xref: /openbmc/linux/include/net/tls.h (revision 65a0d3c1)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 #define __TLS_INC_STATS(net, field)				\
79 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field)				\
81 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field)				\
83 	__SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 
104 	struct sk_msg msg_plaintext;
105 	struct sk_msg msg_encrypted;
106 
107 	/* AAD | msg_plaintext.sg.data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	char content_type;
113 	struct scatterlist sg_content_type;
114 
115 	char aad_space[TLS_AAD_SPACE_SIZE];
116 	u8 iv_data[MAX_IV_SIZE];
117 	struct aead_request aead_req;
118 	u8 aead_req_ctx[];
119 };
120 
121 struct tls_msg {
122 	struct strp_msg rxm;
123 	u8 control;
124 };
125 
126 struct tx_work {
127 	struct delayed_work work;
128 	struct sock *sk;
129 };
130 
131 struct tls_sw_context_tx {
132 	struct crypto_aead *aead_send;
133 	struct crypto_wait async_wait;
134 	struct tx_work tx_work;
135 	struct tls_rec *open_rec;
136 	struct list_head tx_list;
137 	atomic_t encrypt_pending;
138 	/* protect crypto_wait with encrypt_pending */
139 	spinlock_t encrypt_compl_lock;
140 	int async_notify;
141 	u8 async_capable:1;
142 
143 #define BIT_TX_SCHEDULED	0
144 #define BIT_TX_CLOSING		1
145 	unsigned long tx_bitmask;
146 };
147 
148 struct tls_sw_context_rx {
149 	struct crypto_aead *aead_recv;
150 	struct crypto_wait async_wait;
151 	struct strparser strp;
152 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
153 	void (*saved_data_ready)(struct sock *sk);
154 
155 	struct sk_buff *recv_pkt;
156 	u8 control;
157 	u8 async_capable:1;
158 	u8 decrypted:1;
159 	atomic_t decrypt_pending;
160 	/* protect crypto_wait with decrypt_pending*/
161 	spinlock_t decrypt_compl_lock;
162 	bool async_notify;
163 };
164 
165 struct tls_record_info {
166 	struct list_head list;
167 	u32 end_seq;
168 	int len;
169 	int num_frags;
170 	skb_frag_t frags[MAX_SKB_FRAGS];
171 };
172 
173 struct tls_offload_context_tx {
174 	struct crypto_aead *aead_send;
175 	spinlock_t lock;	/* protects records list */
176 	struct list_head records_list;
177 	struct tls_record_info *open_record;
178 	struct tls_record_info *retransmit_hint;
179 	u64 hint_record_sn;
180 	u64 unacked_record_sn;
181 
182 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 	void (*sk_destruct)(struct sock *sk);
184 	u8 driver_state[] __aligned(8);
185 	/* The TLS layer reserves room for driver specific state
186 	 * Currently the belief is that there is not enough
187 	 * driver specific state to justify another layer of indirection
188 	 */
189 #define TLS_DRIVER_STATE_SIZE_TX	16
190 };
191 
192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
193 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194 
195 enum tls_context_flags {
196 	/* tls_device_down was called after the netdev went down, device state
197 	 * was released, and kTLS works in software, even though rx_conf is
198 	 * still TLS_HW (needed for transition).
199 	 */
200 	TLS_RX_DEV_DEGRADED = 0,
201 	/* Unlike RX where resync is driven entirely by the core in TX only
202 	 * the driver knows when things went out of sync, so we need the flag
203 	 * to be atomic.
