1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/mutex.h> 43 #include <linux/netdevice.h> 44 #include <linux/rcupdate.h> 45 46 #include <net/net_namespace.h> 47 #include <net/tcp.h> 48 #include <net/strparser.h> 49 #include <crypto/aead.h> 50 #include <uapi/linux/tls.h> 51 52 struct tls_rec; 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_AAD_SPACE_SIZE 13 63 64 #define MAX_IV_SIZE 16 65 #define TLS_TAG_SIZE 16 66 #define TLS_MAX_REC_SEQ_SIZE 8 67 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE 68 69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 #define TLS_SM4_CCM_IV_B0_BYTE 2 78 79 enum { 80 TLS_BASE, 81 TLS_SW, 82 TLS_HW, 83 TLS_HW_RECORD, 84 TLS_NUM_CONFIG, 85 }; 86 87 struct tx_work { 88 struct delayed_work work; 89 struct sock *sk; 90 }; 91 92 struct tls_sw_context_tx { 93 struct crypto_aead *aead_send; 94 struct crypto_wait async_wait; 95 struct tx_work tx_work; 96 struct tls_rec *open_rec; 97 struct list_head tx_list; 98 atomic_t encrypt_pending; 99 /* protect crypto_wait with encrypt_pending */ 100 spinlock_t encrypt_compl_lock; 101 int async_notify; 102 u8 async_capable:1; 103 104 #define BIT_TX_SCHEDULED 0 105 #define BIT_TX_CLOSING 1 106 unsigned long tx_bitmask; 107 }; 108 109 struct tls_strparser { 110 struct sock *sk; 111 112 u32 mark : 8; 113 u32 stopped : 1; 114 u32 copy_mode : 1; 115 u32 mixed_decrypted : 1; 116 u32 msg_ready : 1; 117 118 struct strp_msg stm; 119 120 struct sk_buff *anchor; 121 struct work_struct work; 122 }; 123 124 struct tls_sw_context_rx { 125 struct crypto_aead *aead_recv; 126 struct crypto_wait async_wait; 127 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 128 void (*saved_data_ready)(struct sock *sk); 129 130 u8 reader_present; 131 u8 async_capable:1; 132 u8 zc_capable:1; 133 u8 reader_contended:1; 134 135 struct tls_strparser strp; 136 137 atomic_t decrypt_pending; 138 /* protect crypto_wait with decrypt_pending*/ 139 spinlock_t decrypt_compl_lock; 140 struct sk_buff_head async_hold; 141 struct wait_queue_head wq; 142 }; 143 144 struct tls_record_info { 145 struct list_head list; 146 u32 end_seq; 147 int len; 148 int num_frags; 149 skb_frag_t frags[MAX_SKB_FRAGS]; 150 }; 151 152 struct tls_offload_context_tx { 153 struct crypto_aead *aead_send; 154 spinlock_t lock; /* protects records list */ 155 struct list_head records_list; 156 struct tls_record_info *open_record; 157 struct tls_record_info *retransmit_hint; 158 u64 hint_record_sn; 159 u64 unacked_record_sn; 160 161 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 162 void (*sk_destruct)(struct sock *sk); 163 struct work_struct destruct_work; 164 struct tls_context *ctx; 165 u8 driver_state[] __aligned(8); 166 /* The TLS layer reserves room for driver specific state 167 * Currently the belief is that there is not enough 168 * driver specific state to justify another layer of indirection 169 */ 170 #define TLS_DRIVER_STATE_SIZE_TX 16 171 }; 172 173 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 174 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 175 176 enum tls_context_flags { 177 /* tls_device_down was called after the netdev went down, device state 178 * was released, and kTLS works in software, even though rx_conf is 179 * still TLS_HW (needed for transition). 180 */ 181 TLS_RX_DEV_DEGRADED = 0, 182 /* Unlike RX where resync is driven entirely by the core in TX only 183 * the driver knows when things went out of sync, so we need the flag 184 * to be atomic. 185 */ 186 TLS_TX_SYNC_SCHED = 1, 187 /* tls_dev_del was called for the RX side, device state was released, 188 * but tls_ctx->netdev might still be kept, because TX-side driver 189 * resources might not be released yet. Used to prevent the second 190 * tls_dev_del call in tls_device_down if it happens simultaneously. 