_ctx = tls_get_ctx(sk);
546 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
547 
548 	atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
549 }
550 
551 
552 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
553 		      unsigned char *record_type);
554 void tls_register_device(struct tls_device *device);
555 void tls_unregister_device(struct tls_device *device);
556 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
557 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
558 		struct scatterlist *sgout);
559 
560 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
561 				      struct net_device *dev,
562 				      struct sk_buff *skb);
563 
564 int tls_sw_fallback_init(struct sock *sk,
565 			 struct tls_offload_context_tx *offload_ctx,
566 			 struct tls_crypto_info *crypto_info);
567 
568 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
569 
570 void tls_device_offload_cleanup_rx(struct sock *sk);
571 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
572 
573 #endif /* _TLS_OFFLOAD_H */
574