204 	 */
205 	TLS_TX_SYNC_SCHED = 1,
206 	/* tls_dev_del was called for the RX side, device state was released,
207 	 * but tls_ctx->netdev might still be kept, because TX-side driver
208 	 * resources might not be released yet. Used to prevent the second
209 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
210 	 */
211 	TLS_RX_DEV_CLOSED = 2,
212 };
213 
214 struct cipher_context {
215 	char *iv;
216 	char *rec_seq;
217 };
218 
219 union tls_crypto_context {
220 	struct tls_crypto_info info;
221 	union {
222 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
223 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
224 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
225 	};
226 };
227 
228 struct tls_prot_info {
229 	u16 version;
230 	u16 cipher_type;
231 	u16 prepend_size;
232 	u16 tag_size;
233 	u16 overhead_size;
234 	u16 iv_size;
235 	u16 salt_size;
236 	u16 rec_seq_size;
237 	u16 aad_size;
238 	u16 tail_size;
239 };
240 
241 struct tls_context {
242 	/* read-only cache line */
243 	struct tls_prot_info prot_info;
244 
245 	u8 tx_conf:3;
246 	u8 rx_conf:3;
247 
248 	int (*push_pending_record)(struct sock *sk, int flags);
249 	void (*sk_write_space)(struct sock *sk);
250 
251 	void *priv_ctx_tx;
252 	void *priv_ctx_rx;
253 
254 	struct net_device *netdev;
255 
256 	/* rw cache line */
257 	struct cipher_context tx;
258 	struct cipher_context rx;
259 
260 	struct scatterlist *partially_sent_record;
261 	u16 partially_sent_offset;
262 
263 	bool in_tcp_sendpages;
264 	bool pending_open_record_frags;
265 
266 	struct mutex tx_lock; /* protects partially_sent_* fields and
267 			       * per-type TX fields
268 			       */
269 	unsigned long flags;
270 
271 	/* cache cold stuff */
272 	struct proto *sk_proto;
273 	struct sock *sk;
274 
275 	void (*sk_destruct)(struct sock *sk);
276 
277 	union tls_crypto_context crypto_send;
278 	union tls_crypto_context crypto_recv;
279 
280 	struct list_head list;
281 	refcount_t refcount;
282 	struct rcu_head rcu;
283 };
284 
285 enum tls_offload_ctx_dir {
286 	TLS_OFFLOAD_CTX_DIR_RX,
287 	TLS_OFFLOAD_CTX_DIR_TX,
288 };
289 
290 struct tlsdev_ops {
291 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
292 			   enum tls_offload_ctx_dir direction,
293 			   struct tls_crypto_info *crypto_info,
294 			   u32 start_offload_tcp_sn);
295 	void (*tls_dev_del)(struct net_device *netdev,
296 			    struct tls_context *ctx,
297 			    enum tls_offload_ctx_dir direction);
298 	int (*tls_dev_resync)(struct net_device *netdev,
299 			      struct sock *sk, u32 seq, u8 *rcd_sn,
300 			      enum tls_offload_ctx_dir direction);
301 };
302 
303 enum tls_offload_sync_type {
304 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
305 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
306 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
307 };
308 
309 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
310 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
311 
312 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
313 struct tls_offload_resync_async {
314 	atomic64_t req;
315 	u16 loglen;
316 	u16 rcd_delta;
317 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
318 };
319 
320 struct tls_offload_context_rx {
321 	/* sw must be the first member of tls_offload_context_rx */
322 	struct tls_sw_context_rx sw;
323 	enum tls_offload_sync_type resync_type;
324 	/* this member is set regardless of resync_type, to avoid branches */
325 	u8 resync_nh_reset:1;
326 	/* CORE_NEXT_HINT-only member, but use the hole here */
327 	u8 resync_nh_do_now:1;
328 	union {
329 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
330 		struct {
331 			atomic64_t resync_req;
332 		};
333 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
334 		struct {
335 			u32 decrypted_failed;
336 			u32 decrypted_tgt;
337 		} resync_nh;
338 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
339 		struct {
340 			struct tls_offload_resync_async *resync_async;
341 		};
342 	};
343 	u8 driver_state[] __aligned(8);
344 	/* The TLS layer reserves room for driver specific state
345 	 * Currently the belief is that there is not enough
346 	 * driver specific state to justify another layer of indirection
347 	 */
348 #define TLS_DRIVER_STATE_SIZE_RX	8
349 };
350 
351 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
352 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
353 
354 struct tls_context *tls_ctx_create(struct sock *sk);
355 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
356 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
357 
358 int wait_on_pending_writer(struct sock *sk, long *timeo);
359 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
360 		int __user *optlen);
361 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
362 		  unsigned int optlen);
363 
364 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
365 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
366 void tls_sw_strparser_done(struct tls_context *tls_ctx);
367 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
368 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
369 			   int offset, size_t size, int flags);
370 int tls_sw_sendpage(struct sock *sk, struct page *page,
371 		    int offset, size_t size, int flags);
372 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
373 void tls_sw_release_resources_tx(struct sock *sk);
374 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
375 void tls_sw_free_resources_rx(struct sock *sk);
376 void tls_sw_release_resources_rx(struct sock *sk);
