1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 44 #include <net/tcp.h> 45 #include <net/strparser.h> 46 #include <crypto/aead.h> 47 #include <uapi/linux/tls.h> 48 49 50 /* Maximum data size carried in a TLS record */ 51 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 52 53 #define TLS_HEADER_SIZE 5 54 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 55 56 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 57 58 #define TLS_RECORD_TYPE_DATA 0x17 59 60 #define TLS_AAD_SPACE_SIZE 13 61 #define TLS_DEVICE_NAME_MAX 32 62 63 /* 64 * This structure defines the routines for Inline TLS driver. 65 * The following routines are optional and filled with a 66 * null pointer if not defined. 67 * 68 * @name: Its the name of registered Inline tls device 69 * @dev_list: Inline tls device list 70 * int (*feature)(struct tls_device *device); 71 * Called to return Inline TLS driver capability 72 * 73 * int (*hash)(struct tls_device *device, struct sock *sk); 74 * This function sets Inline driver for listen and program 75 * device specific functioanlity as required 76 * 77 * void (*unhash)(struct tls_device *device, struct sock *sk); 78 * This function cleans listen state set by Inline TLS driver 79 */ 80 struct tls_device { 81 char name[TLS_DEVICE_NAME_MAX]; 82 struct list_head dev_list; 83 int (*feature)(struct tls_device *device); 84 int (*hash)(struct tls_device *device, struct sock *sk); 85 void (*unhash)(struct tls_device *device, struct sock *sk); 86 }; 87 88 enum { 89 TLS_BASE, 90 TLS_SW, 91 #ifdef CONFIG_TLS_DEVICE 92 TLS_HW, 93 #endif 94 TLS_HW_RECORD, 95 TLS_NUM_CONFIG, 96 }; 97 98 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 99 * allocated or mapped for each TLS record. After encryption, the records are 100 * stores in a linked list. 101 */ 102 struct tls_rec { 103 struct list_head list; 104 int tx_ready; 105 int tx_flags; 106 int inplace_crypto; 107 108 struct sk_msg msg_plaintext; 109 struct sk_msg msg_encrypted; 110 111 /* AAD | msg_plaintext.sg.data | sg_tag */ 112 struct scatterlist sg_aead_in[2]; 113 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 114 struct scatterlist sg_aead_out[2]; 115 116 char aad_space[TLS_AAD_SPACE_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tx_work { 122 struct delayed_work work; 123 struct sock *sk; 124 }; 125 126 struct tls_sw_context_tx { 127 struct crypto_aead *aead_send; 128 struct crypto_wait async_wait; 129 struct tx_work tx_work; 130 struct tls_rec *open_rec; 131 struct list_head tx_list; 132 atomic_t encrypt_pending; 133 int async_notify; 134 135 #define BIT_TX_SCHEDULED 0 136 unsigned long tx_bitmask; 137 }; 138 139 struct tls_sw_context_rx { 140 struct crypto_aead *aead_recv; 141 struct crypto_wait async_wait; 142 143 struct strparser strp; 144 void (*saved_data_ready)(struct sock *sk); 145 unsigned int (*sk_poll)(struct file *file, struct socket *sock, 146 struct poll_table_struct *wait); 147 struct sk_buff *recv_pkt; 148 u8 control; 149 bool decrypted; 150 atomic_t decrypt_pending; 151 bool async_notify; 152 }; 153 154 struct tls_record_info { 155 struct list_head list; 156 u32 end_seq; 157 int len; 158 int num_frags; 159 skb_frag_t frags[MAX_SKB_FRAGS]; 160 }; 161 162 struct tls_offload_context_tx { 163 struct crypto_aead *aead_send; 164 spinlock_t lock; /* protects records list */ 165 struct list_head records_list; 166 struct tls_record_info *open_record; 167 struct tls_record_info *retransmit_hint; 168 u64 hint_record_sn; 169 u64 unacked_record_sn; 170 171 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 172 void (*sk_destruct)(struct sock *sk); 173 u8 driver_state[]; 174 /* The TLS layer reserves room for driver specific state 175 * Currently the belief is that there is not enough 176 * driver specific state to justify another layer of indirection 177 */ 178 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *))) 179 }; 180 181 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 182 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \ 183 TLS_DRIVER_STATE_SIZE) 184 185 enum { 186 TLS_PENDING_CLOSED_RECORD 187 }; 188 189 struct cipher_context { 190 u16 prepend_size; 191 u16 tag_size; 192 u16 overhead_size; 193 u16 iv_size; 194 char *iv; 195 u16 rec_seq_size; 196 char *rec_seq; 197 }; 198 199 union tls_crypto_context { 200 struct tls_crypto_info info; 201 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 202 }; 203 204 struct