xref: /openbmc/linux/include/net/tcp.h (revision ff40b576)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331 			 size_t size, struct ubuf_info *uarg);
332 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
333 		 int flags);
334 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
335 			size_t size, int flags);
336 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
337 		 size_t size, int flags);
338 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
339 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
340 	      int size_goal);
341 void tcp_release_cb(struct sock *sk);
342 void tcp_wfree(struct sk_buff *skb);
343 void tcp_write_timer_handler(struct sock *sk);
344 void tcp_delack_timer_handler(struct sock *sk);
345 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
346 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
348 void tcp_rcv_space_adjust(struct sock *sk);
349 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
350 void tcp_twsk_destructor(struct sock *sk);
351 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
352 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
353 			struct pipe_inode_info *pipe, size_t len,
354 			unsigned int flags);
355 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
356 				     bool force_schedule);
357 
358 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
359 static inline void tcp_dec_quickack_mode(struct sock *sk,
360 					 const unsigned int pkts)
361 {
362 	struct inet_connection_sock *icsk = inet_csk(sk);
363 
364 	if (icsk->icsk_ack.quick) {
365 		if (pkts >= icsk->icsk_ack.quick) {
366 			icsk->icsk_ack.quick = 0;
367 			/* Leaving quickack mode we deflate ATO. */
368 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
369 		} else
370 			icsk->icsk_ack.quick -= pkts;
371 	}
372 }
373 
374 #define	TCP_ECN_OK		1
375 #define	TCP_ECN_QUEUE_CWR	2
376 #define	TCP_ECN_DEMAND_CWR	4
377 #define	TCP_ECN_SEEN		8
378 
379 enum tcp_tw_status {
380 	TCP_TW_SUCCESS = 0,
381 	TCP_TW_RST = 1,
382 	TCP_TW_ACK = 2,
383 	TCP_TW_SYN = 3
384 };
385 
386 
387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
388 					      struct sk_buff *skb,
389 					      const struct tcphdr *th);
390 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
391 			   struct request_sock *req, bool fastopen,
392 			   bool *lost_race);
393 int tcp_child_process(struct sock *parent, struct sock *child,
394 		      struct sk_buff *skb);
395 void tcp_enter_loss(struct sock *sk);
396 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
397 void tcp_clear_retrans(struct tcp_sock *tp);
398 void tcp_update_metrics(struct sock *sk);
399 void tcp_init_metrics(struct sock *sk);
400 void tcp_metrics_init(void);
401 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
402 void __tcp_close(struct sock *sk, long timeout);
403 void tcp_close(struct sock *sk, long timeout);
404 void tcp_init_sock(struct sock *sk);
405 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
406 __poll_t tcp_poll(struct file *file, struct socket *sock,
407 		      struct poll_table_struct *wait);
408 int do_tcp_getsockopt(struct sock *sk, int level,
409 		      int optname, sockptr_t optval, sockptr_t optlen);
410 int tcp_getsockopt(struct sock *sk, int level, int optname,
411 		   char __user *optval, int __user *optlen);
412 bool tcp_bpf_bypass_getsockopt(int level, int optname);
413 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
414 		      sockptr_t optval, unsigned int optlen);
415 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
416 		   unsigned int optlen);
417 void tcp_set_keepalive(struct sock *sk, int val);
418 void tcp_syn_ack_timeout(const struct request_sock *req);
419 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
420 		int flags, int *addr_len);
421 int tcp_set_rcvlowat(struct sock *sk, int val);
422 int tcp_set_window_clamp(struct sock *sk, int val);
423 void tcp_update_recv_tstamps(struct sk_buff *skb,
424 			     struct scm_timestamping_internal *tss);
425 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
426 			struct scm_timestamping_internal *tss);
427 void tcp_data_ready(struct sock *sk);
428 #ifdef CONFIG_MMU
429 int tcp_mmap(struct file *file, struct socket *sock,
430 	     struct vm_area_struct *vma);
431 #endif
432 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
433 		       struct tcp_options_received *opt_rx,
434 		       int estab, struct tcp_fastopen_cookie *foc);
435 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
436 
437 /*
438  *	BPF SKB-less helpers
439  */
440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
441 			 struct tcphdr *th, u32 *cookie);
442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
443 			 struct tcphdr *th, u32 *cookie);
444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
446 			  const struct tcp_request_sock_ops *af_ops,
447 			  struct sock *sk, struct tcphdr *th);
448 /*
449  *	TCP v4 functions exported for the inet6 API
450  */
451 
452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
453 void tcp_v4_mtu_reduced(struct sock *sk);
454 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457 struct sock *tcp_create_openreq_child(const struct sock *sk,
458 				      struct request_sock *req,
459 				      struct sk_buff *skb);
460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
462 				  struct request_sock *req,
463 				  struct dst_entry *dst,
464 				  struct request_sock *req_unhash,
465 				  bool *own_req);
466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
468 int tcp_connect(struct sock *sk);
469 enum tcp_synack_type {
470 	TCP_SYNACK_NORMAL,
471 	TCP_SYNACK_FASTOPEN,
472 	TCP_SYNACK_COOKIE,
473 };
474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
475 				struct request_sock *req,
476 				struct tcp_fastopen_cookie *foc,
477 				enum tcp_synack_type synack_type,
478 				struct sk_buff *syn_skb);
479 int tcp_disconnect(struct sock *sk, int flags);
480 
481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
484 
485 /* From syncookies.c */
486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
487 				 struct request_sock *req,
488 				 struct dst_entry *dst, u32 tsoff);
489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
490 		      u32 cookie);
491 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
492 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
493 					    const struct tcp_request_sock_ops *af_ops,
494 					    struct sock *sk, struct sk_buff *skb);
495 #ifdef CONFIG_SYN_COOKIES
496 
497 /* Syncookies use a monotonic timer which increments every 60 seconds.
498  * This counter is used both as a hash input and partially encoded into
499  * the cookie value.  A cookie is only validated further if the delta
500  * between the current counter value and the encoded one is less than this,
501  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
502  * the counter advances immediately after a cookie is generated).
503  */
504 #define MAX_SYNCOOKIE_AGE	2
505 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
506 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
507 
508 /* syncookies: remember time of last synqueue overflow
509  * But do not dirty this field too often (once per second is enough)
510  * It is racy as we do not hold a lock, but race is very minor.
511  */
512 static inline void tcp_synq_overflow(const struct sock *sk)
513 {
514 	unsigned int last_overflow;
515 	unsigned int now = jiffies;
516 
517 	if (sk->sk_reuseport) {
518 		struct sock_reuseport *reuse;
519 
520 		reuse = rcu_dereference(sk->sk_reuseport_cb);
521 		if (likely(reuse)) {
522 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
523 			if (!time_between32(now, last_overflow,
524 					    last_overflow + HZ))
525 				WRITE_ONCE(reuse->synq_overflow_ts, now);
526 			return;
527 		}
528 	}
529 
530 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
531 	if (!time_between32(now, last_overflow, last_overflow + HZ))
532 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
533 }
534 
535 /* syncookies: no recent synqueue overflow on this listening socket? */
536 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
537 {
538 	unsigned int last_overflow;
539 	unsigned int now = jiffies;
540 
541 	if (sk->sk_reuseport) {
542 		struct sock_reuseport *reuse;
543 
544 		reuse = rcu_dereference(sk->sk_reuseport_cb);
545 		if (likely(reuse)) {
546 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
547 			return !time_between32(now, last_overflow - HZ,
548 					       last_overflow +
549 					       TCP_SYNCOOKIE_VALID);
550 		}
551 	}
552 
553 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
554 
555 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
556 	 * then we're under synflood. However, we have to use
557 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
558 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
559 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
560 	 * which could lead to rejecting a valid syncookie.
