1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/tcp.h> 48 #include <net/strparser.h> 49 #include <crypto/aead.h> 50 #include <uapi/linux/tls.h> 51 52 53 /* Maximum data size carried in a TLS record */ 54 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 55 56 #define TLS_HEADER_SIZE 5 57 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 58 59 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 60 61 #define TLS_RECORD_TYPE_DATA 0x17 62 63 #define TLS_AAD_SPACE_SIZE 13 64 #define TLS_DEVICE_NAME_MAX 32 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 /* 79 * This structure defines the routines for Inline TLS driver. 80 * The following routines are optional and filled with a 81 * null pointer if not defined. 82 * 83 * @name: Its the name of registered Inline tls device 84 * @dev_list: Inline tls device list 85 * int (*feature)(struct tls_device *device); 86 * Called to return Inline TLS driver capability 87 * 88 * int (*hash)(struct tls_device *device, struct sock *sk); 89 * This function sets Inline driver for listen and program 90 * device specific functioanlity as required 91 * 92 * void (*unhash)(struct tls_device *device, struct sock *sk); 93 * This function cleans listen state set by Inline TLS driver 94 * 95 * void (*release)(struct kref *kref); 96 * Release the registered device and allocated resources 97 * @kref: Number of reference to tls_device 98 */ 99 struct tls_device { 100 char name[TLS_DEVICE_NAME_MAX]; 101 struct list_head dev_list; 102 int (*feature)(struct tls_device *device); 103 int (*hash)(struct tls_device *device, struct sock *sk); 104 void (*unhash)(struct tls_device *device, struct sock *sk); 105 void (*release)(struct kref *kref); 106 struct kref kref; 107 }; 108 109 enum { 110 TLS_BASE, 111 TLS_SW, 112 TLS_HW, 113 TLS_HW_RECORD, 114 TLS_NUM_CONFIG, 115 }; 116 117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 118 * allocated or mapped for each TLS record. After encryption, the records are 119 * stores in a linked list. 120 */ 121 struct tls_rec { 122 struct list_head list; 123 int tx_ready; 124 int tx_flags; 125 int inplace_crypto; 126 127 struct sk_msg msg_plaintext; 128 struct sk_msg msg_encrypted; 129 130 /* AAD | msg_plaintext.sg.data | sg_tag */ 131 struct scatterlist sg_aead_in[2]; 132 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 133 struct scatterlist sg_aead_out[2]; 134 135 char content_type; 136 struct scatterlist sg_content_type; 137 138 char aad_space[TLS_AAD_SPACE_SIZE]; 139 u8 iv_data[MAX_IV_SIZE]; 140 struct aead_request aead_req; 141 u8 aead_req_ctx[]; 142 }; 143 144 struct tls_msg { 145 struct strp_msg rxm; 146 u8 control; 147 }; 148 149 struct tx_work { 150 struct delayed_work work; 151 struct sock *sk; 152 }; 153 154 struct tls_sw_context_tx { 155 struct crypto_aead *aead_send; 156 struct crypto_wait async_wait; 157 struct tx_work tx_work; 158 struct tls_rec *open_rec; 159 struct list_head tx_list; 160 atomic_t encrypt_pending; 161 int async_notify; 162 int async_capable; 163 164 #define BIT_TX_SCHEDULED 0 165 #define BIT_TX_CLOSING 1 166 unsigned long tx_bitmask; 167 }; 168 169 struct tls_sw_context_rx { 170 struct crypto_aead *aead_recv; 171 struct crypto_wait async_wait; 172 struct strparser strp; 173 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 174 void (*saved_data_ready)(struct sock *sk); 175 176 struct sk_buff *recv_pkt; 177 u8 control; 178 int async_capable; 179 bool decrypted; 180 atomic_t decrypt_pending; 181 bool async_notify; 182 }; 183 184 struct tls_record_info { 185 struct list_head list; 186 u32 end_seq; 187 int len; 188 int num_frags; 189 skb_frag_t frags[MAX_SKB_FRAGS]; 190 }; 191 192 struct tls_offload_context_tx { 193 struct crypto_aead *aead_send; 194 spinlock_t lock; /* protects records list */ 195 struct list_head records_list; 196 struct tls_record_info *open_record; 197 struct tls_record_info *retransmit_hint; 198 u64 hint_record_sn; 199 u64 unacked_record_sn; 200 201 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 202 void (*sk_destruct)(struct sock *sk); 203 u8 driver_state[] __aligned(8); 204 /* The TLS layer reserves room for driver specific state 205 * Currently the belief is that there is not enough 206 * driver specific state to justify another layer of indirection 207 */ 208 #define TLS_DRIVER_STATE_SIZE_TX 16 209 }; 210 211 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 212 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 213 214 enum tls_context_flags { 215 TLS_RX_SYNC_RUNNING = 0, 216 /* Unlike RX where resync is driven entirely by the core in TX only 217 * the driver knows when things went out of sync, so we need the flag 218 * to be atomic. 