xref: /openbmc/linux/include/net/tls.h (revision d96ff269)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/netdevice.h>
44 
45 #include <net/tcp.h>
46 #include <net/strparser.h>
47 #include <crypto/aead.h>
48 #include <uapi/linux/tls.h>
49 
50 
51 /* Maximum data size carried in a TLS record */
52 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
53 
54 #define TLS_HEADER_SIZE			5
55 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
56 
57 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
58 
59 #define TLS_RECORD_TYPE_DATA		0x17
60 
61 #define TLS_AAD_SPACE_SIZE		13
62 #define TLS_DEVICE_NAME_MAX		32
63 
64 #define MAX_IV_SIZE			16
65 #define TLS_MAX_REC_SEQ_SIZE		8
66 
67 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
68  *
69  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
70  *
71  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
72  * Hence b0 contains (3 - 1) = 2.
73  */
74 #define TLS_AES_CCM_IV_B0_BYTE		2
75 
76 /*
77  * This structure defines the routines for Inline TLS driver.
78  * The following routines are optional and filled with a
79  * null pointer if not defined.
80  *
81  * @name: Its the name of registered Inline tls device
82  * @dev_list: Inline tls device list
83  * int (*feature)(struct tls_device *device);
84  *     Called to return Inline TLS driver capability
85  *
86  * int (*hash)(struct tls_device *device, struct sock *sk);
87  *     This function sets Inline driver for listen and program
88  *     device specific functioanlity as required
89  *
90  * void (*unhash)(struct tls_device *device, struct sock *sk);
91  *     This function cleans listen state set by Inline TLS driver
92  *
93  * void (*release)(struct kref *kref);
94  *     Release the registered device and allocated resources
95  * @kref: Number of reference to tls_device
96  */
97 struct tls_device {
98 	char name[TLS_DEVICE_NAME_MAX];
99 	struct list_head dev_list;
100 	int  (*feature)(struct tls_device *device);
101 	int  (*hash)(struct tls_device *device, struct sock *sk);
102 	void (*unhash)(struct tls_device *device, struct sock *sk);
103 	void (*release)(struct kref *kref);
104 	struct kref kref;
105 };
106 
107 enum {
108 	TLS_BASE,
109 	TLS_SW,
110 #ifdef CONFIG_TLS_DEVICE
111 	TLS_HW,
112 #endif
113 	TLS_HW_RECORD,
114 	TLS_NUM_CONFIG,
115 };
116 
117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118  * allocated or mapped for each TLS record. After encryption, the records are
119  * stores in a linked list.
120  */
121 struct tls_rec {
122 	struct list_head list;
123 	int tx_ready;
124 	int tx_flags;
125 	int inplace_crypto;
126 
127 	struct sk_msg msg_plaintext;
128 	struct sk_msg msg_encrypted;
129 
130 	/* AAD | msg_plaintext.sg.data | sg_tag */
131 	struct scatterlist sg_aead_in[2];
132 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
133 	struct scatterlist sg_aead_out[2];
134 
135 	char content_type;
136 	struct scatterlist sg_content_type;
137 
138 	char aad_space[TLS_AAD_SPACE_SIZE];
139 	u8 iv_data[MAX_IV_SIZE];
140 	struct aead_request aead_req;
141 	u8 aead_req_ctx[];
142 };
143 
144 struct tls_msg {
145 	struct strp_msg rxm;
146 	u8 control;
147 };
148 
149 struct tx_work {
150 	struct delayed_work work;
151 	struct sock *sk;
152 };
153 
154 struct tls_sw_context_tx {
155 	struct crypto_aead *aead_send;
156 	struct crypto_wait async_wait;
157 	struct tx_work tx_work;
158 	struct tls_rec *open_rec;
159 	struct list_head tx_list;
160 	atomic_t encrypt_pending;
161 	int async_notify;
162 	int async_capable;
163 
164 #define BIT_TX_SCHEDULED	0
165 	unsigned long tx_bitmask;
166 };
167 
168 struct tls_sw_context_rx {
169 	struct crypto_aead *aead_recv;
170 	struct crypto_wait async_wait;
171 	struct strparser strp;
172 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
173 	void (*saved_data_ready)(struct sock *sk);
174 
175 	struct sk_buff *recv_pkt;
176 	u8 control;
177 	int async_capable;
178 	bool decrypted;
179 	atomic_t decrypt_pending;
180 	bool async_notify;
181 };
182 
183 struct tls_record_info {
184 	struct list_head list;
185 	u32 end_seq;
186 	int len;
187 	int num_frags;
188 	skb_frag_t frags[MAX_SKB_FRAGS];
189 };
190 
191 struct tls_offload_context_tx {
192 	struct crypto_aead *aead_send;
193 	spinlock_t lock;	/* protects records list */
194 	struct list_head records_list;
195 	struct tls_record_info *open_record;
196 	struct tls_record_info *retransmit_hint;
197 	u64 hint_record_sn;
198 	u64 unacked_record_sn;
199 
200 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
201 	void (*sk_destruct)(struct sock *sk);
202 	u8 driver_state[] __aligned(8);
203 	/* The TLS layer reserves room for driver specific state
204 	 * Currently the belief is that there is not enough
205 	 * driver specific state to justify another layer of indirection
206 	 */
207 #define TLS_DRIVER_STATE_SIZE_TX	16
208 };
209 
210 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
211 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
212 
213 enum tls_context_flags {
214 	TLS_RX_SYNC_RUNNING = 0,
215 	/* Unlike RX where resync is driven entirely by the core in TX only
216 	 * the driver knows when things went out of sync, so we need the flag
217 	 * to be atomic.
