xref: /openbmc/linux/include/net/tls.h (revision 2425c81f)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 #define TLS_SM4_CCM_IV_B0_BYTE		2
78 
79 #define __TLS_INC_STATS(net, field)				\
80 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
81 #define TLS_INC_STATS(net, field)				\
82 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
83 #define TLS_DEC_STATS(net, field)				\
84 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
85 
86 enum {
87 	TLS_BASE,
88 	TLS_SW,
89 	TLS_HW,
90 	TLS_HW_RECORD,
91 	TLS_NUM_CONFIG,
92 };
93 
94 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
95  * allocated or mapped for each TLS record. After encryption, the records are
96  * stores in a linked list.
97  */
98 struct tls_rec {
99 	struct list_head list;
100 	int tx_ready;
101 	int tx_flags;
102 
103 	struct sk_msg msg_plaintext;
104 	struct sk_msg msg_encrypted;
105 
106 	/* AAD | msg_plaintext.sg.data | sg_tag */
107 	struct scatterlist sg_aead_in[2];
108 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
109 	struct scatterlist sg_aead_out[2];
110 
111 	char content_type;
112 	struct scatterlist sg_content_type;
113 
114 	char aad_space[TLS_AAD_SPACE_SIZE];
115 	u8 iv_data[MAX_IV_SIZE];
116 	struct aead_request aead_req;
117 	u8 aead_req_ctx[];
118 };
119 
120 struct tls_msg {
121 	struct strp_msg rxm;
122 	u8 control;
123 };
124 
125 struct tx_work {
126 	struct delayed_work work;
127 	struct sock *sk;
128 };
129 
130 struct tls_sw_context_tx {
131 	struct crypto_aead *aead_send;
132 	struct crypto_wait async_wait;
133 	struct tx_work tx_work;
134 	struct tls_rec *open_rec;
135 	struct list_head tx_list;
136 	atomic_t encrypt_pending;
137 	/* protect crypto_wait with encrypt_pending */
138 	spinlock_t encrypt_compl_lock;
139 	int async_notify;
140 	u8 async_capable:1;
141 
142 #define BIT_TX_SCHEDULED	0
143 #define BIT_TX_CLOSING		1
144 	unsigned long tx_bitmask;
145 };
146 
147 struct tls_sw_context_rx {
148 	struct crypto_aead *aead_recv;
149 	struct crypto_wait async_wait;
150 	struct strparser strp;
151 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
152 	void (*saved_data_ready)(struct sock *sk);
153 
154 	struct sk_buff *recv_pkt;
155 	u8 control;
156 	u8 async_capable:1;
157 	u8 decrypted:1;
158 	atomic_t decrypt_pending;
159 	/* protect crypto_wait with decrypt_pending*/
160 	spinlock_t decrypt_compl_lock;
161 	bool async_notify;
162 };
163 
164 struct tls_record_info {
165 	struct list_head list;
166 	u32 end_seq;
167 	int len;
168 	int num_frags;
169 	skb_frag_t frags[MAX_SKB_FRAGS];
170 };
171 
172 struct tls_offload_context_tx {
173 	struct crypto_aead *aead_send;
174 	spinlock_t lock;	/* protects records list */
175 	struct list_head records_list;
176 	struct tls_record_info *open_record;
177 	struct tls_record_info *retransmit_hint;
178 	u64 hint_record_sn;
179 	u64 unacked_record_sn;
180 
181 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
182 	void (*sk_destruct)(struct sock *sk);
183 	u8 driver_state[] __aligned(8);
184 	/* The TLS layer reserves room for driver specific state
185 	 * Currently the belief is that there is not enough
186 	 * driver specific state to justify another layer of indirection
187 	 */
188 #define TLS_DRIVER_STATE_SIZE_TX	16
189 };
190 
191 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
192 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
193 
194 enum tls_context_flags {
195 	/* tls_device_down was called after the netdev went down, device state
196 	 * was released, and kTLS works in software, even though rx_conf is
197 	 * still TLS_HW (needed for transition).