377 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
378 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
379 		   int nonblock, int flags, int *addr_len);
380 bool tls_sw_stream_read(const struct sock *sk);
381 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
382 			   struct pipe_inode_info *pipe,
383 			   size_t len, unsigned int flags);
384 
385 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
386 int tls_device_sendpage(struct sock *sk, struct page *page,
387 			int offset, size_t size, int flags);
388 int tls_tx_records(struct sock *sk, int flags);
389 
390 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
391 				       u32 seq, u64 *p_record_sn);
392 
393 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
394 {
395 	return rec->len == 0;
396 }
397 
398 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
399 {
400 	return rec->end_seq - rec->len;
401 }
402 
403 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
404 		struct scatterlist *sg, u16 first_offset,
405 		int flags);
406 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
407 			    int flags);
408 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
409 
410 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
411 {
412 	return (struct tls_msg *)strp_msg(skb);
413 }
414 
415 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
416 {
417 	return !!ctx->partially_sent_record;
418 }
419 
420 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
421 {
422 	return tls_ctx->pending_open_record_frags;
423 }
424 
425 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
426 {
427 	struct tls_rec *rec;
428 
429 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
430 	if (!rec)
431 		return false;
432 
433 	return READ_ONCE(rec->tx_ready);
434 }
435 
436 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
437 {
438 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
439 
440 	switch (config) {
441 	case TLS_BASE:
442 		return TLS_CONF_BASE;
443 	case TLS_SW:
444 		return TLS_CONF_SW;
445 	case TLS_HW:
446 		return TLS_CONF_HW;
447 	case TLS_HW_RECORD:
448 		return TLS_CONF_HW_RECORD;
449 	}
450 	return 0;
451 }
452 
453 struct sk_buff *
454 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
455 		      struct sk_buff *skb);
456 struct sk_buff *
457 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
458 			 struct sk_buff *skb);
459 
460 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
461 {
462 #ifdef CONFIG_SOCK_VALIDATE_XMIT
463 	return sk_fullsock(sk) &&
464 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
465 	       &tls_validate_xmit_skb);
466 #else
467 	return false;
468 #endif
469 }
470 
471 static inline void tls_err_abort(struct sock *sk, int err)
472 {
473 	sk->sk_err = err;
474 	sk->sk_error_report(sk);
475 }
476 
477 static inline bool tls_bigint_increment(unsigned char *seq, int len)
478 {
479 	int i;
480 
481 	for (i = len - 1; i >= 0; i--) {
482 		++seq[i];
483 		if (seq[i] != 0)
484 			break;
485 	}
486 
487 	return (i == -1);
488 }
489 
490 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
491 {
492 	u64 rcd_sn;
493 	__be64 *p;
494 
495 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
496 
497 	p = (__be64 *)seq;
498 	rcd_sn = be64_to_cpu(*p);
499 	*p = cpu_to_be64(rcd_sn - n);
500 }
501 
502 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
503 {
504 	struct inet_connection_sock *icsk = inet_csk(sk);
505 
506 	/* Use RCU on icsk_ulp_data only for sock diag code,
507 	 * TLS data path doesn't need rcu_dereference().
508 	 */
509 	return (__force void *)icsk->icsk_ulp_data;
510 }
511 
512 static inline void tls_advance_record_sn(struct sock *sk,
513 					 struct tls_prot_info *prot,
514 					 struct cipher_context *ctx)
515 {
516 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
517 		tls_err_abort(sk, EBADMSG);
518 
519 	if (prot->version != TLS_1_3_VERSION &&
520 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
521 		tls_bigint_increment(ctx->iv + prot->salt_size,
522 				     prot->iv_size);
523 }
524 
525 static inline void tls_fill_prepend(struct tls_context *ctx,
526 			     char *buf,
527 			     size_t plaintext_len,
528 			     unsigned char record_type)
529 {
530 	struct tls_prot_info *prot = &ctx->prot_info;
531 	size_t pkt_len, iv_size = prot->iv_size;
532 
533 	pkt_len = plaintext_len + prot->tag_size;
534 	if (prot->version != TLS_1_3_VERSION &&
535 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
536 		pkt_len += iv_size;
537 
538 		memcpy(buf + TLS_NONCE_OFFSET,
539 		       ctx->tx.iv + prot->salt_size, iv_size);
540 	}
541 
542 	/* we cover nonce explicit here as well, so buf should be of
543 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
544 	 */
545 	buf[0] = prot->version == TLS_1_3_VERSION ?
546 		   TLS_RECORD_TYPE_DATA : record_type;
547 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
548 	buf[1] = TLS_1_2_VERSION_MINOR;
549 	buf[2] = TLS_1_2_VERSION_MAJOR;
550 	/* we can use IV for nonce explicit according to spec */
551 	buf[3] = pkt_len >> 8;
552 	buf[4] = pkt_len & 0xFF;
553 }
554 
555 static inline void tls_make_aad(char *buf,
556 				size_t size,
557 				char *record_sequence,
558 				unsigned char record_type,
559 				struct tls_prot_info *prot)
560 {
561 	if (prot->version != TLS_1_3_VERSION) {
562 		memcpy(buf, record_sequence, prot->rec_seq_size);
563 		buf += 8;
564 	} else {
565 		size += prot->tag_size;
566 	}
567 
568 	buf[0] = prot->version == TLS_1_3_VERSION ?
