1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 44 #include <net/tcp.h> 45 #include <net/strparser.h> 46 #include <crypto/aead.h> 47 #include <uapi/linux/tls.h> 48 49 50 /* Maximum data size carried in a TLS record */ 51 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 52 53 #define TLS_HEADER_SIZE 5 54 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 55 56 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 57 58 #define TLS_RECORD_TYPE_DATA 0x17 59 60 #define TLS_AAD_SPACE_SIZE 13 61 #define TLS_DEVICE_NAME_MAX 32 62 63 /* 64 * This structure defines the routines for Inline TLS driver. 65 * The following routines are optional and filled with a 66 * null pointer if not defined. 67 * 68 * @name: Its the name of registered Inline tls device 69 * @dev_list: Inline tls device list 70 * int (*feature)(struct tls_device *device); 71 * Called to return Inline TLS driver capability 72 * 73 * int (*hash)(struct tls_device *device, struct sock *sk); 74 * This function sets Inline driver for listen and program 75 * device specific functioanlity as required 76 * 77 * void (*unhash)(struct tls_device *device, struct sock *sk); 78 * This function cleans listen state set by Inline TLS driver 79 * 80 * void (*release)(struct kref *kref); 81 * Release the registered device and allocated resources 82 * @kref: Number of reference to tls_device 83 */ 84 struct tls_device { 85 char name[TLS_DEVICE_NAME_MAX]; 86 struct list_head dev_list; 87 int (*feature)(struct tls_device *device); 88 int (*hash)(struct tls_device *device, struct sock *sk); 89 void (*unhash)(struct tls_device *device, struct sock *sk); 90 void (*release)(struct kref *kref); 91 struct kref kref; 92 }; 93 94 enum { 95 TLS_BASE, 96 TLS_SW, 97 #ifdef CONFIG_TLS_DEVICE 98 TLS_HW, 99 #endif 100 TLS_HW_RECORD, 101 TLS_NUM_CONFIG, 102 }; 103 104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 105 * allocated or mapped for each TLS record. After encryption, the records are 106 * stores in a linked list. 107 */ 108 struct tls_rec { 109 struct list_head list; 110 int tx_ready; 111 int tx_flags; 112 int inplace_crypto; 113 114 struct sk_msg msg_plaintext; 115 struct sk_msg msg_encrypted; 116 117 /* AAD | msg_plaintext.sg.data | sg_tag */ 118 struct scatterlist sg_aead_in[2]; 119 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 120 struct scatterlist sg_aead_out[2]; 121 122 char aad_space[TLS_AAD_SPACE_SIZE]; 123 u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE + 124 TLS_CIPHER_AES_GCM_128_SALT_SIZE]; 125 struct aead_request aead_req; 126 u8 aead_req_ctx[]; 127 }; 128 129 struct tx_work { 130 struct delayed_work work; 131 struct sock *sk; 132 }; 133 134 struct tls_sw_context_tx { 135 struct crypto_aead *aead_send; 136 struct crypto_wait async_wait; 137 struct tx_work tx_work; 138 struct tls_rec *open_rec; 139 struct list_head tx_list; 140 atomic_t encrypt_pending; 141 int async_notify; 142 143 #define BIT_TX_SCHEDULED 0 144 unsigned long tx_bitmask; 145 }; 146 147 struct tls_sw_context_rx { 148 struct crypto_aead *aead_recv; 149 struct crypto_wait async_wait; 150 struct strparser strp; 151 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 152 void (*saved_data_ready)(struct sock *sk); 153 154 struct sk_buff *recv_pkt; 155 u8 control; 156 int async_capable; 157 bool decrypted; 158 atomic_t decrypt_pending; 159 bool async_notify; 160 }; 161 162 struct tls_record_info { 163 struct list_head list; 164 u32 end_seq; 165 int len; 166 int num_frags; 167 skb_frag_t frags[MAX_SKB_FRAGS]; 168 }; 169 170 struct tls_offload_context_tx { 171 struct crypto_aead *aead_send; 172 spinlock_t lock; /* protects records list */ 173 struct list_head records_list; 174 struct tls_record_info *open_record; 175 struct tls_record_info *retransmit_hint; 176 u64 hint_record_sn; 177 u64 unacked_record_sn; 178 179 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 180 void (*sk_destruct)(struct sock *sk); 181 u8 driver_state[]; 182 /* The TLS layer reserves room for driver specific state 183 * Currently the belief is that there is not enough 184 * driver specific state to justify another layer of indirection 185 */ 186 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *))) 187 }; 188 189 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 190 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \ 191 TLS_DRIVER_STATE_SIZE) 192 193 enum { 194 TLS_PENDING_CLOSED_RECORD 195 }; 196 197 struct cipher_context { 198 u16 prepend_size; 199 u16 tag_size; 200 u16 overhead_size; 201 u16 iv_size; 202 char *iv; 203 u16 rec_seq_size; 204 char *rec_seq; 205 u16 aad_size; 