xref: /openbmc/linux/include/net/tls.h (revision 08700dab)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/tcp.h>
47 #include <net/strparser.h>
48 #include <crypto/aead.h>
49 #include <uapi/linux/tls.h>
50 
51 
52 /* Maximum data size carried in a TLS record */
53 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
54 
55 #define TLS_HEADER_SIZE			5
56 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
57 
58 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
59 
60 #define TLS_RECORD_TYPE_DATA		0x17
61 
62 #define TLS_AAD_SPACE_SIZE		13
63 
64 #define MAX_IV_SIZE			16
65 #define TLS_MAX_REC_SEQ_SIZE		8
66 
67 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
68  *
69  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
70  *
71  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
72  * Hence b0 contains (3 - 1) = 2.
73  */
74 #define TLS_AES_CCM_IV_B0_BYTE		2
75 
76 enum {
77 	TLS_BASE,
78 	TLS_SW,
79 	TLS_HW,
80 	TLS_HW_RECORD,
81 	TLS_NUM_CONFIG,
82 };
83 
84 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
85  * allocated or mapped for each TLS record. After encryption, the records are
86  * stores in a linked list.
87  */
88 struct tls_rec {
89 	struct list_head list;
90 	int tx_ready;
91 	int tx_flags;
92 	int inplace_crypto;
93 
94 	struct sk_msg msg_plaintext;
95 	struct sk_msg msg_encrypted;
96 
97 	/* AAD | msg_plaintext.sg.data | sg_tag */
98 	struct scatterlist sg_aead_in[2];
99 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
100 	struct scatterlist sg_aead_out[2];
101 
102 	char content_type;
103 	struct scatterlist sg_content_type;
104 
105 	char aad_space[TLS_AAD_SPACE_SIZE];
106 	u8 iv_data[MAX_IV_SIZE];
107 	struct aead_request aead_req;
108 	u8 aead_req_ctx[];
109 };
110 
111 struct tls_msg {
112 	struct strp_msg rxm;
113 	u8 control;
114 };
115 
116 struct tx_work {
117 	struct delayed_work work;
118 	struct sock *sk;
119 };
120 
121 struct tls_sw_context_tx {
122 	struct crypto_aead *aead_send;
123 	struct crypto_wait async_wait;
124 	struct tx_work tx_work;
125 	struct tls_rec *open_rec;
126 	struct list_head tx_list;
127 	atomic_t encrypt_pending;
128 	int async_notify;
129 	int async_capable;
130 
131 #define BIT_TX_SCHEDULED	0
132 #define BIT_TX_CLOSING		1
133 	unsigned long tx_bitmask;
134 };
135 
136 struct tls_sw_context_rx {
137 	struct crypto_aead *aead_recv;
138 	struct crypto_wait async_wait;
139 	struct strparser strp;
140 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
141 	void (*saved_data_ready)(struct sock *sk);
142 
143 	struct sk_buff *recv_pkt;
144 	u8 control;
145 	int async_capable;
146 	bool decrypted;
147 	atomic_t decrypt_pending;
148 	bool async_notify;
149 };
150 
151 struct tls_record_info {
152 	struct list_head list;
153 	u32 end_seq;
154 	int len;
155 	int num_frags;
156 	skb_frag_t frags[MAX_SKB_FRAGS];
157 };
158 
159 struct tls_offload_context_tx {
160 	struct crypto_aead *aead_send;
161 	spinlock_t lock;	/* protects records list */
162 	struct list_head records_list;
163 	struct tls_record_info *open_record;
164 	struct tls_record_info *retransmit_hint;
165 	u64 hint_record_sn;
166 	u64 unacked_record_sn;
167 
168 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
169 	void (*sk_destruct)(struct sock *sk);
170 	u8 driver_state[] __aligned(8);
171 	/* The TLS layer reserves room for driver specific state
172 	 * Currently the belief is that there is not enough
173 	 * driver specific state to justify another layer of indirection
174 	 */
175 #define TLS_DRIVER_STATE_SIZE_TX	16
176 };
177 
178 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
179 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
180 
181 enum tls_context_flags {
182 	TLS_RX_SYNC_RUNNING = 0,
183 	/* Unlike RX where resync is driven entirely by the core in TX only
184 	 * the driver knows when things went out of sync, so we need the flag
185 	 * to be atomic.