191 */ 192 TLS_RX_DEV_CLOSED = 2, 193 }; 194 195 struct cipher_context { 196 char *iv; 197 char *rec_seq; 198 }; 199 200 union tls_crypto_context { 201 struct tls_crypto_info info; 202 union { 203 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 204 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 205 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; 206 struct tls12_crypto_info_sm4_gcm sm4_gcm; 207 struct tls12_crypto_info_sm4_ccm sm4_ccm; 208 }; 209 }; 210 211 struct tls_prot_info { 212 u16 version; 213 u16 cipher_type; 214 u16 prepend_size; 215 u16 tag_size; 216 u16 overhead_size; 217 u16 iv_size; 218 u16 salt_size; 219 u16 rec_seq_size; 220 u16 aad_size; 221 u16 tail_size; 222 }; 223 224 struct tls_context { 225 /* read-only cache line */ 226 struct tls_prot_info prot_info; 227 228 u8 tx_conf:3; 229 u8 rx_conf:3; 230 u8 zerocopy_sendfile:1; 231 u8 rx_no_pad:1; 232 233 int (*push_pending_record)(struct sock *sk, int flags); 234 void (*sk_write_space)(struct sock *sk); 235 236 void *priv_ctx_tx; 237 void *priv_ctx_rx; 238 239 struct net_device __rcu *netdev; 240 241 /* rw cache line */ 242 struct cipher_context tx; 243 struct cipher_context rx; 244 245 struct scatterlist *partially_sent_record; 246 u16 partially_sent_offset; 247 248 bool splicing_pages; 249 bool pending_open_record_frags; 250 251 struct mutex tx_lock; /* protects partially_sent_* fields and 252 * per-type TX fields 253 */ 254 unsigned long flags; 255 256 /* cache cold stuff */ 257 struct proto *sk_proto; 258 struct sock *sk; 259 260 void (*sk_destruct)(struct sock *sk); 261 262 union tls_crypto_context crypto_send; 263 union tls_crypto_context crypto_recv; 264 265 struct list_head list; 266 refcount_t refcount; 267 struct rcu_head rcu; 268 }; 269 270 enum tls_offload_ctx_dir { 271 TLS_OFFLOAD_CTX_DIR_RX, 272 TLS_OFFLOAD_CTX_DIR_TX, 273 }; 274 275 struct tlsdev_ops { 276 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 277 enum tls_offload_ctx_dir direction, 278 struct tls_crypto_info *crypto_info, 279 u32 start_offload_tcp_sn); 280 void (*tls_dev_del)(struct net_device *netdev, 281 struct tls_context *ctx, 282 enum tls_offload_ctx_dir direction); 283 int (*tls_dev_resync)(struct net_device *netdev, 284 struct sock *sk, u32 seq, u8 *rcd_sn, 285 enum tls_offload_ctx_dir direction); 286 }; 287 288 enum tls_offload_sync_type { 289 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 290 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 291 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 292 }; 293 294 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 295 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 296 297 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 298 struct tls_offload_resync_async { 299 atomic64_t req; 300 u16 loglen; 301 u16 rcd_delta; 302 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 303 }; 304 305 struct tls_offload_context_rx { 306 /* sw must be the first member of tls_offload_context_rx */ 307 struct tls_sw_context_rx sw; 308 enum tls_offload_sync_type resync_type; 309 /* this member is set regardless of resync_type, to avoid branches */ 310 u8 resync_nh_reset:1; 311 /* CORE_NEXT_HINT-only member, but use the hole here */ 312 u8 resync_nh_do_now:1; 313 union { 314 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 315 struct { 316 atomic64_t resync_req; 317 }; 318 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 319 struct { 320 u32 decrypted_failed; 321 u32 decrypted_tgt; 322 } resync_nh; 323 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 324 struct { 325 struct tls_offload_resync_async *resync_async; 326 }; 327 }; 328 u8 driver_state[] __aligned(8); 329 /* The TLS layer reserves room for driver specific state 330 * Currently the belief is that there is not enough 331 * driver specific state to justify another layer of indirection 332 */ 333 #define TLS_DRIVER_STATE_SIZE_RX 8 334 }; 335 336 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 337 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 338 339 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 340 u32 seq, u64 *p_record_sn); 341 342 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 343 { 344 return rec->len == 0; 345 } 346 347 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 348 { 349 return rec->end_seq - rec->len; 350 } 351 352 struct sk_buff * 353 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 354 struct sk_buff *skb); 355 struct sk_buff * 356 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, 357 struct sk_buff *skb); 358 359 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb) 360 { 361 #ifdef CONFIG_TLS_DEVICE 362 struct sock *sk = skb->sk; 363 364 return sk && sk_fullsock(sk) && 365 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 366 &tls_validate_xmit_skb); 367 #else 368 return false; 369 #endif 370 } 371 372 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 373 { 374 struct inet_connection_sock *icsk = inet_csk(sk); 375 376 /* Use RCU on icsk_ulp_data only for sock diag code, 377 * TLS data path doesn't need rcu_dereference(). 