219 */ 220 TLS_TX_SYNC_SCHED = 1, 221 }; 222 223 struct cipher_context { 224 char *iv; 225 char *rec_seq; 226 }; 227 228 union tls_crypto_context { 229 struct tls_crypto_info info; 230 union { 231 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 232 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 233 }; 234 }; 235 236 struct tls_prot_info { 237 u16 version; 238 u16 cipher_type; 239 u16 prepend_size; 240 u16 tag_size; 241 u16 overhead_size; 242 u16 iv_size; 243 u16 salt_size; 244 u16 rec_seq_size; 245 u16 aad_size; 246 u16 tail_size; 247 }; 248 249 struct tls_context { 250 /* read-only cache line */ 251 struct tls_prot_info prot_info; 252 253 u8 tx_conf:3; 254 u8 rx_conf:3; 255 256 int (*push_pending_record)(struct sock *sk, int flags); 257 void (*sk_write_space)(struct sock *sk); 258 259 void *priv_ctx_tx; 260 void *priv_ctx_rx; 261 262 struct net_device *netdev; 263 264 /* rw cache line */ 265 struct cipher_context tx; 266 struct cipher_context rx; 267 268 struct scatterlist *partially_sent_record; 269 u16 partially_sent_offset; 270 271 bool in_tcp_sendpages; 272 bool pending_open_record_frags; 273 274 struct mutex tx_lock; /* protects partially_sent_* fields and 275 * per-type TX fields 276 */ 277 unsigned long flags; 278 279 /* cache cold stuff */ 280 struct proto *sk_proto; 281 282 void (*sk_destruct)(struct sock *sk); 283 284 union tls_crypto_context crypto_send; 285 union tls_crypto_context crypto_recv; 286 287 struct list_head list; 288 refcount_t refcount; 289 struct rcu_head rcu; 290 }; 291 292 enum tls_offload_ctx_dir { 293 TLS_OFFLOAD_CTX_DIR_RX, 294 TLS_OFFLOAD_CTX_DIR_TX, 295 }; 296 297 struct tlsdev_ops { 298 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 299 enum tls_offload_ctx_dir direction, 300 struct tls_crypto_info *crypto_info, 301 u32 start_offload_tcp_sn); 302 void (*tls_dev_del)(struct net_device *netdev, 303 struct tls_context *ctx, 304 enum tls_offload_ctx_dir direction); 305 int (*tls_dev_resync)(struct net_device *netdev, 306 struct sock *sk, u32 seq, u8 *rcd_sn, 307 enum tls_offload_ctx_dir direction); 308 }; 309 310 enum tls_offload_sync_type { 311 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 312 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 313 }; 314 315 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 316 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 317 318 struct tls_offload_context_rx { 319 /* sw must be the first member of tls_offload_context_rx */ 320 struct tls_sw_context_rx sw; 321 enum tls_offload_sync_type resync_type; 322 /* this member is set regardless of resync_type, to avoid branches */ 323 u8 resync_nh_reset:1; 324 /* CORE_NEXT_HINT-only member, but use the hole here */ 325 u8 resync_nh_do_now:1; 326 union { 327 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 328 struct { 329 atomic64_t resync_req; 330 }; 331 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 332 struct { 333 u32 decrypted_failed; 334 u32 decrypted_tgt; 335 } resync_nh; 336 }; 337 u8 driver_state[] __aligned(8); 338 /* The TLS layer reserves room for driver specific state 339 * Currently the belief is that there is not enough 340 * driver specific state to justify another layer of indirection 341 */ 342 #define TLS_DRIVER_STATE_SIZE_RX 8 343 }; 344 345 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 346 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 347 348 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 349 int wait_on_pending_writer(struct sock *sk, long *timeo); 350 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 351 int __user *optlen); 352 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 353 unsigned int optlen); 354 355 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 356 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 357 void tls_sw_strparser_done(struct tls_context *tls_ctx); 358 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 359 int tls_sw_sendpage(struct sock *sk, struct page *page, 360 int offset, size_t size, int flags); 361 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 362 void tls_sw_release_resources_tx(struct sock *sk); 363 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 364 void tls_sw_free_resources_rx(struct sock *sk); 365 void tls_sw_release_resources_rx(struct sock *sk); 366 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 367 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 368 int nonblock, int flags, int *addr_len); 369 bool tls_sw_stream_read(const struct sock *sk); 370 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 