1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/netdevice.h> 44 45 #include <net/tcp.h> 46 #include <net/strparser.h> 47 #include <crypto/aead.h> 48 #include <uapi/linux/tls.h> 49 50 51 /* Maximum data size carried in a TLS record */ 52 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 53 54 #define TLS_HEADER_SIZE 5 55 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 56 57 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 58 59 #define TLS_RECORD_TYPE_DATA 0x17 60 61 #define TLS_AAD_SPACE_SIZE 13 62 #define TLS_DEVICE_NAME_MAX 32 63 64 #define MAX_IV_SIZE 16 65 #define TLS_MAX_REC_SEQ_SIZE 8 66 67 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 68 * 69 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 70 * 71 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 72 * Hence b0 contains (3 - 1) = 2. 73 */ 74 #define TLS_AES_CCM_IV_B0_BYTE 2 75 76 /* 77 * This structure defines the routines for Inline TLS driver. 78 * The following routines are optional and filled with a 79 * null pointer if not defined. 80 * 81 * @name: Its the name of registered Inline tls device 82 * @dev_list: Inline tls device list 83 * int (*feature)(struct tls_device *device); 84 * Called to return Inline TLS driver capability 85 * 86 * int (*hash)(struct tls_device *device, struct sock *sk); 87 * This function sets Inline driver for listen and program 88 * device specific functioanlity as required 89 * 90 * void (*unhash)(struct tls_device *device, struct sock *sk); 91 * This function cleans listen state set by Inline TLS driver 92 * 93 * void (*release)(struct kref *kref); 94 * Release the registered device and allocated resources 95 * @kref: Number of reference to tls_device 96 */ 97 struct tls_device { 98 char name[TLS_DEVICE_NAME_MAX]; 99 struct list_head dev_list; 100 int (*feature)(struct tls_device *device); 101 int (*hash)(struct tls_device *device, struct sock *sk); 102 void (*unhash)(struct tls_device *device, struct sock *sk); 103 void (*release)(struct kref *kref); 104 struct kref kref; 105 }; 106 107 enum { 108 TLS_BASE, 109 TLS_SW, 110 TLS_HW, 111 TLS_HW_RECORD, 112 TLS_NUM_CONFIG, 113 }; 114 115 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 116 * allocated or mapped for each TLS record. After encryption, the records are 117 * stores in a linked list. 118 */ 119 struct tls_rec { 120 struct list_head list; 121 int tx_ready; 122 int tx_flags; 123 int inplace_crypto; 124 125 struct sk_msg msg_plaintext; 126 struct sk_msg msg_encrypted; 127 128 /* AAD | msg_plaintext.sg.data | sg_tag */ 129 struct scatterlist sg_aead_in[2]; 130 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 131 struct scatterlist sg_aead_out[2]; 132 133 char content_type; 134 struct scatterlist sg_content_type; 135 136 char aad_space[TLS_AAD_SPACE_SIZE]; 137 u8 iv_data[MAX_IV_SIZE]; 138 struct aead_request aead_req; 139 u8 aead_req_ctx[]; 140 }; 141 142 struct tls_msg { 143 struct strp_msg rxm; 144 u8 control; 145 }; 146 147 struct tx_work { 148 struct delayed_work work; 149 struct sock *sk; 150 }; 151 152 struct tls_sw_context_tx { 153 struct crypto_aead *aead_send; 154 struct crypto_wait async_wait; 155 struct tx_work tx_work; 156 struct tls_rec *open_rec; 157 struct list_head tx_list; 158 atomic_t encrypt_pending; 159 int async_notify; 160 int async_capable; 161 162 #define BIT_TX_SCHEDULED 0 163 #define BIT_TX_CLOSING 1 164 unsigned long tx_bitmask; 165 }; 166 167 struct tls_sw_context_rx { 168 struct crypto_aead *aead_recv; 169 struct crypto_wait async_wait; 170 struct strparser strp; 171 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 172 void (*saved_data_ready)(struct sock *sk); 173 174 struct sk_buff *recv_pkt; 175 u8 control; 176 int async_capable; 177 bool decrypted; 178 atomic_t decrypt_pending; 179 bool async_notify; 180 }; 181 182 struct tls_record_info { 183 struct list_head list; 184 u32 end_seq; 185 int len; 186 int num_frags; 187 skb_frag_t frags[MAX_SKB_FRAGS]; 188 }; 189 190 struct tls_offload_context_tx { 191 struct crypto_aead *aead_send; 192 spinlock_t lock; /* protects records list */ 193 struct list_head records_list; 194 struct tls_record_info *open_record; 195 struct tls_record_info *retransmit_hint; 196 u64 hint_record_sn; 197 u64 unacked_record_sn; 198 199 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 200 void (*sk_destruct)(struct sock *sk); 201 u8 driver_state[] __aligned(8); 202 /* The TLS layer reserves room for driver specific state 203 * Currently the belief is that there is not enough 204 * driver specific state to justify another layer of indirection 205 */ 206 #define TLS_DRIVER_STATE_SIZE_TX 16 207 }; 208 209 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 210 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 211 212 enum tls_context_flags { 213 TLS_RX_SYNC_RUNNING = 0, 214 /* Unlike RX where resync is driven entirely by the core in TX only 215 * the driver knows when things went out of sync, so we need the flag 216 * to be atomic. 