xref: /openbmc/linux/include/net/tls.h (revision adb57164)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 #define __TLS_INC_STATS(net, field)				\
79 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field)				\
81 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field)				\
83 	__SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 
104 	struct sk_msg msg_plaintext;
105 	struct sk_msg msg_encrypted;
106 
107 	/* AAD | msg_plaintext.sg.data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	char content_type;
113 	struct scatterlist sg_content_type;
114 
115 	char aad_space[TLS_AAD_SPACE_SIZE];
116 	u8 iv_data[MAX_IV_SIZE];
117 	struct aead_request aead_req;
118 	u8 aead_req_ctx[];
119 };
120 
121 struct tls_msg {
122 	struct strp_msg rxm;
123 	u8 control;
124 };
125 
126 struct tx_work {
127 	struct delayed_work work;
128 	struct sock *sk;
129 };
130 
131 struct tls_sw_context_tx {
132 	struct crypto_aead *aead_send;
133 	struct crypto_wait async_wait;
134 	struct tx_work tx_work;
135 	struct tls_rec *open_rec;
136 	struct list_head tx_list;
137 	atomic_t encrypt_pending;
138 	int async_notify;
139 	u8 async_capable:1;
140 
141 #define BIT_TX_SCHEDULED	0
142 #define BIT_TX_CLOSING		1
143 	unsigned long tx_bitmask;
144 };
145 
146 struct tls_sw_context_rx {
147 	struct crypto_aead *aead_recv;
148 	struct crypto_wait async_wait;
149 	struct strparser strp;
150 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
151 	void (*saved_data_ready)(struct sock *sk);
152 
153 	struct sk_buff *recv_pkt;
154 	u8 control;
155 	u8 async_capable:1;
156 	u8 decrypted:1;
157 	atomic_t decrypt_pending;
158 	bool async_notify;
159 };
160 
161 struct tls_record_info {
162 	struct list_head list;
163 	u32 end_seq;
164 	int len;
165 	int num_frags;
166 	skb_frag_t frags[MAX_SKB_FRAGS];
167 };
168 
169 struct tls_offload_context_tx {
170 	struct crypto_aead *aead_send;
171 	spinlock_t lock;	/* protects records list */
172 	struct list_head records_list;
173 	struct tls_record_info *open_record;
174 	struct tls_record_info *retransmit_hint;
175 	u64 hint_record_sn;
176 	u64 unacked_record_sn;
177 
178 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
179 	void (*sk_destruct)(struct sock *sk);
180 	u8 driver_state[] __aligned(8);
181 	/* The TLS layer reserves room for driver specific state
182 	 * Currently the belief is that there is not enough
183 	 * driver specific state to justify another layer of indirection
184 	 */
185 #define TLS_DRIVER_STATE_SIZE_TX	16
186 };
187 
188 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
189 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
190 
191 enum tls_context_flags {
192 	TLS_RX_SYNC_RUNNING = 0,
193 	/* Unlike RX where resync is driven entirely by the core in TX only
194 	 * the driver knows when things went out of sync, so we need the flag
195 	 * to be atomic.
