1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52 struct tls_rec;
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_AAD_SPACE_SIZE 13
63
64 #define MAX_IV_SIZE 16
65 #define TLS_TAG_SIZE 16
66 #define TLS_MAX_REC_SEQ_SIZE 8
67 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
68
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77 #define TLS_SM4_CCM_IV_B0_BYTE 2
78
79 enum {
80 TLS_BASE,
81 TLS_SW,
82 TLS_HW,
83 TLS_HW_RECORD,
84 TLS_NUM_CONFIG,
85 };
86
87 struct tx_work {
88 struct delayed_work work;
89 struct sock *sk;
90 };
91
92 struct tls_sw_context_tx {
93 struct crypto_aead *aead_send;
94 struct crypto_wait async_wait;
95 struct tx_work tx_work;
96 struct tls_rec *open_rec;
97 struct list_head tx_list;
98 atomic_t encrypt_pending;
99 u8 async_capable:1;
100
101 #define BIT_TX_SCHEDULED 0
102 #define BIT_TX_CLOSING 1
103 unsigned long tx_bitmask;
104 };
105
106 struct tls_strparser {
107 struct sock *sk;
108
109 u32 mark : 8;
110 u32 stopped : 1;
111 u32 copy_mode : 1;
112 u32 mixed_decrypted : 1;
113
114 bool msg_ready;
115
116 struct strp_msg stm;
117
118 struct sk_buff *anchor;
119 struct work_struct work;
120 };
121
122 struct tls_sw_context_rx {
123 struct crypto_aead *aead_recv;
124 struct crypto_wait async_wait;
125 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
126 void (*saved_data_ready)(struct sock *sk);
127
128 u8 reader_present;
129 u8 async_capable:1;
130 u8 zc_capable:1;
131 u8 reader_contended:1;
132
133 struct tls_strparser strp;
134
135 atomic_t decrypt_pending;
136 struct sk_buff_head async_hold;
137 struct wait_queue_head wq;
138 };
139
140 struct tls_record_info {
141 struct list_head list;
142 u32 end_seq;
143 int len;
144 int num_frags;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 struct tls_offload_context_tx {
149 struct crypto_aead *aead_send;
150 spinlock_t lock; /* protects records list */
151 struct list_head records_list;
152 struct tls_record_info *open_record;
153 struct tls_record_info *retransmit_hint;
154 u64 hint_record_sn;
155 u64 unacked_record_sn;
156
157 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
158 void (*sk_destruct)(struct sock *sk);
159 struct work_struct destruct_work;
160 struct tls_context *ctx;
161 u8 driver_state[] __aligned(8);
162 /* The TLS layer reserves room for driver specific state
163 * Currently the belief is that there is not enough
164 * driver specific state to justify another layer of indirection
165 */
166 #define TLS_DRIVER_STATE_SIZE_TX 16
167 };
168
169 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
170 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
171
172 enum tls_context_flags {
173 /* tls_device_down was called after the netdev went down, device state
174 * was released, and kTLS works in software, even though rx_conf is
175 * still TLS_HW (needed for transition).
176 */
177 TLS_RX_DEV_DEGRADED = 0,
178 /* Unlike RX where resync is driven entirely by the core in TX only
179 * the driver knows when things went out of sync, so we need the flag
180 * to be atomic.
181 */
182 TLS_TX_SYNC_SCHED = 1,
183 /* tls_dev_del was called for the RX side, device state was released,
184 * but tls_ctx->netdev might still be kept, because TX-side driver
185 * resources might not be released yet. Used to prevent the second
186 * tls_dev_del call in tls_device_down if it happens simultaneously.