186 	 */
187 	TLS_TX_SYNC_SCHED = 1,
188 };
189 
190 struct cipher_context {
191 	char *iv;
192 	char *rec_seq;
193 };
194 
195 union tls_crypto_context {
196 	struct tls_crypto_info info;
197 	union {
198 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
199 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
200 	};
201 };
202 
203 struct tls_prot_info {
204 	u16 version;
205 	u16 cipher_type;
206 	u16 prepend_size;
207 	u16 tag_size;
208 	u16 overhead_size;
209 	u16 iv_size;
210 	u16 salt_size;
211 	u16 rec_seq_size;
212 	u16 aad_size;
213 	u16 tail_size;
214 };
215 
216 struct tls_context {
217 	/* read-only cache line */
218 	struct tls_prot_info prot_info;
219 
220 	u8 tx_conf:3;
221 	u8 rx_conf:3;
222 
223 	int (*push_pending_record)(struct sock *sk, int flags);
224 	void (*sk_write_space)(struct sock *sk);
225 
226 	void *priv_ctx_tx;
227 	void *priv_ctx_rx;
228 
229 	struct net_device *netdev;
230 
231 	/* rw cache line */
232 	struct cipher_context tx;
233 	struct cipher_context rx;
234 
235 	struct scatterlist *partially_sent_record;
236 	u16 partially_sent_offset;
237 
238 	bool in_tcp_sendpages;
239 	bool pending_open_record_frags;
240 	unsigned long flags;
241 
242 	/* cache cold stuff */
243 	struct proto *sk_proto;
244 
245 	void (*sk_destruct)(struct sock *sk);
246 
247 	union tls_crypto_context crypto_send;
248 	union tls_crypto_context crypto_recv;
249 
250 	struct list_head list;
251 	refcount_t refcount;
252 	struct rcu_head rcu;
253 };
254 
255 enum tls_offload_ctx_dir {
256 	TLS_OFFLOAD_CTX_DIR_RX,
257 	TLS_OFFLOAD_CTX_DIR_TX,
258 };
259 
260 struct tlsdev_ops {
261 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
262 			   enum tls_offload_ctx_dir direction,
263 			   struct tls_crypto_info *crypto_info,
264 			   u32 start_offload_tcp_sn);
265 	void (*tls_dev_del)(struct net_device *netdev,
266 			    struct tls_context *ctx,
267 			    enum tls_offload_ctx_dir direction);
268 	int (*tls_dev_resync)(struct net_device *netdev,
269 			      struct sock *sk, u32 seq, u8 *rcd_sn,
270 			      enum tls_offload_ctx_dir direction);
271 };
272 
273 enum tls_offload_sync_type {
274 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
275 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
276 };
277 
278 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
279 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
280 
281 struct tls_offload_context_rx {
282 	/* sw must be the first member of tls_offload_context_rx */
283 	struct tls_sw_context_rx sw;
284 	enum tls_offload_sync_type resync_type;
285 	/* this member is set regardless of resync_type, to avoid branches */
286 	u8 resync_nh_reset:1;
287 	/* CORE_NEXT_HINT-only member, but use the hole here */
288 	u8 resync_nh_do_now:1;
289 	union {
290 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
291 		struct {
292 			atomic64_t resync_req;
293 		};
294 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
295 		struct {
296 			u32 decrypted_failed;
297 			u32 decrypted_tgt;
298 		} resync_nh;
299 	};
300 	u8 driver_state[] __aligned(8);
301 	/* The TLS layer reserves room for driver specific state
302 	 * Currently the belief is that there is not enough
303 	 * driver specific state to justify another layer of indirection
304 	 */
305 #define TLS_DRIVER_STATE_SIZE_RX	8
306 };
307 
308 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
309 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
310 
311 struct tls_context *tls_ctx_create(struct sock *sk);
312 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
313 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
314 
315 int wait_on_pending_writer(struct sock *sk, long *timeo);
316 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
317 		int __user *optlen);
318 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
319 		  unsigned int optlen);
320 
321 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
322 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
323 void tls_sw_strparser_done(struct tls_context *tls_ctx);
324 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tls_sw_sendpage(struct sock *sk, struct page *page,
326 		    int offset, size_t size, int flags);
327 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
328 void tls_sw_release_resources_tx(struct sock *sk);
329 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