561 	 */
562 	return !time_between32(now, last_overflow - HZ,
563 			       last_overflow + TCP_SYNCOOKIE_VALID);
564 }
565 
566 static inline u32 tcp_cookie_time(void)
567 {
568 	u64 val = get_jiffies_64();
569 
570 	do_div(val, TCP_SYNCOOKIE_PERIOD);
571 	return val;
572 }
573 
574 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
575 			      u16 *mssp);
576 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
578 bool cookie_timestamp_decode(const struct net *net,
579 			     struct tcp_options_received *opt);
580 bool cookie_ecn_ok(const struct tcp_options_received *opt,
581 		   const struct net *net, const struct dst_entry *dst);
582 
583 /* From net/ipv6/syncookies.c */
584 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
585 		      u32 cookie);
586 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
587 
588 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
589 			      const struct tcphdr *th, u16 *mssp);
590 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
591 #endif
592 /* tcp_output.c */
593 
594 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
595 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
596 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
597 			       int nonagle);
598 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
599 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
600 void tcp_retransmit_timer(struct sock *sk);
601 void tcp_xmit_retransmit_queue(struct sock *);
602 void tcp_simple_retransmit(struct sock *);
603 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
604 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
605 enum tcp_queue {
606 	TCP_FRAG_IN_WRITE_QUEUE,
607 	TCP_FRAG_IN_RTX_QUEUE,
608 };
609 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
610 		 struct sk_buff *skb, u32 len,
611 		 unsigned int mss_now, gfp_t gfp);
612 
613 void tcp_send_probe0(struct sock *);
614 void tcp_send_partial(struct sock *);
615 int tcp_write_wakeup(struct sock *, int mib);
616 void tcp_send_fin(struct sock *sk);
617 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
618 int tcp_send_synack(struct sock *);
619 void tcp_push_one(struct sock *, unsigned int mss_now);
620 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
621 void tcp_send_ack(struct sock *sk);
622 void tcp_send_delayed_ack(struct sock *sk);
623 void tcp_send_loss_probe(struct sock *sk);
624 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
625 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
626 			     const struct sk_buff *next_skb);
627 
628 /* tcp_input.c */
629 void tcp_rearm_rto(struct sock *sk);
630 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
631 void tcp_reset(struct sock *sk, struct sk_buff *skb);
632 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
633 void tcp_fin(struct sock *sk);
634 void tcp_check_space(struct sock *sk);
635 void tcp_sack_compress_send_ack(struct sock *sk);
636 
637 /* tcp_timer.c */
638 void tcp_init_xmit_timers(struct sock *);
639 static inline void tcp_clear_xmit_timers(struct sock *sk)
640 {
641 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
642 		__sock_put(sk);
643 
644 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
645 		__sock_put(sk);
646 
647 	inet_csk_clear_xmit_timers(sk);
648 }
649 
650 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
651 unsigned int tcp_current_mss(struct sock *sk);
652 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
653 
654 /* Bound MSS / TSO packet size with the half of the window */
655 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
656 {
657 	int cutoff;
658 
659 	/* When peer uses tiny windows, there is no use in packetizing
660 	 * to sub-MSS pieces for the sake of SWS or making sure there
661 	 * are enough packets in the pipe for fast recovery.
662 	 *
663 	 * On the other hand, for extremely large MSS devices, handling
664 	 * smaller than MSS windows in this way does make sense.
665 	 */
666 	if (tp->max_window > TCP_MSS_DEFAULT)
667 		cutoff = (tp->max_window >> 1);
668 	else
669 		cutoff = tp->max_window;
670 
671 	if (cutoff && pktsize > cutoff)
672 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
673 	else
674 		return pktsize;
675 }
676 
677 /* tcp.c */
678 void tcp_get_info(struct sock *, struct tcp_info *);
679 
680 /* Read 'sendfile()'-style from a TCP socket */
681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
682 		  sk_read_actor_t recv_actor);
683 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
684 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
685 void tcp_read_done(struct sock *sk, size_t len);
686 
687 void tcp_initialize_rcv_mss(struct sock *sk);
688 
689 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
690 int tcp_mss_to_mtu(struct sock *sk, int mss);
691 void tcp_mtup_init(struct sock *sk);
692 
693 static inline void tcp_bound_rto(const struct sock *sk)
694 {
695 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
696 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
697 }
698 
699 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
700 {
701 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
702 }
703 
704 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
705 {
706 	/* mptcp hooks are only on the slow path */
707 	if (sk_is_mptcp((struct sock *)tp))
708 		return;
709 
710 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
711 			       ntohl(TCP_FLAG_ACK) |
712 			       snd_wnd);
713 }
714 
715 static inline void tcp_fast_path_on(struct tcp_sock *tp)
716 {
717 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
718 }
719 
720 static inline void tcp_fast_path_check(struct sock *sk)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 
724 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
725 	    tp->rcv_wnd &&
726 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
727 	    !tp->urg_data)
728 		tcp_fast_path_on(tp);
729 }
730 
731 /* Compute the actual rto_min value */
732 static inline u32 tcp_rto_min(struct sock *sk)
733 {
734 	const struct dst_entry *dst = __sk_dst_get(sk);
735 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
736 
737 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
738 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
739 	return rto_min;
740 }
741 
742 static inline u32 tcp_rto_min_us(struct sock *sk)
743 {
744 	return jiffies_to_usecs(tcp_rto_min(sk));
745 }
746 
747 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
748 {
749 	return dst_metric_locked(dst, RTAX_CC_ALGO);
750 }
751 
752 /* Minimum RTT in usec. ~0 means not available. */
753 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
754 {
755 	return minmax_get(&tp->rtt_min);
756 }
757 
758 /* Compute the actual receive window we are currently advertising.
759  * Rcv_nxt can be after the window if our peer push more data
760  * than the offered window.
761  */
762 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
763 {
764 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
765 
766 	if (win < 0)
767 		win = 0;
768 	return (u32) win;
769 }
770 
771 /* Choose a new window, without checks for shrinking, and without
772  * scaling applied to the result.  The caller does these things
773  * if necessary.  This is a "raw" window selection.
774  */
775 u32 __tcp_select_window(struct sock *sk);
776 
777 void tcp_send_window_probe(struct sock *sk);
778 
779 /* TCP uses 32bit jiffies to save some space.
780  * Note that this is different from tcp_time_stamp, which
781  * historically has been the same until linux-4.13.
782  */
783 #define tcp_jiffies32 ((u32)jiffies)
784 
785 /*
786  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
787  * It is no longer tied to jiffies, but to 1 ms clock.
788  * Note: double check if you want to use tcp_jiffies32 instead of this.
789  */
790 #define TCP_TS_HZ	1000
791 
792 static inline u64 tcp_clock_ns(void)
793 {
794 	return ktime_get_ns();
795 }
796 
797 static inline u64 tcp_clock_us(void)
798 {
799 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
800 }
801 
802 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
803 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
804 {
805 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
806 }
807 
808 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
809 static inline u32 tcp_ns_to_ts(u64 ns)
810 {
811 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
812 }
813 
814 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
815 static inline u32 tcp_time_stamp_raw(void)
816 {
817 	return tcp_ns_to_ts(tcp_clock_ns());
818 }
819 
820 void tcp_mstamp_refresh(struct tcp_sock *tp);
821 
822 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
823 {
824 	return max_t(s64, t1 - t0, 0);
825 }
826 
827 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
828 {
829 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
830 }
831 
832 /* provide the departure time in us unit */
833 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
834 {
835 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
836 }
837 
838 
839 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
840 
841 #define TCPHDR_FIN 0x01
842 #define TCPHDR_SYN 0x02
843 #define TCPHDR_RST 0x04
844 #define TCPHDR_PSH 0x08
845 #define TCPHDR_ACK 0x10
846 #define TCPHDR_URG 0x20
847 #define TCPHDR_ECE 0x40
848 #define TCPHDR_CWR 0x80
849 
850 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
851 
852 /* This is what the send packet queuing engine uses to pass
853  * TCP per-packet control information to the transmission code.
