1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/netdevice.h> 44 #include <linux/rcupdate.h> 45 46 #include <net/tcp.h> 47 #include <net/strparser.h> 48 #include <crypto/aead.h> 49 #include <uapi/linux/tls.h> 50 51 52 /* Maximum data size carried in a TLS record */ 53 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 54 55 #define TLS_HEADER_SIZE 5 56 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 57 58 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 59 60 #define TLS_RECORD_TYPE_DATA 0x17 61 62 #define TLS_AAD_SPACE_SIZE 13 63 #define TLS_DEVICE_NAME_MAX 32 64 65 #define MAX_IV_SIZE 16 66 #define TLS_MAX_REC_SEQ_SIZE 8 67 68 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 69 * 70 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 71 * 72 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 73 * Hence b0 contains (3 - 1) = 2. 74 */ 75 #define TLS_AES_CCM_IV_B0_BYTE 2 76 77 /* 78 * This structure defines the routines for Inline TLS driver. 79 * The following routines are optional and filled with a 80 * null pointer if not defined. 81 * 82 * @name: Its the name of registered Inline tls device 83 * @dev_list: Inline tls device list 84 * int (*feature)(struct tls_device *device); 85 * Called to return Inline TLS driver capability 86 * 87 * int (*hash)(struct tls_device *device, struct sock *sk); 88 * This function sets Inline driver for listen and program 89 * device specific functioanlity as required 90 * 91 * void (*unhash)(struct tls_device *device, struct sock *sk); 92 * This function cleans listen state set by Inline TLS driver 93 * 94 * void (*release)(struct kref *kref); 95 * Release the registered device and allocated resources 96 * @kref: Number of reference to tls_device 97 */ 98 struct tls_device { 99 char name[TLS_DEVICE_NAME_MAX]; 100 struct list_head dev_list; 101 int (*feature)(struct tls_device *device); 102 int (*hash)(struct tls_device *device, struct sock *sk); 103 void (*unhash)(struct tls_device *device, struct sock *sk); 104 void (*release)(struct kref *kref); 105 struct kref kref; 106 }; 107 108 enum { 109 TLS_BASE, 110 TLS_SW, 111 TLS_HW, 112 TLS_HW_RECORD, 113 TLS_NUM_CONFIG, 114 }; 115 116 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 117 * allocated or mapped for each TLS record. After encryption, the records are 118 * stores in a linked list. 119 */ 120 struct tls_rec { 121 struct list_head list; 122 int tx_ready; 123 int tx_flags; 124 int inplace_crypto; 125 126 struct sk_msg msg_plaintext; 127 struct sk_msg msg_encrypted; 128 129 /* AAD | msg_plaintext.sg.data | sg_tag */ 130 struct scatterlist sg_aead_in[2]; 131 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 132 struct scatterlist sg_aead_out[2]; 133 134 char content_type; 135 struct scatterlist sg_content_type; 136 137 char aad_space[TLS_AAD_SPACE_SIZE]; 138 u8 iv_data[MAX_IV_SIZE]; 139 struct aead_request aead_req; 140 u8 aead_req_ctx[]; 141 }; 142 143 struct tls_msg { 144 struct strp_msg rxm; 145 u8 control; 146 }; 147 148 struct tx_work { 149 struct delayed_work work; 150 struct sock *sk; 151 }; 152 153 struct tls_sw_context_tx { 154 struct crypto_aead *aead_send; 155 struct crypto_wait async_wait; 156 struct tx_work tx_work; 157 struct tls_rec *open_rec; 158 struct list_head tx_list; 159 atomic_t encrypt_pending; 160 int async_notify; 161 int async_capable; 162 163 #define BIT_TX_SCHEDULED 0 164 #define BIT_TX_CLOSING 1 165 unsigned long tx_bitmask; 166 }; 167 168 struct tls_sw_context_rx { 169 struct crypto_aead *aead_recv; 170 struct crypto_wait async_wait; 171 struct strparser strp; 172 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 173 void (*saved_data_ready)(struct sock *sk); 174 175 struct sk_buff *recv_pkt; 176 u8 control; 177 int async_capable; 178 bool decrypted; 179 atomic_t decrypt_pending; 180 bool async_notify; 181 }; 182 183 struct tls_record_info { 184 struct list_head list; 185 u32 end_seq; 186 int len; 187 int num_frags; 188 skb_frag_t frags[MAX_SKB_FRAGS]; 189 }; 190 191 struct tls_offload_context_tx { 192 struct crypto_aead *aead_send; 193 spinlock_t lock; /* protects records list */ 194 struct list_head records_list; 195 struct tls_record_info *open_record; 196 struct tls_record_info *retransmit_hint; 197 u64 hint_record_sn; 198 u64 unacked_record_sn; 199 200 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 201 void (*sk_destruct)(struct sock *sk); 202 u8 driver_state[] __aligned(8); 203 /* The TLS layer reserves room for driver specific state 204 * Currently the belief is that there is not enough 205 * driver specific state to justify another layer of indirection 206 */ 207 #define TLS_DRIVER_STATE_SIZE_TX 16 208 }; 209 210 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 211 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 212 213 enum tls_context_flags { 214 TLS_RX_SYNC_RUNNING = 0, 215 /* Unlike RX where resync is driven entirely by the core in TX only 216 * the driver knows when things went out of sync, so we need the flag 217 * to be atomic. 