198 	 */
199 	TLS_RX_DEV_DEGRADED = 0,
200 	/* Unlike RX where resync is driven entirely by the core in TX only
201 	 * the driver knows when things went out of sync, so we need the flag
202 	 * to be atomic.
203 	 */
204 	TLS_TX_SYNC_SCHED = 1,
205 	/* tls_dev_del was called for the RX side, device state was released,
206 	 * but tls_ctx->netdev might still be kept, because TX-side driver
207 	 * resources might not be released yet. Used to prevent the second
208 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
209 	 */
210 	TLS_RX_DEV_CLOSED = 2,
211 };
212 
213 struct cipher_context {
214 	char *iv;
215 	char *rec_seq;
216 };
217 
218 union tls_crypto_context {
219 	struct tls_crypto_info info;
220 	union {
221 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
222 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
223 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
224 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
225 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
226 	};
227 };
228 
229 struct tls_prot_info {
230 	u16 version;
231 	u16 cipher_type;
232 	u16 prepend_size;
233 	u16 tag_size;
234 	u16 overhead_size;
235 	u16 iv_size;
236 	u16 salt_size;
237 	u16 rec_seq_size;
238 	u16 aad_size;
239 	u16 tail_size;
240 };
241 
242 struct tls_context {
243 	/* read-only cache line */
244 	struct tls_prot_info prot_info;
245 
246 	u8 tx_conf:3;
247 	u8 rx_conf:3;
248 
249 	int (*push_pending_record)(struct sock *sk, int flags);
250 	void (*sk_write_space)(struct sock *sk);
251 
252 	void *priv_ctx_tx;
253 	void *priv_ctx_rx;
254 
255 	struct net_device *netdev;
256 
257 	/* rw cache line */
258 	struct cipher_context tx;
259 	struct cipher_context rx;
260 
261 	struct scatterlist *partially_sent_record;
262 	u16 partially_sent_offset;
263 
264 	bool in_tcp_sendpages;
265 	bool pending_open_record_frags;
266 
267 	struct mutex tx_lock; /* protects partially_sent_* fields and
268 			       * per-type TX fields
269 			       */
270 	unsigned long flags;
271 
272 	/* cache cold stuff */
273 	struct proto *sk_proto;
274 	struct sock *sk;
275 
276 	void (*sk_destruct)(struct sock *sk);
277 
278 	union tls_crypto_context crypto_send;
279 	union tls_crypto_context crypto_recv;
280 
281 	struct list_head list;
282 	refcount_t refcount;
283 	struct rcu_head rcu;
284 };
285 
286 enum tls_offload_ctx_dir {
287 	TLS_OFFLOAD_CTX_DIR_RX,
288 	TLS_OFFLOAD_CTX_DIR_TX,
289 };
290 
291 struct tlsdev_ops {
292 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
293 			   enum tls_offload_ctx_dir direction,
294 			   struct tls_crypto_info *crypto_info,
295 			   u32 start_offload_tcp_sn);
296 	void (*tls_dev_del)(struct net_device *netdev,
297 			    struct tls_context *ctx,
298 			    enum tls_offload_ctx_dir direction);
299 	int (*tls_dev_resync)(struct net_device *netdev,
300 			      struct sock *sk, u32 seq, u8 *rcd_sn,
301 			      enum tls_offload_ctx_dir direction);
302 };
303 
304 enum tls_offload_sync_type {
305 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
306 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
307 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
308 };
309 
310 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
311 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
312 
313 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
314 struct tls_offload_resync_async {
315 	atomic64_t req;
316 	u16 loglen;
317 	u16 rcd_delta;
318 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
319 };
320 
321 struct tls_offload_context_rx {
322 	/* sw must be the first member of tls_offload_context_rx */
323 	struct tls_sw_context_rx sw;
324 	enum tls_offload_sync_type resync_type;
325 	/* this member is set regardless of resync_type, to avoid branches */
326 	u8 resync_nh_reset:1;
327 	/* CORE_NEXT_HINT-only member, but use the hole here */
328 	u8 resync_nh_do_now:1;
329 	union {
330 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
331 		struct {
332 			atomic64_t resync_req;
333 		};
334 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
335 		struct {
336 			u32 decrypted_failed;
337 			u32 decrypted_tgt;
338 		} resync_nh;
339 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
340 		struct {
341 			struct tls_offload_resync_async *resync_async;
342 		};
343 	};
344 	u8 driver_state[] __aligned(8);
345 	/* The TLS layer reserves room for driver specific state
346 	 * Currently the belief is that there is not enough
347 	 * driver specific state to justify another layer of indirection
348 	 */
349 #define TLS_DRIVER_STATE_SIZE_RX	8
350 };
351 
352 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