371 struct pipe_inode_info *pipe, 372 size_t len, unsigned int flags); 373 374 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 375 int tls_device_sendpage(struct sock *sk, struct page *page, 376 int offset, size_t size, int flags); 377 int tls_tx_records(struct sock *sk, int flags); 378 379 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 380 u32 seq, u64 *p_record_sn); 381 382 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 383 { 384 return rec->len == 0; 385 } 386 387 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 388 { 389 return rec->end_seq - rec->len; 390 } 391 392 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 393 struct scatterlist *sg, u16 first_offset, 394 int flags); 395 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 396 int flags); 397 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 398 399 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 400 { 401 return (struct tls_msg *)strp_msg(skb); 402 } 403 404 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 405 { 406 return !!ctx->partially_sent_record; 407 } 408 409 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 410 { 411 return tls_ctx->pending_open_record_frags; 412 } 413 414 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 415 { 416 struct tls_rec *rec; 417 418 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 419 if (!rec) 420 return false; 421 422 return READ_ONCE(rec->tx_ready); 423 } 424 425 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 426 { 427 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 428 429 switch (config) { 430 case TLS_BASE: 431 return TLS_CONF_BASE; 432 case TLS_SW: 433 return TLS_CONF_SW; 434 case TLS_HW: 435 return TLS_CONF_HW; 436 case TLS_HW_RECORD: 437 return TLS_CONF_HW_RECORD; 438 } 439 return 0; 440 } 441 442 struct sk_buff * 443 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 444 struct sk_buff *skb); 445 446 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 447 { 448 #ifdef CONFIG_SOCK_VALIDATE_XMIT 449 return sk_fullsock(sk) && 450 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 451 &tls_validate_xmit_skb); 452 #else 453 return false; 454 #endif 455 } 456 457 static inline void tls_err_abort(struct sock *sk, int err) 458 { 459 sk->sk_err = err; 460 sk->sk_error_report(sk); 461 } 462 463 static inline bool tls_bigint_increment(unsigned char *seq, int len) 464 { 465 int i; 466 467 for (i = len - 1; i >= 0; i--) { 468 ++seq[i]; 469 if (seq[i] != 0) 470 break; 471 } 472 473 return (i == -1); 474 } 475 476 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 477 { 478 struct inet_connection_sock *icsk = inet_csk(sk); 479 480 /* Use RCU on icsk_ulp_data only for sock diag code, 481 * TLS data path doesn't need rcu_dereference(). 482 */ 483 return (__force void *)icsk->icsk_ulp_data; 484 } 485 486 static inline void tls_advance_record_sn(struct sock *sk, 487 struct tls_prot_info *prot, 488 struct cipher_context *ctx) 489 { 490 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 491 tls_err_abort(sk, EBADMSG); 492 493 if (prot->version != TLS_1_3_VERSION) 494 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 495 prot->iv_size); 496 } 497 498 static inline void tls_fill_prepend(struct tls_context *ctx, 499 char *buf, 500 size_t plaintext_len, 501 unsigned char record_type, 502 int version) 503 { 504 struct tls_prot_info *prot = &ctx->prot_info; 505 size_t pkt_len, iv_size = prot->iv_size; 506 507 pkt_len = plaintext_len + prot->tag_size; 508 if (version != TLS_1_3_VERSION) { 509 pkt_len += iv_size; 510 511 memcpy(buf + TLS_NONCE_OFFSET, 512 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 513 } 514 515 /* we cover nonce explicit here as well, so buf should be of 516 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 517 */ 518 buf[0] = version == TLS_1_3_VERSION ? 519 TLS_RECORD_TYPE_DATA : record_type; 520 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 521 buf[1] = TLS_1_2_VERSION_MINOR; 522 buf[2] = TLS_1_2_VERSION_MAJOR; 523 /* we can use IV for nonce explicit according to spec */ 524 buf[3] = pkt_len >> 8; 525 buf[4] = pkt_len & 0xFF; 526 } 527 528 static inline void tls_make_aad(char *buf, 529 size_t size, 530 char *record_sequence, 531 int record_sequence_size, 532 unsigned char record_type, 533 int version) 534 { 535 if (version != TLS_1_3_VERSION) { 536 memcpy(buf, record_sequence, record_sequence_size); 537 buf += 8; 538 } else { 539 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 540 } 541 542 buf[0] = version == TLS_1_3_VERSION ? 