1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tls_msg { 122 struct strp_msg rxm; 123 u8 control; 124 }; 125 126 struct tx_work { 127 struct delayed_work work; 128 struct sock *sk; 129 }; 130 131 struct tls_sw_context_tx { 132 struct crypto_aead *aead_send; 133 struct crypto_wait async_wait; 134 struct tx_work tx_work; 135 struct tls_rec *open_rec; 136 struct list_head tx_list; 137 atomic_t encrypt_pending; 138 /* protect crypto_wait with encrypt_pending */ 139 spinlock_t encrypt_compl_lock; 140 int async_notify; 141 u8 async_capable:1; 142 143 #define BIT_TX_SCHEDULED 0 144 #define BIT_TX_CLOSING 1 145 unsigned long tx_bitmask; 146 }; 147 148 struct tls_sw_context_rx { 149 struct crypto_aead *aead_recv; 150 struct crypto_wait async_wait; 151 struct strparser strp; 152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 153 void (*saved_data_ready)(struct sock *sk); 154 155 struct sk_buff *recv_pkt; 156 u8 control; 157 u8 async_capable:1; 158 u8 decrypted:1; 159 atomic_t decrypt_pending; 160 /* protect crypto_wait with decrypt_pending*/ 161 spinlock_t decrypt_compl_lock; 162 bool async_notify; 163 }; 164 165 struct tls_record_info { 166 struct list_head list; 167 u32 end_seq; 168 int len; 169 int num_frags; 170 skb_frag_t frags[MAX_SKB_FRAGS]; 171 }; 172 173 struct tls_offload_context_tx { 174 struct crypto_aead *aead_send; 175 spinlock_t lock; /* protects records list */ 176 struct list_head records_list; 177 struct tls_record_info *open_record; 178 struct tls_record_info *retransmit_hint; 179 u64 hint_record_sn; 180 u64 unacked_record_sn; 181 182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 183 void (*sk_destruct)(struct sock *sk); 184 u8 driver_state[] __aligned(8); 185 /* The TLS layer reserves room for driver specific state 186 * Currently the belief is that there is not enough 187 * driver specific state to justify another layer of indirection 188 */ 189 #define TLS_DRIVER_STATE_SIZE_TX 16 190 }; 191 192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 194 195 enum tls_context_flags { 196 /* tls_device_down was called after the netdev went down, device state 197 * was released, and kTLS works in software, even though rx_conf is 198 * still TLS_HW (needed for transition). 199 */ 200 TLS_RX_DEV_DEGRADED = 0, 201 /* Unlike RX where resync is driven entirely by the core in TX only 202 * the driver knows when things went out of sync, so we need the flag 203 * to be atomic. 204 */ 205 TLS_TX_SYNC_SCHED = 1, 206 /* tls_dev_del was called for the RX side, device state was released, 207 * but tls_ctx->netdev might still be kept, because TX-side driver 208 * resources might not be released yet. Used to prevent the second 209 * tls_dev_del call in tls_device_down if it happens simultaneously. 210 */ 211 TLS_RX_DEV_CLOSED = 2, 212 }; 213 214 struct cipher_context { 215 char *iv; 216 char *rec_seq; 217 }; 218 219 union tls_crypto_context { 220 struct tls_crypto_info info; 221 union { 222 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 223 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 224 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; 225 }; 226 }; 227 228 struct tls_prot_info { 229 u16 version; 230 u16 cipher_type; 231 u16 prepend_size; 232 u16 tag_size; 233 u16 overhead_size; 234 u16 iv_size; 235 u16 salt_size; 236 u16 rec_seq_size; 237 u16 aad_size; 238 u16 tail_size; 239 }; 240 241 struct tls_context { 242 /* read-only cache line */ 243 struct tls_prot_info prot_info; 244 245 u8 tx_conf:3; 246 u8 rx_conf:3; 247 248 int (*push_pending_record)(struct sock *sk, int flags); 249 void (*sk_write_space)(struct sock *sk); 250 251 void *priv_ctx_tx; 252 void *priv_ctx_rx; 253 254 struct net_device *netdev; 255 256 /* rw cache line */ 257 struct cipher_context tx; 258 struct cipher_context rx; 259 260 struct scatterlist *partially_sent_record; 261 u16 partially_sent_offset; 262 263 bool in_tcp_sendpages; 264 bool pending_open_record_frags; 265 266 struct mutex tx_lock; /* protects partially_sent_* fields and 267 * per-type TX fields 268 */ 269 unsigned long flags; 270 271 /* cache cold stuff */ 272 struct proto *sk_proto; 273 struct sock *sk; 274 275 void (*sk_destruct)(struct sock *sk); 276 277 union tls_crypto_context crypto_send; 278 union tls_crypto_context crypto_recv; 279 280 struct list_head list; 281 refcount_t refcount; 282 struct rcu_head rcu; 283 }; 284 285 enum tls_offload_ctx_dir { 286 TLS_OFFLOAD_CTX_DIR_RX, 287 TLS_OFFLOAD_CTX_DIR_TX, 288 }; 289 290 struct tlsdev_ops { 291 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 292 enum tls_offload_ctx_dir direction, 293 struct tls_crypto_info *crypto_info, 294 u32 start_offload_tcp_sn); 295 void (*tls_dev_del)(struct net_device *netdev, 296 struct tls_context *ctx, 297 enum tls_offload_ctx_dir direction); 298 int (*tls_dev_resync)(struct net_device *netdev, 299 struct sock *sk, u32 seq, u8 *rcd_sn, 300 enum tls_offload_ctx_dir direction); 301 }; 302 303 enum tls_offload_sync_type { 304 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 305 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 306 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 307 }; 308 309 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 310 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 311 312 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 313 struct tls_offload_resync_async { 314 atomic64_t req; 315 u16 loglen; 316 u16 rcd_delta; 317 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 318 }; 319 320 struct tls_offload_context_rx { 321 /* sw must be the first member of tls_offload_context_rx */ 322 struct tls_sw_context_rx sw; 323 enum tls_offload_sync_type resync_type; 324 /* this member is set regardless of resync_type, to avoid branches */ 325 u8 resync_nh_reset:1; 326 /* CORE_NEXT_HINT-only member, but use the hole here */ 327 u8 resync_nh_do_now:1; 328 union { 329 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 330 struct { 331 atomic64_t resync_req; 332 }; 333 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 334 struct { 335 u32 decrypted_failed; 336 u32 decrypted_tgt; 337 } resync_nh; 338 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 339 struct { 340 struct tls_offload_resync_async *resync_async; 341 }; 342 }; 343 u8 driver_state[] __aligned(8); 344 /* The TLS layer reserves room for driver specific state 345 * Currently the belief is that there is not enough 346 * driver specific state to justify another layer of indirection 347 */ 348 #define TLS_DRIVER_STATE_SIZE_RX 8 349 }; 350 351 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 352 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 353 354 struct tls_context *tls_ctx_create(struct sock *sk); 355 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 356 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 357 358 int wait_on_pending_writer(struct sock *sk, long *timeo); 359 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 360 int __user *optlen); 361 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 362 unsigned int optlen); 363 364 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 365 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 366 void tls_sw_strparser_done(struct tls_context *tls_ctx); 367 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 368 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 369 int offset, size_t size, int flags); 370 int tls_sw_sendpage(struct sock *sk, struct page *page, 371 int offset, size_t size, int flags); 372 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 373 void tls_sw_release_resources_tx(struct sock *sk); 374 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 375 void tls_sw_free_resources_rx(struct sock *sk); 376 void tls_sw_release_resources_rx(struct sock *sk); 377 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 378 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 379 int nonblock, int flags, int *addr_len); 380 bool tls_sw_stream_read(const struct sock *sk); 381 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 382 struct pipe_inode_info *pipe, 383 size_t len, unsigned int flags); 384 385 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 386 int tls_device_sendpage(struct sock *sk, struct page *page, 387 int offset, size_t size, int flags); 388 int tls_tx_records(struct sock *sk, int flags); 389 390 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 391 u32 seq, u64 *p_record_sn); 392 393 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 394 { 395 return rec->len == 0; 396 } 397 398 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 399 { 400 return rec->end_seq - rec->len; 401 } 402 403 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 404 struct scatterlist *sg, u16 first_offset, 405 int flags); 406 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 407 int flags); 408 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 409 410 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 411 { 412 return (struct tls_msg *)strp_msg(skb); 413 } 414 415 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 416 { 417 return !!ctx->partially_sent_record; 418 } 419 420 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 421 { 422 return tls_ctx->pending_open_record_frags; 423 } 424 425 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 426 { 427 struct tls_rec *rec; 428 429 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 430 if (!rec) 431 