218 	 */
219 	TLS_TX_SYNC_SCHED = 1,
220 };
221 
222 struct cipher_context {
223 	char *iv;
224 	char *rec_seq;
225 };
226 
227 union tls_crypto_context {
228 	struct tls_crypto_info info;
229 	union {
230 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
231 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
232 	};
233 };
234 
235 struct tls_prot_info {
236 	u16 version;
237 	u16 cipher_type;
238 	u16 prepend_size;
239 	u16 tag_size;
240 	u16 overhead_size;
241 	u16 iv_size;
242 	u16 salt_size;
243 	u16 rec_seq_size;
244 	u16 aad_size;
245 	u16 tail_size;
246 };
247 
248 struct tls_context {
249 	/* read-only cache line */
250 	struct tls_prot_info prot_info;
251 
252 	u8 tx_conf:3;
253 	u8 rx_conf:3;
254 
255 	int (*push_pending_record)(struct sock *sk, int flags);
256 	void (*sk_write_space)(struct sock *sk);
257 
258 	void *priv_ctx_tx;
259 	void *priv_ctx_rx;
260 
261 	struct net_device *netdev;
262 
263 	/* rw cache line */
264 	struct cipher_context tx;
265 	struct cipher_context rx;
266 
267 	struct scatterlist *partially_sent_record;
268 	u16 partially_sent_offset;
269 
270 	bool in_tcp_sendpages;
271 	bool pending_open_record_frags;
272 	unsigned long flags;
273 
274 	/* cache cold stuff */
275 	void (*sk_destruct)(struct sock *sk);
276 	void (*sk_proto_close)(struct sock *sk, long timeout);
277 
278 	int  (*setsockopt)(struct sock *sk, int level,
279 			   int optname, char __user *optval,
280 			   unsigned int optlen);
281 	int  (*getsockopt)(struct sock *sk, int level,
282 			   int optname, char __user *optval,
283 			   int __user *optlen);
284 	int  (*hash)(struct sock *sk);
285 	void (*unhash)(struct sock *sk);
286 
287 	union tls_crypto_context crypto_send;
288 	union tls_crypto_context crypto_recv;
289 
290 	struct list_head list;
291 	refcount_t refcount;
292 };
293 
294 enum tls_offload_ctx_dir {
295 	TLS_OFFLOAD_CTX_DIR_RX,
296 	TLS_OFFLOAD_CTX_DIR_TX,
297 };
298 
299 struct tlsdev_ops {
300 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
301 			   enum tls_offload_ctx_dir direction,
302 			   struct tls_crypto_info *crypto_info,
303 			   u32 start_offload_tcp_sn);
304 	void (*tls_dev_del)(struct net_device *netdev,
305 			    struct tls_context *ctx,
306 			    enum tls_offload_ctx_dir direction);
307 	void (*tls_dev_resync)(struct net_device *netdev,
308 			       struct sock *sk, u32 seq, u8 *rcd_sn,
309 			       enum tls_offload_ctx_dir direction);
310 };
311 
312 enum tls_offload_sync_type {
313 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
314 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
315 };
316 
317 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
318 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
319 
320 struct tls_offload_context_rx {
321 	/* sw must be the first member of tls_offload_context_rx */
322 	struct tls_sw_context_rx sw;
323 	enum tls_offload_sync_type resync_type;
324 	/* this member is set regardless of resync_type, to avoid branches */
325 	u8 resync_nh_reset:1;
326 	/* CORE_NEXT_HINT-only member, but use the hole here */
327 	u8 resync_nh_do_now:1;
328 	union {
329 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
330 		struct {
331 			atomic64_t resync_req;
332 		};
333 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
334 		struct {
335 			u32 decrypted_failed;
336 			u32 decrypted_tgt;
337 		} resync_nh;
338 	};
339 	u8 driver_state[] __aligned(8);
340 	/* The TLS layer reserves room for driver specific state
341 	 * Currently the belief is that there is not enough
342 	 * driver specific state to justify another layer of indirection
343 	 */
344 #define TLS_DRIVER_STATE_SIZE_RX	8
345 };
346 
347 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
348 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
349 
350 int wait_on_pending_writer(struct sock *sk, long *timeo);
351 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
352 		int __user *optlen);
353 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
354 		  unsigned int optlen);
355 
356 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
357 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tls_sw_sendpage(struct sock *sk, struct page *page,