543 TLS_RECORD_TYPE_DATA : record_type; 544 buf[1] = TLS_1_2_VERSION_MAJOR; 545 buf[2] = TLS_1_2_VERSION_MINOR; 546 buf[3] = size >> 8; 547 buf[4] = size & 0xFF; 548 } 549 550 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 551 { 552 int i; 553 554 if (version == TLS_1_3_VERSION) { 555 for (i = 0; i < 8; i++) 556 iv[i + 4] ^= seq[i]; 557 } 558 } 559 560 561 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 562 const struct tls_context *tls_ctx) 563 { 564 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 565 } 566 567 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 568 const struct tls_context *tls_ctx) 569 { 570 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 571 } 572 573 static inline struct tls_offload_context_tx * 574 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 575 { 576 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 577 } 578 579 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 580 { 581 struct tls_context *ctx = tls_get_ctx(sk); 582 583 if (!ctx) 584 return false; 585 return !!tls_sw_ctx_tx(ctx); 586 } 587 588 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 589 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 590 591 static inline struct tls_offload_context_rx * 592 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 593 { 594 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 595 } 596 597 #if IS_ENABLED(CONFIG_TLS_DEVICE) 598 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 599 enum tls_offload_ctx_dir direction) 600 { 601 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 602 return tls_offload_ctx_tx(tls_ctx)->driver_state; 603 else 604 return tls_offload_ctx_rx(tls_ctx)->driver_state; 605 } 606 607 static inline void * 608 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 609 { 610 return __tls_driver_ctx(tls_get_ctx(sk), direction); 611 } 612 #endif 613 614 /* The TLS context is valid until sk_destruct is called */ 615 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 616 { 617 struct tls_context *tls_ctx = tls_get_ctx(sk); 618 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 619 620 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); 621 } 622 623 static inline void 624 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 625 { 626 struct tls_context *tls_ctx = tls_get_ctx(sk); 627 628 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 629 } 630 631 static inline void tls_offload_tx_resync_request(struct sock *sk) 632 { 633 struct tls_context *tls_ctx = tls_get_ctx(sk); 634 635 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 636 } 637 638 /* Driver's seq tracking has to be disabled until resync succeeded */ 639 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 640 { 641 struct tls_context *tls_ctx = tls_get_ctx(sk); 642 bool ret; 643 644 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 645 smp_mb__after_atomic(); 646 return ret; 647 } 648 649 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 650 unsigned char *record_type); 651 void tls_register_device(struct tls_device *device); 652 void tls_unregister_device(struct tls_device *device); 653 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 654 struct scatterlist *sgout); 655 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 656 657 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 658 struct net_device *dev, 659 struct sk_buff *skb); 660 661 int tls_sw_fallback_init(struct sock *sk, 662 struct tls_offload_context_tx *offload_ctx, 663 struct tls_crypto_info *crypto_info); 664 665 #ifdef CONFIG_TLS_DEVICE 666 void tls_device_init(void); 667 void tls_device_cleanup(void); 668 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 669 void tls_device_free_resources_tx(struct sock *sk); 670 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 671 void tls_device_offload_cleanup_rx(struct sock *sk); 672 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 673 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 674 #else 675 static inline void tls_device_init(void) {} 676 static inline void tls_device_cleanup(void) {} 677 678 static inline int 679 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 680 { 681 return -EOPNOTSUPP; 682 } 683 684 static inline void tls_device_free_resources_tx(struct sock *sk) {} 685 686 static inline int 687 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 688 { 689 return -EOPNOTSUPP; 690 } 691 692 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 693 static inline void 694 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 695 696 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb) 697 { 698 return 0; 699 } 700 #endif 701 #endif /* _TLS_OFFLOAD_H */ 702