xref: /openbmc/linux/include/net/tls.h (revision 35b71a34)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
48 
49 
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
52 
53 #define TLS_HEADER_SIZE			5
54 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
55 
56 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
57 
58 #define TLS_RECORD_TYPE_DATA		0x17
59 
60 #define TLS_AAD_SPACE_SIZE		13
61 #define TLS_DEVICE_NAME_MAX		32
62 
63 /*
64  * This structure defines the routines for Inline TLS driver.
65  * The following routines are optional and filled with a
66  * null pointer if not defined.
67  *
68  * @name: Its the name of registered Inline tls device
69  * @dev_list: Inline tls device list
70  * int (*feature)(struct tls_device *device);
71  *     Called to return Inline TLS driver capability
72  *
73  * int (*hash)(struct tls_device *device, struct sock *sk);
74  *     This function sets Inline driver for listen and program
75  *     device specific functioanlity as required
76  *
77  * void (*unhash)(struct tls_device *device, struct sock *sk);
78  *     This function cleans listen state set by Inline TLS driver
79  *
80  * void (*release)(struct kref *kref);
81  *     Release the registered device and allocated resources
82  * @kref: Number of reference to tls_device
83  */
84 struct tls_device {
85 	char name[TLS_DEVICE_NAME_MAX];
86 	struct list_head dev_list;
87 	int  (*feature)(struct tls_device *device);
88 	int  (*hash)(struct tls_device *device, struct sock *sk);
89 	void (*unhash)(struct tls_device *device, struct sock *sk);
90 	void (*release)(struct kref *kref);
91 	struct kref kref;
92 };
93 
94 enum {
95 	TLS_BASE,
96 	TLS_SW,
97 #ifdef CONFIG_TLS_DEVICE
98 	TLS_HW,
99 #endif
100 	TLS_HW_RECORD,
101 	TLS_NUM_CONFIG,
102 };
103 
104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
105  * allocated or mapped for each TLS record. After encryption, the records are
106  * stores in a linked list.
107  */
108 struct tls_rec {
109 	struct list_head list;
110 	int tx_ready;
111 	int tx_flags;
112 	int inplace_crypto;
113 
114 	struct sk_msg msg_plaintext;
115 	struct sk_msg msg_encrypted;
116 
117 	/* AAD | msg_plaintext.sg.data | sg_tag */
118 	struct scatterlist sg_aead_in[2];
119 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
120 	struct scatterlist sg_aead_out[2];
121 
122 	char content_type;
123 	struct scatterlist sg_content_type;
124 
125 	char aad_space[TLS_AAD_SPACE_SIZE];
126 	u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
127 		   TLS_CIPHER_AES_GCM_128_SALT_SIZE];
128 	struct aead_request aead_req;
129 	u8 aead_req_ctx[];
130 };
131 
132 struct tls_msg {
133 	struct strp_msg rxm;
134 	u8 control;
135 };
136 
137 struct tx_work {
138 	struct delayed_work work;
139 	struct sock *sk;
140 };
141 
142 struct tls_sw_context_tx {
143 	struct crypto_aead *aead_send;
144 	struct crypto_wait async_wait;
145 	struct tx_work tx_work;
146 	struct tls_rec *open_rec;
147 	struct list_head tx_list;
148 	atomic_t encrypt_pending;
149 	int async_notify;
150 	int async_capable;
151 
152 #define BIT_TX_SCHEDULED	0
153 	unsigned long tx_bitmask;
154 };
155 
156 struct tls_sw_context_rx {
157 	struct crypto_aead *aead_recv;
158 	struct crypto_wait async_wait;
159 	struct strparser strp;
160 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
161 	void (*saved_data_ready)(struct sock *sk);
162 
163 	struct sk_buff *recv_pkt;
164 	u8 control;
165 	int async_capable;
166 	bool decrypted;
167 	atomic_t decrypt_pending;
168 	bool async_notify;
169 };
170 
171 struct tls_record_info {
172 	struct list_head list;
173 	u32 end_seq;
174 	int len;
175 	int num_frags;
176 	skb_frag_t frags[MAX_SKB_FRAGS];
177 };
178 
179 struct tls_offload_context_tx {
180 	struct crypto_aead *aead_send;
181 	spinlock_t lock;	/* protects records list */
182 	struct list_head records_list;
183 	struct tls_record_info *open_record;
184 	struct tls_record_info *retransmit_hint;
185 	u64 hint_record_sn;
186 	u64 unacked_record_sn;
187 
188 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
189 	void (*sk_destruct)(struct sock *sk);
190 	u8 driver_state[];
191 	/* The TLS layer reserves room for driver specific state
192 	 * Currently the belief is that there is not enough
193 	 * driver specific state to justify another layer of indirection
194 	 */
195 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
196 };
197 
198 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
199 	(ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) +        \
200 	 TLS_DRIVER_STATE_SIZE)
201 
202 struct cipher_context {
203 	char *iv;
204 	char *rec_seq;
205 };
206 
207 union tls_crypto_context {
208 	struct tls_crypto_info info;
209 	union {
210 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
211 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
212 	};
213 };
214 
215 struct tls_prot_info {
216 	u16 version;
217 	u16 cipher_type;
218 	u16 prepend_size;
219 	u16 tag_size;
220 	u16 overhead_size;
221 	u16 iv_size;
222 	u16 rec_seq_size;
223 	u16 aad_size;
224 	u16 tail_size;
225 };
226 
227 struct tls_context {