217 */ 218 TLS_TX_SYNC_SCHED = 1, 219 }; 220 221 struct cipher_context { 222 char *iv; 223 char *rec_seq; 224 }; 225 226 union tls_crypto_context { 227 struct tls_crypto_info info; 228 union { 229 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 230 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 231 }; 232 }; 233 234 struct tls_prot_info { 235 u16 version; 236 u16 cipher_type; 237 u16 prepend_size; 238 u16 tag_size; 239 u16 overhead_size; 240 u16 iv_size; 241 u16 salt_size; 242 u16 rec_seq_size; 243 u16 aad_size; 244 u16 tail_size; 245 }; 246 247 struct tls_context { 248 /* read-only cache line */ 249 struct tls_prot_info prot_info; 250 251 u8 tx_conf:3; 252 u8 rx_conf:3; 253 254 int (*push_pending_record)(struct sock *sk, int flags); 255 void (*sk_write_space)(struct sock *sk); 256 257 void *priv_ctx_tx; 258 void *priv_ctx_rx; 259 260 struct net_device *netdev; 261 262 /* rw cache line */ 263 struct cipher_context tx; 264 struct cipher_context rx; 265 266 struct scatterlist *partially_sent_record; 267 u16 partially_sent_offset; 268 269 bool in_tcp_sendpages; 270 bool pending_open_record_frags; 271 unsigned long flags; 272 273 /* cache cold stuff */ 274 struct proto *sk_proto; 275 276 void (*sk_destruct)(struct sock *sk); 277 void (*sk_proto_close)(struct sock *sk, long timeout); 278 279 int (*setsockopt)(struct sock *sk, int level, 280 int optname, char __user *optval, 281 unsigned int optlen); 282 int (*getsockopt)(struct sock *sk, int level, 283 int optname, char __user *optval, 284 int __user *optlen); 285 int (*hash)(struct sock *sk); 286 void (*unhash)(struct sock *sk); 287 288 union tls_crypto_context crypto_send; 289 union tls_crypto_context crypto_recv; 290 291 struct list_head list; 292 refcount_t refcount; 293 }; 294 295 enum tls_offload_ctx_dir { 296 TLS_OFFLOAD_CTX_DIR_RX, 297 TLS_OFFLOAD_CTX_DIR_TX, 298 }; 299 300 struct tlsdev_ops { 301 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 302 enum tls_offload_ctx_dir direction, 303 struct tls_crypto_info *crypto_info, 304 u32 start_offload_tcp_sn); 305 void (*tls_dev_del)(struct net_device *netdev, 306 struct tls_context *ctx, 307 enum tls_offload_ctx_dir direction); 308 int (*tls_dev_resync)(struct net_device *netdev, 309 struct sock *sk, u32 seq, u8 *rcd_sn, 310 enum tls_offload_ctx_dir direction); 311 }; 312 313 enum tls_offload_sync_type { 314 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 315 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 316 }; 317 318 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 319 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 320 321 struct tls_offload_context_rx { 322 /* sw must be the first member of tls_offload_context_rx */ 323 struct tls_sw_context_rx sw; 324 enum tls_offload_sync_type resync_type; 325 /* this member is set regardless of resync_type, to avoid branches */ 326 u8 resync_nh_reset:1; 327 /* CORE_NEXT_HINT-only member, but use the hole here */ 328 u8 resync_nh_do_now:1; 329 union { 330 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 331 struct { 332 atomic64_t resync_req; 333 }; 334 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 335 struct { 336 u32 decrypted_failed; 337 u32 decrypted_tgt; 338 } resync_nh; 339 }; 340 u8 driver_state[] __aligned(8); 341 /* The TLS layer reserves room for driver specific state 342 * Currently the belief is that there is not enough 343 * driver specific state to justify another layer of indirection 344 */ 345 #define TLS_DRIVER_STATE_SIZE_RX 8 346 }; 347 348 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 349 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 350 351 void tls_ctx_free(struct tls_context *ctx); 352 int wait_on_pending_writer(struct sock *sk, long *timeo); 353 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 354 int __user *optlen); 355 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 