378 */ 379 return (__force void *)icsk->icsk_ulp_data; 380 } 381 382 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 383 const struct tls_context *tls_ctx) 384 { 385 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 386 } 387 388 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 389 const struct tls_context *tls_ctx) 390 { 391 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 392 } 393 394 static inline struct tls_offload_context_tx * 395 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 396 { 397 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 398 } 399 400 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 401 { 402 struct tls_context *ctx = tls_get_ctx(sk); 403 404 if (!ctx) 405 return false; 406 return !!tls_sw_ctx_tx(ctx); 407 } 408 409 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 410 { 411 struct tls_context *ctx = tls_get_ctx(sk); 412 413 if (!ctx) 414 return false; 415 return !!tls_sw_ctx_rx(ctx); 416 } 417 418 static inline struct tls_offload_context_rx * 419 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 420 { 421 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 422 } 423 424 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 425 enum tls_offload_ctx_dir direction) 426 { 427 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 428 return tls_offload_ctx_tx(tls_ctx)->driver_state; 429 else 430 return tls_offload_ctx_rx(tls_ctx)->driver_state; 431 } 432 433 static inline void * 434 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 435 { 436 return __tls_driver_ctx(tls_get_ctx(sk), direction); 437 } 438 439 #define RESYNC_REQ BIT(0) 440 #define RESYNC_REQ_ASYNC BIT(1) 441 /* The TLS context is valid until sk_destruct is called */ 442 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 443 { 444 struct tls_context *tls_ctx = tls_get_ctx(sk); 445 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 446 447 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 448 } 449 450 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 451 static inline void 452 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 453 { 454 struct tls_context *tls_ctx = tls_get_ctx(sk); 455 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 456 457 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 458 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 459 rx_ctx->resync_async->loglen = 0; 460 rx_ctx->resync_async->rcd_delta = 0; 461 } 462 463 static inline void 464 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 465 { 466 struct tls_context *tls_ctx = tls_get_ctx(sk); 467 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 468 469 atomic64_set(&rx_ctx->resync_async->req, 470 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 471 } 472 473 static inline void 474 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 475 { 476 struct tls_context *tls_ctx = tls_get_ctx(sk); 477 478 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 479 } 480 481 /* Driver's seq tracking has to be disabled until resync succeeded */ 482 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 483 { 484 struct tls_context *tls_ctx = tls_get_ctx(sk); 485 bool ret; 486 487 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 488 smp_mb__after_atomic(); 489 return ret; 490 } 491 492 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 493 494 #ifdef CONFIG_TLS_DEVICE 495 void tls_device_sk_destruct(struct sock *sk); 496 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 497 498 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 499 { 500 if (!sk_fullsock(sk) || 501 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 502 return false; 503 return tls_get_ctx(sk)->rx_conf == TLS_HW; 504 } 505 #endif 506 #endif /* _TLS_OFFLOAD_H */ 507