return false; 432 433 return READ_ONCE(rec->tx_ready); 434 } 435 436 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 437 { 438 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 439 440 switch (config) { 441 case TLS_BASE: 442 return TLS_CONF_BASE; 443 case TLS_SW: 444 return TLS_CONF_SW; 445 case TLS_HW: 446 return TLS_CONF_HW; 447 case TLS_HW_RECORD: 448 return TLS_CONF_HW_RECORD; 449 } 450 return 0; 451 } 452 453 struct sk_buff * 454 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 455 struct sk_buff *skb); 456 struct sk_buff * 457 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, 458 struct sk_buff *skb); 459 460 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 461 { 462 #ifdef CONFIG_SOCK_VALIDATE_XMIT 463 return sk_fullsock(sk) && 464 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 465 &tls_validate_xmit_skb); 466 #else 467 return false; 468 #endif 469 } 470 471 static inline void tls_err_abort(struct sock *sk, int err) 472 { 473 sk->sk_err = err; 474 sk->sk_error_report(sk); 475 } 476 477 static inline bool tls_bigint_increment(unsigned char *seq, int len) 478 { 479 int i; 480 481 for (i = len - 1; i >= 0; i--) { 482 ++seq[i]; 483 if (seq[i] != 0) 484 break; 485 } 486 487 return (i == -1); 488 } 489 490 static inline void tls_bigint_subtract(unsigned char *seq, int n) 491 { 492 u64 rcd_sn; 493 __be64 *p; 494 495 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 496 497 p = (__be64 *)seq; 498 rcd_sn = be64_to_cpu(*p); 499 *p = cpu_to_be64(rcd_sn - n); 500 } 501 502 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 503 { 504 struct inet_connection_sock *icsk = inet_csk(sk); 505 506 /* Use RCU on icsk_ulp_data only for sock diag code, 507 * TLS data path doesn't need rcu_dereference(). 508 */ 509 return (__force void *)icsk->icsk_ulp_data; 510 } 511 512 static inline void tls_advance_record_sn(struct sock *sk, 513 struct tls_prot_info *prot, 514 struct cipher_context *ctx) 515 { 516 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 517 tls_err_abort(sk, EBADMSG); 518 519 if (prot->version != TLS_1_3_VERSION && 520 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 521 tls_bigint_increment(ctx->iv + prot->salt_size, 522 prot->iv_size); 523 } 524 525 static inline void tls_fill_prepend(struct tls_context *ctx, 526 char *buf, 527 size_t plaintext_len, 528 unsigned char record_type) 529 { 530 struct tls_prot_info *prot = &ctx->prot_info; 531 size_t pkt_len, iv_size = prot->iv_size; 532 533 pkt_len = plaintext_len + prot->tag_size; 534 if (prot->version != TLS_1_3_VERSION && 535 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 536 pkt_len += iv_size; 537 538 memcpy(buf + TLS_NONCE_OFFSET, 539 ctx->tx.iv + prot->salt_size, iv_size); 540 } 541 542 /* we cover nonce explicit here as well, so buf should be of 543 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 544 */ 545 buf[0] = prot->version == TLS_1_3_VERSION ? 546 TLS_RECORD_TYPE_DATA : record_type; 547 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 548 buf[1] = TLS_1_2_VERSION_MINOR; 549 buf[2] = TLS_1_2_VERSION_MAJOR; 550 /* we can use IV for nonce explicit according to spec */ 551 buf[3] = pkt_len >> 8; 552 buf[4] = pkt_len & 0xFF; 553 } 554 555 static inline void tls_make_aad(char *buf, 556 size_t size, 557 char *record_sequence, 558 unsigned char record_type, 559 struct tls_prot_info *prot) 560 { 561 if (prot->version != TLS_1_3_VERSION) { 562 memcpy(buf, record_sequence, prot->rec_seq_size); 563 buf += 8; 564 } else { 565 size += prot->tag_size; 566 } 567 568 buf[0] = prot->version == TLS_1_3_VERSION ? 569 TLS_RECORD_TYPE_DATA : record_type; 570 buf[1] = TLS_1_2_VERSION_MAJOR; 571 buf[2] = TLS_1_2_VERSION_MINOR; 572 buf[3] = size >> 8; 573 buf[4] = size & 0xFF; 574 } 575 576 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 577 { 578 int i; 579 580 if (prot->version == TLS_1_3_VERSION || 581 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 582 for (i = 0; i < 8; i++) 583 iv[i + 4] ^= seq[i]; 584 } 585 } 586 587 588 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 589 const struct tls_context *tls_ctx) 590 { 591 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 592 } 593 594 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 595 const struct tls_context *tls_ctx) 596 { 597 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 598 } 599 600 static inline struct tls_offload_context_tx * 601 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 602 { 603 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 604 } 605 606 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 607 { 608 struct tls_context *ctx = tls_get_ctx(sk); 609 610 if (!ctx) 611 return false; 612 return !!tls_sw_ctx_tx(ctx); 