854  * We also store the host-order sequence numbers in here too.
855  * This is 44 bytes if IPV6 is enabled.
856  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
857  */
858 struct tcp_skb_cb {
859 	__u32		seq;		/* Starting sequence number	*/
860 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
861 	union {
862 		/* Note : tcp_tw_isn is used in input path only
863 		 *	  (isn chosen by tcp_timewait_state_process())
864 		 *
865 		 * 	  tcp_gso_segs/size are used in write queue only,
866 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
867 		 */
868 		__u32		tcp_tw_isn;
869 		struct {
870 			u16	tcp_gso_segs;
871 			u16	tcp_gso_size;
872 		};
873 	};
874 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
875 
876 	__u8		sacked;		/* State flags for SACK.	*/
877 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
878 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
879 #define TCPCB_LOST		0x04	/* SKB is lost			*/
880 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
881 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
882 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
883 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
884 				TCPCB_REPAIRED)
885 
886 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
887 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
888 			eor:1,		/* Is skb MSG_EOR marked? */
889 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
890 			unused:5;
891 	__u32		ack_seq;	/* Sequence number ACK'd	*/
892 	union {
893 		struct {
894 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
895 			/* There is space for up to 24 bytes */
896 			__u32 is_app_limited:1, /* cwnd not fully used? */
897 			      delivered_ce:20,
898 			      unused:11;
899 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
900 			__u32 delivered;
901 			/* start of send pipeline phase */
902 			u64 first_tx_mstamp;
903 			/* when we reached the "delivered" count */
904 			u64 delivered_mstamp;
905 		} tx;   /* only used for outgoing skbs */
906 		union {
907 			struct inet_skb_parm	h4;
908 #if IS_ENABLED(CONFIG_IPV6)
909 			struct inet6_skb_parm	h6;
910 #endif
911 		} header;	/* For incoming skbs */
912 	};
913 };
914 
915 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
916 
917 extern const struct inet_connection_sock_af_ops ipv4_specific;
918 
919 #if IS_ENABLED(CONFIG_IPV6)
920 /* This is the variant of inet6_iif() that must be used by TCP,
921  * as TCP moves IP6CB into a different location in skb->cb[]
922  */
923 static inline int tcp_v6_iif(const struct sk_buff *skb)
924 {
925 	return TCP_SKB_CB(skb)->header.h6.iif;
926 }
927 
928 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
929 {
930 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
931 
932 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
933 }
934 
935 /* TCP_SKB_CB reference means this can not be used from early demux */
936 static inline int tcp_v6_sdif(const struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
940 		return TCP_SKB_CB(skb)->header.h6.iif;
941 #endif
942 	return 0;
943 }
944 
945 extern const struct inet_connection_sock_af_ops ipv6_specific;
946 
947 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
948 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
949 void tcp_v6_early_demux(struct sk_buff *skb);
950 
951 #endif
952 
953 /* TCP_SKB_CB reference means this can not be used from early demux */
954 static inline int tcp_v4_sdif(struct sk_buff *skb)
955 {
956 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
957 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
958 		return TCP_SKB_CB(skb)->header.h4.iif;
959 #endif
960 	return 0;
961 }
962 
963 /* Due to TSO, an SKB can be composed of multiple actual
964  * packets.  To keep these tracked properly, we use this.
965  */
966 static inline int tcp_skb_pcount(const struct sk_buff *skb)
967 {
968 	return TCP_SKB_CB(skb)->tcp_gso_segs;
969 }
970 
971 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
972 {
973 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
974 }
975 
976 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
977 {
978 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
979 }
980 
981 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
982 static inline int tcp_skb_mss(const struct sk_buff *skb)
983 {
984 	return TCP_SKB_CB(skb)->tcp_gso_size;
985 }
986 
987 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
988 {
989 	return likely(!TCP_SKB_CB(skb)->eor);
990 }
991 
992 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
993 					const struct sk_buff *from)
994 {
995 	return likely(tcp_skb_can_collapse_to(to) &&
996 		      mptcp_skb_can_collapse(to, from) &&
997 		      skb_pure_zcopy_same(to, from));
998 }
999 
1000 /* Events passed to congestion control interface */
1001 enum tcp_ca_event {
1002 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1003 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1004 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1005 	CA_EVENT_LOSS,		/* loss timeout */
1006 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1007 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1008 };
1009 
1010 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1011 enum tcp_ca_ack_event_flags {
1012 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1013 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1014 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1015 };
1016 
1017 /*
1018  * Interface for adding new TCP congestion control handlers
1019  */
1020 #define TCP_CA_NAME_MAX	16
1021 #define TCP_CA_MAX	128
1022 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1023 
1024 #define TCP_CA_UNSPEC	0
1025 
1026 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1027 #define TCP_CONG_NON_RESTRICTED 0x1
1028 /* Requires ECN/ECT set on all packets */
1029 #define TCP_CONG_NEEDS_ECN	0x2
1030 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1031 
1032 union tcp_cc_info;
1033 
1034 struct ack_sample {
1035 	u32 pkts_acked;
1036 	s32 rtt_us;
1037 	u32 in_flight;
1038 };
1039 
1040 /* A rate sample measures the number of (original/retransmitted) data
1041  * packets delivered "delivered" over an interval of time "interval_us".
1042  * The tcp_rate.c code fills in the rate sample, and congestion
1043  * control modules that define a cong_control function to run at the end
1044  * of ACK processing can optionally chose to consult this sample when
1045  * setting cwnd and pacing rate.
1046  * A sample is invalid if "delivered" or "interval_us" is negative.
