xref: /openbmc/linux/include/net/tls.h (revision 8d81cd1a)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 struct tls_rec;
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_AAD_SPACE_SIZE		13
63 
64 #define MAX_IV_SIZE			16
65 #define TLS_TAG_SIZE			16
66 #define TLS_MAX_REC_SEQ_SIZE		8
67 #define TLS_MAX_AAD_SIZE		TLS_AAD_SPACE_SIZE
68 
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 #define TLS_SM4_CCM_IV_B0_BYTE		2
78 
79 enum {
80 	TLS_BASE,
81 	TLS_SW,
82 	TLS_HW,
83 	TLS_HW_RECORD,
84 	TLS_NUM_CONFIG,
85 };
86 
87 struct tx_work {
88 	struct delayed_work work;
89 	struct sock *sk;
90 };
91 
92 struct tls_sw_context_tx {
93 	struct crypto_aead *aead_send;
94 	struct crypto_wait async_wait;
95 	struct tx_work tx_work;
96 	struct tls_rec *open_rec;
97 	struct list_head tx_list;
98 	atomic_t encrypt_pending;
99 	u8 async_capable:1;
100 
101 #define BIT_TX_SCHEDULED	0
102 #define BIT_TX_CLOSING		1
103 	unsigned long tx_bitmask;
104 };
105 
106 struct tls_strparser {
107 	struct sock *sk;
108 
109 	u32 mark : 8;
110 	u32 stopped : 1;
111 	u32 copy_mode : 1;
112 	u32 mixed_decrypted : 1;
113 
114 	bool msg_ready;
115 
116 	struct strp_msg stm;
117 
118 	struct sk_buff *anchor;
119 	struct work_struct work;
120 };
121 
122 struct tls_sw_context_rx {
123 	struct crypto_aead *aead_recv;
124 	struct crypto_wait async_wait;
125 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
126 	void (*saved_data_ready)(struct sock *sk);
127 
128 	u8 reader_present;
129 	u8 async_capable:1;
130 	u8 zc_capable:1;
131 	u8 reader_contended:1;
132 
133 	struct tls_strparser strp;
134 
135 	atomic_t decrypt_pending;
136 	struct sk_buff_head async_hold;
137 	struct wait_queue_head wq;
138 };
139 
140 struct tls_record_info {
141 	struct list_head list;
142 	u32 end_seq;
143 	int len;
144 	int num_frags;
145 	skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147 
148 struct tls_offload_context_tx {
149 	struct crypto_aead *aead_send;
150 	spinlock_t lock;	/* protects records list */
151 	struct list_head records_list;
152 	struct tls_record_info *open_record;
153 	struct tls_record_info *retransmit_hint;
154 	u64 hint_record_sn;
155 	u64 unacked_record_sn;
156 
157 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
158 	void (*sk_destruct)(struct sock *sk);
159 	struct work_struct destruct_work;
160 	struct tls_context *ctx;
161 	u8 driver_state[] __aligned(8);
162 	/* The TLS layer reserves room for driver specific state
163 	 * Currently the belief is that there is not enough
164 	 * driver specific state to justify another layer of indirection
165 	 */
166 #define TLS_DRIVER_STATE_SIZE_TX	16
167 };
168 
169 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
170 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
171 
172 enum tls_context_flags {
173 	/* tls_device_down was called after the netdev went down, device state
174 	 * was released, and kTLS works in software, even though rx_conf is
175 	 * still TLS_HW (needed for transition).
176 	 */
177 	TLS_RX_DEV_DEGRADED = 0,
178 	/* Unlike RX where resync is driven entirely by the core in TX only
179 	 * the driver knows when things went out of sync, so we need the flag
180 	 * to be atomic.