218 */ 219 TLS_TX_SYNC_SCHED = 1, 220 }; 221 222 struct cipher_context { 223 char *iv; 224 char *rec_seq; 225 }; 226 227 union tls_crypto_context { 228 struct tls_crypto_info info; 229 union { 230 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 231 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 232 }; 233 }; 234 235 struct tls_prot_info { 236 u16 version; 237 u16 cipher_type; 238 u16 prepend_size; 239 u16 tag_size; 240 u16 overhead_size; 241 u16 iv_size; 242 u16 salt_size; 243 u16 rec_seq_size; 244 u16 aad_size; 245 u16 tail_size; 246 }; 247 248 struct tls_context { 249 /* read-only cache line */ 250 struct tls_prot_info prot_info; 251 252 u8 tx_conf:3; 253 u8 rx_conf:3; 254 255 int (*push_pending_record)(struct sock *sk, int flags); 256 void (*sk_write_space)(struct sock *sk); 257 258 void *priv_ctx_tx; 259 void *priv_ctx_rx; 260 261 struct net_device *netdev; 262 263 /* rw cache line */ 264 struct cipher_context tx; 265 struct cipher_context rx; 266 267 struct scatterlist *partially_sent_record; 268 u16 partially_sent_offset; 269 270 bool in_tcp_sendpages; 271 bool pending_open_record_frags; 272 unsigned long flags; 273 274 /* cache cold stuff */ 275 struct proto *sk_proto; 276 277 void (*sk_destruct)(struct sock *sk); 278 void (*sk_proto_close)(struct sock *sk, long timeout); 279 280 int (*setsockopt)(struct sock *sk, int level, 281 int optname, char __user *optval, 282 unsigned int optlen); 283 int (*getsockopt)(struct sock *sk, int level, 284 int optname, char __user *optval, 285 int __user *optlen); 286 int (*hash)(struct sock *sk); 287 void (*unhash)(struct sock *sk); 288 289 union tls_crypto_context crypto_send; 290 union tls_crypto_context crypto_recv; 291 292 struct list_head list; 293 refcount_t refcount; 294 struct rcu_head rcu; 295 }; 296 297 enum tls_offload_ctx_dir { 298 TLS_OFFLOAD_CTX_DIR_RX, 299 TLS_OFFLOAD_CTX_DIR_TX, 300 }; 301 302 struct tlsdev_ops { 303 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 304 enum tls_offload_ctx_dir direction, 305 struct tls_crypto_info *crypto_info, 306 u32 start_offload_tcp_sn); 307 void (*tls_dev_del)(struct net_device *netdev, 308 struct tls_context *ctx, 309 enum tls_offload_ctx_dir direction); 310 int (*tls_dev_resync)(struct net_device *netdev, 311 struct sock *sk, u32 seq, u8 *rcd_sn, 312 enum tls_offload_ctx_dir direction); 313 }; 314 315 enum tls_offload_sync_type { 316 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 317 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 318 }; 319 320 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 321 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 322 323 struct tls_offload_context_rx { 324 /* sw must be the first member of tls_offload_context_rx */ 325 struct tls_sw_context_rx sw; 326 enum tls_offload_sync_type resync_type; 327 /* this member is set regardless of resync_type, to avoid branches */ 328 u8 resync_nh_reset:1; 329 /* CORE_NEXT_HINT-only member, but use the hole here */ 330 u8 resync_nh_do_now:1; 331 union { 332 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 333 struct { 334 atomic64_t resync_req; 335 }; 336 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 337 struct { 338 u32 decrypted_failed; 339 u32 decrypted_tgt; 340 } resync_nh; 341 }; 342 u8 driver_state[] __aligned(8); 343 /* The TLS layer reserves room for driver specific state 344 * Currently the belief is that there is not enough 345 * driver specific state to justify another layer of indirection 346 */ 347 #define TLS_DRIVER_STATE_SIZE_RX 8 348 }; 349 350 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 351 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 352 353 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 354 int wait_on_pending_writer(struct sock *sk, long *timeo); 355 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 356 int __user *optlen); 357 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 358 unsigned int optlen); 359 360 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 361 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 362 void tls_sw_strparser_done(struct tls_context *tls_ctx); 363 