228 	struct tls_prot_info prot_info;
229 
230 	union tls_crypto_context crypto_send;
231 	union tls_crypto_context crypto_recv;
232 
233 	struct list_head list;
234 	struct net_device *netdev;
235 	refcount_t refcount;
236 
237 	void *priv_ctx_tx;
238 	void *priv_ctx_rx;
239 
240 	u8 tx_conf:3;
241 	u8 rx_conf:3;
242 
243 	struct cipher_context tx;
244 	struct cipher_context rx;
245 
246 	struct scatterlist *partially_sent_record;
247 	u16 partially_sent_offset;
248 
249 	unsigned long flags;
250 	bool in_tcp_sendpages;
251 	bool pending_open_record_frags;
252 
253 	int (*push_pending_record)(struct sock *sk, int flags);
254 
255 	void (*sk_write_space)(struct sock *sk);
256 	void (*sk_destruct)(struct sock *sk);
257 	void (*sk_proto_close)(struct sock *sk, long timeout);
258 
259 	int  (*setsockopt)(struct sock *sk, int level,
260 			   int optname, char __user *optval,
261 			   unsigned int optlen);
262 	int  (*getsockopt)(struct sock *sk, int level,
263 			   int optname, char __user *optval,
264 			   int __user *optlen);
265 	int  (*hash)(struct sock *sk);
266 	void (*unhash)(struct sock *sk);
267 };
268 
269 struct tls_offload_context_rx {
270 	/* sw must be the first member of tls_offload_context_rx */
271 	struct tls_sw_context_rx sw;
272 	atomic64_t resync_req;
273 	u8 driver_state[];
274 	/* The TLS layer reserves room for driver specific state
275 	 * Currently the belief is that there is not enough
276 	 * driver specific state to justify another layer of indirection
277 	 */
278 };
279 
280 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
281 	(ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
282 	 TLS_DRIVER_STATE_SIZE)
283 
284 int wait_on_pending_writer(struct sock *sk, long *timeo);
285 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
286 		int __user *optlen);
287 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
288 		  unsigned int optlen);
289 
290 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
291 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
292 int tls_sw_sendpage(struct sock *sk, struct page *page,
293 		    int offset, size_t size, int flags);
294 void tls_sw_close(struct sock *sk, long timeout);
295 void tls_sw_free_resources_tx(struct sock *sk);
296 void tls_sw_free_resources_rx(struct sock *sk);
297 void tls_sw_release_resources_rx(struct sock *sk);
298 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
299 		   int nonblock, int flags, int *addr_len);
300 bool tls_sw_stream_read(const struct sock *sk);
301 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
302 			   struct pipe_inode_info *pipe,
303 			   size_t len, unsigned int flags);
304 
305 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
306 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
307 int tls_device_sendpage(struct sock *sk, struct page *page,
308 			int offset, size_t size, int flags);
309 void tls_device_sk_destruct(struct sock *sk);
310 void tls_device_free_resources_tx(struct sock *sk);
311 void tls_device_init(void);
312 void tls_device_cleanup(void);
313 int tls_tx_records(struct sock *sk, int flags);
314 
315 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
316 				       u32 seq, u64 *p_record_sn);
317 
318 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
319 {
320 	return rec->len == 0;
321 }
322 
323 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
324 {
325 	return rec->end_seq - rec->len;
326 }
327 
328 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
329 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
330 		struct scatterlist *sg, u16 first_offset,
331 		int flags);
332 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
333 			    int flags);
334 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
335 
336 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
337 {
338 	return (struct tls_msg *)strp_msg(skb);
339 }
340 
341 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
342 {
343 	return !!ctx->partially_sent_record;
344 }
345 
346 static inline int tls_complete_pending_work(struct sock *sk,
347 					    struct tls_context *ctx,
348 					    int flags, long *timeo)
349 {
350 	int rc = 0;
351 
352 	if (unlikely(sk->sk_write_pending))
353 		rc = wait_on_pending_writer(sk, timeo);
354 
355 	if (!rc && tls_is_partially_sent_record(ctx))
356 		rc = tls_push_partial_record(sk, ctx, flags);
357 
358 	return rc;
359 }
360 
361 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
362 {
363 	return tls_ctx->pending_open_record_frags;
364 }
365 
366 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
367 {
368 	struct tls_rec *rec;
369 
370 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
371 	if (!rec)
372 		return false;
373 
374 	return READ_ONCE(rec->tx_ready);
375 }
376 
377 struct sk_buff *
378 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
379 		      struct sk_buff *skb);
380 
381 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
382 {
383 #ifdef CONFIG_SOCK_VALIDATE_XMIT
384 	return sk_fullsock(sk) &
385 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
386 	       &tls_validate_xmit_skb);