1047  */
1048 struct rate_sample {
1049 	u64  prior_mstamp; /* starting timestamp for interval */
1050 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1051 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1052 	s32  delivered;		/* number of packets delivered over interval */
1053 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1054 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1055 	u32 snd_interval_us;	/* snd interval for delivered packets */
1056 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1057 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1058 	int  losses;		/* number of packets marked lost upon ACK */
1059 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1060 	u32  prior_in_flight;	/* in flight before this ACK */
1061 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1062 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1063 	bool is_retrans;	/* is sample from retransmission? */
1064 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1065 };
1066 
1067 struct tcp_congestion_ops {
1068 /* fast path fields are put first to fill one cache line */
1069 
1070 	/* return slow start threshold (required) */
1071 	u32 (*ssthresh)(struct sock *sk);
1072 
1073 	/* do new cwnd calculation (required) */
1074 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1075 
1076 	/* call before changing ca_state (optional) */
1077 	void (*set_state)(struct sock *sk, u8 new_state);
1078 
1079 	/* call when cwnd event occurs (optional) */
1080 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1081 
1082 	/* call when ack arrives (optional) */
1083 	void (*in_ack_event)(struct sock *sk, u32 flags);
1084 
1085 	/* hook for packet ack accounting (optional) */
1086 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1087 
1088 	/* override sysctl_tcp_min_tso_segs */
1089 	u32 (*min_tso_segs)(struct sock *sk);
1090 
1091 	/* call when packets are delivered to update cwnd and pacing rate,
1092 	 * after all the ca_state processing. (optional)
1093 	 */
1094 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1095 
1096 
1097 	/* new value of cwnd after loss (required) */
1098 	u32  (*undo_cwnd)(struct sock *sk);
1099 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1100 	u32 (*sndbuf_expand)(struct sock *sk);
1101 
1102 /* control/slow paths put last */
1103 	/* get info for inet_diag (optional) */
1104 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1105 			   union tcp_cc_info *info);
1106 
1107 	char 			name[TCP_CA_NAME_MAX];
1108 	struct module		*owner;
1109 	struct list_head	list;
1110 	u32			key;
1111 	u32			flags;
1112 
1113 	/* initialize private data (optional) */
1114 	void (*init)(struct sock *sk);
1115 	/* cleanup private data  (optional) */
1116 	void (*release)(struct sock *sk);
1117 } ____cacheline_aligned_in_smp;
1118 
1119 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1120 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1121 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1122 				  struct tcp_congestion_ops *old_type);
1123 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1124 
1125 void tcp_assign_congestion_control(struct sock *sk);
1126 void tcp_init_congestion_control(struct sock *sk);
1127 void tcp_cleanup_congestion_control(struct sock *sk);
1128 int tcp_set_default_congestion_control(struct net *net, const char *name);
1129 void tcp_get_default_congestion_control(struct net *net, char *name);
1130 void tcp_get_available_congestion_control(char *buf, size_t len);
1131 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1132 int tcp_set_allowed_congestion_control(char *allowed);
1133 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1134 			       bool cap_net_admin);
1135 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1136 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1137 
1138 u32 tcp_reno_ssthresh(struct sock *sk);
1139 u32 tcp_reno_undo_cwnd(struct sock *sk);
1140 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1141 extern struct tcp_congestion_ops tcp_reno;
1142 
1143 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1144 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1145 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1146 #ifdef CONFIG_INET
1147 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1148 #else
1149 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1150 {
1151 	return NULL;
1152 }
1153 #endif
1154 
1155 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1156 {
1157 	const struct inet_connection_sock *icsk = inet_csk(sk);
1158 
1159 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1160 }
1161 
1162 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1163 {
1164 	const struct inet_connection_sock *icsk = inet_csk(sk);
1165 
1166 	if (icsk->icsk_ca_ops->cwnd_event)
1167 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1168 }
1169 
1170 /* From tcp_cong.c */
1171 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1172 
1173 /* From tcp_rate.c */
1174 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1175 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1176 			    struct rate_sample *rs);
1177 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1178 		  bool is_sack_reneg, struct rate_sample *rs);
1179 void tcp_rate_check_app_limited(struct sock *sk);
1180 
1181 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1182 {
1183 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1184 }
1185 
1186 /* These functions determine how the current flow behaves in respect of SACK
1187  * handling. SACK is negotiated with the peer, and therefore it can vary
1188  * between different flows.
1189  *
1190  * tcp_is_sack - SACK enabled
1191  * tcp_is_reno - No SACK
1192  */
1193 static inline int tcp_is_sack(const struct tcp_sock *tp)
1194 {
1195 	return likely(tp->rx_opt.sack_ok);
1196 }
1197 
1198 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1199 {
1200 	return !tcp_is_sack(tp);
1201 }
1202 
1203 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1204 {
1205 	return tp->sacked_out + tp->lost_out;
1206 }
1207 
1208 /* This determines how many packets are "in the network" to the best
1209  * of our knowledge.  In many cases it is conservative, but where
1210  * detailed information is available from the receiver (via SACK
1211  * blocks etc.) we can make more aggressive calculations.
1212  *
1213  * Use this for decisions involving congestion control, use just
1214  * tp->packets_out to determine if the send queue is empty or not.
1215  *
1216  * Read this equation as:
1217  *
1218  *	"Packets sent once on transmission queue" MINUS
1219  *	"Packets left network, but not honestly ACKed yet" PLUS
1220  *	"Packets fast retransmitted"
1221  */
1222 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1223 {
1224 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1225 }
1226 
1227 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1228 
1229 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1230 {
1231 	return tp->snd_cwnd;
1232 }
1233 
1234 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1235 {
1236 	WARN_ON_ONCE((int)val <= 0);
1237 	tp->snd_cwnd = val;
1238 }
1239 
1240 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1241 {
1242 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1243 }
1244 
1245 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1246 {
1247 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1248 }
1249 
1250 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1251 {
1252 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1253 	       (1 << inet_csk(sk)->icsk_ca_state);
1254 }
1255 
1256 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1257  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1258  * ssthresh.
1259  */
1260 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1261 {
1262 	const struct tcp_sock *tp = tcp_sk(sk);
1263 
1264 	if (tcp_in_cwnd_reduction(sk))
1265 		return tp->snd_ssthresh;
1266 	else
1267 		return max(tp->snd_ssthresh,
1268 			   ((tcp_snd_cwnd(tp) >> 1) +
1269 			    (tcp_snd_cwnd(tp) >> 2)));
1270 }
1271 
1272 /* Use define here intentionally to get WARN_ON location shown at the caller */
1273 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1274 
1275 void tcp_enter_cwr(struct sock *sk);
1276 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1277 
1278 /* The maximum number of MSS of available cwnd for which TSO defers
1279  * sending if not using sysctl_tcp_tso_win_divisor.
1280  */
1281 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1282 {
1283 	return 3;
1284 }
1285 
1286 /* Returns end sequence number of the receiver's advertised window */
1287 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1288 {
1289 	return tp->snd_una + tp->snd_wnd;
1290 }
1291 
1292 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1293  * flexible approach. The RFC suggests cwnd should not be raised unless
1294  * it was fully used previously. And that's exactly what we do in
1295  * congestion avoidance mode. But in slow start we allow cwnd to grow
1296  * as long as the application has used half the cwnd.
1297  * Example :
1298  *    cwnd is 10 (IW10), but application sends 9 frames.
1299  *    We allow cwnd to reach 18 when all frames are ACKed.
1300  * This check is safe because it's as aggressive as slow start which already
1301  * risks 100% overshoot. The advantage is that we discourage application to
1302  * either send more filler packets or data to artificially blow up the cwnd
1303  * usage, and allow application-limited process to probe bw more aggressively.
1304  */
1305 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1306 {
1307 	const struct tcp_sock *tp = tcp_sk(sk);
1308 
1309 	if (tp->is_cwnd_limited)
1310 		return true;
1311 
1312 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1313 	if (tcp_in_slow_start(tp))
1314 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1315 
1316 	return false;
1317 }
1318 
1319 /* BBR congestion control needs pacing.
1320  * Same remark for SO_MAX_PACING_RATE.
1321  * sch_fq packet scheduler is efficiently handling pacing,
1322  * but is not always installed/used.
1323  * Return true if TCP stack should pace packets itself.
1324  */
1325 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1326 {
1327 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1328 }
1329 
1330 /* Estimates in how many jiffies next packet for this flow can be sent.
1331  * Scheduling a retransmit timer too early would be silly.
1332  */
1333 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1334 {
1335 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1336 
1337 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1338 }
1339 
1340 static inline void tcp_reset_xmit_timer(struct sock *sk,
1341 					const int what,
1342 					unsigned long when,
1343 					const unsigned long max_when)
1344 {
1345 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1346 				  max_when);
1347 }
1348 
1349 /* Something is really bad, we could not queue an additional packet,
1350  * because qdisc is full or receiver sent a 0 window, or we are paced.