tls_context { 205 union tls_crypto_context crypto_send; 206 union tls_crypto_context crypto_recv; 207 208 struct list_head list; 209 struct net_device *netdev; 210 refcount_t refcount; 211 212 void *priv_ctx_tx; 213 void *priv_ctx_rx; 214 215 u8 tx_conf:3; 216 u8 rx_conf:3; 217 218 struct cipher_context tx; 219 struct cipher_context rx; 220 221 struct scatterlist *partially_sent_record; 222 u16 partially_sent_offset; 223 224 unsigned long flags; 225 bool in_tcp_sendpages; 226 bool pending_open_record_frags; 227 228 int (*push_pending_record)(struct sock *sk, int flags); 229 230 void (*sk_write_space)(struct sock *sk); 231 void (*sk_destruct)(struct sock *sk); 232 void (*sk_proto_close)(struct sock *sk, long timeout); 233 234 int (*setsockopt)(struct sock *sk, int level, 235 int optname, char __user *optval, 236 unsigned int optlen); 237 int (*getsockopt)(struct sock *sk, int level, 238 int optname, char __user *optval, 239 int __user *optlen); 240 int (*hash)(struct sock *sk); 241 void (*unhash)(struct sock *sk); 242 }; 243 244 struct tls_offload_context_rx { 245 /* sw must be the first member of tls_offload_context_rx */ 246 struct tls_sw_context_rx sw; 247 atomic64_t resync_req; 248 u8 driver_state[]; 249 /* The TLS layer reserves room for driver specific state 250 * Currently the belief is that there is not enough 251 * driver specific state to justify another layer of indirection 252 */ 253 }; 254 255 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 256 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \ 257 TLS_DRIVER_STATE_SIZE) 258 259 int wait_on_pending_writer(struct sock *sk, long *timeo); 260 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 261 int __user *optlen); 262 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 263 unsigned int optlen); 264 265 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 266 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 267 int tls_sw_sendpage(struct sock *sk, struct page *page, 268 int offset, size_t size, int flags); 269 void tls_sw_close(struct sock *sk, long timeout); 270 void tls_sw_free_resources_tx(struct sock *sk); 271 void tls_sw_free_resources_rx(struct sock *sk); 272 void tls_sw_release_resources_rx(struct sock *sk); 273 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 274 int nonblock, int flags, int *addr_len); 275 unsigned int tls_sw_poll(struct file *file, struct socket *sock, 276 struct poll_table_struct *wait); 277 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 278 struct pipe_inode_info *pipe, 279 size_t len, unsigned int flags); 280 281 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 282 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 283 int tls_device_sendpage(struct sock *sk, struct page *page, 284 int offset, size_t size, int flags); 285 void tls_device_sk_destruct(struct sock *sk); 286 void tls_device_init(void); 287 void tls_device_cleanup(void); 288 int tls_tx_records(struct sock *sk, int flags); 289 290 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 291 u32 seq, u64 *p_record_sn); 292 293 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 294 { 295 return rec->len == 0; 296 } 297 298 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 299 { 300 return rec->end_seq - rec->len; 301 } 302 303 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx); 304 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 305 struct scatterlist *sg, u16 first_offset, 306 int flags); 307 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 308 int flags); 309 310 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 311 int flags, long *timeo); 312 313 static inline bool tls_is_pending_closed_record(struct tls_context *ctx) 314 { 315 return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 316 } 317 318 static inline int tls_complete_pending_work(struct sock *sk, 319 struct tls_context *ctx, 320 int flags, long *timeo) 321 { 322 int rc = 0; 323 324 if (unlikely(sk->sk_write_pending)) 325 rc = wait_on_pending_writer(sk, timeo); 326 327 if (!rc && tls_is_pending_closed_record(ctx)) 328 rc = tls_push_pending_closed_record(sk, ctx, flags, timeo); 329 330 return rc; 331 } 332 333 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 334 { 335 return !!ctx->partially_sent_record; 336 } 337 338 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 339 { 340 return tls_ctx->pending_open_record_frags; 341 } 342 343 