356 unsigned int optlen); 357 358 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 359 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 360 void tls_sw_strparser_done(struct tls_context *tls_ctx); 361 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 362 int tls_sw_sendpage(struct sock *sk, struct page *page, 363 int offset, size_t size, int flags); 364 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 365 void tls_sw_release_resources_tx(struct sock *sk); 366 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 367 void tls_sw_free_resources_rx(struct sock *sk); 368 void tls_sw_release_resources_rx(struct sock *sk); 369 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 370 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 371 int nonblock, int flags, int *addr_len); 372 bool tls_sw_stream_read(const struct sock *sk); 373 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 374 struct pipe_inode_info *pipe, 375 size_t len, unsigned int flags); 376 377 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 378 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 379 int tls_device_sendpage(struct sock *sk, struct page *page, 380 int offset, size_t size, int flags); 381 void tls_device_free_resources_tx(struct sock *sk); 382 void tls_device_init(void); 383 void tls_device_cleanup(void); 384 int tls_tx_records(struct sock *sk, int flags); 385 386 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 387 u32 seq, u64 *p_record_sn); 388 389 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 390 { 391 return rec->len == 0; 392 } 393 394 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 395 { 396 return rec->end_seq - rec->len; 397 } 398 399 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 400 struct scatterlist *sg, u16 first_offset, 401 int flags); 402 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 403 int flags); 404 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 405 406 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 407 { 408 return (struct tls_msg *)strp_msg(skb); 409 } 410 411 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 412 { 413 return !!ctx->partially_sent_record; 414 } 415 416 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 417 { 418 return tls_ctx->pending_open_record_frags; 419 } 420 421 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 422 { 423 struct tls_rec *rec; 424 425 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 426 if (!rec) 427 return false; 428 429 return READ_ONCE(rec->tx_ready); 430 } 431 432 struct sk_buff * 433 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 434 struct sk_buff *skb); 435 436 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 437 { 438 #ifdef CONFIG_SOCK_VALIDATE_XMIT 439 return sk_fullsock(sk) && 440 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 441 &tls_validate_xmit_skb); 442 #else 443 return false; 444 #endif 445 } 446 447 static inline void tls_err_abort(struct sock *sk, int err) 448 { 449 sk->sk_err = err; 450 sk->sk_error_report(sk); 451 } 452 453 static inline bool tls_bigint_increment(unsigned char *seq, int len) 454 { 455 int i; 456 457 for (i = len - 1; i >= 0; i--) { 458 ++seq[i]; 459 if (seq[i] != 0) 460 break; 461 } 462 463 return (i == -1); 464 } 465 466 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 470 return icsk->icsk_ulp_data; 471 } 472 473 static inline void tls_advance_record_sn(struct sock *sk, 474 struct tls_prot_info *prot, 475 struct cipher_context *ctx) 476 { 477 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 478 tls_err_abort(sk, EBADMSG); 479 480 if (prot->version != TLS_1_3_VERSION) 481 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 482 prot->iv_size); 483 } 484 485 static inline void tls_fill_prepend(struct tls_context *ctx, 486 char *buf, 487 size_t plaintext_len, 488 unsigned char record_type, 489 int version) 490 { 491 struct tls_prot_info *prot = &ctx->prot_info; 492 size_t pkt_len, iv_size = prot->iv_size; 493 494 pkt_len = plaintext_len + prot->tag_size; 495 if (version != TLS_1_3_VERSION) { 496 pkt_len += iv_size; 497 498 memcpy(buf + TLS_NONCE_OFFSET, 499 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 500 } 501 502 /* we cover nonce explicit here as well, so buf should be of 503 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 504 */ 505 buf[0] = version == TLS_1_3_VERSION ? 