xref: /openbmc/linux/include/net/tls.h (revision 5b053e12)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
48 
49 
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
52 
53 #define TLS_HEADER_SIZE			5
54 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
55 
56 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
57 
58 #define TLS_RECORD_TYPE_DATA		0x17
59 
60 #define TLS_AAD_SPACE_SIZE		13
61 #define TLS_DEVICE_NAME_MAX		32
62 
63 /*
64  * This structure defines the routines for Inline TLS driver.
65  * The following routines are optional and filled with a
66  * null pointer if not defined.
67  *
68  * @name: Its the name of registered Inline tls device
69  * @dev_list: Inline tls device list
70  * int (*feature)(struct tls_device *device);
71  *     Called to return Inline TLS driver capability
72  *
73  * int (*hash)(struct tls_device *device, struct sock *sk);
74  *     This function sets Inline driver for listen and program
75  *     device specific functioanlity as required
76  *
77  * void (*unhash)(struct tls_device *device, struct sock *sk);
78  *     This function cleans listen state set by Inline TLS driver
79  *
80  * void (*release)(struct kref *kref);
81  *     Release the registered device and allocated resources
82  * @kref: Number of reference to tls_device
83  */
84 struct tls_device {
85 	char name[TLS_DEVICE_NAME_MAX];
86 	struct list_head dev_list;
87 	int  (*feature)(struct tls_device *device);
88 	int  (*hash)(struct tls_device *device, struct sock *sk);
89 	void (*unhash)(struct tls_device *device, struct sock *sk);
90 	void (*release)(struct kref *kref);
91 	struct kref kref;
92 };
93 
94 enum {
95 	TLS_BASE,
96 	TLS_SW,
97 #ifdef CONFIG_TLS_DEVICE
98 	TLS_HW,
99 #endif
100 	TLS_HW_RECORD,
101 	TLS_NUM_CONFIG,
102 };
103 
104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
105  * allocated or mapped for each TLS record. After encryption, the records are
106  * stores in a linked list.
107  */
108 struct tls_rec {
109 	struct list_head list;
110 	int tx_ready;
111 	int tx_flags;
112 	int inplace_crypto;
113 
114 	struct sk_msg msg_plaintext;
115 	struct sk_msg msg_encrypted;
116 
117 	/* AAD | msg_plaintext.sg.data | sg_tag */
118 	struct scatterlist sg_aead_in[2];
119 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
120 	struct scatterlist sg_aead_out[2];
121 
122 	char content_type;
123 	struct scatterlist sg_content_type;
124 
125 	char aad_space[TLS_AAD_SPACE_SIZE];
126 	u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
127 		   TLS_CIPHER_AES_GCM_128_SALT_SIZE];
128 	struct aead_request aead_req;
129 	u8 aead_req_ctx[];
130 };
131 
132 struct tx_work {
133 	struct delayed_work work;
134 	struct sock *sk;
135 };
136 
137 struct tls_sw_context_tx {
138 	struct crypto_aead *aead_send;
139 	struct crypto_wait async_wait;
140 	struct tx_work tx_work;
141 	struct tls_rec *open_rec;
142 	struct list_head tx_list;
143 	atomic_t encrypt_pending;
144 	int async_notify;
145 	int async_capable;
146 
147 #define BIT_TX_SCHEDULED	0
148 	unsigned long tx_bitmask;
149 };
150 
151 struct tls_sw_context_rx {
152 	struct crypto_aead *aead_recv;
153 	struct crypto_wait async_wait;
154 	struct strparser strp;
155 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
156 	void (*saved_data_ready)(struct sock *sk);
157 
158 	struct sk_buff *recv_pkt;
159 	u8 control;
160 	int async_capable;
161 	bool decrypted;
162 	atomic_t decrypt_pending;
163 	bool async_notify;
164 };
165 
166 struct tls_record_info {
167 	struct list_head list;
168 	u32 end_seq;
169 	int len;
170 	int num_frags;
171 	skb_frag_t frags[MAX_SKB_FRAGS];
172 };
173 
174 struct tls_offload_context_tx {
175 	struct crypto_aead *aead_send;
176 	spinlock_t lock;	/* protects records list */
177 	struct list_head records_list;
178 	struct tls_record_info *open_record;
179 	struct tls_record_info *retransmit_hint;
180 	u64 hint_record_sn;
181 	u64 unacked_record_sn;
182 
183 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
184 	void (*sk_destruct)(struct sock *sk);
185 	u8 driver_state[];
186 	/* The TLS layer reserves room for driver specific state
187 	 * Currently the belief is that there is not enough
188 	 * driver specific state to justify another layer of indirection
189 	 */
190 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
191 };
192 
193 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
194 	(ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) +        \
195 	 TLS_DRIVER_STATE_SIZE)
196 
197 enum {
198 	TLS_PENDING_CLOSED_RECORD
199 };
200 
201 struct cipher_context {
202 	u16 prepend_size;
203 	u16 tag_size;
204 	u16 overhead_size;
205 	u16 iv_size;
206 	char *iv;
207 	u16 rec_seq_size;
208 	char *rec_seq;
209 	u16 aad_size;
210 	u16 tail_size;
211 };
212 
213 union tls_crypto_context {
214 	struct tls_crypto_info info;
215 	union {
216 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
217 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
218 	};
219 };
