1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 44 #include <net/tcp.h> 45 #include <net/strparser.h> 46 #include <crypto/aead.h> 47 #include <uapi/linux/tls.h> 48 49 50 /* Maximum data size carried in a TLS record */ 51 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 52 53 #define TLS_HEADER_SIZE 5 54 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 55 56 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 57 58 #define TLS_RECORD_TYPE_DATA 0x17 59 60 #define TLS_AAD_SPACE_SIZE 13 61 #define TLS_DEVICE_NAME_MAX 32 62 63 /* 64 * This structure defines the routines for Inline TLS driver. 65 * The following routines are optional and filled with a 66 * null pointer if not defined. 67 * 68 * @name: Its the name of registered Inline tls device 69 * @dev_list: Inline tls device list 70 * int (*feature)(struct tls_device *device); 71 * Called to return Inline TLS driver capability 72 * 73 * int (*hash)(struct tls_device *device, struct sock *sk); 74 * This function sets Inline driver for listen and program 75 * device specific functioanlity as required 76 * 77 * void (*unhash)(struct tls_device *device, struct sock *sk); 78 * This function cleans listen state set by Inline TLS driver 79 * 80 * void (*release)(struct kref *kref); 81 * Release the registered device and allocated resources 82 * @kref: Number of reference to tls_device 83 */ 84 struct tls_device { 85 char name[TLS_DEVICE_NAME_MAX]; 86 struct list_head dev_list; 87 int (*feature)(struct tls_device *device); 88 int (*hash)(struct tls_device *device, struct sock *sk); 89 void (*unhash)(struct tls_device *device, struct sock *sk); 90 void (*release)(struct kref *kref); 91 struct kref kref; 92 }; 93 94 enum { 95 TLS_BASE, 96 TLS_SW, 97 #ifdef CONFIG_TLS_DEVICE 98 TLS_HW, 99 #endif 100 TLS_HW_RECORD, 101 TLS_NUM_CONFIG, 102 }; 103 104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 105 * allocated or mapped for each TLS record. After encryption, the records are 106 * stores in a linked list. 107 */ 108 struct tls_rec { 109 struct list_head list; 110 int tx_ready; 111 int tx_flags; 112 int inplace_crypto; 113 114 struct sk_msg msg_plaintext; 115 struct sk_msg msg_encrypted; 116 117 /* AAD | msg_plaintext.sg.data | sg_tag */ 118 struct scatterlist sg_aead_in[2]; 119 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 120 struct scatterlist sg_aead_out[2]; 121 122 char aad_space[TLS_AAD_SPACE_SIZE]; 123 u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE + 124 TLS_CIPHER_AES_GCM_128_SALT_SIZE]; 125 struct aead_request aead_req; 126 u8 aead_req_ctx[]; 127 }; 128 129 struct tx_work { 130 struct delayed_work work; 131 struct sock *sk; 132 }; 133 134 struct tls_sw_context_tx { 135 struct crypto_aead *aead_send; 136 struct crypto_wait async_wait; 137 struct tx_work tx_work; 138 struct tls_rec *open_rec; 139 struct list_head tx_list; 140 atomic_t encrypt_pending; 141 int async_notify; 142 143 #define BIT_TX_SCHEDULED 0 144 unsigned long tx_bitmask; 145 }; 146 147 struct tls_sw_context_rx { 148 struct crypto_aead *aead_recv; 149 struct crypto_wait async_wait; 150 151 struct strparser strp; 152 void (*saved_data_ready)(struct sock *sk); 153 154 struct sk_buff *recv_pkt; 155 u8 control; 156 bool decrypted; 157 atomic_t decrypt_pending; 158 bool async_notify; 159 }; 160 161 struct tls_record_info { 162 struct list_head list; 163 u32 end_seq; 164 int len; 165 int num_frags; 166 skb_frag_t frags[MAX_SKB_FRAGS]; 167 }; 168 169 struct tls_offload_context_tx { 170 struct crypto_aead *aead_send; 171 spinlock_t lock; /* protects records list */ 172 struct list_head records_list; 173 struct tls_record_info *open_record; 174 struct tls_record_info *retransmit_hint; 175 u64 hint_record_sn; 176 u64 unacked_record_sn; 177 178 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 179 void (*sk_destruct)(struct sock *sk); 180 u8 driver_state[]; 181 /* The TLS layer reserves room for driver specific state 182 * Currently the belief is that there is not enough 183 * driver specific state to justify another layer of indirection 184 */ 185 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *))) 186 }; 187 188 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 189 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \ 190 TLS_DRIVER_STATE_SIZE) 191 192 enum { 193 TLS_PENDING_CLOSED_RECORD 194 }; 195 196 struct cipher_context { 197 u16 prepend_size; 198 u16 tag_size; 199 u16 overhead_size; 200 u16 iv_size; 201 char *iv; 202 u16 rec_seq_size; 203 char *rec_seq; 204 }; 205 206 union tls_crypto_context { 207 struct tls_crypto_info info; 208 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 209 }; 210 211 struct tls_context { 212 union tls_crypto_context crypto_send; 213 union tls_crypto_context crypto_recv; 214 215 struct list_head list; 216 struct net_device *netdev; 217 refcount_t refcount; 218 219 void *priv_ctx_tx; 220 void *priv_ctx_rx; 221 222 u8 tx_conf:3; 223 u8 rx_conf:3; 224 225 struct cipher_context tx; 226 struct cipher_context rx; 227 228 struct scatterlist *partially_sent_record; 229 u16 partially_sent_offset; 230 231 unsigned long flags; 232 bool in_tcp_sendpages; 233 bool pending_open_record_frags; 234 235 int (*push_pending_record)(struct sock *sk, int flags); 236 237 void (*sk_write_space)(struct sock *sk); 238 void (*sk_destruct)(struct sock *sk); 239 void (*sk_proto_close)(struct sock *sk, long timeout); 240 241 int (*setsockopt)(struct sock *sk, int level, 242 int optname, char __user *optval, 243 unsigned int optlen); 244 int (*getsockopt)(struct sock *sk, int level, 245 int optname, char __user *optval, 246 int __user *optlen); 247 int (*hash)(struct sock *sk); 248 void (*unhash)(struct sock *sk); 249 }; 250 251 struct tls_offload_context_rx { 252 /* sw must be the first member of tls_offload_context_rx */ 253 struct tls_sw_context_rx sw; 254 atomic64_t resync_req; 255 u8 driver_state[]; 256 /* The TLS layer reserves room for driver specific state 257 * Currently the belief is that there is not enough 258 * driver specific state to justify another layer of indirection 259 */ 260 }; 261 262 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 263 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \ 264 TLS_DRIVER_STATE_SIZE) 265 266 int wait_on_pending_writer(struct sock *sk, long *timeo); 267 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 268 int __user *optlen); 269 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 270 unsigned int optlen); 271 272 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 273 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 274 int tls_sw_sendpage(struct sock *sk, struct page *page, 275 int offset, size_t size, int flags); 276 void tls_sw_close(struct sock *sk, long timeout); 277 void tls_sw_free_resources_tx(struct sock *sk); 278 void tls_sw_free_resources_rx(struct sock *sk); 279 void tls_sw_release_resources_rx(struct sock *sk); 280 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 281 int nonblock, int flags, int *addr_len); 282 bool tls_sw_stream_read(const struct sock *sk); 283 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 284 struct pipe_inode_info *pipe, 285 size_t len, unsigned int flags); 286 287 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 288 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 289 int tls_device_sendpage(struct sock *sk, struct page *page, 290 int offset, size_t size, int flags); 291 void tls_device_sk_destruct(struct sock *sk); 292 void tls_device_init(void); 293 void tls_device_cleanup(void); 294 int tls_tx_records(struct sock *sk, int flags); 295 296 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 297 u32 seq, u64 *p_record_sn); 298 299 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 300 { 301 return rec->len == 0; 302 } 303 304 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 305 { 306 return rec->end_seq - rec->len; 307 } 308 309 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx); 310 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 311 struct scatterlist *sg, u16 first_offset, 312 int flags); 313 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 314 int flags); 315 316 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 317 int flags, long *timeo); 318 319 static inline bool tls_is_pending_closed_record(struct tls_context *ctx) 320 { 321 return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 322 } 323 324 static inline int tls_complete_pending_work(struct sock *sk, 325 struct tls_context *ctx, 326 int flags, long *timeo) 327 { 328 int rc = 0; 329 330 if (unlikely(sk->sk_write_pending)) 331 rc = wait_on_pending_writer(sk, timeo); 332 333 if (!rc && tls_is_pending_closed_record(ctx)) 334 rc = tls_push_pending_closed_record(sk, ctx, flags, timeo); 335 336 return rc; 337 } 338 339 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 340 { 341 return !!ctx->partially_sent_record; 342 } 343 344 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 345 { 346 return tls_ctx->pending_open_record_frags; 347 } 348 349 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 350 { 351 