1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define TLS_DEC_STATS(net, field) \ 83 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 85 enum { 86 TLS_BASE, 87 TLS_SW, 88 TLS_HW, 89 TLS_HW_RECORD, 90 TLS_NUM_CONFIG, 91 }; 92 93 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 94 * allocated or mapped for each TLS record. After encryption, the records are 95 * stores in a linked list. 96 */ 97 struct tls_rec { 98 struct list_head list; 99 int tx_ready; 100 int tx_flags; 101 102 struct sk_msg msg_plaintext; 103 struct sk_msg msg_encrypted; 104 105 /* AAD | msg_plaintext.sg.data | sg_tag */ 106 struct scatterlist sg_aead_in[2]; 107 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 108 struct scatterlist sg_aead_out[2]; 109 110 char content_type; 111 struct scatterlist sg_content_type; 112 113 char aad_space[TLS_AAD_SPACE_SIZE]; 114 u8 iv_data[MAX_IV_SIZE]; 115 struct aead_request aead_req; 116 u8 aead_req_ctx[]; 117 }; 118 119 struct tls_msg { 120 struct strp_msg rxm; 121 u8 control; 122 }; 123 124 struct tx_work { 125 struct delayed_work work; 126 struct sock *sk; 127 }; 128 129 struct tls_sw_context_tx { 130 struct crypto_aead *aead_send; 131 struct crypto_wait async_wait; 132 struct tx_work tx_work; 133 struct tls_rec *open_rec; 134 struct list_head tx_list; 135 atomic_t encrypt_pending; 136 /* protect crypto_wait with encrypt_pending */ 137 spinlock_t encrypt_compl_lock; 138 int async_notify; 139 u8 async_capable:1; 140 141 #define BIT_TX_SCHEDULED 0 142 #define BIT_TX_CLOSING 1 143 unsigned long tx_bitmask; 144 }; 145 146 struct tls_sw_context_rx { 147 struct crypto_aead *aead_recv; 148 struct crypto_wait async_wait; 149 struct strparser strp; 150 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 151 void (*saved_data_ready)(struct sock *sk); 152 153 struct sk_buff *recv_pkt; 154 u8 control; 155 u8 async_capable:1; 156 u8 decrypted:1; 157 atomic_t decrypt_pending; 158 /* protect crypto_wait with decrypt_pending*/ 159 spinlock_t decrypt_compl_lock; 160 bool async_notify; 161 }; 162 163 struct tls_record_info { 164 struct list_head list; 165 u32 end_seq; 166 int len; 167 int num_frags; 168 skb_frag_t frags[MAX_SKB_FRAGS]; 169 }; 170 171 struct tls_offload_context_tx { 172 struct crypto_aead *aead_send; 173 spinlock_t lock; /* protects records list */ 174 struct list_head records_list; 175 struct tls_record_info *open_record; 176 struct tls_record_info *retransmit_hint; 177 u64 hint_record_sn; 178 u64 unacked_record_sn; 179 180 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 181 void (*sk_destruct)(struct sock *sk); 182 u8 driver_state[] __aligned(8); 183 /* The TLS layer reserves room for driver specific state 184 * Currently the belief is that there is not enough 185 * driver specific state to justify another layer of indirection 186 */ 187 #define TLS_DRIVER_STATE_SIZE_TX 16 188 }; 189 190 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 191 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 192 193 enum tls_context_flags { 194 /* tls_device_down was called after the netdev went down, device state 195 * was released, and kTLS works in software, even though rx_conf is 196 * still TLS_HW (needed for transition). 197 */ 198 TLS_RX_DEV_DEGRADED = 0, 199 /* Unlike RX where resync is driven entirely by the core in TX only 200 * the driver knows when things went out of sync, so we need the flag 201 * to be atomic. 202 */ 203 TLS_TX_SYNC_SCHED = 1, 204 /* tls_dev_del was called for the RX side, device state was released, 205 * but tls_ctx->netdev might still be kept, because TX-side driver 206 * resources might not be released yet. Used to prevent the second 207 * tls_dev_del call in tls_device_down if it happens simultaneously. 208 */ 209 TLS_RX_DEV_CLOSED = 2, 210 }; 211 212 struct cipher_context { 213 char *iv; 214 char *rec_seq; 215 }; 216 217 union tls_crypto_context { 218 struct tls_crypto_info info; 219 union { 220 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 221 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 222 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; 223 }; 224 }; 225 226 struct tls_prot_info { 227 u16 version; 228 u16 cipher_type; 229 u16 prepend_size; 230 u16 tag_size; 231 u16 overhead_size; 232 u16 iv_size; 233 u16 salt_size; 234 u16 rec_seq_size; 235 u16 aad_size; 236 u16 tail_size; 237 }; 238 239 struct tls_context { 240 /* read-only cache line */ 241 struct tls_prot_info prot_info; 242 243 u8 tx_conf:3; 244 u8 rx_conf:3; 245 246 int (*push_pending_record)(struct sock *sk, int flags); 247 void (*sk_write_space)(struct sock *sk); 248 249 void *priv_ctx_tx; 250 void *priv_ctx_rx; 251 252 struct net_device *netdev; 253 254 /* rw cache line */ 255 struct cipher_context tx; 256 struct cipher_context rx; 257 258 struct scatterlist *partially_sent_record; 259 u16 partially_sent_offset; 260 261 bool in_tcp_sendpages; 262 bool pending_open_record_frags; 263 264 struct mutex tx_lock; /* protects