330 void tls_sw_free_resources_rx(struct sock *sk);
331 void tls_sw_release_resources_rx(struct sock *sk);
332 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
333 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
334 		   int nonblock, int flags, int *addr_len);
335 bool tls_sw_stream_read(const struct sock *sk);
336 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
337 			   struct pipe_inode_info *pipe,
338 			   size_t len, unsigned int flags);
339 
340 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
341 int tls_device_sendpage(struct sock *sk, struct page *page,
342 			int offset, size_t size, int flags);
343 int tls_tx_records(struct sock *sk, int flags);
344 
345 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
346 				       u32 seq, u64 *p_record_sn);
347 
348 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
349 {
350 	return rec->len == 0;
351 }
352 
353 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
354 {
355 	return rec->end_seq - rec->len;
356 }
357 
358 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
359 		struct scatterlist *sg, u16 first_offset,
360 		int flags);
361 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
362 			    int flags);
363 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
364 
365 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
366 {
367 	return (struct tls_msg *)strp_msg(skb);
368 }
369 
370 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
371 {
372 	return !!ctx->partially_sent_record;
373 }
374 
375 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
376 {
377 	return tls_ctx->pending_open_record_frags;
378 }
379 
380 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
381 {
382 	struct tls_rec *rec;
383 
384 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
385 	if (!rec)
386 		return false;
387 
388 	return READ_ONCE(rec->tx_ready);
389 }
390 
391 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
392 {
393 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
394 
395 	switch (config) {
396 	case TLS_BASE:
397 		return TLS_CONF_BASE;
398 	case TLS_SW:
399 		return TLS_CONF_SW;
400 	case TLS_HW:
401 		return TLS_CONF_HW;
402 	case TLS_HW_RECORD:
403 		return TLS_CONF_HW_RECORD;
404 	}
405 	return 0;
406 }
407 
408 struct sk_buff *
409 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
410 		      struct sk_buff *skb);
411 
412 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
413 {
414 #ifdef CONFIG_SOCK_VALIDATE_XMIT
415 	return sk_fullsock(sk) &&
416 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
417 	       &tls_validate_xmit_skb);
418 #else
419 	return false;
420 #endif
421 }
422 
423 static inline void tls_err_abort(struct sock *sk, int err)
424 {
425 	sk->sk_err = err;
426 	sk->sk_error_report(sk);
427 }
428 
429 static inline bool tls_bigint_increment(unsigned char *seq, int len)
430 {
431 	int i;
432 
433 	for (i = len - 1; i >= 0; i--) {
434 		++seq[i];
435 		if (seq[i] != 0)
436 			break;
437 	}
438 
439 	return (i == -1);
440 }
441 
442 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
443 {
444 	struct inet_connection_sock *icsk = inet_csk(sk);
445 
446 	/* Use RCU on icsk_ulp_data only for sock diag code,
447 	 * TLS data path doesn't need rcu_dereference().
448 	 */
449 	return (__force void *)icsk->icsk_ulp_data;
450 }
451 
452 static inline void tls_advance_record_sn(struct sock *sk,
453 					 struct tls_prot_info *prot,
454 					 struct cipher_context *ctx)
455 {
456 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
457 		tls_err_abort(sk, EBADMSG);
458 
459 	if (prot->version != TLS_1_3_VERSION)
460 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
461 				     prot->iv_size);
462 }
463 
464 static inline void tls_fill_prepend(struct tls_context *ctx,
465 			     char *buf,
466 			     size_t plaintext_len,
467 			     unsigned char record_type,
468 			     int version)
469 {
470 	struct tls_prot_info *prot = &ctx->prot_info;
471 	size_t pkt_len, iv_size = prot->iv_size;
472 
473 	pkt_len = plaintext_len + prot->tag_size;
474 	if (version != TLS_1_3_VERSION) {
475 		pkt_len += iv_size;
476 
477 		memcpy(buf + TLS_NONCE_OFFSET,
478 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
479 	}
480 
481 	/* we cover nonce explicit here as well, so buf should be of
482 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
483 	 */
484 	buf[0] = version == TLS_1_3_VERSION ?