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 364 int tls_sw_sendpage(struct sock *sk, struct page *page, 365 int offset, size_t size, int flags); 366 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 367 void tls_sw_release_resources_tx(struct sock *sk); 368 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 369 void tls_sw_free_resources_rx(struct sock *sk); 370 void tls_sw_release_resources_rx(struct sock *sk); 371 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 372 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 373 int nonblock, int flags, int *addr_len); 374 bool tls_sw_stream_read(const struct sock *sk); 375 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 376 struct pipe_inode_info *pipe, 377 size_t len, unsigned int flags); 378 379 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 381 int tls_device_sendpage(struct sock *sk, struct page *page, 382 int offset, size_t size, int flags); 383 void tls_device_free_resources_tx(struct sock *sk); 384 void tls_device_init(void); 385 void tls_device_cleanup(void); 386 int tls_tx_records(struct sock *sk, int flags); 387 388 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 389 u32 seq, u64 *p_record_sn); 390 391 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 392 { 393 return rec->len == 0; 394 } 395 396 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 397 { 398 return rec->end_seq - rec->len; 399 } 400 401 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 402 struct scatterlist *sg, u16 first_offset, 403 int flags); 404 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 405 int flags); 406 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 407 408 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 409 { 410 return (struct tls_msg *)strp_msg(skb); 411 } 412 413 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 414 { 415 return !!ctx->partially_sent_record; 416 } 417 418 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 419 { 420 return tls_ctx->pending_open_record_frags; 421 } 422 423 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 424 { 425 struct tls_rec *rec; 426 427 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 428 if (!rec) 429 return false; 430 431 return READ_ONCE(rec->tx_ready); 432 } 433 434 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 435 { 436 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 437 438 switch (config) { 439 case TLS_BASE: 440 return TLS_CONF_BASE; 441 case TLS_SW: 442 return TLS_CONF_SW; 443 case TLS_HW: 444 return TLS_CONF_HW; 445 case TLS_HW_RECORD: 446 return TLS_CONF_HW_RECORD; 447 } 448 return 0; 449 } 450 451 struct sk_buff * 452 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 453 struct sk_buff *skb); 454 455 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 456 { 457 #ifdef CONFIG_SOCK_VALIDATE_XMIT 458 return sk_fullsock(sk) && 459 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 460 &tls_validate_xmit_skb); 461 #else 462 return false; 463 #endif 464 } 465 466 static inline void tls_err_abort(struct sock *sk, int err) 467 { 468 sk->sk_err = err; 469 sk->sk_error_report(sk); 470 } 471 472 static inline bool tls_bigint_increment(unsigned char *seq, int len) 473 { 474 int i; 475 476 for (i = len - 1; i >= 0; i--) { 477 ++seq[i]; 478 if (seq[i] != 0) 479 break; 480 } 481 482 return (i == -1); 483 } 484 485 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 486 { 487 struct inet_connection_sock *icsk = inet_csk(sk); 488 489 /* Use RCU on icsk_ulp_data only for sock diag code, 490 * TLS data path doesn't need rcu_dereference(). 491 */ 492 return (__force void *)icsk->icsk_ulp_data; 493 } 494 495 static inline void tls_advance_record_sn(struct sock *sk, 496 struct tls_prot_info *prot, 497 struct cipher_context *ctx) 498 { 499 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 500 tls_err_abort(sk, EBADMSG); 501 502 if (prot->version != TLS_1_3_VERSION) 503 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 504 prot->iv_size); 505 } 506 507 static inline void tls_fill_prepend(struct tls_context *ctx, 508 char *buf, 509 size_t plaintext_len, 510 unsigned char record_type, 511 int version) 512 { 513 struct tls_prot_info *prot = &ctx->prot_info; 514 size_t pkt_len, iv_size = prot->iv_size; 515 516 pkt_len = plaintext_len + prot->tag_size; 517 if (version != TLS_1_3_VERSION) { 518 pkt_len += iv_size; 519 520 memcpy(buf + TLS_NONCE_OFFSET, 521 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 522 } 523 524 /* we cover nonce explicit here as well, so buf should be of 525 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 526 */ 527 buf[0] = version == TLS_1_3_VERSION ? 