187 */
188 TLS_RX_DEV_CLOSED = 2,
189 };
190
191 struct cipher_context {
192 char *iv;
193 char *rec_seq;
194 };
195
196 union tls_crypto_context {
197 struct tls_crypto_info info;
198 union {
199 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
200 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
201 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
202 struct tls12_crypto_info_sm4_gcm sm4_gcm;
203 struct tls12_crypto_info_sm4_ccm sm4_ccm;
204 };
205 };
206
207 struct tls_prot_info {
208 u16 version;
209 u16 cipher_type;
210 u16 prepend_size;
211 u16 tag_size;
212 u16 overhead_size;
213 u16 iv_size;
214 u16 salt_size;
215 u16 rec_seq_size;
216 u16 aad_size;
217 u16 tail_size;
218 };
219
220 struct tls_context {
221 /* read-only cache line */
222 struct tls_prot_info prot_info;
223
224 u8 tx_conf:3;
225 u8 rx_conf:3;
226 u8 zerocopy_sendfile:1;
227 u8 rx_no_pad:1;
228
229 int (*push_pending_record)(struct sock *sk, int flags);
230 void (*sk_write_space)(struct sock *sk);
231
232 void *priv_ctx_tx;
233 void *priv_ctx_rx;
234
235 struct net_device __rcu *netdev;
236
237 /* rw cache line */
238 struct cipher_context tx;
239 struct cipher_context rx;
240
241 struct scatterlist *partially_sent_record;
242 u16 partially_sent_offset;
243
244 bool splicing_pages;
245 bool pending_open_record_frags;
246
247 struct mutex tx_lock; /* protects partially_sent_* fields and
248 * per-type TX fields
249 */
250 unsigned long flags;
251
252 /* cache cold stuff */
253 struct proto *sk_proto;
254 struct sock *sk;
255
256 void (*sk_destruct)(struct sock *sk);
257
258 union tls_crypto_context crypto_send;
259 union tls_crypto_context crypto_recv;
260
261 struct list_head list;
262 refcount_t refcount;
263 struct rcu_head rcu;
264 };
265
266 enum tls_offload_ctx_dir {
267 TLS_OFFLOAD_CTX_DIR_RX,
268 TLS_OFFLOAD_CTX_DIR_TX,
269 };
270
271 struct tlsdev_ops {
272 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
273 enum tls_offload_ctx_dir direction,
274 struct tls_crypto_info *crypto_info,
275 u32 start_offload_tcp_sn);
276 void (*tls_dev_del)(struct net_device *netdev,
277 struct tls_context *ctx,
278 enum tls_offload_ctx_dir direction);
279 int (*tls_dev_resync)(struct net_device *netdev,
280 struct sock *sk, u32 seq, u8 *rcd_sn,
281 enum tls_offload_ctx_dir direction);
282 };
283
284 enum tls_offload_sync_type {
285 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
286 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
287 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
288 };
289
290 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
291 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
292
293 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
294 struct tls_offload_resync_async {
295 atomic64_t req;
296 u16 loglen;
297 u16 rcd_delta;
298 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
299 };
300
301 struct tls_offload_context_rx {
302 /* sw must be the first member of tls_offload_context_rx */
303 struct tls_sw_context_rx sw;
304 enum tls_offload_sync_type resync_type;
305 /* this member is set regardless of resync_type, to avoid branches */
306 u8 resync_nh_reset:1;
307 /* CORE_NEXT_HINT-only member, but use the hole here */
308 u8 resync_nh_do_now:1;
309 union {
310 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
311 struct {
312 atomic64_t resync_req;
313 };
314 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
315 struct {
316 u32 decrypted_failed;
317 u32 decrypted_tgt;
318 } resync_nh;
319 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
320 struct {
321 struct tls_offload_resync_async *resync_async;
322 };
323 };
324 u8 driver_state[] __aligned(8);
325 /* The TLS layer reserves room for driver specific state
326 * Currently the belief is that there is not enough
327 * driver specific state to justify another layer of indirection
328 */
329 #define TLS_DRIVER_STATE_SIZE_RX 8
330 };
331
332 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
333 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
334
335 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
336 u32 seq, u64 *p_record_sn);
337
tls_record_is_start_marker(struct tls_record_info * rec)338 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
339 {
340 return rec->len == 0;
341 }
342
tls_record_start_seq(struct tls_record_info * rec)343 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
344 {
345 return rec->end_seq - rec->len;
346 }
347
348 struct sk_buff *
349 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
350 struct sk_buff *skb);
351 struct sk_buff *
352 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
353 struct sk_buff *skb);
354
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)355 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
356 {
357 #ifdef CONFIG_TLS_DEVICE
358 struct sock *sk = skb->sk;
359
360 return sk && sk_fullsock(sk) &&
361 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
362 &tls_validate_xmit_skb);
363 #else
364 return false;
365 #endif
366 }
367
tls_get_ctx(const struct sock * sk)368 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
369 {
370 struct inet_connection_sock *icsk = inet_csk(sk);
371
372 /* Use RCU on icsk_ulp_data only for sock diag code,
373 * TLS data path doesn't need rcu_dereference().