485 		   TLS_RECORD_TYPE_DATA : record_type;
486 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
487 	buf[1] = TLS_1_2_VERSION_MINOR;
488 	buf[2] = TLS_1_2_VERSION_MAJOR;
489 	/* we can use IV for nonce explicit according to spec */
490 	buf[3] = pkt_len >> 8;
491 	buf[4] = pkt_len & 0xFF;
492 }
493 
494 static inline void tls_make_aad(char *buf,
495 				size_t size,
496 				char *record_sequence,
497 				int record_sequence_size,
498 				unsigned char record_type,
499 				int version)
500 {
501 	if (version != TLS_1_3_VERSION) {
502 		memcpy(buf, record_sequence, record_sequence_size);
503 		buf += 8;
504 	} else {
505 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
506 	}
507 
508 	buf[0] = version == TLS_1_3_VERSION ?
509 		  TLS_RECORD_TYPE_DATA : record_type;
510 	buf[1] = TLS_1_2_VERSION_MAJOR;
511 	buf[2] = TLS_1_2_VERSION_MINOR;
512 	buf[3] = size >> 8;
513 	buf[4] = size & 0xFF;
514 }
515 
516 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
517 {
518 	int i;
519 
520 	if (version == TLS_1_3_VERSION) {
521 		for (i = 0; i < 8; i++)
522 			iv[i + 4] ^= seq[i];
523 	}
524 }
525 
526 
527 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
528 		const struct tls_context *tls_ctx)
529 {
530 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
531 }
532 
533 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
534 		const struct tls_context *tls_ctx)
535 {
536 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
537 }
538 
539 static inline struct tls_offload_context_tx *
540 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
541 {
542 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
543 }
544 
545 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
546 {
547 	struct tls_context *ctx = tls_get_ctx(sk);
548 
549 	if (!ctx)
550 		return false;
551 	return !!tls_sw_ctx_tx(ctx);
552 }
553 
554 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
555 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
556 
557 static inline struct tls_offload_context_rx *
558 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
559 {
560 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
561 }
562 
563 #if IS_ENABLED(CONFIG_TLS_DEVICE)
564 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
565 				     enum tls_offload_ctx_dir direction)
566 {
567 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
568 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
569 	else
570 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
571 }
572 
573 static inline void *
574 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
575 {
576 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
577 }
578 #endif
579 
580 /* The TLS context is valid until sk_destruct is called */
581 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
582 {
583 	struct tls_context *tls_ctx = tls_get_ctx(sk);
584 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
585 
586 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
587 }
588 
589 static inline void
590 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
591 {
592 	struct tls_context *tls_ctx = tls_get_ctx(sk);
593 
594 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
595 }
596 
597 static inline void tls_offload_tx_resync_request(struct sock *sk)
598 {
599 	struct tls_context *tls_ctx = tls_get_ctx(sk);
600 
601 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
602 }
603 
604 /* Driver's seq tracking has to be disabled until resync succeeded */
605 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
606 {
607 	struct tls_context *tls_ctx = tls_get_ctx(sk);
608 	bool ret;
609 
610 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
611 	smp_mb__after_atomic();
612 	return ret;
613 }
614 
615 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
616 		      unsigned char *record_type);
617 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
618 		struct scatterlist *sgout);
619 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
620 
621 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
622 				      struct net_device *dev,
623 				      struct sk_buff *skb);
624 
625 int tls_sw_fallback_init(struct sock *sk,
626 			 struct tls_offload_context_tx *offload_ctx,
627 			 struct tls_crypto_info *crypto_info);
628 
629 #ifdef CONFIG_TLS_DEVICE
630 void tls_device_init(void);
631 void tls_device_cleanup(void);
632 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
633 void tls_device_free_resources_tx(struct sock *sk);
634 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
635 void tls_device_offload_cleanup_rx(struct sock *sk);
636 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
637 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
638 #else
639 static inline void tls_device_init(void) {}
640 static inline void tls_device_cleanup(void) {}
641 
642 static inline int
643 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
644 {
645 	return -EOPNOTSUPP;
646 }
647 
648 static inline void tls_device_free_resources_tx(struct sock *sk) {}
649 
650 static inline int
651 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
652 {
653 	return -EOPNOTSUPP;
654 }
655 
656 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
657 static inline void
658 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
659 
660 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
661 {
662 	return 0;
663 }
664 #endif
665 #endif /* _TLS_OFFLOAD_H */
666