181 	 */
182 	TLS_TX_SYNC_SCHED = 1,
183 	/* tls_dev_del was called for the RX side, device state was released,
184 	 * but tls_ctx->netdev might still be kept, because TX-side driver
185 	 * resources might not be released yet. Used to prevent the second
186 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
187 	 */
188 	TLS_RX_DEV_CLOSED = 2,
189 };
190 
191 struct cipher_context {
192 	char *iv;
193 	char *rec_seq;
194 };
195 
196 union tls_crypto_context {
197 	struct tls_crypto_info info;
198 	union {
199 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
200 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
201 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
202 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
203 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
204 	};
205 };
206 
207 struct tls_prot_info {
208 	u16 version;
209 	u16 cipher_type;
210 	u16 prepend_size;
211 	u16 tag_size;
212 	u16 overhead_size;
213 	u16 iv_size;
214 	u16 salt_size;
215 	u16 rec_seq_size;
216 	u16 aad_size;
217 	u16 tail_size;
218 };
219 
220 struct tls_context {
221 	/* read-only cache line */
222 	struct tls_prot_info prot_info;
223 
224 	u8 tx_conf:3;
225 	u8 rx_conf:3;
226 	u8 zerocopy_sendfile:1;
227 	u8 rx_no_pad:1;
228 
229 	int (*push_pending_record)(struct sock *sk, int flags);
230 	void (*sk_write_space)(struct sock *sk);
231 
232 	void *priv_ctx_tx;
233 	void *priv_ctx_rx;
234 
235 	struct net_device __rcu *netdev;
236 
237 	/* rw cache line */
238 	struct cipher_context tx;
239 	struct cipher_context rx;
240 
241 	struct scatterlist *partially_sent_record;
242 	u16 partially_sent_offset;
243 
244 	bool splicing_pages;
245 	bool pending_open_record_frags;
246 
247 	struct mutex tx_lock; /* protects partially_sent_* fields and
248 			       * per-type TX fields
249 			       */
250 	unsigned long flags;
251 
252 	/* cache cold stuff */
253 	struct proto *sk_proto;
254 	struct sock *sk;
255 
256 	void (*sk_destruct)(struct sock *sk);
257 
258 	union tls_crypto_context crypto_send;
259 	union tls_crypto_context crypto_recv;
260 
261 	struct list_head list;
262 	refcount_t refcount;
263 	struct rcu_head rcu;
264 };
265 
266 enum tls_offload_ctx_dir {
267 	TLS_OFFLOAD_CTX_DIR_RX,
268 	TLS_OFFLOAD_CTX_DIR_TX,
269 };
270 
271 struct tlsdev_ops {
272 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
273 			   enum tls_offload_ctx_dir direction,
274 			   struct tls_crypto_info *crypto_info,
275 			   u32 start_offload_tcp_sn);
276 	void (*tls_dev_del)(struct net_device *netdev,
277 			    struct tls_context *ctx,
278 			    enum tls_offload_ctx_dir direction);
279 	int (*tls_dev_resync)(struct net_device *netdev,
280 			      struct sock *sk, u32 seq, u8 *rcd_sn,
281 			      enum tls_offload_ctx_dir direction);
282 };
283 
284 enum tls_offload_sync_type {
285 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
286 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
287 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
288 };
289 
290 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
291 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
292 
293 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
294 struct tls_offload_resync_async {
295 	atomic64_t req;
296 	u16 loglen;
297 	u16 rcd_delta;
298 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
299 };
300 
301 struct tls_offload_context_rx {
302 	/* sw must be the first member of tls_offload_context_rx */
303 	struct tls_sw_context_rx sw;
304 	enum tls_offload_sync_type resync_type;
305 	/* this member is set regardless of resync_type, to avoid branches */
306 	u8 resync_nh_reset:1;
307 	/* CORE_NEXT_HINT-only member, but use the hole here */
308 	u8 resync_nh_do_now:1;
309 	union {
310 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
311 		struct {
312 			atomic64_t resync_req;
313 		};
314 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
315 		struct {
316 			u32 decrypted_failed;
317 			u32 decrypted_tgt;
318 		} resync_nh;
319 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
320 		struct {
321 			struct tls_offload_resync_async *resync_async;
322 		};
323 	};
324 	u8 driver_state[] __aligned(8);
325 	/* The TLS layer reserves room for driver specific state
326 	 * Currently the belief is that there is not enough
327 	 * driver specific state to justify another layer of indirection
328 	 */
329 #define TLS_DRIVER_STATE_SIZE_RX	8
330 };
331 
332 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
333 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
334 
335 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
336 				       u32 seq, u64 *p_record_sn);
337 
338 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
339 {
340 	return rec->len == 0;
341 }
342 
343 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
344 {
345 	return rec->end_seq - rec->len;
346 }
347 
348 struct sk_buff *
349 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
350 		      struct sk_buff *skb);
351 struct sk_buff *
352 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
353 			 struct sk_buff *skb);
354 
355 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
356 {
357 #ifdef CONFIG_TLS_DEVICE
358 	struct sock *sk = skb->sk;
359 
360 	return sk && sk_fullsock(sk) &&
361 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
362 	       &tls_validate_xmit_skb);
363 #else
364 	return false;
365 #endif
366 }
367 
368 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
369 {
370 	struct inet_connection_sock *icsk = inet_csk(sk);
371 
372 	/* Use RCU on icsk_ulp_data only for sock diag code,
373 	 * TLS data path doesn't need rcu_dereference().