206 }; 207 208 union tls_crypto_context { 209 struct tls_crypto_info info; 210 union { 211 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 212 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 213 }; 214 }; 215 216 struct tls_context { 217 union tls_crypto_context crypto_send; 218 union tls_crypto_context crypto_recv; 219 220 struct list_head list; 221 struct net_device *netdev; 222 refcount_t refcount; 223 224 void *priv_ctx_tx; 225 void *priv_ctx_rx; 226 227 u8 tx_conf:3; 228 u8 rx_conf:3; 229 230 struct cipher_context tx; 231 struct cipher_context rx; 232 233 struct scatterlist *partially_sent_record; 234 u16 partially_sent_offset; 235 236 unsigned long flags; 237 bool in_tcp_sendpages; 238 bool pending_open_record_frags; 239 240 int (*push_pending_record)(struct sock *sk, int flags); 241 242 void (*sk_write_space)(struct sock *sk); 243 void (*sk_destruct)(struct sock *sk); 244 void (*sk_proto_close)(struct sock *sk, long timeout); 245 246 int (*setsockopt)(struct sock *sk, int level, 247 int optname, char __user *optval, 248 unsigned int optlen); 249 int (*getsockopt)(struct sock *sk, int level, 250 int optname, char __user *optval, 251 int __user *optlen); 252 int (*hash)(struct sock *sk); 253 void (*unhash)(struct sock *sk); 254 }; 255 256 struct tls_offload_context_rx { 257 /* sw must be the first member of tls_offload_context_rx */ 258 struct tls_sw_context_rx sw; 259 atomic64_t resync_req; 260 u8 driver_state[]; 261 /* The TLS layer reserves room for driver specific state 262 * Currently the belief is that there is not enough 263 * driver specific state to justify another layer of indirection 264 */ 265 }; 266 267 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 268 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \ 269 TLS_DRIVER_STATE_SIZE) 270 271 int wait_on_pending_writer(struct sock *sk, long *timeo); 272 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 273 int __user *optlen); 274 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 275 unsigned int optlen); 276 277 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 278 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 279 int tls_sw_sendpage(struct sock *sk, struct page *page, 280 int offset, size_t size, int flags); 281 void tls_sw_close(struct sock *sk, long timeout); 282 void tls_sw_free_resources_tx(struct sock *sk); 283 void tls_sw_free_resources_rx(struct sock *sk); 284 void tls_sw_release_resources_rx(struct sock *sk); 285 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 286 int nonblock, int flags, int *addr_len); 287 bool tls_sw_stream_read(const struct sock *sk); 288 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 289 struct pipe_inode_info *pipe, 290 size_t len, unsigned int flags); 291 292 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 293 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 294 int tls_device_sendpage(struct sock *sk, struct page *page, 295 int offset, size_t size, int flags); 296 void tls_device_sk_destruct(struct sock *sk); 297 void tls_device_init(void); 298 void tls_device_cleanup(void); 299 int tls_tx_records(struct sock *sk, int flags); 300 301 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 302 u32 seq, u64 *p_record_sn); 303 304 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 305 { 306 return rec->len == 0; 307 } 308 309 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 310 { 311 return rec->end_seq - rec->len; 312 } 313 314 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx); 315 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 316 struct scatterlist *sg, u16 first_offset, 317 int flags); 318 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 319 int flags); 320 321 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 322 int flags, long *timeo); 323 324 static inline bool tls_is_pending_closed_record(struct tls_context *ctx) 325 { 326 return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 327 } 328 329 static inline int tls_complete_pending_work(struct sock *sk, 330 struct tls_context *ctx, 331 int flags, long *timeo) 332 { 333 int rc = 0; 334 335 if (unlikely(sk->sk_write_pending)) 336 rc = wait_on_pending_writer(sk, timeo); 337 338 if (!rc && tls_is_pending_closed_record(ctx)) 339 rc = tls_push_pending_closed_record(sk, ctx, flags, timeo); 340 341 return rc; 342 } 343 344 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 345 { 346 return !!ctx->partially_sent_record; 347 } 348 349 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 350 { 351 return tls_ctx->pending_open_record_frags; 352 } 353 354 