partially_sent_* fields and 265 * per-type TX fields 266 */ 267 unsigned long flags; 268 269 /* cache cold stuff */ 270 struct proto *sk_proto; 271 struct sock *sk; 272 273 void (*sk_destruct)(struct sock *sk); 274 275 union tls_crypto_context crypto_send; 276 union tls_crypto_context crypto_recv; 277 278 struct list_head list; 279 refcount_t refcount; 280 struct rcu_head rcu; 281 }; 282 283 enum tls_offload_ctx_dir { 284 TLS_OFFLOAD_CTX_DIR_RX, 285 TLS_OFFLOAD_CTX_DIR_TX, 286 }; 287 288 struct tlsdev_ops { 289 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 290 enum tls_offload_ctx_dir direction, 291 struct tls_crypto_info *crypto_info, 292 u32 start_offload_tcp_sn); 293 void (*tls_dev_del)(struct net_device *netdev, 294 struct tls_context *ctx, 295 enum tls_offload_ctx_dir direction); 296 int (*tls_dev_resync)(struct net_device *netdev, 297 struct sock *sk, u32 seq, u8 *rcd_sn, 298 enum tls_offload_ctx_dir direction); 299 }; 300 301 enum tls_offload_sync_type { 302 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 303 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 304 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 305 }; 306 307 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 308 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 309 310 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 311 struct tls_offload_resync_async { 312 atomic64_t req; 313 u16 loglen; 314 u16 rcd_delta; 315 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 316 }; 317 318 struct tls_offload_context_rx { 319 /* sw must be the first member of tls_offload_context_rx */ 320 struct tls_sw_context_rx sw; 321 enum tls_offload_sync_type resync_type; 322 /* this member is set regardless of resync_type, to avoid branches */ 323 u8 resync_nh_reset:1; 324 /* CORE_NEXT_HINT-only member, but use the hole here */ 325 u8 resync_nh_do_now:1; 326 union { 327 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 328 struct { 329 atomic64_t resync_req; 330 }; 331 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 332 struct { 333 u32 decrypted_failed; 334 u32 decrypted_tgt; 335 } resync_nh; 336 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 337 struct { 338 struct tls_offload_resync_async *resync_async; 339 }; 340 }; 341 u8 driver_state[] __aligned(8); 342 /* The TLS layer reserves room for driver specific state 343 * Currently the belief is that there is not enough 344 * driver specific state to justify another layer of indirection 345 */ 346 #define TLS_DRIVER_STATE_SIZE_RX 8 347 }; 348 349 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 350 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 351 352 struct tls_context *tls_ctx_create(struct sock *sk); 353 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 354 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 355 356 int wait_on_pending_writer(struct sock *sk, long *timeo); 357 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 358 int __user *optlen); 359 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 360 unsigned int optlen); 361 362 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 363 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 364 void tls_sw_strparser_done(struct tls_context *tls_ctx); 365 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 366 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 367 int offset, size_t size, int flags); 368 int tls_sw_sendpage(struct sock *sk, struct page *page, 369 int offset, size_t size, int flags); 370 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 371 void tls_sw_release_resources_tx(struct sock *sk); 372 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 373 void tls_sw_free_resources_rx(struct sock *sk); 374 void tls_sw_release_resources_rx(struct sock *sk); 375 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 376 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 377 int nonblock, int flags, int *addr_len); 378 bool tls_sw_stream_read(const struct sock *sk); 379 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 380 struct pipe_inode_info *pipe, 381 size_t len, unsigned int flags); 382 383 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 384 int tls_device_sendpage(struct sock *sk, struct page *page, 385 int offset, size_t size, int flags); 386 int tls_tx_records(struct sock *sk, int flags); 387 388 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 389 u32 seq, u64 *p_record_sn); 390 391 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 392 { 393 return rec->len == 0; 394 } 395 396 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 397 { 398 return rec->end_seq - rec->len; 399 } 400 401 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 402 struct scatterlist *sg, u16 first_offset, 403 int flags); 404 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 405 int flags); 406 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 407 408 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 409 { 