359 		    int offset, size_t size, int flags);
360 void tls_sw_close(struct sock *sk, long timeout);
361 void tls_sw_free_resources_tx(struct sock *sk);
362 void tls_sw_free_resources_rx(struct sock *sk);
363 void tls_sw_release_resources_rx(struct sock *sk);
364 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
365 		   int nonblock, int flags, int *addr_len);
366 bool tls_sw_stream_read(const struct sock *sk);
367 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
368 			   struct pipe_inode_info *pipe,
369 			   size_t len, unsigned int flags);
370 
371 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
372 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
373 int tls_device_sendpage(struct sock *sk, struct page *page,
374 			int offset, size_t size, int flags);
375 void tls_device_free_resources_tx(struct sock *sk);
376 void tls_device_init(void);
377 void tls_device_cleanup(void);
378 int tls_tx_records(struct sock *sk, int flags);
379 
380 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
381 				       u32 seq, u64 *p_record_sn);
382 
383 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
384 {
385 	return rec->len == 0;
386 }
387 
388 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
389 {
390 	return rec->end_seq - rec->len;
391 }
392 
393 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
394 		struct scatterlist *sg, u16 first_offset,
395 		int flags);
396 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
397 			    int flags);
398 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
399 
400 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
401 {
402 	return (struct tls_msg *)strp_msg(skb);
403 }
404 
405 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
406 {
407 	return !!ctx->partially_sent_record;
408 }
409 
410 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
411 {
412 	return tls_ctx->pending_open_record_frags;
413 }
414 
415 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
416 {
417 	struct tls_rec *rec;
418 
419 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
420 	if (!rec)
421 		return false;
422 
423 	return READ_ONCE(rec->tx_ready);
424 }
425 
426 struct sk_buff *
427 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
428 		      struct sk_buff *skb);
429 
430 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
431 {
432 #ifdef CONFIG_SOCK_VALIDATE_XMIT
433 	return sk_fullsock(sk) &&
434 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
435 	       &tls_validate_xmit_skb);
436 #else
437 	return false;
438 #endif
439 }
440 
441 static inline void tls_err_abort(struct sock *sk, int err)
442 {
443 	sk->sk_err = err;
444 	sk->sk_error_report(sk);
445 }
446 
447 static inline bool tls_bigint_increment(unsigned char *seq, int len)
448 {
449 	int i;
450 
451 	for (i = len - 1; i >= 0; i--) {
452 		++seq[i];
453 		if (seq[i] != 0)
454 			break;
455 	}
456 
457 	return (i == -1);
458 }
459 
460 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 
464 	return icsk->icsk_ulp_data;
465 }
466 
467 static inline void tls_advance_record_sn(struct sock *sk,
468 					 struct tls_prot_info *prot,
469 					 struct cipher_context *ctx)
470 {
471 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
472 		tls_err_abort(sk, EBADMSG);
473 
474 	if (prot->version != TLS_1_3_VERSION)
475 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
476 				     prot->iv_size);
477 }
478 
479 static inline void tls_fill_prepend(struct tls_context *ctx,
480 			     char *buf,
481 			     size_t plaintext_len,
482 			     unsigned char record_type,
483 			     int version)
484 {
485 	struct tls_prot_info *prot = &ctx->prot_info;
486 	size_t pkt_len, iv_size = prot->iv_size;
487 
488 	pkt_len = plaintext_len + prot->tag_size;
489 	if (version != TLS_1_3_VERSION) {
490 		pkt_len += iv_size;
491 
492 		memcpy(buf + TLS_NONCE_OFFSET,
493 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
494 	}
495 
496 	/* we cover nonce explicit here as well, so buf should be of
497 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
498 	 */
499 	buf[0] = version == TLS_1_3_VERSION ?