1351  * We do not want to add fuel to the fire, or abort too early,
1352  * so make sure the timer we arm now is at least 200ms in the future,
1353  * regardless of current icsk_rto value (as it could be ~2ms)
1354  */
1355 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1356 {
1357 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1358 }
1359 
1360 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1361 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1362 					    unsigned long max_when)
1363 {
1364 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1365 			   inet_csk(sk)->icsk_backoff);
1366 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1367 
1368 	return (unsigned long)min_t(u64, when, max_when);
1369 }
1370 
1371 static inline void tcp_check_probe_timer(struct sock *sk)
1372 {
1373 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1374 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1375 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1376 }
1377 
1378 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1379 {
1380 	tp->snd_wl1 = seq;
1381 }
1382 
1383 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1384 {
1385 	tp->snd_wl1 = seq;
1386 }
1387 
1388 /*
1389  * Calculate(/check) TCP checksum
1390  */
1391 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1392 				   __be32 daddr, __wsum base)
1393 {
1394 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1395 }
1396 
1397 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1398 {
1399 	return !skb_csum_unnecessary(skb) &&
1400 		__skb_checksum_complete(skb);
1401 }
1402 
1403 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1404 		     enum skb_drop_reason *reason);
1405 
1406 
1407 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1408 void tcp_set_state(struct sock *sk, int state);
1409 void tcp_done(struct sock *sk);
1410 int tcp_abort(struct sock *sk, int err);
1411 
1412 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1413 {
1414 	rx_opt->dsack = 0;
1415 	rx_opt->num_sacks = 0;
1416 }
1417 
1418 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1419 
1420 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1421 {
1422 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1423 	struct tcp_sock *tp = tcp_sk(sk);
1424 	s32 delta;
1425 
1426 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1427 	    tp->packets_out || ca_ops->cong_control)
1428 		return;
1429 	delta = tcp_jiffies32 - tp->lsndtime;
1430 	if (delta > inet_csk(sk)->icsk_rto)
1431 		tcp_cwnd_restart(sk, delta);
1432 }
1433 
1434 /* Determine a window scaling and initial window to offer. */
1435 void tcp_select_initial_window(const struct sock *sk, int __space,
1436 			       __u32 mss, __u32 *rcv_wnd,
1437 			       __u32 *window_clamp, int wscale_ok,
1438 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1439 
1440 static inline int tcp_win_from_space(const struct sock *sk, int space)
1441 {
1442 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1443 
1444 	return tcp_adv_win_scale <= 0 ?
1445 		(space>>(-tcp_adv_win_scale)) :
1446 		space - (space>>tcp_adv_win_scale);
1447 }
1448 
1449 /* Note: caller must be prepared to deal with negative returns */
1450 static inline int tcp_space(const struct sock *sk)
1451 {
1452 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1453 				  READ_ONCE(sk->sk_backlog.len) -
1454 				  atomic_read(&sk->sk_rmem_alloc));
1455 }
1456 
1457 static inline int tcp_full_space(const struct sock *sk)
1458 {
1459 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1460 }
1461 
1462 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1463 {
1464 	int unused_mem = sk_unused_reserved_mem(sk);
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 
1467 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1468 	if (unused_mem)
1469 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1470 					 tcp_win_from_space(sk, unused_mem));
1471 }
1472 
1473 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1474 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1475 
1476 
1477 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1478  * If 87.5 % (7/8) of the space has been consumed, we want to override
1479  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1480  * len/truesize ratio.
1481  */
1482 static inline bool tcp_rmem_pressure(const struct sock *sk)
1483 {
1484 	int rcvbuf, threshold;
1485 
1486 	if (tcp_under_memory_pressure(sk))
1487 		return true;
1488 
1489 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1490 	threshold = rcvbuf - (rcvbuf >> 3);
1491 
1492 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1493 }
1494 
1495 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1496 {
1497 	const struct tcp_sock *tp = tcp_sk(sk);
1498 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1499 
1500 	if (avail <= 0)
1501 		return false;
1502 
1503 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1504 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1505 }
1506 
1507 extern void tcp_openreq_init_rwin(struct request_sock *req,
1508 				  const struct sock *sk_listener,
1509 				  const struct dst_entry *dst);
1510 
1511 void tcp_enter_memory_pressure(struct sock *sk);
1512 void tcp_leave_memory_pressure(struct sock *sk);
1513 
1514 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1515 {
1516 	struct net *net = sock_net((struct sock *)tp);
1517 
1518 	return tp->keepalive_intvl ? :
1519 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1520 }
1521 
1522 static inline int keepalive_time_when(const struct tcp_sock *tp)
1523 {
1524 	struct net *net = sock_net((struct sock *)tp);
1525 
1526 	return tp->keepalive_time ? :
1527 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1528 }
1529 
1530 static inline int keepalive_probes(const struct tcp_sock *tp)
1531 {
1532 	struct net *net = sock_net((struct sock *)tp);
1533 
1534 	return tp->keepalive_probes ? :
1535 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1536 }
1537 
1538 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1539 {
1540 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1541 
1542 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1543 			  tcp_jiffies32 - tp->rcv_tstamp);
1544 }
1545 
1546 static inline int tcp_fin_time(const struct sock *sk)
1547 {
1548 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1549 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1550 	const int rto = inet_csk(sk)->icsk_rto;
1551 
1552 	if (fin_timeout < (rto << 2) - (rto >> 1))
1553 		fin_timeout = (rto << 2) - (rto >> 1);
1554 
1555 	return fin_timeout;
1556 }
1557 
1558 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1559 				  int paws_win)
1560 {
1561 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1562 		return true;
1563 	if (unlikely(!time_before32(ktime_get_seconds(),
1564 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1565 		return true;
1566 	/*
1567 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1568 	 * then following tcp messages have valid values. Ignore 0 value,
1569 	 * or else 'negative' tsval might forbid us to accept their packets.
1570 	 */
1571 	if (!rx_opt->ts_recent)
1572 		return true;
1573 	return false;
1574 }
1575 
1576 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1577 				   int rst)
1578 {
1579 	if (tcp_paws_check(rx_opt, 0))
1580 		return false;
1581 
1582 	/* RST segments are not recommended to carry timestamp,
1583 	   and, if they do, it is recommended to ignore PAWS because
1584 	   "their cleanup function should take precedence over timestamps."
1585 	   Certainly, it is mistake. It is necessary to understand the reasons
1586 	   of this constraint to relax it: if peer reboots, clock may go
1587 	   out-of-sync and half-open connections will not be reset.
1588 	   Actually, the problem would be not existing if all
1589 	   the implementations followed draft about maintaining clock
1590 	   via reboots. Linux-2.2 DOES NOT!