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 355 { 356 struct tls_rec *rec; 357 358 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 359 if (!rec) 360 return false; 361 362 return READ_ONCE(rec->tx_ready); 363 } 364 365 struct sk_buff * 366 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 367 struct sk_buff *skb); 368 369 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 370 { 371 #ifdef CONFIG_SOCK_VALIDATE_XMIT 372 return sk_fullsock(sk) & 373 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 374 &tls_validate_xmit_skb); 375 #else 376 return false; 377 #endif 378 } 379 380 static inline void tls_err_abort(struct sock *sk, int err) 381 { 382 sk->sk_err = err; 383 sk->sk_error_report(sk); 384 } 385 386 static inline bool tls_bigint_increment(unsigned char *seq, int len) 387 { 388 int i; 389 390 for (i = len - 1; i >= 0; i--) { 391 ++seq[i]; 392 if (seq[i] != 0) 393 break; 394 } 395 396 return (i == -1); 397 } 398 399 static inline void tls_advance_record_sn(struct sock *sk, 400 struct cipher_context *ctx) 401 { 402 if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size)) 403 tls_err_abort(sk, EBADMSG); 404 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 405 ctx->iv_size); 406 } 407 408 static inline void tls_fill_prepend(struct tls_context *ctx, 409 char *buf, 410 size_t plaintext_len, 411 unsigned char record_type) 412 { 413 size_t pkt_len, iv_size = ctx->tx.iv_size; 414 415 pkt_len = plaintext_len + iv_size + ctx->tx.tag_size; 416 417 /* we cover nonce explicit here as well, so buf should be of 418 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 419 */ 420 buf[0] = record_type; 421 buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version); 422 buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version); 423 /* we can use IV for nonce explicit according to spec */ 424 buf[3] = pkt_len >> 8; 425 buf[4] = pkt_len & 0xFF; 426 memcpy(buf + TLS_NONCE_OFFSET, 427 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 428 } 429 430 static inline void tls_make_aad(char *buf, 431 size_t size, 432 char *record_sequence, 433 int record_sequence_size, 434 unsigned char record_type) 435 { 436 memcpy(buf, record_sequence, record_sequence_size); 437 438 buf[8] = record_type; 439 buf[9] = TLS_1_2_VERSION_MAJOR; 440 buf[10] = TLS_1_2_VERSION_MINOR; 441 buf[11] = size >> 8; 442 buf[12] = size & 0xFF; 443 } 444 445 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 446 { 447 struct inet_connection_sock *icsk = inet_csk(sk); 448 449 return icsk->icsk_ulp_data; 450 } 451 452 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 453 const struct tls_context *tls_ctx) 454 { 455 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 456 } 457 458 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 459 const struct tls_context *tls_ctx) 460 { 461 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 462 } 463 464 static inline struct tls_offload_context_tx * 465 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 466 { 467 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 468 } 469 470 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 471 { 472 struct tls_context *ctx = tls_get_ctx(sk); 473 474 if (!ctx) 475 return false; 476 return !!tls_sw_ctx_tx(ctx); 477 } 478 479 static inline struct tls_offload_context_rx * 480 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 481 { 482 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 483 } 484 485 /* The TLS context is valid until sk_destruct is called */ 486 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 487 { 488 struct tls_context *tls_ctx = tls_get_ctx(sk); 489 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 490 491 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1)); 492 } 493 494 495 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 496 unsigned char *record_type); 497 void tls_register_device(struct tls_device *device); 498 void tls_unregister_device(struct tls_device *device); 499 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 500 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 501 struct scatterlist *sgout); 502 503 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 504 struct net_device *dev, 505 struct sk_buff *skb); 506 507 int tls_sw_fallback_init(struct sock *sk, 508 struct tls_offload_context_tx *offload_ctx, 509 struct tls_crypto_info *crypto_info); 510 511 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 512 513 void tls_device_offload_cleanup_rx(struct sock *sk); 514 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn); 515 516 #endif /* _TLS_OFFLOAD_H */ 517