struct tls_rec *rec; 352 353 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 354 if (!rec) 355 return false; 356 357 return READ_ONCE(rec->tx_ready); 358 } 359 360 struct sk_buff * 361 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 362 struct sk_buff *skb); 363 364 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 365 { 366 #ifdef CONFIG_SOCK_VALIDATE_XMIT 367 return sk_fullsock(sk) & 368 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 369 &tls_validate_xmit_skb); 370 #else 371 return false; 372 #endif 373 } 374 375 static inline void tls_err_abort(struct sock *sk, int err) 376 { 377 sk->sk_err = err; 378 sk->sk_error_report(sk); 379 } 380 381 static inline bool tls_bigint_increment(unsigned char *seq, int len) 382 { 383 int i; 384 385 for (i = len - 1; i >= 0; i--) { 386 ++seq[i]; 387 if (seq[i] != 0) 388 break; 389 } 390 391 return (i == -1); 392 } 393 394 static inline void tls_advance_record_sn(struct sock *sk, 395 struct cipher_context *ctx) 396 { 397 if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size)) 398 tls_err_abort(sk, EBADMSG); 399 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 400 ctx->iv_size); 401 } 402 403 static inline void tls_fill_prepend(struct tls_context *ctx, 404 char *buf, 405 size_t plaintext_len, 406 unsigned char record_type) 407 { 408 size_t pkt_len, iv_size = ctx->tx.iv_size; 409 410 pkt_len = plaintext_len + iv_size + ctx->tx.tag_size; 411 412 /* we cover nonce explicit here as well, so buf should be of 413 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 414 */ 415 buf[0] = record_type; 416 buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version); 417 buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version); 418 /* we can use IV for nonce explicit according to spec */ 419 buf[3] = pkt_len >> 8; 420 buf[4] = pkt_len & 0xFF; 421 memcpy(buf + TLS_NONCE_OFFSET, 422 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 423 } 424 425 static inline void tls_make_aad(char *buf, 426 size_t size, 427 char *record_sequence, 428 int record_sequence_size, 429 unsigned char record_type) 430 { 431 memcpy(buf, record_sequence, record_sequence_size); 432 433 buf[8] = record_type; 434 buf[9] = TLS_1_2_VERSION_MAJOR; 435 buf[10] = TLS_1_2_VERSION_MINOR; 436 buf[11] = size >> 8; 437 buf[12] = size & 0xFF; 438 } 439 440 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 441 { 442 struct inet_connection_sock *icsk = inet_csk(sk); 443 444 return icsk->icsk_ulp_data; 445 } 446 447 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 448 const struct tls_context *tls_ctx) 449 { 450 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 451 } 452 453 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 454 const struct tls_context *tls_ctx) 455 { 456 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 457 } 458 459 static inline struct tls_offload_context_tx * 460 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 461 { 462 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 463 } 464 465 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 466 { 467 struct tls_context *ctx = tls_get_ctx(sk); 468 469 if (!ctx) 470 return false; 471 return !!tls_sw_ctx_tx(ctx); 472 } 473 474 static inline struct tls_offload_context_rx * 475 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 476 { 477 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 478 } 479 480 /* The TLS context is valid until sk_destruct is called */ 481 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 482 { 483 struct tls_context *tls_ctx = tls_get_ctx(sk); 484 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 485 486 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1)); 487 } 488 489 490 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 491 unsigned char *record_type); 492 void tls_register_device(struct tls_device *device); 493 void tls_unregister_device(struct tls_device *device); 494 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); 495 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 496 struct scatterlist *sgout); 497 498 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 499 struct net_device *dev, 500 struct sk_buff *skb); 501 502 int tls_sw_fallback_init(struct sock *sk, 503 struct tls_offload_context_tx *offload_ctx, 504 struct tls_crypto_info *crypto_info); 505 506 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 507 508 void tls_device_offload_cleanup_rx(struct sock *sk); 509 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn); 510 511 #endif /* _TLS_OFFLOAD_H */ 512