1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tls_msg { 122 struct strp_msg rxm; 123 u8 control; 124 }; 125 126 struct tx_work { 127 struct delayed_work work; 128 struct sock *sk; 129 }; 130 131 struct tls_sw_context_tx { 132 struct crypto_aead *aead_send; 133 struct crypto_wait async_wait; 134 struct tx_work tx_work; 135 struct tls_rec *open_rec; 136 struct list_head tx_list; 137 atomic_t encrypt_pending; 138 /* protect crypto_wait with encrypt_pending */ 139 spinlock_t encrypt_compl_lock; 140 int async_notify; 141 u8 async_capable:1; 142 143 #define BIT_TX_SCHEDULED 0 144 #define BIT_TX_CLOSING 1 145 unsigned long tx_bitmask; 146 }; 147 148 struct tls_sw_context_rx { 149 struct crypto_aead *aead_recv; 150 struct crypto_wait async_wait; 151 struct strparser strp; 152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 153 void (*saved_data_ready)(struct sock *sk); 154 155 struct sk_buff *recv_pkt; 156 u8 control; 157 u8 async_capable:1; 158 u8 decrypted:1; 159 atomic_t decrypt_pending; 160 /* protect crypto_wait with decrypt_pending*/ 161 spinlock_t decrypt_compl_lock; 162 bool async_notify; 163 }; 164 165 struct tls_record_info { 166 struct list_head list; 167 u32 end_seq; 168 int len; 169 int num_frags; 170 skb_frag_t frags[MAX_SKB_FRAGS]; 171 }; 172 173 struct tls_offload_context_tx { 174 struct crypto_aead *aead_send; 175 spinlock_t lock; /* protects records list */ 176 struct list_head records_list; 177 struct tls_record_info *open_record; 178 struct tls_record_info *retransmit_hint; 179 u64 hint_record_sn; 180 u64 unacked_record_sn; 181 182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 183 void (*sk_destruct)(struct sock *sk); 184 u8 driver_state[] __aligned(8); 185 /* The TLS layer reserves room for driver specific state 186 * Currently the belief is that there is not enough 187 * driver specific state to justify another layer of indirection 188 */ 189 #define TLS_DRIVER_STATE_SIZE_TX 16 190 }; 191 192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 194 195 enum tls_context_flags { 196 TLS_RX_SYNC_RUNNING = 0, 197 /* Unlike RX where resync is driven entirely by the core in TX only 198 * the driver knows when things went out of sync, so we need the flag 199 * to be atomic. 200 */ 201 TLS_TX_SYNC_SCHED = 1, 202 }; 203 204 struct cipher_context { 205 char *iv; 206 char *rec_seq; 207 }; 208 209 union tls_crypto_context { 210 struct tls_crypto_info info; 211 union { 212 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 213 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 214 }; 215 }; 216 217 struct tls_prot_info { 218 u16 version; 219 u16 cipher_type; 220 u16 prepend_size; 221 u16 tag_size; 222 u16 overhead_size; 223 u16 iv_size; 224 u16 salt_size; 225 u16 rec_seq_size; 226 u16 aad_size; 227 u16 tail_size; 228 }; 229 230 struct tls_context { 231 /* read-only cache line */ 232 struct tls_prot_info prot_info; 233 234 u8 tx_conf:3; 235 u8 rx_conf:3; 236 237 int (*push_pending_record)(struct sock *sk, int flags); 238 void (*sk_write_space)(struct sock *sk); 239 240 void *priv_ctx_tx; 241 void *priv_ctx_rx; 242 243 struct net_device *netdev; 244 245 /* rw cache line */ 246 struct cipher_context tx; 247 struct cipher_context rx; 248 249 struct scatterlist *partially_sent_record; 250 u16 partially_sent_offset; 251 252 bool in_tcp_sendpages; 253 bool pending_open_record_frags; 254 255 struct mutex tx_lock; /* protects partially_sent_* fields and 256 * per-type TX fields 257 */ 258 unsigned long flags; 259 260 /* cache cold stuff */ 261 struct proto *sk_proto; 262 263 void (*sk_destruct)(struct sock *sk); 264 265 union tls_crypto_context crypto_send; 266 union tls_crypto_context crypto_recv; 267 268 struct list_head list; 269 refcount_t refcount; 270 struct rcu_head rcu; 271 }; 272 273 enum tls_offload_ctx_dir { 274 TLS_OFFLOAD_CTX_DIR_RX, 275 TLS_OFFLOAD_CTX_DIR_TX, 276 }; 277 278 struct tlsdev_ops { 279 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 280 enum tls_offload_ctx_dir direction, 281 struct tls_crypto_info *crypto_info, 282 u32 start_offload_tcp_sn); 283 void (*tls_dev_del)(struct net_device *netdev, 284 struct tls_context *ctx, 285 enum tls_offload_ctx_dir direction); 286 int (*tls_dev_resync)(struct net_device *netdev, 287 struct sock *sk, u32 seq, u8 *rcd_sn, 288 enum tls_offload_ctx_dir direction); 289 }; 290 291 enum tls_offload_sync_type { 292 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 293 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 