569 		  TLS_RECORD_TYPE_DATA : record_type;
570 	buf[1] = TLS_1_2_VERSION_MAJOR;
571 	buf[2] = TLS_1_2_VERSION_MINOR;
572 	buf[3] = size >> 8;
573 	buf[4] = size & 0xFF;
574 }
575 
576 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
577 {
578 	int i;
579 
580 	if (prot->version == TLS_1_3_VERSION ||
581 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
582 		for (i = 0; i < 8; i++)
583 			iv[i + 4] ^= seq[i];
584 	}
585 }
586 
587 
588 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
589 		const struct tls_context *tls_ctx)
590 {
591 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
592 }
593 
594 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
595 		const struct tls_context *tls_ctx)
596 {
597 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
598 }
599 
600 static inline struct tls_offload_context_tx *
601 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
602 {
603 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
604 }
605 
606 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
607 {
608 	struct tls_context *ctx = tls_get_ctx(sk);
609 
610 	if (!ctx)
611 		return false;
612 	return !!tls_sw_ctx_tx(ctx);
613 }
614 
615 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
616 {
617 	struct tls_context *ctx = tls_get_ctx(sk);
618 
619 	if (!ctx)
620 		return false;
621 	return !!tls_sw_ctx_rx(ctx);
622 }
623 
624 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
625 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
626 
627 static inline struct tls_offload_context_rx *
628 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
629 {
630 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
631 }
632 
633 #if IS_ENABLED(CONFIG_TLS_DEVICE)
634 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
635 				     enum tls_offload_ctx_dir direction)
636 {
637 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
638 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
639 	else
640 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
641 }
642 
643 static inline void *
644 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
645 {
646 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
647 }
648 #endif
649 
650 #define RESYNC_REQ BIT(0)
651 #define RESYNC_REQ_ASYNC BIT(1)
652 /* The TLS context is valid until sk_destruct is called */
653 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
654 {
655 	struct tls_context *tls_ctx = tls_get_ctx(sk);
656 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
657 
658 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
659 }
660 
661 /* Log all TLS record header TCP sequences in [seq, seq+len] */
662 static inline void
663 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
664 {
665 	struct tls_context *tls_ctx = tls_get_ctx(sk);
666 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
667 
668 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
669 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
670 	rx_ctx->resync_async->loglen = 0;
671 	rx_ctx->resync_async->rcd_delta = 0;
672 }
673 
674 static inline void
675 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
676 {
677 	struct tls_context *tls_ctx = tls_get_ctx(sk);
678 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
679 
680 	atomic64_set(&rx_ctx->resync_async->req,
681 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
682 }
683 
684 static inline void
685 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
686 {
687 	struct tls_context *tls_ctx = tls_get_ctx(sk);
688 
689 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
690 }
691 
692 /* Driver's seq tracking has to be disabled until resync succeeded */
693 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
694 {
695 	struct tls_context *tls_ctx = tls_get_ctx(sk);
696 	bool ret;
697 
698 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
699 	smp_mb__after_atomic();
700 	return ret;
701 }
702 
703 int __net_init tls_proc_init(struct net *net);
704 void __net_exit tls_proc_fini(struct net *net);
705 
706 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
707 		      unsigned char *record_type);
708 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
709 		struct scatterlist *sgout);
710 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
711 
712 int tls_sw_fallback_init(struct sock *sk,
713 			 struct tls_offload_context_tx *offload_ctx,
714 			 struct tls_crypto_info *crypto_info);
715 
716 #ifdef CONFIG_TLS_DEVICE
717 void tls_device_init(void);
718 void tls_device_cleanup(void);
719 void tls_device_sk_destruct(struct sock *sk);
720 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
721 void tls_device_free_resources_tx(struct sock *sk);
722 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
723 void tls_device_offload_cleanup_rx(struct sock *sk);
724 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
725 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
726 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
727 			 struct sk_buff *skb, struct strp_msg *rxm);
728 
729 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
730 {
731 	if (!sk_fullsock(sk) ||
732 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
733 		return false;
734 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
735 }
736 #else
737 static inline void tls_device_init(void) {}
738 static inline void tls_device_cleanup(void) {}
739 
740 static inline int
741 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
742 {
743 	return -EOPNOTSUPP;
744 }
745 
746 static inline void tls_device_free_resources_tx(struct sock *sk) {}
747 
748 static inline int
749 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
750 {
751 	return -EOPNOTSUPP;
752 }
753 
754 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
755 static inline void
756 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
757 
758 static inline int
759 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
760 		     struct sk_buff *skb, struct strp_msg *rxm)
761 {
762 	return 0;
763 }
764 #endif
765 #endif /* _TLS_OFFLOAD_H */
766