506 TLS_RECORD_TYPE_DATA : record_type; 507 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 508 buf[1] = TLS_1_2_VERSION_MINOR; 509 buf[2] = TLS_1_2_VERSION_MAJOR; 510 /* we can use IV for nonce explicit according to spec */ 511 buf[3] = pkt_len >> 8; 512 buf[4] = pkt_len & 0xFF; 513 } 514 515 static inline void tls_make_aad(char *buf, 516 size_t size, 517 char *record_sequence, 518 int record_sequence_size, 519 unsigned char record_type, 520 int version) 521 { 522 if (version != TLS_1_3_VERSION) { 523 memcpy(buf, record_sequence, record_sequence_size); 524 buf += 8; 525 } else { 526 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 527 } 528 529 buf[0] = version == TLS_1_3_VERSION ? 530 TLS_RECORD_TYPE_DATA : record_type; 531 buf[1] = TLS_1_2_VERSION_MAJOR; 532 buf[2] = TLS_1_2_VERSION_MINOR; 533 buf[3] = size >> 8; 534 buf[4] = size & 0xFF; 535 } 536 537 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 538 { 539 int i; 540 541 if (version == TLS_1_3_VERSION) { 542 for (i = 0; i < 8; i++) 543 iv[i + 4] ^= seq[i]; 544 } 545 } 546 547 548 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 549 const struct tls_context *tls_ctx) 550 { 551 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 552 } 553 554 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 555 const struct tls_context *tls_ctx) 556 { 557 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 558 } 559 560 static inline struct tls_offload_context_tx * 561 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 562 { 563 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 564 } 565 566 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 567 { 568 struct tls_context *ctx = tls_get_ctx(sk); 569 570 if (!ctx) 571 return false; 572 return !!tls_sw_ctx_tx(ctx); 573 } 574 575 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 576 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 577 578 static inline struct tls_offload_context_rx * 579 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 580 { 581 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 582 } 583 584 #if IS_ENABLED(CONFIG_TLS_DEVICE) 585 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 586 enum tls_offload_ctx_dir direction) 587 { 588 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 589 return tls_offload_ctx_tx(tls_ctx)->driver_state; 590 else 591 return tls_offload_ctx_rx(tls_ctx)->driver_state; 592 } 593 594 static inline void * 595 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 596 { 597 return __tls_driver_ctx(tls_get_ctx(sk), direction); 598 } 599 #endif 600 601 /* The TLS context is valid until sk_destruct is called */ 602 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 603 { 604 struct tls_context *tls_ctx = tls_get_ctx(sk); 605 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 606 607 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); 608 } 609 610 static inline void 611 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 612 { 613 struct tls_context *tls_ctx = tls_get_ctx(sk); 614 615 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 616 } 617 618 static inline void tls_offload_tx_resync_request(struct sock *sk) 619 { 620 struct tls_context *tls_ctx = tls_get_ctx(sk); 621 622 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 623 } 624 625 /* Driver's seq tracking has to be disabled until resync succeeded */ 626 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 627 { 628 struct tls_context *tls_ctx = tls_get_ctx(sk); 629 bool ret; 630 631 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 632 smp_mb__after_atomic(); 633 return ret; 634 } 635 636 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 637 unsigned char *record_type); 638 void tls_register_device(struct tls_device *device); 639 void tls_unregister_device(struct tls_device *device); 640 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 641 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 642 struct scatterlist *sgout); 643 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 644 645 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 646 struct net_device *dev, 647 struct sk_buff *skb); 648 649 int tls_sw_fallback_init(struct sock *sk, 650 struct tls_offload_context_tx *offload_ctx, 651 struct tls_crypto_info *crypto_info); 652 653 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 654 655 void tls_device_offload_cleanup_rx(struct sock *sk); 656 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 657 658 #endif /* _TLS_OFFLOAD_H */ 659