294 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 295 }; 296 297 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 298 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 299 300 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 301 struct tls_offload_resync_async { 302 atomic64_t req; 303 u32 loglen; 304 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 305 }; 306 307 struct tls_offload_context_rx { 308 /* sw must be the first member of tls_offload_context_rx */ 309 struct tls_sw_context_rx sw; 310 enum tls_offload_sync_type resync_type; 311 /* this member is set regardless of resync_type, to avoid branches */ 312 u8 resync_nh_reset:1; 313 /* CORE_NEXT_HINT-only member, but use the hole here */ 314 u8 resync_nh_do_now:1; 315 union { 316 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 317 struct { 318 atomic64_t resync_req; 319 }; 320 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 321 struct { 322 u32 decrypted_failed; 323 u32 decrypted_tgt; 324 } resync_nh; 325 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 326 struct { 327 struct tls_offload_resync_async *resync_async; 328 }; 329 }; 330 u8 driver_state[] __aligned(8); 331 /* The TLS layer reserves room for driver specific state 332 * Currently the belief is that there is not enough 333 * driver specific state to justify another layer of indirection 334 */ 335 #define TLS_DRIVER_STATE_SIZE_RX 8 336 }; 337 338 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 339 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 340 341 struct tls_context *tls_ctx_create(struct sock *sk); 342 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 343 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 344 345 int wait_on_pending_writer(struct sock *sk, long *timeo); 346 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 347 int __user *optlen); 348 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 349 unsigned int optlen); 350 351 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 352 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 353 void tls_sw_strparser_done(struct tls_context *tls_ctx); 354 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 355 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 356 int offset, size_t size, int flags); 357 int tls_sw_sendpage(struct sock *sk, struct page *page, 358 int offset, size_t size, int flags); 359 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 360 void tls_sw_release_resources_tx(struct sock *sk); 361 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 362 void tls_sw_free_resources_rx(struct sock *sk); 363 void tls_sw_release_resources_rx(struct sock *sk); 364 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 365 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 366 int nonblock, int flags, int *addr_len); 367 bool tls_sw_stream_read(const struct sock *sk); 368 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 369 struct pipe_inode_info *pipe, 370 size_t len, unsigned int flags); 371 372 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 373 int tls_device_sendpage(struct sock *sk, struct page *page, 374 int offset, size_t size, int flags); 375 int tls_tx_records(struct sock *sk, int flags); 376 377 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 378 u32 seq, u64 *p_record_sn); 379 380 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 381 { 382 return rec->len == 0; 383 } 384 385 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 386 { 387 return rec->end_seq - rec->len; 388 } 389 390 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 391 struct scatterlist *sg, u16 first_offset, 392 int flags); 393 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 394 int flags); 395 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 396 397 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 398 { 399 return (struct tls_msg *)strp_msg(skb); 400 } 401 402 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 403 { 404 return !!ctx->partially_sent_record; 405 } 406 407 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 408 { 409 return tls_ctx->pending_open_record_frags; 410 } 411 412 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 413 { 414 struct tls_rec *rec; 415 416 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 417 if (!rec) 418 return false; 419 420 return READ_ONCE(rec->tx_ready); 421 } 422 423 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 424 { 425 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 426 427 switch (config) { 428 case TLS_BASE: 429 return TLS_CONF_BASE; 430 case TLS_SW: 431 return TLS_CONF_SW; 432 case TLS_HW: 433 return TLS_CONF_HW; 434 case TLS_HW_RECORD: 435 return TLS_CONF_HW_RECORD; 436 } 437 return 0; 438 } 439 440 struct sk_buff * 441 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 442 struct sk_buff *skb); 443 444 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 445 { 446 #ifdef CONFIG_SOCK_VALIDATE_XMIT 447 return sk_fullsock(sk) && 448 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 449 &tls_validate_xmit_skb); 450 #else 451 return false; 452 #endif 453 } 454 455 static inline void tls_err_abort(struct sock *sk, int err) 456 { 457 sk->sk_err = err; 458 sk->sk_error_report(sk); 459 } 460 461 static inline bool tls_bigint_increment(unsigned char *seq, int len) 462 { 463 int i; 464 465 for (i = len - 1; i >= 0; i--) { 466 ++seq[i]; 467 if (seq[i] != 0) 468 break; 469 } 470 471 return (i == -1); 472 } 473 474 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 475 { 476 struct inet_connection_sock *icsk = inet_csk(sk); 477 478 /* Use RCU on icsk_ulp_data only for sock diag code, 479 * TLS data path doesn't need rcu_dereference(). 480 */ 481 return (__force void *)icsk->icsk_ulp_data; 482 } 483 484 static inline void tls_advance_record_sn(struct sock *sk, 485 struct tls_prot_info *prot, 486 struct cipher_context *ctx) 487 { 488 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 489 tls_err_abort(sk, EBADMSG); 490 491 if (prot->version != TLS_1_3_VERSION) 492 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 493 prot->iv_size); 494 } 495 496 static inline void tls_fill_prepend(struct tls_context *ctx, 497 char *buf, 498 size_t plaintext_len, 499 unsigned char record_type, 500 int version) 501 { 502 struct tls_prot_info *prot = &ctx->prot_info; 503 size_t pkt_len, iv_size = prot->iv_size; 504 505 pkt_len = plaintext_len + prot->tag_size; 506 if (version != TLS_1_3_VERSION) { 507 pkt_len += iv_size; 508 509 memcpy(buf + TLS_NONCE_OFFSET, 510 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 511 } 512 513 /* we cover nonce explicit here as well, so buf should be of 514 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 515 */ 516 buf[0] = version == TLS_1_3_VERSION ? 517 TLS_RECORD_TYPE_DATA : record_type; 518 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 519 buf[1] = TLS_1_2_VERSION_MINOR; 520 buf[2] = TLS_1_2_VERSION_MAJOR; 521 /* we can use IV for nonce explicit according to spec */ 522 buf[3] = pkt_len >> 8; 523 buf[4] = pkt_len & 0xFF; 524 } 525 526 static inline void tls_make_aad(char *buf, 527 size_t size, 528 char *record_sequence, 529 int record_sequence_size, 530 unsigned char record_type, 531 int version) 532 { 533 if (version != TLS_1_3_VERSION) { 534 memcpy(buf, record_sequence, record_sequence_size); 535 buf += 8; 536 } else { 537 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 538 } 539 540 buf[0] = version == TLS_1_3_VERSION ? 541 TLS_RECORD_TYPE_DATA : record_type; 542 buf[1] = TLS_1_2_VERSION_MAJOR; 543 buf[2] = TLS_1_2_VERSION_MINOR; 544 buf[3] = size >> 8; 545 buf[4] = size & 0xFF; 546 } 547 548 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 549 { 550 int i; 551 552 if (version == TLS_1_3_VERSION) { 553 for (i = 0; i < 8; i++) 554 iv[i + 4] ^= seq[i]; 555 } 556 } 557 558 559 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 560 const struct tls_context *tls_ctx) 561 { 562 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 563 } 564 565 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 566 const struct tls_context *tls_ctx) 567 { 568 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 569 } 570 571 static inline struct tls_offload_context_tx * 572 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 573 { 574 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 575 } 576 577 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 578 { 579 struct tls_context *ctx = tls_get_ctx(sk); 580 581 if (!ctx) 582 return false; 583 return !!tls_sw_ctx_tx(ctx); 584 } 585 586 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 587 { 588 struct tls_context *ctx = tls_get_ctx(sk); 589 590 if (!ctx) 591 return false; 592 return !!tls_sw_ctx_rx(ctx); 593 } 594 595 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 596 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 597 598 static inline struct tls_offload_context_rx * 