196 	 */
197 	TLS_TX_SYNC_SCHED = 1,
198 };
199 
200 struct cipher_context {
201 	char *iv;
202 	char *rec_seq;
203 };
204 
205 union tls_crypto_context {
206 	struct tls_crypto_info info;
207 	union {
208 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
209 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
210 	};
211 };
212 
213 struct tls_prot_info {
214 	u16 version;
215 	u16 cipher_type;
216 	u16 prepend_size;
217 	u16 tag_size;
218 	u16 overhead_size;
219 	u16 iv_size;
220 	u16 salt_size;
221 	u16 rec_seq_size;
222 	u16 aad_size;
223 	u16 tail_size;
224 };
225 
226 struct tls_context {
227 	/* read-only cache line */
228 	struct tls_prot_info prot_info;
229 
230 	u8 tx_conf:3;
231 	u8 rx_conf:3;
232 
233 	int (*push_pending_record)(struct sock *sk, int flags);
234 	void (*sk_write_space)(struct sock *sk);
235 
236 	void *priv_ctx_tx;
237 	void *priv_ctx_rx;
238 
239 	struct net_device *netdev;
240 
241 	/* rw cache line */
242 	struct cipher_context tx;
243 	struct cipher_context rx;
244 
245 	struct scatterlist *partially_sent_record;
246 	u16 partially_sent_offset;
247 
248 	bool in_tcp_sendpages;
249 	bool pending_open_record_frags;
250 
251 	struct mutex tx_lock; /* protects partially_sent_* fields and
252 			       * per-type TX fields
253 			       */
254 	unsigned long flags;
255 
256 	/* cache cold stuff */
257 	struct proto *sk_proto;
258 
259 	void (*sk_destruct)(struct sock *sk);
260 
261 	union tls_crypto_context crypto_send;
262 	union tls_crypto_context crypto_recv;
263 
264 	struct list_head list;
265 	refcount_t refcount;
266 	struct rcu_head rcu;
267 };
268 
269 enum tls_offload_ctx_dir {
270 	TLS_OFFLOAD_CTX_DIR_RX,
271 	TLS_OFFLOAD_CTX_DIR_TX,
272 };
273 
274 struct tlsdev_ops {
275 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
276 			   enum tls_offload_ctx_dir direction,
277 			   struct tls_crypto_info *crypto_info,
278 			   u32 start_offload_tcp_sn);
279 	void (*tls_dev_del)(struct net_device *netdev,
280 			    struct tls_context *ctx,
281 			    enum tls_offload_ctx_dir direction);
282 	int (*tls_dev_resync)(struct net_device *netdev,
283 			      struct sock *sk, u32 seq, u8 *rcd_sn,
284 			      enum tls_offload_ctx_dir direction);
285 };
286 
287 enum tls_offload_sync_type {
288 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
289 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
290 };
291 
292 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
293 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
294 
295 struct tls_offload_context_rx {
296 	/* sw must be the first member of tls_offload_context_rx */
297 	struct tls_sw_context_rx sw;
298 	enum tls_offload_sync_type resync_type;
299 	/* this member is set regardless of resync_type, to avoid branches */
300 	u8 resync_nh_reset:1;
301 	/* CORE_NEXT_HINT-only member, but use the hole here */
302 	u8 resync_nh_do_now:1;
303 	union {
304 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
305 		struct {
306 			atomic64_t resync_req;
307 		};
308 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
309 		struct {
310 			u32 decrypted_failed;
311 			u32 decrypted_tgt;
312 		} resync_nh;
313 	};
314 	u8 driver_state[] __aligned(8);
315 	/* The TLS layer reserves room for driver specific state
316 	 * Currently the belief is that there is not enough
317 	 * driver specific state to justify another layer of indirection
318 	 */
319 #define TLS_DRIVER_STATE_SIZE_RX	8
320 };
321 
322 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
323 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
324 
325 struct tls_context *tls_ctx_create(struct sock *sk);
326 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
327 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
328 
329 int wait_on_pending_writer(struct sock *sk, long *timeo);
330 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
331 		int __user *optlen);
332 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
333 		  unsigned int optlen);
334 
335 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
336 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
337 void tls_sw_strparser_done(struct tls_context *tls_ctx);
338 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
339 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
340 			   int offset, size_t size, int flags);
341 int tls_sw_sendpage(struct sock *sk, struct page *page,
342 		    int offset, size_t size, int flags);
343 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
344 void tls_sw_release_resources_tx(struct sock *sk);
345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
346 void tls_sw_free_resources_rx(struct sock *sk);
347 void tls_sw_release_resources_rx(struct sock *sk);
348 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
349 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
350 		   int nonblock, int flags, int *addr_len);