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 344 { 345 struct tls_rec *rec; 346 347 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 348 if (!rec) 349 return false; 350 351 return READ_ONCE(rec->tx_ready); 352 } 353 354 struct sk_buff * 355 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 356 struct sk_buff *skb); 357 358 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 359 { 360 #ifdef CONFIG_SOCK_VALIDATE_XMIT 361 return sk_fullsock(sk) & 362 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 363 &tls_validate_xmit_skb); 364 #else 365 return false; 366 #endif 367 } 368 369 static inline void tls_err_abort(struct sock *sk, int err) 370 { 371 sk->sk_err = err; 372 sk->sk_error_report(sk); 373 } 374 375 static inline bool tls_bigint_increment(unsigned char *seq, int len) 376 { 377 int i; 378 379 for (i = len - 1; i >= 0; i--) { 380 ++seq[i]; 381 if (seq[i] != 0) 382 break; 383 } 384 385 return (i == -1); 386 } 387 388 static inline void tls_advance_record_sn(struct sock *sk, 389 struct cipher_context *ctx) 390 { 391 if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size)) 392 tls_err_abort(sk, EBADMSG); 393 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 394 ctx->iv_size); 395 } 396 397 static inline void tls_fill_prepend(struct tls_context *ctx, 398 char *buf, 399 size_t plaintext_len, 400 unsigned char record_type) 401 { 402 size_t pkt_len, iv_size = ctx->tx.iv_size; 403 404 pkt_len = plaintext_len + iv_size + ctx->tx.tag_size; 405 406 /* we cover nonce explicit here as well, so buf should be of 407 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 408 */ 409 buf[0] = record_type; 410 buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version); 411 buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version); 412 /* we can use IV for nonce explicit according to spec */ 413 buf[3] = pkt_len >> 8; 414 buf[4] = pkt_len & 0xFF; 415 memcpy(buf + TLS_NONCE_OFFSET, 416 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 417 } 418 419 static inline void tls_make_aad(char *buf, 420 size_t size, 421 char *record_sequence, 422 int record_sequence_size, 423 unsigned char record_type) 424 { 425 memcpy(buf, record_sequence, record_sequence_size); 426 427 buf[8] = record_type; 428 buf[9] = TLS_1_2_VERSION_MAJOR; 429 buf[10] = TLS_1_2_VERSION_MINOR; 430 buf[11] = size >> 8; 431 buf[12] = size & 0xFF; 432 } 433 434 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 435 { 436 struct inet_connection_sock *icsk = inet_csk(sk); 437 438 return icsk->icsk_ulp_data; 439 } 440 441 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 442 const struct tls_context *tls_ctx) 443 { 444 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 445 } 446 447 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 448 const struct tls_context *tls_ctx) 449 { 450 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 451 } 452 453 static inline struct tls_offload_context_tx * 454 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 455 { 456 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 457 } 458 459 static inline struct tls_offload_context_rx * 460 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 461 { 462 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 463 } 464 465 /* The TLS context is valid until sk_destruct is called */ 466 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 467 { 468 struct tls_context *tls_ctx = tls_get_ctx(sk); 469 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 470 471 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1)); 472 } 473 474 475 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 476 unsigned char *record_type); 477 void tls_register_device(struct tls_device *device); 478 void tls_unregister_device(struct tls_device *device); 479 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 480 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 481 struct scatterlist *sgout); 482 483 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 484 struct net_device *dev, 485 struct sk_buff *skb); 486 487 int tls_sw_fallback_init(struct sock *sk, 488 struct tls_offload_context_tx *offload_ctx, 489 struct tls_crypto_info *crypto_info); 490 491 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 492 493 void tls_device_offload_cleanup_rx(struct sock *sk); 494 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn); 495 496 #endif /* _TLS_OFFLOAD_H */ 497