374 	 */
375 	return (__force void *)icsk->icsk_ulp_data;
376 }
377 
378 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
379 		const struct tls_context *tls_ctx)
380 {
381 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
382 }
383 
384 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
385 		const struct tls_context *tls_ctx)
386 {
387 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
388 }
389 
390 static inline struct tls_offload_context_tx *
391 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
392 {
393 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
394 }
395 
396 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
397 {
398 	struct tls_context *ctx = tls_get_ctx(sk);
399 
400 	if (!ctx)
401 		return false;
402 	return !!tls_sw_ctx_tx(ctx);
403 }
404 
405 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
406 {
407 	struct tls_context *ctx = tls_get_ctx(sk);
408 
409 	if (!ctx)
410 		return false;
411 	return !!tls_sw_ctx_rx(ctx);
412 }
413 
414 static inline struct tls_offload_context_rx *
415 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
416 {
417 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
418 }
419 
420 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
421 				     enum tls_offload_ctx_dir direction)
422 {
423 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
424 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
425 	else
426 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
427 }
428 
429 static inline void *
430 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
431 {
432 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
433 }
434 
435 #define RESYNC_REQ BIT(0)
436 #define RESYNC_REQ_ASYNC BIT(1)
437 /* The TLS context is valid until sk_destruct is called */
438 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
439 {
440 	struct tls_context *tls_ctx = tls_get_ctx(sk);
441 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
442 
443 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
444 }
445 
446 /* Log all TLS record header TCP sequences in [seq, seq+len] */
447 static inline void
448 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
449 {
450 	struct tls_context *tls_ctx = tls_get_ctx(sk);
451 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
452 
453 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
454 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
455 	rx_ctx->resync_async->loglen = 0;
456 	rx_ctx->resync_async->rcd_delta = 0;
457 }
458 
459 static inline void
460 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
461 {
462 	struct tls_context *tls_ctx = tls_get_ctx(sk);
463 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
464 
465 	atomic64_set(&rx_ctx->resync_async->req,
466 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
467 }
468 
469 static inline void
470 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
471 {
472 	struct tls_context *tls_ctx = tls_get_ctx(sk);
473 
474 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
475 }
476 
477 /* Driver's seq tracking has to be disabled until resync succeeded */
478 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
479 {
480 	struct tls_context *tls_ctx = tls_get_ctx(sk);
481 	bool ret;
482 
483 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
484 	smp_mb__after_atomic();
485 	return ret;
486 }
487 
488 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
489 
490 #ifdef CONFIG_TLS_DEVICE
491 void tls_device_sk_destruct(struct sock *sk);
492 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
493 
494 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
495 {
496 	if (!sk_fullsock(sk) ||
497 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
498 		return false;
499 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
500 }
501 #endif
502 #endif /* _TLS_OFFLOAD_H */
503