599 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 600 { 601 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 602 } 603 604 #if IS_ENABLED(CONFIG_TLS_DEVICE) 605 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 606 enum tls_offload_ctx_dir direction) 607 { 608 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 609 return tls_offload_ctx_tx(tls_ctx)->driver_state; 610 else 611 return tls_offload_ctx_rx(tls_ctx)->driver_state; 612 } 613 614 static inline void * 615 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 616 { 617 return __tls_driver_ctx(tls_get_ctx(sk), direction); 618 } 619 #endif 620 621 #define RESYNC_REQ BIT(0) 622 #define RESYNC_REQ_ASYNC BIT(1) 623 /* The TLS context is valid until sk_destruct is called */ 624 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 625 { 626 struct tls_context *tls_ctx = tls_get_ctx(sk); 627 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 628 629 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 630 } 631 632 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 633 static inline void 634 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 635 { 636 struct tls_context *tls_ctx = tls_get_ctx(sk); 637 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 638 639 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 640 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 641 rx_ctx->resync_async->loglen = 0; 642 } 643 644 static inline void 645 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 646 { 647 struct tls_context *tls_ctx = tls_get_ctx(sk); 648 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 649 650 atomic64_set(&rx_ctx->resync_async->req, 651 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 652 } 653 654 static inline void 655 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 656 { 657 struct tls_context *tls_ctx = tls_get_ctx(sk); 658 659 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 660 } 661 662 /* Driver's seq tracking has to be disabled until resync succeeded */ 663 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 664 { 665 struct tls_context *tls_ctx = tls_get_ctx(sk); 666 bool ret; 667 668 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 669 smp_mb__after_atomic(); 670 return ret; 671 } 672 673 int __net_init tls_proc_init(struct net *net); 674 void __net_exit tls_proc_fini(struct net *net); 675 676 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 677 unsigned char *record_type); 678 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 679 struct scatterlist *sgout); 680 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 681 682 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 683 struct net_device *dev, 684 struct sk_buff *skb); 685 686 int tls_sw_fallback_init(struct sock *sk, 687 struct tls_offload_context_tx *offload_ctx, 688 struct tls_crypto_info *crypto_info); 689 690 #ifdef CONFIG_TLS_DEVICE 691 void tls_device_init(void); 692 void tls_device_cleanup(void); 693 void tls_device_sk_destruct(struct sock *sk); 694 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 695 void tls_device_free_resources_tx(struct sock *sk); 696 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 697 void tls_device_offload_cleanup_rx(struct sock *sk); 698 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 699 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 700 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 701 struct sk_buff *skb, struct strp_msg *rxm); 702 703 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 704 { 705 if (!sk_fullsock(sk) || 706 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 707 return false; 708 return tls_get_ctx(sk)->rx_conf == TLS_HW; 709 } 710 #else 711 static inline void tls_device_init(void) {} 712 static inline void tls_device_cleanup(void) {} 713 714 static inline int 715 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 716 { 717 return -EOPNOTSUPP; 718 } 719 720 static inline void tls_device_free_resources_tx(struct sock *sk) {} 721 722 static inline int 723 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 724 { 725 return -EOPNOTSUPP; 726 } 727 728 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 729 static inline void 730 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 731 732 static inline int 733 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 734 struct sk_buff *skb, struct strp_msg *rxm) 735 { 736 return 0; 737 } 738 #endif 739 #endif /* _TLS_OFFLOAD_H */ 740