1591 
1592 	   However, we can relax time bounds for RST segments to MSL.
1593 	 */
1594 	if (rst && !time_before32(ktime_get_seconds(),
1595 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1596 		return false;
1597 	return true;
1598 }
1599 
1600 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1601 			  int mib_idx, u32 *last_oow_ack_time);
1602 
1603 static inline void tcp_mib_init(struct net *net)
1604 {
1605 	/* See RFC 2012 */
1606 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1607 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1608 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1609 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1610 }
1611 
1612 /* from STCP */
1613 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1614 {
1615 	tp->lost_skb_hint = NULL;
1616 }
1617 
1618 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1619 {
1620 	tcp_clear_retrans_hints_partial(tp);
1621 	tp->retransmit_skb_hint = NULL;
1622 }
1623 
1624 union tcp_md5_addr {
1625 	struct in_addr  a4;
1626 #if IS_ENABLED(CONFIG_IPV6)
1627 	struct in6_addr	a6;
1628 #endif
1629 };
1630 
1631 /* - key database */
1632 struct tcp_md5sig_key {
1633 	struct hlist_node	node;
1634 	u8			keylen;
1635 	u8			family; /* AF_INET or AF_INET6 */
1636 	u8			prefixlen;
1637 	u8			flags;
1638 	union tcp_md5_addr	addr;
1639 	int			l3index; /* set if key added with L3 scope */
1640 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1641 	struct rcu_head		rcu;
1642 };
1643 
1644 /* - sock block */
1645 struct tcp_md5sig_info {
1646 	struct hlist_head	head;
1647 	struct rcu_head		rcu;
1648 };
1649 
1650 /* - pseudo header */
1651 struct tcp4_pseudohdr {
1652 	__be32		saddr;
1653 	__be32		daddr;
1654 	__u8		pad;
1655 	__u8		protocol;
1656 	__be16		len;
1657 };
1658 
1659 struct tcp6_pseudohdr {
1660 	struct in6_addr	saddr;
1661 	struct in6_addr daddr;
1662 	__be32		len;
1663 	__be32		protocol;	/* including padding */
1664 };
1665 
1666 union tcp_md5sum_block {
1667 	struct tcp4_pseudohdr ip4;
1668 #if IS_ENABLED(CONFIG_IPV6)
1669 	struct tcp6_pseudohdr ip6;
1670 #endif
1671 };
1672 
1673 /* - pool: digest algorithm, hash description and scratch buffer */
1674 struct tcp_md5sig_pool {
1675 	struct ahash_request	*md5_req;
1676 	void			*scratch;
1677 };
1678 
1679 /* - functions */
1680 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1681 			const struct sock *sk, const struct sk_buff *skb);
1682 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1683 		   int family, u8 prefixlen, int l3index, u8 flags,
1684 		   const u8 *newkey, u8 newkeylen);
1685 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1686 		     int family, u8 prefixlen, int l3index,
1687 		     struct tcp_md5sig_key *key);
1688 
1689 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1690 		   int family, u8 prefixlen, int l3index, u8 flags);
1691 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1692 					 const struct sock *addr_sk);
1693 
1694 #ifdef CONFIG_TCP_MD5SIG
1695 #include <linux/jump_label.h>
1696 extern struct static_key_false_deferred tcp_md5_needed;
1697 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1698 					   const union tcp_md5_addr *addr,
1699 					   int family);
1700 static inline struct tcp_md5sig_key *
1701 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1702 		  const union tcp_md5_addr *addr, int family)
1703 {
1704 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1705 		return NULL;
1706 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1707 }
1708 
1709 enum skb_drop_reason
1710 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1711 		     const void *saddr, const void *daddr,
1712 		     int family, int dif, int sdif);
1713 
1714 
1715 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1716 #else
1717 static inline struct tcp_md5sig_key *
1718 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1719 		  const union tcp_md5_addr *addr, int family)
1720 {
1721 	return NULL;
1722 }
1723 
1724 static inline enum skb_drop_reason
1725 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1726 		     const void *saddr, const void *daddr,
1727 		     int family, int dif, int sdif)
1728 {
1729 	return SKB_NOT_DROPPED_YET;
1730 }
1731 #define tcp_twsk_md5_key(twsk)	NULL
1732 #endif
1733 
1734 bool tcp_alloc_md5sig_pool(void);
1735 
1736 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1737 static inline void tcp_put_md5sig_pool(void)
1738 {
1739 	local_bh_enable();
1740 }
1741 
1742 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1743 			  unsigned int header_len);
1744 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1745 		     const struct tcp_md5sig_key *key);
1746 
1747 /* From tcp_fastopen.c */
1748 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1749 			    struct tcp_fastopen_cookie *cookie);
1750 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1751 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1752 			    u16 try_exp);
1753 struct tcp_fastopen_request {
1754 	/* Fast Open cookie. Size 0 means a cookie request */
1755 	struct tcp_fastopen_cookie	cookie;
1756 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1757 	size_t				size;
1758 	int				copied;	/* queued in tcp_connect() */
1759 	struct ubuf_info		*uarg;
1760 };
1761 void tcp_free_fastopen_req(struct tcp_sock *tp);
1762 void tcp_fastopen_destroy_cipher(struct sock *sk);
1763 void tcp_fastopen_ctx_destroy(struct net *net);
1764 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1765 			      void *primary_key, void *backup_key);
1766 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1767 			    u64 *key);
1768 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1769 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1770 			      struct request_sock *req,
1771 			      struct tcp_fastopen_cookie *foc,
1772 			      const struct dst_entry *dst);
1773 void tcp_fastopen_init_key_once(struct net *net);
1774 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1775 			     struct tcp_fastopen_cookie *cookie);
1776 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1777 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1778 #define TCP_FASTOPEN_KEY_MAX 2
1779 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1780 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1781 
1782 /* Fastopen key context */
1783 struct tcp_fastopen_context {
1784 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1785 	int		num;
1786 	struct rcu_head	rcu;
1787 };
1788 
1789 void tcp_fastopen_active_disable(struct sock *sk);
1790 bool tcp_fastopen_active_should_disable(struct sock *sk);
1791 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1792 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1793 
1794 /* Caller needs to wrap with rcu_read_(un)lock() */
1795 static inline
1796 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1797 {
1798 	struct tcp_fastopen_context *ctx;
1799 
1800 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1801 	if (!ctx)
1802 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1803 	return ctx;
1804 }
1805 
1806 static inline
1807 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1808 			       const struct tcp_fastopen_cookie *orig)
1809 {
1810 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1811 	    orig->len == foc->len &&
1812 	    !memcmp(orig->val, foc->val, foc->len))
1813 		return true;
1814 	return false;
1815 }
1816 
1817 static inline
1818 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1819 {
1820 	return ctx->num;
1821 }
1822 
1823 /* Latencies incurred by various limits for a sender. They are
1824  * chronograph-like stats that are mutually exclusive.
1825  */
1826 enum tcp_chrono {
1827 	TCP_CHRONO_UNSPEC,
1828 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1829 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1830 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1831 	__TCP_CHRONO_MAX,
1832 };
1833 
1834 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1835 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1836 
1837 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1838  * the same memory storage than skb->destructor/_skb_refdst
1839  */
1840 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1841 {
1842 	skb->destructor = NULL;
1843 	skb->_skb_refdst = 0UL;
1844 }
1845 
1846 #define tcp_skb_tsorted_save(skb) {		\
1847 	unsigned long _save = skb->_skb_refdst;	\
1848 	skb->_skb_refdst = 0UL;
1849 
1850 #define tcp_skb_tsorted_restore(skb)		\
1851 	skb->_skb_refdst = _save;		\
1852 }
1853 
1854 void tcp_write_queue_purge(struct sock *sk);
1855 
1856 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1857 {
1858 	return skb_rb_first(&sk->tcp_rtx_queue);
1859 }
1860 
1861 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1862 {
1863 	return skb_rb_last(&sk->tcp_rtx_queue);
1864 }
1865 
1866 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1867 {
1868 	return skb_peek_tail(&sk->sk_write_queue);
1869 }
1870 
1871 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1872 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1873 
1874 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1875 {
1876 	return skb_peek(&sk->sk_write_queue);
1877 }
1878 
1879 static inline bool tcp_skb_is_last(const struct sock *sk,
1880 				   const struct sk_buff *skb)
1881 {
1882 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1883 }
1884 
1885 /**
1886  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1887  * @sk: socket
1888  *
1889  * Since the write queue can have a temporary empty skb in it,
1890  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1891  */
1892 static inline bool tcp_write_queue_empty(const struct sock *sk)
1893 {
1894 	const struct tcp_sock *tp = tcp_sk(sk);
1895 
1896 	return tp->write_seq == tp->snd_nxt;
1897 }
1898 
1899 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1900 {
1901 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1902 }
1903 
1904 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1905 {
1906 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1907 }
1908 
1909 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1910 {
1911 	__skb_queue_tail(&sk->sk_write_queue, skb);
1912 
1913 	/* Queue it, remembering where we must start sending. */
1914 	if (sk->sk_write_queue.next == skb)
1915 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1916 }
1917 
1918 /* Insert new before skb on the write queue of sk.  */
1919 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1920 						  struct sk_buff *skb,
1921 						  struct sock *sk)
1922 {
1923 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1924 }
1925 
1926 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1927 {
1928 	tcp_skb_tsorted_anchor_cleanup(skb);
1929 	__skb_unlink(skb, &sk->sk_write_queue);
1930 }
1931 
1932 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1933 
1934 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1935 {
1936 	tcp_skb_tsorted_anchor_cleanup(skb);
1937 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1938 }
1939 
1940 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1941 {
1942 	list_del(&skb->tcp_tsorted_anchor);
1943 	tcp_rtx_queue_unlink(skb, sk);
1944 	tcp_wmem_free_skb(sk, skb);
1945 }
1946 
1947 static inline void tcp_push_pending_frames(struct sock *sk)
1948 {
1949 	if (tcp_send_head(sk)) {
1950 		struct tcp_sock *tp = tcp_sk(sk);
1951 
1952 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1953 	}
1954 }
1955 
1956 /* Start sequence of the skb just after the highest skb with SACKed
1957  * bit, valid only if sacked_out > 0 or when the caller has ensured
1958  * validity by itself.