410 return (struct tls_msg *)strp_msg(skb); 411 } 412 413 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 414 { 415 return !!ctx->partially_sent_record; 416 } 417 418 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 419 { 420 return tls_ctx->pending_open_record_frags; 421 } 422 423 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 424 { 425 struct tls_rec *rec; 426 427 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 428 if (!rec) 429 return false; 430 431 return READ_ONCE(rec->tx_ready); 432 } 433 434 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 435 { 436 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 437 438 switch (config) { 439 case TLS_BASE: 440 return TLS_CONF_BASE; 441 case TLS_SW: 442 return TLS_CONF_SW; 443 case TLS_HW: 444 return TLS_CONF_HW; 445 case TLS_HW_RECORD: 446 return TLS_CONF_HW_RECORD; 447 } 448 return 0; 449 } 450 451 struct sk_buff * 452 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 453 struct sk_buff *skb); 454 struct sk_buff * 455 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, 456 struct sk_buff *skb); 457 458 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 459 { 460 #ifdef CONFIG_SOCK_VALIDATE_XMIT 461 return sk_fullsock(sk) && 462 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 463 &tls_validate_xmit_skb); 464 #else 465 return false; 466 #endif 467 } 468 469 static inline void tls_err_abort(struct sock *sk, int err) 470 { 471 sk->sk_err = err; 472 sk_error_report(sk); 473 } 474 475 static inline bool tls_bigint_increment(unsigned char *seq, int len) 476 { 477 int i; 478 479 for (i = len - 1; i >= 0; i--) { 480 ++seq[i]; 481 if (seq[i] != 0) 482 break; 483 } 484 485 return (i == -1); 486 } 487 488 static inline void tls_bigint_subtract(unsigned char *seq, int n) 489 { 490 u64 rcd_sn; 491 __be64 *p; 492 493 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 494 495 p = (__be64 *)seq; 496 rcd_sn = be64_to_cpu(*p); 497 *p = cpu_to_be64(rcd_sn - n); 498 } 499 500 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 501 { 502 struct inet_connection_sock *icsk = inet_csk(sk); 503 504 /* Use RCU on icsk_ulp_data only for sock diag code, 505 * TLS data path doesn't need rcu_dereference(). 506 */ 507 return (__force void *)icsk->icsk_ulp_data; 508 } 509 510 static inline void tls_advance_record_sn(struct sock *sk, 511 struct tls_prot_info *prot, 512 struct cipher_context *ctx) 513 { 514 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 515 tls_err_abort(sk, EBADMSG); 516 517 if (prot->version != TLS_1_3_VERSION && 518 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 519 tls_bigint_increment(ctx->iv + prot->salt_size, 520 prot->iv_size); 521 } 522 523 static inline void tls_fill_prepend(struct tls_context *ctx, 524 char *buf, 525 size_t plaintext_len, 526 unsigned char record_type) 527 { 528 struct tls_prot_info *prot = &ctx->prot_info; 529 size_t pkt_len, iv_size = prot->iv_size; 530 531 pkt_len = plaintext_len + prot->tag_size; 532 if (prot->version != TLS_1_3_VERSION && 533 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 534 pkt_len += iv_size; 535 536 memcpy(buf + TLS_NONCE_OFFSET, 537 ctx->tx.iv + prot->salt_size, iv_size); 538 } 539 540 /* we cover nonce explicit here as well, so buf should be of 541 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 542 */ 543 buf[0] = prot->version == TLS_1_3_VERSION ? 544 TLS_RECORD_TYPE_DATA : record_type; 545 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 546 buf[1] = TLS_1_2_VERSION_MINOR; 547 buf[2] = TLS_1_2_VERSION_MAJOR; 548 /* we can use IV for nonce explicit according to spec */ 549 buf[3] = pkt_len >> 8; 550 buf[4] = pkt_len & 0xFF; 551 } 552 553 static inline void tls_make_aad(char *buf, 554 size_t size, 555 char *record_sequence, 556 unsigned char record_type, 557 struct tls_prot_info *prot) 558 { 559 if (prot->version != TLS_1_3_VERSION) { 560 memcpy(buf, record_sequence, prot->rec_seq_size); 561 buf += 8; 562 } else { 563 size += prot->tag_size; 564 } 565 566 buf[0] = prot->version == TLS_1_3_VERSION ? 567 TLS_RECORD_TYPE_DATA : record_type; 568 buf[1] = TLS_1_2_VERSION_MAJOR; 569 buf[2] = TLS_1_2_VERSION_MINOR; 570 buf[3] = size >> 8; 571 buf[4] = size & 0xFF; 572 } 573 574 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 575 { 576 int i; 577 578 if (prot->version == TLS_1_3_VERSION || 579 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 580 for (i = 0; i < 8; i++) 581 iv[i + 4] ^= seq[i]; 582 } 583 } 584 585 586 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 587 const struct tls_context *tls_ctx) 588 { 589 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 590 } 591 592 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 593 const struct tls_context *tls_ctx) 594 { 595 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 596 } 597 598 static inline struct tls_offload_context_tx * 599 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 600 { 601 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 