351 bool tls_sw_stream_read(const struct sock *sk);
352 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
353 			   struct pipe_inode_info *pipe,
354 			   size_t len, unsigned int flags);
355 
356 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
357 int tls_device_sendpage(struct sock *sk, struct page *page,
358 			int offset, size_t size, int flags);
359 int tls_tx_records(struct sock *sk, int flags);
360 
361 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
362 				       u32 seq, u64 *p_record_sn);
363 
364 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
365 {
366 	return rec->len == 0;
367 }
368 
369 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
370 {
371 	return rec->end_seq - rec->len;
372 }
373 
374 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
375 		struct scatterlist *sg, u16 first_offset,
376 		int flags);
377 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
378 			    int flags);
379 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
380 
381 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
382 {
383 	return (struct tls_msg *)strp_msg(skb);
384 }
385 
386 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
387 {
388 	return !!ctx->partially_sent_record;
389 }
390 
391 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
392 {
393 	return tls_ctx->pending_open_record_frags;
394 }
395 
396 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
397 {
398 	struct tls_rec *rec;
399 
400 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
401 	if (!rec)
402 		return false;
403 
404 	return READ_ONCE(rec->tx_ready);
405 }
406 
407 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
408 {
409 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
410 
411 	switch (config) {
412 	case TLS_BASE:
413 		return TLS_CONF_BASE;
414 	case TLS_SW:
415 		return TLS_CONF_SW;
416 	case TLS_HW:
417 		return TLS_CONF_HW;
418 	case TLS_HW_RECORD:
419 		return TLS_CONF_HW_RECORD;
420 	}
421 	return 0;
422 }
423 
424 struct sk_buff *
425 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
426 		      struct sk_buff *skb);
427 
428 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
429 {
430 #ifdef CONFIG_SOCK_VALIDATE_XMIT
431 	return sk_fullsock(sk) &&
432 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
433 	       &tls_validate_xmit_skb);
434 #else
435 	return false;
436 #endif
437 }
438 
439 static inline void tls_err_abort(struct sock *sk, int err)
440 {
441 	sk->sk_err = err;
442 	sk->sk_error_report(sk);
443 }
444 
445 static inline bool tls_bigint_increment(unsigned char *seq, int len)
446 {
447 	int i;
448 
449 	for (i = len - 1; i >= 0; i--) {
450 		++seq[i];
451 		if (seq[i] != 0)
452 			break;
453 	}
454 
455 	return (i == -1);
456 }
457 
458 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
459 {
460 	struct inet_connection_sock *icsk = inet_csk(sk);
461 
462 	/* Use RCU on icsk_ulp_data only for sock diag code,
463 	 * TLS data path doesn't need rcu_dereference().
464 	 */
465 	return (__force void *)icsk->icsk_ulp_data;
466 }
467 
468 static inline void tls_advance_record_sn(struct sock *sk,
469 					 struct tls_prot_info *prot,
470 					 struct cipher_context *ctx)
471 {
472 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
473 		tls_err_abort(sk, EBADMSG);
474 
475 	if (prot->version != TLS_1_3_VERSION)
476 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
477 				     prot->iv_size);
478 }
479 
480 static inline void tls_fill_prepend(struct tls_context *ctx,
481 			     char *buf,
482 			     size_t plaintext_len,
483 			     unsigned char record_type,
484 			     int version)
485 {
486 	struct tls_prot_info *prot = &ctx->prot_info;
487 	size_t pkt_len, iv_size = prot->iv_size;
488 
489 	pkt_len = plaintext_len + prot->tag_size;
490 	if (version != TLS_1_3_VERSION) {
491 		pkt_len += iv_size;
492 
493 		memcpy(buf + TLS_NONCE_OFFSET,
494 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
495 	}
496 
497 	/* we cover nonce explicit here as well, so buf should be of
498 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
499 	 */
500 	buf[0] = version == TLS_1_3_VERSION ?
501 		   TLS_RECORD_TYPE_DATA : record_type;
502 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
503 	buf[1] = TLS_1_2_VERSION_MINOR;
504 	buf[2] = TLS_1_2_VERSION_MAJOR;
505 	/* we can use IV for nonce explicit according to spec */
506 	buf[3] = pkt_len >> 8;
507 	buf[4] = pkt_len & 0xFF;
508 }
509 
510 static inline void tls_make_aad(char *buf,
511 				size_t size,
512 				char *record_sequence,
513 				int record_sequence_size,
514 				unsigned char record_type,
515 				int version)
516 {
517 	if (version != TLS_1_3_VERSION) {
518 		memcpy(buf, record_sequence, record_sequence_size);
519 		buf += 8;
520 	} else {
521 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
522 	}
523 
524 	buf[0] = version == TLS_1_3_VERSION ?