353 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
354 
355 struct tls_context *tls_ctx_create(struct sock *sk);
356 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
357 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
358 
359 int wait_on_pending_writer(struct sock *sk, long *timeo);
360 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
361 		int __user *optlen);
362 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
363 		  unsigned int optlen);
364 void tls_err_abort(struct sock *sk, int err);
365 
366 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
367 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
368 void tls_sw_strparser_done(struct tls_context *tls_ctx);
369 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
370 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
371 			   int offset, size_t size, int flags);
372 int tls_sw_sendpage(struct sock *sk, struct page *page,
373 		    int offset, size_t size, int flags);
374 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
375 void tls_sw_release_resources_tx(struct sock *sk);
376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
377 void tls_sw_free_resources_rx(struct sock *sk);
378 void tls_sw_release_resources_rx(struct sock *sk);
379 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
380 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
381 		   int nonblock, int flags, int *addr_len);
382 bool tls_sw_sock_is_readable(struct sock *sk);
383 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
384 			   struct pipe_inode_info *pipe,
385 			   size_t len, unsigned int flags);
386 
387 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
388 int tls_device_sendpage(struct sock *sk, struct page *page,
389 			int offset, size_t size, int flags);
390 int tls_tx_records(struct sock *sk, int flags);
391 
392 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
393 				       u32 seq, u64 *p_record_sn);
394 
395 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
396 {
397 	return rec->len == 0;
398 }
399 
400 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
401 {
402 	return rec->end_seq - rec->len;
403 }
404 
405 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
406 		struct scatterlist *sg, u16 first_offset,
407 		int flags);
408 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
409 			    int flags);
410 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
411 
412 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
413 {
414 	return (struct tls_msg *)strp_msg(skb);
415 }
416 
417 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
418 {
419 	return !!ctx->partially_sent_record;
420 }
421 
422 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
423 {
424 	return tls_ctx->pending_open_record_frags;
425 }
426 
427 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
428 {
429 	struct tls_rec *rec;
430 
431 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
432 	if (!rec)
433 		return false;
434 
435 	return READ_ONCE(rec->tx_ready);
436 }
437 
438 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
439 {
440 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
441 
442 	switch (config) {
443 	case TLS_BASE:
444 		return TLS_CONF_BASE;
445 	case TLS_SW:
446 		return TLS_CONF_SW;
447 	case TLS_HW:
448 		return TLS_CONF_HW;
449 	case TLS_HW_RECORD:
450 		return TLS_CONF_HW_RECORD;
451 	}
452 	return 0;
453 }
454 
455 struct sk_buff *
456 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
457 		      struct sk_buff *skb);
458 struct sk_buff *
459 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
460 			 struct sk_buff *skb);
461 
462 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
463 {
464 #ifdef CONFIG_SOCK_VALIDATE_XMIT
465 	return sk_fullsock(sk) &&
466 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
467 	       &tls_validate_xmit_skb);
468 #else
469 	return false;
470 #endif
471 }
472 
473 static inline bool tls_bigint_increment(unsigned char *seq, int len)
474 {
475 	int i;
476 
477 	for (i = len - 1; i >= 0; i--) {
478 		++seq[i];
479 		if (seq[i] != 0)
480 			break;
481 	}
482 
483 	return (i == -1);
484 }
485 
486 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
487 {
488 	u64 rcd_sn;
489 	__be64 *p;
490 
491 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
492 
493 	p = (__be64 *)seq;
494 	rcd_sn = be64_to_cpu(*p);
495 	*p = cpu_to_be64(rcd_sn - n);
496 }
497 
498 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
499 {
500 	struct inet_connection_sock *icsk = inet_csk(sk);
501 
502 	/* Use RCU on icsk_ulp_data only for sock diag code,
503 	 * TLS data path doesn't need rcu_dereference().