602 } 603 604 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 605 { 606 struct tls_context *ctx = tls_get_ctx(sk); 607 608 if (!ctx) 609 return false; 610 return !!tls_sw_ctx_tx(ctx); 611 } 612 613 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 614 { 615 struct tls_context *ctx = tls_get_ctx(sk); 616 617 if (!ctx) 618 return false; 619 return !!tls_sw_ctx_rx(ctx); 620 } 621 622 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 623 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 624 625 static inline struct tls_offload_context_rx * 626 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 627 { 628 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 629 } 630 631 #if IS_ENABLED(CONFIG_TLS_DEVICE) 632 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 633 enum tls_offload_ctx_dir direction) 634 { 635 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 636 return tls_offload_ctx_tx(tls_ctx)->driver_state; 637 else 638 return tls_offload_ctx_rx(tls_ctx)->driver_state; 639 } 640 641 static inline void * 642 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 643 { 644 return __tls_driver_ctx(tls_get_ctx(sk), direction); 645 } 646 #endif 647 648 #define RESYNC_REQ BIT(0) 649 #define RESYNC_REQ_ASYNC BIT(1) 650 /* The TLS context is valid until sk_destruct is called */ 651 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 652 { 653 struct tls_context *tls_ctx = tls_get_ctx(sk); 654 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 655 656 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 657 } 658 659 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 660 static inline void 661 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 662 { 663 struct tls_context *tls_ctx = tls_get_ctx(sk); 664 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 665 666 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 667 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 668 rx_ctx->resync_async->loglen = 0; 669 rx_ctx->resync_async->rcd_delta = 0; 670 } 671 672 static inline void 673 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 674 { 675 struct tls_context *tls_ctx = tls_get_ctx(sk); 676 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 677 678 atomic64_set(&rx_ctx->resync_async->req, 679 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 680 } 681 682 static inline void 683 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 684 { 685 struct tls_context *tls_ctx = tls_get_ctx(sk); 686 687 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 688 } 689 690 /* Driver's seq tracking has to be disabled until resync succeeded */ 691 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 692 { 693 struct tls_context *tls_ctx = tls_get_ctx(sk); 694 bool ret; 695 696 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 697 smp_mb__after_atomic(); 698 return ret; 699 } 700 701 int __net_init tls_proc_init(struct net *net); 702 void __net_exit tls_proc_fini(struct net *net); 703 704 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 705 unsigned char *record_type); 706 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 707 struct scatterlist *sgout); 708 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 709 710 int tls_sw_fallback_init(struct sock *sk, 711 struct tls_offload_context_tx *offload_ctx, 712 struct tls_crypto_info *crypto_info); 713 714 #ifdef CONFIG_TLS_DEVICE 715 void tls_device_init(void); 716 void tls_device_cleanup(void); 717 void tls_device_sk_destruct(struct sock *sk); 718 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 719 void tls_device_free_resources_tx(struct sock *sk); 720 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 721 void tls_device_offload_cleanup_rx(struct sock *sk); 722 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 723 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 724 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 725 struct sk_buff *skb, struct strp_msg *rxm); 726 727 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 728 { 729 if (!sk_fullsock(sk) || 730 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 731 return false; 732 return tls_get_ctx(sk)->rx_conf == TLS_HW; 733 } 734 #else 735 static inline void tls_device_init(void) {} 736 static inline void tls_device_cleanup(void) {} 737 738 static inline int 739 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 740 { 741 return -EOPNOTSUPP; 742 } 743 744 static inline void tls_device_free_resources_tx(struct sock *sk) {} 745 746 static inline int 747 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 748 { 749 return -EOPNOTSUPP; 750 } 751 752 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 753 static inline void 754 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 755 756 static inline int 757 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 758 struct sk_buff *skb, struct strp_msg *rxm) 759 { 760 return 0; 761 } 762 #endif 763 #endif /* _TLS_OFFLOAD_H */ 764