220 
221 struct tls_context {
222 	union tls_crypto_context crypto_send;
223 	union tls_crypto_context crypto_recv;
224 
225 	struct list_head list;
226 	struct net_device *netdev;
227 	refcount_t refcount;
228 
229 	void *priv_ctx_tx;
230 	void *priv_ctx_rx;
231 
232 	u8 tx_conf:3;
233 	u8 rx_conf:3;
234 
235 	struct cipher_context tx;
236 	struct cipher_context rx;
237 
238 	struct scatterlist *partially_sent_record;
239 	u16 partially_sent_offset;
240 
241 	unsigned long flags;
242 	bool in_tcp_sendpages;
243 	bool pending_open_record_frags;
244 
245 	int (*push_pending_record)(struct sock *sk, int flags);
246 
247 	void (*sk_write_space)(struct sock *sk);
248 	void (*sk_destruct)(struct sock *sk);
249 	void (*sk_proto_close)(struct sock *sk, long timeout);
250 
251 	int  (*setsockopt)(struct sock *sk, int level,
252 			   int optname, char __user *optval,
253 			   unsigned int optlen);
254 	int  (*getsockopt)(struct sock *sk, int level,
255 			   int optname, char __user *optval,
256 			   int __user *optlen);
257 	int  (*hash)(struct sock *sk);
258 	void (*unhash)(struct sock *sk);
259 };
260 
261 struct tls_offload_context_rx {
262 	/* sw must be the first member of tls_offload_context_rx */
263 	struct tls_sw_context_rx sw;
264 	atomic64_t resync_req;
265 	u8 driver_state[];
266 	/* The TLS layer reserves room for driver specific state
267 	 * Currently the belief is that there is not enough
268 	 * driver specific state to justify another layer of indirection
269 	 */
270 };
271 
272 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
273 	(ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
274 	 TLS_DRIVER_STATE_SIZE)
275 
276 int wait_on_pending_writer(struct sock *sk, long *timeo);
277 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
278 		int __user *optlen);
279 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
280 		  unsigned int optlen);
281 
282 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
283 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
284 int tls_sw_sendpage(struct sock *sk, struct page *page,
285 		    int offset, size_t size, int flags);
286 void tls_sw_close(struct sock *sk, long timeout);
287 void tls_sw_free_resources_tx(struct sock *sk);
288 void tls_sw_free_resources_rx(struct sock *sk);
289 void tls_sw_release_resources_rx(struct sock *sk);
290 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
291 		   int nonblock, int flags, int *addr_len);
292 bool tls_sw_stream_read(const struct sock *sk);
293 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
294 			   struct pipe_inode_info *pipe,
295 			   size_t len, unsigned int flags);
296 
297 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
298 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
299 int tls_device_sendpage(struct sock *sk, struct page *page,
300 			int offset, size_t size, int flags);
301 void tls_device_sk_destruct(struct sock *sk);
302 void tls_device_init(void);
303 void tls_device_cleanup(void);
304 int tls_tx_records(struct sock *sk, int flags);
305 
306 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
307 				       u32 seq, u64 *p_record_sn);
308 
309 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
310 {
311 	return rec->len == 0;
312 }
313 
314 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
315 {
316 	return rec->end_seq - rec->len;
317 }
318 
319 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
320 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
321 		struct scatterlist *sg, u16 first_offset,
322 		int flags);
323 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
324 			    int flags);
325 
326 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
327 				   int flags, long *timeo);
328 
329 static inline bool tls_is_pending_closed_record(struct tls_context *ctx)
330 {
331 	return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
332 }
333 
334 static inline int tls_complete_pending_work(struct sock *sk,
335 					    struct tls_context *ctx,
336 					    int flags, long *timeo)
337 {
338 	int rc = 0;
339 
340 	if (unlikely(sk->sk_write_pending))
341 		rc = wait_on_pending_writer(sk, timeo);
342 
343 	if (!rc && tls_is_pending_closed_record(ctx))
344 		rc = tls_push_pending_closed_record(sk, ctx, flags, timeo);
345 
346 	return rc;
347 }
348 
349 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
350 {
351 	return !!ctx->partially_sent_record;
352 }
353 
354 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
355 {
356 	return tls_ctx->pending_open_record_frags;
357 }
358 
359 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
360 {
361 	struct tls_rec *rec;
362 
363 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
364 	if (!rec)
365 		return false;
366 
367 	return READ_ONCE(rec->tx_ready);
368 }
369 
370 struct sk_buff *
371 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
372 		      struct sk_buff *skb);
373 
374 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
375 {