525 		  TLS_RECORD_TYPE_DATA : record_type;
526 	buf[1] = TLS_1_2_VERSION_MAJOR;
527 	buf[2] = TLS_1_2_VERSION_MINOR;
528 	buf[3] = size >> 8;
529 	buf[4] = size & 0xFF;
530 }
531 
532 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
533 {
534 	int i;
535 
536 	if (version == TLS_1_3_VERSION) {
537 		for (i = 0; i < 8; i++)
538 			iv[i + 4] ^= seq[i];
539 	}
540 }
541 
542 
543 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
544 		const struct tls_context *tls_ctx)
545 {
546 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
547 }
548 
549 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
550 		const struct tls_context *tls_ctx)
551 {
552 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
553 }
554 
555 static inline struct tls_offload_context_tx *
556 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
557 {
558 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
559 }
560 
561 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
562 {
563 	struct tls_context *ctx = tls_get_ctx(sk);
564 
565 	if (!ctx)
566 		return false;
567 	return !!tls_sw_ctx_tx(ctx);
568 }
569 
570 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
571 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
572 
573 static inline struct tls_offload_context_rx *
574 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
575 {
576 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
577 }
578 
579 #if IS_ENABLED(CONFIG_TLS_DEVICE)
580 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
581 				     enum tls_offload_ctx_dir direction)
582 {
583 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
584 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
585 	else
586 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
587 }
588 
589 static inline void *
590 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
591 {
592 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
593 }
594 #endif
595 
596 /* The TLS context is valid until sk_destruct is called */
597 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
598 {
599 	struct tls_context *tls_ctx = tls_get_ctx(sk);
600 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
601 
602 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
603 }
604 
605 static inline void
606 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
607 {
608 	struct tls_context *tls_ctx = tls_get_ctx(sk);
609 
610 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
611 }
612 
613 /* Driver's seq tracking has to be disabled until resync succeeded */
614 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
615 {
616 	struct tls_context *tls_ctx = tls_get_ctx(sk);
617 	bool ret;
618 
619 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
620 	smp_mb__after_atomic();
621 	return ret;
622 }
623 
624 int __net_init tls_proc_init(struct net *net);
625 void __net_exit tls_proc_fini(struct net *net);
626 
627 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
628 		      unsigned char *record_type);
629 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
630 		struct scatterlist *sgout);
631 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
632 
633 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
634 				      struct net_device *dev,
635 				      struct sk_buff *skb);
636 
637 int tls_sw_fallback_init(struct sock *sk,
638 			 struct tls_offload_context_tx *offload_ctx,
639 			 struct tls_crypto_info *crypto_info);
640 
641 #ifdef CONFIG_TLS_DEVICE
642 void tls_device_init(void);
643 void tls_device_cleanup(void);
644 void tls_device_sk_destruct(struct sock *sk);
645 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
646 void tls_device_free_resources_tx(struct sock *sk);
647 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
648 void tls_device_offload_cleanup_rx(struct sock *sk);
649 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
650 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
651 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
652 			 struct sk_buff *skb, struct strp_msg *rxm);
653 
654 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
655 {
656 	if (!sk_fullsock(sk) ||
657 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
658 		return false;
659 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
660 }
661 #else
662 static inline void tls_device_init(void) {}
663 static inline void tls_device_cleanup(void) {}
664 
665 static inline int
666 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
667 {
668 	return -EOPNOTSUPP;
669 }
670 
671 static inline void tls_device_free_resources_tx(struct sock *sk) {}
672 
673 static inline int
674 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
675 {
676 	return -EOPNOTSUPP;
677 }
678 
679 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
680 static inline void
681 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
682 
683 static inline int
684 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
685 		     struct sk_buff *skb, struct strp_msg *rxm)
686 {
687 	return 0;
688 }
689 #endif
690 #endif /* _TLS_OFFLOAD_H */
691