1959  */
1960 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1961 {
1962 	if (!tp->sacked_out)
1963 		return tp->snd_una;
1964 
1965 	if (tp->highest_sack == NULL)
1966 		return tp->snd_nxt;
1967 
1968 	return TCP_SKB_CB(tp->highest_sack)->seq;
1969 }
1970 
1971 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1972 {
1973 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1974 }
1975 
1976 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1977 {
1978 	return tcp_sk(sk)->highest_sack;
1979 }
1980 
1981 static inline void tcp_highest_sack_reset(struct sock *sk)
1982 {
1983 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1984 }
1985 
1986 /* Called when old skb is about to be deleted and replaced by new skb */
1987 static inline void tcp_highest_sack_replace(struct sock *sk,
1988 					    struct sk_buff *old,
1989 					    struct sk_buff *new)
1990 {
1991 	if (old == tcp_highest_sack(sk))
1992 		tcp_sk(sk)->highest_sack = new;
1993 }
1994 
1995 /* This helper checks if socket has IP_TRANSPARENT set */
1996 static inline bool inet_sk_transparent(const struct sock *sk)
1997 {
1998 	switch (sk->sk_state) {
1999 	case TCP_TIME_WAIT:
2000 		return inet_twsk(sk)->tw_transparent;
2001 	case TCP_NEW_SYN_RECV:
2002 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2003 	}
2004 	return inet_sk(sk)->transparent;
2005 }
2006 
2007 /* Determines whether this is a thin stream (which may suffer from
2008  * increased latency). Used to trigger latency-reducing mechanisms.
2009  */
2010 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2011 {
2012 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2013 }
2014 
2015 /* /proc */
2016 enum tcp_seq_states {
2017 	TCP_SEQ_STATE_LISTENING,
2018 	TCP_SEQ_STATE_ESTABLISHED,
2019 };
2020 
2021 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2022 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2023 void tcp_seq_stop(struct seq_file *seq, void *v);
2024 
2025 struct tcp_seq_afinfo {
2026 	sa_family_t			family;
2027 };
2028 
2029 struct tcp_iter_state {
2030 	struct seq_net_private	p;
2031 	enum tcp_seq_states	state;
2032 	struct sock		*syn_wait_sk;
2033 	int			bucket, offset, sbucket, num;
2034 	loff_t			last_pos;
2035 };
2036 
2037 extern struct request_sock_ops tcp_request_sock_ops;
2038 extern struct request_sock_ops tcp6_request_sock_ops;
2039 
2040 void tcp_v4_destroy_sock(struct sock *sk);
2041 
2042 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2043 				netdev_features_t features);
2044 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2045 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2046 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2047 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2048 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2049 int tcp_gro_complete(struct sk_buff *skb);
2050 
2051 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2052 
2053 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2054 {
2055 	struct net *net = sock_net((struct sock *)tp);
2056 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2057 }
2058 
2059 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2060 
2061 #ifdef CONFIG_PROC_FS
2062 int tcp4_proc_init(void);
2063 void tcp4_proc_exit(void);
2064 #endif
2065 
2066 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2067 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2068 		     const struct tcp_request_sock_ops *af_ops,
2069 		     struct sock *sk, struct sk_buff *skb);
2070 
2071 /* TCP af-specific functions */
2072 struct tcp_sock_af_ops {
2073 #ifdef CONFIG_TCP_MD5SIG
2074 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2075 						const struct sock *addr_sk);
2076 	int		(*calc_md5_hash)(char *location,
2077 					 const struct tcp_md5sig_key *md5,
2078 					 const struct sock *sk,
2079 					 const struct sk_buff *skb);
2080 	int		(*md5_parse)(struct sock *sk,
2081 				     int optname,
2082 				     sockptr_t optval,
2083 				     int optlen);
2084 #endif
2085 };
2086 
2087 struct tcp_request_sock_ops {
2088 	u16 mss_clamp;
2089 #ifdef CONFIG_TCP_MD5SIG
2090 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2091 						 const struct sock *addr_sk);
2092 	int		(*calc_md5_hash) (char *location,
2093 					  const struct tcp_md5sig_key *md5,
2094 					  const struct sock *sk,
2095 					  const struct sk_buff *skb);
2096 #endif
2097 #ifdef CONFIG_SYN_COOKIES
2098 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2099 				 __u16 *mss);
2100 #endif
2101 	struct dst_entry *(*route_req)(const struct sock *sk,
2102 				       struct sk_buff *skb,
2103 				       struct flowi *fl,
2104 				       struct request_sock *req);
2105 	u32 (*init_seq)(const struct sk_buff *skb);
2106 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2107 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2108 			   struct flowi *fl, struct request_sock *req,
2109 			   struct tcp_fastopen_cookie *foc,
2110 			   enum tcp_synack_type synack_type,
2111 			   struct sk_buff *syn_skb);
2112 };
2113 
2114 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2115 #if IS_ENABLED(CONFIG_IPV6)
2116 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2117 #endif
2118 
2119 #ifdef CONFIG_SYN_COOKIES
2120 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2121 					 const struct sock *sk, struct sk_buff *skb,
2122 					 __u16 *mss)
2123 {
2124 	tcp_synq_overflow(sk);
2125 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2126 	return ops->cookie_init_seq(skb, mss);
2127 }
2128 #else
2129 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2130 					 const struct sock *sk, struct sk_buff *skb,
2131 					 __u16 *mss)
2132 {
2133 	return 0;
2134 }
2135 #endif
2136 
2137 int tcpv4_offload_init(void);
2138 
2139 void tcp_v4_init(void);
2140 void tcp_init(void);
2141 
2142 /* tcp_recovery.c */
2143 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2144 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2145 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2146 				u32 reo_wnd);
2147 extern bool tcp_rack_mark_lost(struct sock *sk);
2148 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2149 			     u64 xmit_time);
2150 extern void tcp_rack_reo_timeout(struct sock *sk);
2151 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2152 
2153 /* tcp_plb.c */
2154 
2155 /*
2156  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2157  * expects cong_ratio which represents fraction of traffic that experienced
2158  * congestion over a single RTT. In order to avoid floating point operations,
2159  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2160  */
2161 #define TCP_PLB_SCALE 8
2162 
2163 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2164 struct tcp_plb_state {
2165 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2166 		unused:3;
2167 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2168 };
2169 
2170 static inline void tcp_plb_init(const struct sock *sk,
2171 				struct tcp_plb_state *plb)
2172 {
2173 	plb->consec_cong_rounds = 0;
2174 	plb->pause_until = 0;
2175 }
2176 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2177 			  const int cong_ratio);
2178 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2179 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2180 
2181 /* At how many usecs into the future should the RTO fire? */
2182 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2183 {
2184 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2185 	u32 rto = inet_csk(sk)->icsk_rto;
2186 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2187 
2188 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2189 }
2190 
2191 /*
2192  * Save and compile IPv4 options, return a pointer to it
2193  */
2194 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2195 							 struct sk_buff *skb)
2196 {
2197 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2198 	struct ip_options_rcu *dopt = NULL;
2199 
2200 	if (opt->optlen) {
2201 		int opt_size = sizeof(*dopt) + opt->optlen;
2202 
2203 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2204 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2205 			kfree(dopt);
2206 			dopt = NULL;
2207 		}
2208 	}
2209 	return dopt;
2210 }
2211 
2212 /* locally generated TCP pure ACKs have skb->truesize == 2
2213  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2214  * This is much faster than dissecting the packet to find out.