387 #else
388 	return false;
389 #endif
390 }
391 
392 static inline void tls_err_abort(struct sock *sk, int err)
393 {
394 	sk->sk_err = err;
395 	sk->sk_error_report(sk);
396 }
397 
398 static inline bool tls_bigint_increment(unsigned char *seq, int len)
399 {
400 	int i;
401 
402 	for (i = len - 1; i >= 0; i--) {
403 		++seq[i];
404 		if (seq[i] != 0)
405 			break;
406 	}
407 
408 	return (i == -1);
409 }
410 
411 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
412 {
413 	struct inet_connection_sock *icsk = inet_csk(sk);
414 
415 	return icsk->icsk_ulp_data;
416 }
417 
418 static inline void tls_advance_record_sn(struct sock *sk,
419 					 struct cipher_context *ctx,
420 					 int version)
421 {
422 	struct tls_context *tls_ctx = tls_get_ctx(sk);
423 	struct tls_prot_info *prot = &tls_ctx->prot_info;
424 
425 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
426 		tls_err_abort(sk, EBADMSG);
427 
428 	if (version != TLS_1_3_VERSION) {
429 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
430 				     prot->iv_size);
431 	}
432 }
433 
434 static inline void tls_fill_prepend(struct tls_context *ctx,
435 			     char *buf,
436 			     size_t plaintext_len,
437 			     unsigned char record_type,
438 			     int version)
439 {
440 	struct tls_prot_info *prot = &ctx->prot_info;
441 	size_t pkt_len, iv_size = prot->iv_size;
442 
443 	pkt_len = plaintext_len + prot->tag_size;
444 	if (version != TLS_1_3_VERSION) {
445 		pkt_len += iv_size;
446 
447 		memcpy(buf + TLS_NONCE_OFFSET,
448 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
449 	}
450 
451 	/* we cover nonce explicit here as well, so buf should be of
452 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
453 	 */
454 	buf[0] = version == TLS_1_3_VERSION ?
455 		   TLS_RECORD_TYPE_DATA : record_type;
456 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
457 	buf[1] = TLS_1_2_VERSION_MINOR;
458 	buf[2] = TLS_1_2_VERSION_MAJOR;
459 	/* we can use IV for nonce explicit according to spec */
460 	buf[3] = pkt_len >> 8;
461 	buf[4] = pkt_len & 0xFF;
462 }
463 
464 static inline void tls_make_aad(char *buf,
465 				size_t size,
466 				char *record_sequence,
467 				int record_sequence_size,
468 				unsigned char record_type,
469 				int version)
470 {
471 	if (version != TLS_1_3_VERSION) {
472 		memcpy(buf, record_sequence, record_sequence_size);
473 		buf += 8;
474 	} else {
475 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
476 	}
477 
478 	buf[0] = version == TLS_1_3_VERSION ?
479 		  TLS_RECORD_TYPE_DATA : record_type;
480 	buf[1] = TLS_1_2_VERSION_MAJOR;
481 	buf[2] = TLS_1_2_VERSION_MINOR;
482 	buf[3] = size >> 8;
483 	buf[4] = size & 0xFF;
484 }
485 
486 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
487 {
488 	int i;
489 
490 	if (version == TLS_1_3_VERSION) {
491 		for (i = 0; i < 8; i++)
492 			iv[i + 4] ^= seq[i];
493 	}
494 }
495 
496 
497 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
498 		const struct tls_context *tls_ctx)
499 {
500 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
501 }
502 
503 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
504 		const struct tls_context *tls_ctx)
505 {
506 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
507 }
508 
509 static inline struct tls_offload_context_tx *
510 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
511 {
512 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
513 }
514 
515 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
516 {
517 	struct tls_context *ctx = tls_get_ctx(sk);
518 
519 	if (!ctx)
520 		return false;
521 	return !!tls_sw_ctx_tx(ctx);
522 }
523 
524 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
525 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
526 
527 static inline struct tls_offload_context_rx *
528 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
529 {
530 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
531 }
532 
533 /* The TLS context is valid until sk_destruct is called */
534 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
535 {
536 	struct tls_context *tls_ctx = tls_get_ctx(sk);
537 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
538 
539 	atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
540 }
541 
542 
543 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
544 		      unsigned char *record_type);
545 void tls_register_device(struct tls_device *device);
546 void tls_unregister_device(struct tls_device *device);
547 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
548 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
549 		struct scatterlist *sgout);
550 
551 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
552 				      struct net_device *dev,
553 				      struct sk_buff *skb);
554 
555 int tls_sw_fallback_init(struct sock *sk,
556 			 struct tls_offload_context_tx *offload_ctx,
557 			 struct tls_crypto_info *crypto_info);
558 
559 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
560 
561 void tls_device_offload_cleanup_rx(struct sock *sk);
562 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
563 
564 #endif /* _TLS_OFFLOAD_H */
565