500 		   TLS_RECORD_TYPE_DATA : record_type;
501 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
502 	buf[1] = TLS_1_2_VERSION_MINOR;
503 	buf[2] = TLS_1_2_VERSION_MAJOR;
504 	/* we can use IV for nonce explicit according to spec */
505 	buf[3] = pkt_len >> 8;
506 	buf[4] = pkt_len & 0xFF;
507 }
508 
509 static inline void tls_make_aad(char *buf,
510 				size_t size,
511 				char *record_sequence,
512 				int record_sequence_size,
513 				unsigned char record_type,
514 				int version)
515 {
516 	if (version != TLS_1_3_VERSION) {
517 		memcpy(buf, record_sequence, record_sequence_size);
518 		buf += 8;
519 	} else {
520 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
521 	}
522 
523 	buf[0] = version == TLS_1_3_VERSION ?
524 		  TLS_RECORD_TYPE_DATA : record_type;
525 	buf[1] = TLS_1_2_VERSION_MAJOR;
526 	buf[2] = TLS_1_2_VERSION_MINOR;
527 	buf[3] = size >> 8;
528 	buf[4] = size & 0xFF;
529 }
530 
531 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
532 {
533 	int i;
534 
535 	if (version == TLS_1_3_VERSION) {
536 		for (i = 0; i < 8; i++)
537 			iv[i + 4] ^= seq[i];
538 	}
539 }
540 
541 
542 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
543 		const struct tls_context *tls_ctx)
544 {
545 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
546 }
547 
548 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
549 		const struct tls_context *tls_ctx)
550 {
551 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
552 }
553 
554 static inline struct tls_offload_context_tx *
555 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
556 {
557 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
558 }
559 
560 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
561 {
562 	struct tls_context *ctx = tls_get_ctx(sk);
563 
564 	if (!ctx)
565 		return false;
566 	return !!tls_sw_ctx_tx(ctx);
567 }
568 
569 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
570 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
571 
572 static inline struct tls_offload_context_rx *
573 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
574 {
575 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
576 }
577 
578 #if IS_ENABLED(CONFIG_TLS_DEVICE)
579 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
580 				     enum tls_offload_ctx_dir direction)
581 {
582 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
583 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
584 	else
585 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
586 }
587 
588 static inline void *
589 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
590 {
591 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
592 }
593 #endif
594 
595 /* The TLS context is valid until sk_destruct is called */
596 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
597 {
598 	struct tls_context *tls_ctx = tls_get_ctx(sk);
599 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
600 
601 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
602 }
603 
604 static inline void
605 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
606 {
607 	struct tls_context *tls_ctx = tls_get_ctx(sk);
608 
609 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
610 }
611 
612 static inline void tls_offload_tx_resync_request(struct sock *sk)
613 {
614 	struct tls_context *tls_ctx = tls_get_ctx(sk);
615 
616 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
617 }
618 
619 /* Driver's seq tracking has to be disabled until resync succeeded */
620 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
621 {
622 	struct tls_context *tls_ctx = tls_get_ctx(sk);
623 	bool ret;
624 
625 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
626 	smp_mb__after_atomic();
627 	return ret;
628 }
629 
630 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
631 		      unsigned char *record_type);
632 void tls_register_device(struct tls_device *device);
633 void tls_unregister_device(struct tls_device *device);
634 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
635 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
636 		struct scatterlist *sgout);
637 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
638 
639 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
640 				      struct net_device *dev,
641 				      struct sk_buff *skb);
642 
643 int tls_sw_fallback_init(struct sock *sk,
644 			 struct tls_offload_context_tx *offload_ctx,
645 			 struct tls_crypto_info *crypto_info);
646 
647 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
648 
649 void tls_device_offload_cleanup_rx(struct sock *sk);
650 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
651 
652 #endif /* _TLS_OFFLOAD_H */
653