2215  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2216  */
2217 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2218 {
2219 	return skb->truesize == 2;
2220 }
2221 
2222 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2223 {
2224 	skb->truesize = 2;
2225 }
2226 
2227 static inline int tcp_inq(struct sock *sk)
2228 {
2229 	struct tcp_sock *tp = tcp_sk(sk);
2230 	int answ;
2231 
2232 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2233 		answ = 0;
2234 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2235 		   !tp->urg_data ||
2236 		   before(tp->urg_seq, tp->copied_seq) ||
2237 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2238 
2239 		answ = tp->rcv_nxt - tp->copied_seq;
2240 
2241 		/* Subtract 1, if FIN was received */
2242 		if (answ && sock_flag(sk, SOCK_DONE))
2243 			answ--;
2244 	} else {
2245 		answ = tp->urg_seq - tp->copied_seq;
2246 	}
2247 
2248 	return answ;
2249 }
2250 
2251 int tcp_peek_len(struct socket *sock);
2252 
2253 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2254 {
2255 	u16 segs_in;
2256 
2257 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2258 
2259 	/* We update these fields while other threads might
2260 	 * read them from tcp_get_info()
2261 	 */
2262 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2263 	if (skb->len > tcp_hdrlen(skb))
2264 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2265 }
2266 
2267 /*
2268  * TCP listen path runs lockless.
2269  * We forced "struct sock" to be const qualified to make sure
2270  * we don't modify one of its field by mistake.
2271  * Here, we increment sk_drops which is an atomic_t, so we can safely
2272  * make sock writable again.
2273  */
2274 static inline void tcp_listendrop(const struct sock *sk)
2275 {
2276 	atomic_inc(&((struct sock *)sk)->sk_drops);
2277 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2278 }
2279 
2280 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2281 
2282 /*
2283  * Interface for adding Upper Level Protocols over TCP
2284  */
2285 
2286 #define TCP_ULP_NAME_MAX	16
2287 #define TCP_ULP_MAX		128
2288 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2289 
2290 struct tcp_ulp_ops {
2291 	struct list_head	list;
2292 
2293 	/* initialize ulp */
2294 	int (*init)(struct sock *sk);
2295 	/* update ulp */
2296 	void (*update)(struct sock *sk, struct proto *p,
2297 		       void (*write_space)(struct sock *sk));
2298 	/* cleanup ulp */
2299 	void (*release)(struct sock *sk);
2300 	/* diagnostic */
2301 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2302 	size_t (*get_info_size)(const struct sock *sk);
2303 	/* clone ulp */
2304 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2305 		      const gfp_t priority);
2306 
2307 	char		name[TCP_ULP_NAME_MAX];
2308 	struct module	*owner;
2309 };
2310 int tcp_register_ulp(struct tcp_ulp_ops *type);
2311 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2312 int tcp_set_ulp(struct sock *sk, const char *name);
2313 void tcp_get_available_ulp(char *buf, size_t len);
2314 void tcp_cleanup_ulp(struct sock *sk);
2315 void tcp_update_ulp(struct sock *sk, struct proto *p,
2316 		    void (*write_space)(struct sock *sk));
2317 
2318 #define MODULE_ALIAS_TCP_ULP(name)				\
2319 	__MODULE_INFO(alias, alias_userspace, name);		\
2320 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2321 
2322 #ifdef CONFIG_NET_SOCK_MSG
2323 struct sk_msg;
2324 struct sk_psock;
2325 
2326 #ifdef CONFIG_BPF_SYSCALL
2327 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2328 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2329 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2330 #endif /* CONFIG_BPF_SYSCALL */
2331 
2332 #ifdef CONFIG_INET
2333 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2334 #else
2335 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2336 {
2337 }
2338 #endif
2339 
2340 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2341 			  struct sk_msg *msg, u32 bytes, int flags);
2342 #endif /* CONFIG_NET_SOCK_MSG */
2343 
2344 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2345 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2346 {
2347 }
2348 #endif
2349 
2350 #ifdef CONFIG_CGROUP_BPF
2351 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2352 				      struct sk_buff *skb,
2353 				      unsigned int end_offset)
2354 {
2355 	skops->skb = skb;
2356 	skops->skb_data_end = skb->data + end_offset;
2357 }
2358 #else
2359 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2360 				      struct sk_buff *skb,
2361 				      unsigned int end_offset)
2362 {
2363 }
2364 #endif
2365 
2366 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2367  * is < 0, then the BPF op failed (for example if the loaded BPF
2368  * program does not support the chosen operation or there is no BPF
2369  * program loaded).
2370  */
2371 #ifdef CONFIG_BPF
2372 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2373 {
2374 	struct bpf_sock_ops_kern sock_ops;
2375 	int ret;
2376 
2377 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2378 	if (sk_fullsock(sk)) {
2379 		sock_ops.is_fullsock = 1;
2380 		sock_owned_by_me(sk);
2381 	}
2382 
2383 	sock_ops.sk = sk;
2384 	sock_ops.op = op;
2385 	if (nargs > 0)
2386 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2387 
2388 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2389 	if (ret == 0)
2390 		ret = sock_ops.reply;
2391 	else
2392 		ret = -1;
2393 	return ret;
2394 }
2395 
2396 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2397 {
2398 	u32 args[2] = {arg1, arg2};
2399 
2400 	return tcp_call_bpf(sk, op, 2, args);
2401 }
2402 
2403 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2404 				    u32 arg3)
2405 {
2406 	u32 args[3] = {arg1, arg2, arg3};
2407 
2408 	return tcp_call_bpf(sk, op, 3, args);
2409 }
2410 
2411 #else
2412 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2413 {
2414 	return -EPERM;
2415 }
2416 
2417 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2418 {
2419 	return -EPERM;
2420 }
2421 
2422 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2423 				    u32 arg3)
2424 {
2425 	return -EPERM;
2426 }
2427 
2428 #endif
2429 
2430 static inline u32 tcp_timeout_init(struct sock *sk)
2431 {
2432 	int timeout;
2433 
2434 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2435 
2436 	if (timeout <= 0)
2437 		timeout = TCP_TIMEOUT_INIT;
2438 	return min_t(int, timeout, TCP_RTO_MAX);
2439 }
2440 
2441 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2442 {
2443 	int rwnd;
2444 
2445 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2446 
2447 	if (rwnd < 0)
2448 		rwnd = 0;
2449 	return rwnd;
2450 }
2451 
2452 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2453 {
2454 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2455 }
2456 
2457 static inline void tcp_bpf_rtt(struct sock *sk)
2458 {
2459 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2460 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2461 }
2462 
2463 #if IS_ENABLED(CONFIG_SMC)
2464 extern struct static_key_false tcp_have_smc;
2465 #endif
2466 
2467 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2468 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2469 			     void (*cad)(struct sock *sk, u32 ack_seq));
2470 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2471 void clean_acked_data_flush(void);
2472 #endif
2473 
2474 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2475 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2476 				    const struct tcp_sock *tp)
2477 {
2478 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2479 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2480 }
2481 
2482 /* Compute Earliest Departure Time for some control packets
2483  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2484  */
2485 static inline u64 tcp_transmit_time(const struct sock *sk)
2486 {
2487 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2488 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2489 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2490 
2491 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2492 	}
2493 	return 0;
2494 }
2495 
2496 #endif	/* _TCP_H */
2497