376 #ifdef CONFIG_SOCK_VALIDATE_XMIT
377 	return sk_fullsock(sk) &
378 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
379 	       &tls_validate_xmit_skb);
380 #else
381 	return false;
382 #endif
383 }
384 
385 static inline void tls_err_abort(struct sock *sk, int err)
386 {
387 	sk->sk_err = err;
388 	sk->sk_error_report(sk);
389 }
390 
391 static inline bool tls_bigint_increment(unsigned char *seq, int len)
392 {
393 	int i;
394 
395 	for (i = len - 1; i >= 0; i--) {
396 		++seq[i];
397 		if (seq[i] != 0)
398 			break;
399 	}
400 
401 	return (i == -1);
402 }
403 
404 static inline void tls_advance_record_sn(struct sock *sk,
405 					 struct cipher_context *ctx,
406 					 int version)
407 {
408 	if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size))
409 		tls_err_abort(sk, EBADMSG);
410 
411 	if (version != TLS_1_3_VERSION) {
412 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
413 				     ctx->iv_size);
414 	}
415 }
416 
417 static inline void tls_fill_prepend(struct tls_context *ctx,
418 			     char *buf,
419 			     size_t plaintext_len,
420 			     unsigned char record_type,
421 			     int version)
422 {
423 	size_t pkt_len, iv_size = ctx->tx.iv_size;
424 
425 	pkt_len = plaintext_len + ctx->tx.tag_size;
426 	if (version != TLS_1_3_VERSION) {
427 		pkt_len += iv_size;
428 
429 		memcpy(buf + TLS_NONCE_OFFSET,
430 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
431 	}
432 
433 	/* we cover nonce explicit here as well, so buf should be of
434 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
435 	 */
436 	buf[0] = version == TLS_1_3_VERSION ?
437 		   TLS_RECORD_TYPE_DATA : record_type;
438 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
439 	buf[1] = TLS_1_2_VERSION_MINOR;
440 	buf[2] = TLS_1_2_VERSION_MAJOR;
441 	/* we can use IV for nonce explicit according to spec */
442 	buf[3] = pkt_len >> 8;
443 	buf[4] = pkt_len & 0xFF;
444 }
445 
446 static inline void tls_make_aad(char *buf,
447 				size_t size,
448 				char *record_sequence,
449 				int record_sequence_size,
450 				unsigned char record_type,
451 				int version)
452 {
453 	if (version != TLS_1_3_VERSION) {
454 		memcpy(buf, record_sequence, record_sequence_size);
455 		buf += 8;
456 	} else {
457 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
458 	}
459 
460 	buf[0] = version == TLS_1_3_VERSION ?
461 		  TLS_RECORD_TYPE_DATA : record_type;
462 	buf[1] = TLS_1_2_VERSION_MAJOR;
463 	buf[2] = TLS_1_2_VERSION_MINOR;
464 	buf[3] = size >> 8;
465 	buf[4] = size & 0xFF;
466 }
467 
468 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
469 {
470 	int i;
471 
472 	if (version == TLS_1_3_VERSION) {
473 		for (i = 0; i < 8; i++)
474 			iv[i + 4] ^= seq[i];
475 	}
476 }
477 
478 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
479 {
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 
482 	return icsk->icsk_ulp_data;
483 }
484 
485 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
486 		const struct tls_context *tls_ctx)
487 {
488 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
489 }
490 
491 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
492 		const struct tls_context *tls_ctx)
493 {
494 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
495 }
496 
497 static inline struct tls_offload_context_tx *
498 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
499 {
500 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
501 }
502 
503 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
504 {
505 	struct tls_context *ctx = tls_get_ctx(sk);
506 
507 	if (!ctx)
508 		return false;
509 	return !!tls_sw_ctx_tx(ctx);
510 }
511 
512 static inline struct tls_offload_context_rx *
513 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
514 {
515 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
516 }
517 
518 /* The TLS context is valid until sk_destruct is called */
519 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
520 {
521 	struct tls_context *tls_ctx = tls_get_ctx(sk);
522 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
523 
524 	atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
525 }
526 
527 
528 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
529 		      unsigned char *record_type);
530 void tls_register_device(struct tls_device *device);
531 void tls_unregister_device(struct tls_device *device);
532 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
533 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
534 		struct scatterlist *sgout);
535 
536 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
537 				      struct net_device *dev,
538 				      struct sk_buff *skb);
539 
540 int tls_sw_fallback_init(struct sock *sk,
541 			 struct tls_offload_context_tx *offload_ctx,
542 			 struct tls_crypto_info *crypto_info);
543 
544 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
545 
546 void tls_device_offload_cleanup_rx(struct sock *sk);
547 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
548 
549 #endif /* _TLS_OFFLOAD_H */
550