504 	 */
505 	return (__force void *)icsk->icsk_ulp_data;
506 }
507 
508 static inline void tls_advance_record_sn(struct sock *sk,
509 					 struct tls_prot_info *prot,
510 					 struct cipher_context *ctx)
511 {
512 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
513 		tls_err_abort(sk, -EBADMSG);
514 
515 	if (prot->version != TLS_1_3_VERSION &&
516 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
517 		tls_bigint_increment(ctx->iv + prot->salt_size,
518 				     prot->iv_size);
519 }
520 
521 static inline void tls_fill_prepend(struct tls_context *ctx,
522 			     char *buf,
523 			     size_t plaintext_len,
524 			     unsigned char record_type)
525 {
526 	struct tls_prot_info *prot = &ctx->prot_info;
527 	size_t pkt_len, iv_size = prot->iv_size;
528 
529 	pkt_len = plaintext_len + prot->tag_size;
530 	if (prot->version != TLS_1_3_VERSION &&
531 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
532 		pkt_len += iv_size;
533 
534 		memcpy(buf + TLS_NONCE_OFFSET,
535 		       ctx->tx.iv + prot->salt_size, iv_size);
536 	}
537 
538 	/* we cover nonce explicit here as well, so buf should be of
539 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
540 	 */
541 	buf[0] = prot->version == TLS_1_3_VERSION ?
542 		   TLS_RECORD_TYPE_DATA : record_type;
543 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
544 	buf[1] = TLS_1_2_VERSION_MINOR;
545 	buf[2] = TLS_1_2_VERSION_MAJOR;
546 	/* we can use IV for nonce explicit according to spec */
547 	buf[3] = pkt_len >> 8;
548 	buf[4] = pkt_len & 0xFF;
549 }
550 
551 static inline void tls_make_aad(char *buf,
552 				size_t size,
553 				char *record_sequence,
554 				unsigned char record_type,
555 				struct tls_prot_info *prot)
556 {
557 	if (prot->version != TLS_1_3_VERSION) {
558 		memcpy(buf, record_sequence, prot->rec_seq_size);
559 		buf += 8;
560 	} else {
561 		size += prot->tag_size;
562 	}
563 
564 	buf[0] = prot->version == TLS_1_3_VERSION ?