613 } 614 615 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 616 { 617 struct tls_context *ctx = tls_get_ctx(sk); 618 619 if (!ctx) 620 return false; 621 return !!tls_sw_ctx_rx(ctx); 622 } 623 624 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 625 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 626 627 static inline struct tls_offload_context_rx * 628 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 629 { 630 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 631 } 632 633 #if IS_ENABLED(CONFIG_TLS_DEVICE) 634 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 635 enum tls_offload_ctx_dir direction) 636 { 637 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 638 return tls_offload_ctx_tx(tls_ctx)->driver_state; 639 else 640 return tls_offload_ctx_rx(tls_ctx)->driver_state; 641 } 642 643 static inline void * 644 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 645 { 646 return __tls_driver_ctx(tls_get_ctx(sk), direction); 647 } 648 #endif 649 650 #define RESYNC_REQ BIT(0) 651 #define RESYNC_REQ_ASYNC BIT(1) 652 /* The TLS context is valid until sk_destruct is called */ 653 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 654 { 655 struct tls_context *tls_ctx = tls_get_ctx(sk); 656 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 657 658 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 659 } 660 661 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 662 static inline void 663 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 664 { 665 struct tls_context *tls_ctx = tls_get_ctx(sk); 666 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 667 668 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 669 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 670 rx_ctx->resync_async->loglen = 0; 671 rx_ctx->resync_async->rcd_delta = 0; 672 } 673 674 static inline void 675 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 676 { 677 struct tls_context *tls_ctx = tls_get_ctx(sk); 678 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 679 680 atomic64_set(&rx_ctx->resync_async->req, 681 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 682 } 683 684 static inline void 685 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 689 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 690 } 691 692 /* Driver's seq tracking has to be disabled until resync succeeded */ 693 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 694 { 695 struct tls_context *tls_ctx = tls_get_ctx(sk); 696 bool ret; 697 698 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 699 smp_mb__after_atomic(); 700 return ret; 701 } 702 703 int __net_init tls_proc_init(struct net *net); 704 void __net_exit tls_proc_fini(struct net *net); 705 706 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 707 unsigned char *record_type); 708 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 709 struct scatterlist *sgout); 710 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 711 712 int tls_sw_fallback_init(struct sock *sk, 713 struct tls_offload_context_tx *offload_ctx, 714 struct tls_crypto_info *crypto_info); 715 716 #ifdef CONFIG_TLS_DEVICE 717 void tls_device_init(void); 718 void tls_device_cleanup(void); 719 void tls_device_sk_destruct(struct sock *sk); 720 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 721 void tls_device_free_resources_tx(struct sock *sk); 722 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 723 void tls_device_offload_cleanup_rx(struct sock *sk); 724 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 725 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 726 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 727 struct sk_buff *skb, struct strp_msg *rxm); 728 729 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 730 { 731 if (!sk_fullsock(sk) || 732 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 733 return false; 734 return tls_get_ctx(sk)->rx_conf == TLS_HW; 735 } 736 #else 737 static inline void tls_device_init(void) {} 738 static inline void tls_device_cleanup(void) {} 739 740 static inline int 741 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 742 { 743 return -EOPNOTSUPP; 744 } 745 746 static inline void tls_device_free_resources_tx(struct sock *sk) {} 747 748 static inline int 749 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 750 { 751 return -EOPNOTSUPP; 752 } 753 754 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 755 static inline void 756 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 757 758 static inline int 759 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 760 struct sk_buff *skb, struct strp_msg *rxm) 761 { 762 return 0; 763 } 764 #endif 765 #endif /* _TLS_OFFLOAD_H */ 766