528 TLS_RECORD_TYPE_DATA : record_type; 529 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 530 buf[1] = TLS_1_2_VERSION_MINOR; 531 buf[2] = TLS_1_2_VERSION_MAJOR; 532 /* we can use IV for nonce explicit according to spec */ 533 buf[3] = pkt_len >> 8; 534 buf[4] = pkt_len & 0xFF; 535 } 536 537 static inline void tls_make_aad(char *buf, 538 size_t size, 539 char *record_sequence, 540 int record_sequence_size, 541 unsigned char record_type, 542 int version) 543 { 544 if (version != TLS_1_3_VERSION) { 545 memcpy(buf, record_sequence, record_sequence_size); 546 buf += 8; 547 } else { 548 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 549 } 550 551 buf[0] = version == TLS_1_3_VERSION ? 552 TLS_RECORD_TYPE_DATA : record_type; 553 buf[1] = TLS_1_2_VERSION_MAJOR; 554 buf[2] = TLS_1_2_VERSION_MINOR; 555 buf[3] = size >> 8; 556 buf[4] = size & 0xFF; 557 } 558 559 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 560 { 561 int i; 562 563 if (version == TLS_1_3_VERSION) { 564 for (i = 0; i < 8; i++) 565 iv[i + 4] ^= seq[i]; 566 } 567 } 568 569 570 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 571 const struct tls_context *tls_ctx) 572 { 573 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 574 } 575 576 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 577 const struct tls_context *tls_ctx) 578 { 579 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 580 } 581 582 static inline struct tls_offload_context_tx * 583 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 584 { 585 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 586 } 587 588 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 589 { 590 struct tls_context *ctx = tls_get_ctx(sk); 591 592 if (!ctx) 593 return false; 594 return !!tls_sw_ctx_tx(ctx); 595 } 596 597 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 598 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 599 600 static inline struct tls_offload_context_rx * 601 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 602 { 603 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 604 } 605 606 #if IS_ENABLED(CONFIG_TLS_DEVICE) 607 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 608 enum tls_offload_ctx_dir direction) 609 { 610 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 611 return tls_offload_ctx_tx(tls_ctx)->driver_state; 612 else 613 return tls_offload_ctx_rx(tls_ctx)->driver_state; 614 } 615 616 static inline void * 617 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 618 { 619 return __tls_driver_ctx(tls_get_ctx(sk), direction); 620 } 621 #endif 622 623 /* The TLS context is valid until sk_destruct is called */ 624 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 625 { 626 struct tls_context *tls_ctx = tls_get_ctx(sk); 627 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 628 629 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); 630 } 631 632 static inline void 633 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 634 { 635 struct tls_context *tls_ctx = tls_get_ctx(sk); 636 637 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 638 } 639 640 static inline void tls_offload_tx_resync_request(struct sock *sk) 641 { 642 struct tls_context *tls_ctx = tls_get_ctx(sk); 643 644 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 645 } 646 647 /* Driver's seq tracking has to be disabled until resync succeeded */ 648 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 649 { 650 struct tls_context *tls_ctx = tls_get_ctx(sk); 651 bool ret; 652 653 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 654 smp_mb__after_atomic(); 655 return ret; 656 } 657 658 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 659 unsigned char *record_type); 660 void tls_register_device(struct tls_device *device); 661 void tls_unregister_device(struct tls_device *device); 662 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 663 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 664 struct scatterlist *sgout); 665 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 666 667 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 668 struct net_device *dev, 669 struct sk_buff *skb); 670 671 int tls_sw_fallback_init(struct sock *sk, 672 struct tls_offload_context_tx *offload_ctx, 673 struct tls_crypto_info *crypto_info); 674 675 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 676 677 void tls_device_offload_cleanup_rx(struct sock *sk); 678 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 679 680 #endif /* _TLS_OFFLOAD_H */ 681