565 		  TLS_RECORD_TYPE_DATA : record_type;
566 	buf[1] = TLS_1_2_VERSION_MAJOR;
567 	buf[2] = TLS_1_2_VERSION_MINOR;
568 	buf[3] = size >> 8;
569 	buf[4] = size & 0xFF;
570 }
571 
572 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
573 {
574 	int i;
575 
576 	if (prot->version == TLS_1_3_VERSION ||
577 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
578 		for (i = 0; i < 8; i++)
579 			iv[i + 4] ^= seq[i];
580 	}
581 }
582 
583 
584 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
585 		const struct tls_context *tls_ctx)
586 {
587 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
588 }
589 
590 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
591 		const struct tls_context *tls_ctx)
592 {
593 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
594 }
595 
596 static inline struct tls_offload_context_tx *
597 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
598 {
599 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
600 }
601 
602 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
603 {
604 	struct tls_context *ctx = tls_get_ctx(sk);
605 
606 	if (!ctx)
607 		return false;
608 	return !!tls_sw_ctx_tx(ctx);
609 }
610 
611 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
612 {
613 	struct tls_context *ctx = tls_get_ctx(sk);
614 
615 	if (!ctx)
616 		return false;
617 	return !!tls_sw_ctx_rx(ctx);
618 }
619 
620 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
621 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
622 
623 static inline struct tls_offload_context_rx *
624 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
625 {
626 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
627 }
628 
629 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
630 				     enum tls_offload_ctx_dir direction)
631 {
632 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
633 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
634 	else
635 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
636 }
637 
638 static inline void *
639 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
640 {
641 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
642 }
643 
644 #define RESYNC_REQ BIT(0)
645 #define RESYNC_REQ_ASYNC BIT(1)
646 /* The TLS context is valid until sk_destruct is called */
647 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
648 {
649 	struct tls_context *tls_ctx = tls_get_ctx(sk);
650 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
651 
652 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
653 }
654 
655 /* Log all TLS record header TCP sequences in [seq, seq+len] */
656 static inline void
657 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
658 {
659 	struct tls_context *tls_ctx = tls_get_ctx(sk);
660 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
661 
662 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
663 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
664 	rx_ctx->resync_async->loglen = 0;
665 	rx_ctx->resync_async->rcd_delta = 0;
666 }
667 
668 static inline void
669 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
670 {
671 	struct tls_context *tls_ctx = tls_get_ctx(sk);
672 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
673 
674 	atomic64_set(&rx_ctx->resync_async->req,
675 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
676 }
677 
678 static inline void
679 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
680 {
681 	struct tls_context *tls_ctx = tls_get_ctx(sk);
682 
683 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
684 }
685 
686 /* Driver's seq tracking has to be disabled until resync succeeded */
687 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
688 {
689 	struct tls_context *tls_ctx = tls_get_ctx(sk);
690 	bool ret;
691 
692 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
693 	smp_mb__after_atomic();
694 	return ret;
695 }
696 
697 int __net_init tls_proc_init(struct net *net);
698 void __net_exit tls_proc_fini(struct net *net);
699 
700 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
701 		      unsigned char *record_type);
702 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
703 		struct scatterlist *sgout);
704 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
705 
706 int tls_sw_fallback_init(struct sock *sk,
707 			 struct tls_offload_context_tx *offload_ctx,
708 			 struct tls_crypto_info *crypto_info);
709 
710 #ifdef CONFIG_TLS_DEVICE
711 void tls_device_init(void);
712 void tls_device_cleanup(void);
713 void tls_device_sk_destruct(struct sock *sk);
714 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
715 void tls_device_free_resources_tx(struct sock *sk);
716 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
717 void tls_device_offload_cleanup_rx(struct sock *sk);
718 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
719 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
720 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
721 			 struct sk_buff *skb, struct strp_msg *rxm);
722 
723 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
724 {
725 	if (!sk_fullsock(sk) ||
726 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
727 		return false;
728 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
729 }
730 #else
731 static inline void tls_device_init(void) {}
732 static inline void tls_device_cleanup(void) {}
733 
734 static inline int
735 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
736 {
737 	return -EOPNOTSUPP;
738 }
739 
740 static inline void tls_device_free_resources_tx(struct sock *sk) {}
741 
742 static inline int
743 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
744 {
745 	return -EOPNOTSUPP;
746 }
747 
748 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
749 static inline void
750 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
751 
752 static inline int
753 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
754 		     struct sk_buff *skb, struct strp_msg *rxm)
755 {
756 	return 0;
757 }
758 #endif
759 #endif /* _TLS_OFFLOAD_H */
760