374 */
375 return (__force void *)icsk->icsk_ulp_data;
376 }
377
tls_sw_ctx_rx(const struct tls_context * tls_ctx)378 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
379 const struct tls_context *tls_ctx)
380 {
381 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
382 }
383
tls_sw_ctx_tx(const struct tls_context * tls_ctx)384 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
385 const struct tls_context *tls_ctx)
386 {
387 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
388 }
389
390 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)391 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
392 {
393 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
394 }
395
tls_sw_has_ctx_tx(const struct sock * sk)396 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
397 {
398 struct tls_context *ctx = tls_get_ctx(sk);
399
400 if (!ctx)
401 return false;
402 return !!tls_sw_ctx_tx(ctx);
403 }
404
tls_sw_has_ctx_rx(const struct sock * sk)405 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
406 {
407 struct tls_context *ctx = tls_get_ctx(sk);
408
409 if (!ctx)
410 return false;
411 return !!tls_sw_ctx_rx(ctx);
412 }
413
414 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)415 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
416 {
417 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
418 }
419
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)420 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
421 enum tls_offload_ctx_dir direction)
422 {
423 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
424 return tls_offload_ctx_tx(tls_ctx)->driver_state;
425 else
426 return tls_offload_ctx_rx(tls_ctx)->driver_state;
427 }
428
429 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)430 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
431 {
432 return __tls_driver_ctx(tls_get_ctx(sk), direction);
433 }
434
435 #define RESYNC_REQ BIT(0)
436 #define RESYNC_REQ_ASYNC BIT(1)
437 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)438 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
439 {
440 struct tls_context *tls_ctx = tls_get_ctx(sk);
441 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
442
443 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
444 }
445
446 /* Log all TLS record header TCP sequences in [seq, seq+len] */
447 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)448 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
449 {
450 struct tls_context *tls_ctx = tls_get_ctx(sk);
451 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
452
453 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
454 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
455 rx_ctx->resync_async->loglen = 0;
456 rx_ctx->resync_async->rcd_delta = 0;
457 }
458
459 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)460 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
461 {
462 struct tls_context *tls_ctx = tls_get_ctx(sk);
463 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
464
465 atomic64_set(&rx_ctx->resync_async->req,
466 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
467 }
468
469 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)470 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
471 {
472 struct tls_context *tls_ctx = tls_get_ctx(sk);
473
474 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
475 }
476
477 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)478 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
479 {
480 struct tls_context *tls_ctx = tls_get_ctx(sk);
481 bool ret;
482
483 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
484 smp_mb__after_atomic();
485 return ret;
486 }
487
488 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
489
490 #ifdef CONFIG_TLS_DEVICE
491 void tls_device_sk_destruct(struct sock *sk);
492 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
493
tls_is_sk_rx_device_offloaded(struct sock * sk)494 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
495 {
496 if (!sk_fullsock(sk) ||
497 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
498 return false;
499 return tls_get_ctx(sk)->rx_conf == TLS_HW;
500 }
501 #endif
502 #endif /* _TLS_OFFLOAD_H */
503