xref: /openbmc/linux/include/net/tcp.h (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 		   unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 		int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_update_recv_tstamps(struct sk_buff *skb,
416 			     struct scm_timestamping_internal *tss);
417 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
418 			struct scm_timestamping_internal *tss);
419 void tcp_data_ready(struct sock *sk);
420 #ifdef CONFIG_MMU
421 int tcp_mmap(struct file *file, struct socket *sock,
422 	     struct vm_area_struct *vma);
423 #endif
424 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
425 		       struct tcp_options_received *opt_rx,
426 		       int estab, struct tcp_fastopen_cookie *foc);
427 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
428 
429 /*
430  *	BPF SKB-less helpers
431  */
432 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
433 			 struct tcphdr *th, u32 *cookie);
434 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
435 			 struct tcphdr *th, u32 *cookie);
436 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
437 			  const struct tcp_request_sock_ops *af_ops,
438 			  struct sock *sk, struct tcphdr *th);
439 /*
440  *	TCP v4 functions exported for the inet6 API
441  */
442 
443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444 void tcp_v4_mtu_reduced(struct sock *sk);
445 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
447 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 				      struct request_sock *req,
450 				      struct sk_buff *skb);
451 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
452 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
453 				  struct request_sock *req,
454 				  struct dst_entry *dst,
455 				  struct request_sock *req_unhash,
456 				  bool *own_req);
457 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
458 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
459 int tcp_connect(struct sock *sk);
460 enum tcp_synack_type {
461 	TCP_SYNACK_NORMAL,
462 	TCP_SYNACK_FASTOPEN,
463 	TCP_SYNACK_COOKIE,
464 };
465 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
466 				struct request_sock *req,
467 				struct tcp_fastopen_cookie *foc,
468 				enum tcp_synack_type synack_type,
469 				struct sk_buff *syn_skb);
470 int tcp_disconnect(struct sock *sk, int flags);
471 
472 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
473 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
474 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
475 
476 /* From syncookies.c */
477 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
478 				 struct request_sock *req,
479 				 struct dst_entry *dst, u32 tsoff);
480 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
481 		      u32 cookie);
482 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
483 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
484 					    struct sock *sk, struct sk_buff *skb);
485 #ifdef CONFIG_SYN_COOKIES
486 
487 /* Syncookies use a monotonic timer which increments every 60 seconds.
488  * This counter is used both as a hash input and partially encoded into
489  * the cookie value.  A cookie is only validated further if the delta
490  * between the current counter value and the encoded one is less than this,
491  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492  * the counter advances immediately after a cookie is generated).
493  */
494 #define MAX_SYNCOOKIE_AGE	2
495 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
496 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497 
498 /* syncookies: remember time of last synqueue overflow
499  * But do not dirty this field too often (once per second is enough)
500  * It is racy as we do not hold a lock, but race is very minor.
501  */
502 static inline void tcp_synq_overflow(const struct sock *sk)
503 {
504 	unsigned int last_overflow;
505 	unsigned int now = jiffies;
506 
507 	if (sk->sk_reuseport) {
508 		struct sock_reuseport *reuse;
509 
510 		reuse = rcu_dereference(sk->sk_reuseport_cb);
511 		if (likely(reuse)) {
512 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
513 			if (!time_between32(now, last_overflow,
514 					    last_overflow + HZ))
515 				WRITE_ONCE(reuse->synq_overflow_ts, now);
516 			return;
517 		}
518 	}
519 
520 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
521 	if (!time_between32(now, last_overflow, last_overflow + HZ))
522 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
523 }
524 
525 /* syncookies: no recent synqueue overflow on this listening socket? */
526 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
527 {
528 	unsigned int last_overflow;
529 	unsigned int now = jiffies;
530 
531 	if (sk->sk_reuseport) {
532 		struct sock_reuseport *reuse;
533 
534 		reuse = rcu_dereference(sk->sk_reuseport_cb);
535 		if (likely(reuse)) {
536 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
537 			return !time_between32(now, last_overflow - HZ,
538 					       last_overflow +
539 					       TCP_SYNCOOKIE_VALID);
540 		}
541 	}
542 
543 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
544 
545 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
546 	 * then we're under synflood. However, we have to use
547 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
548 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
549 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
550 	 * which could lead to rejecting a valid syncookie.
551 	 */
552 	return !time_between32(now, last_overflow - HZ,
553 			       last_overflow + TCP_SYNCOOKIE_VALID);
554 }
555 
556 static inline u32 tcp_cookie_time(void)
557 {
558 	u64 val = get_jiffies_64();
559 
560 	do_div(val, TCP_SYNCOOKIE_PERIOD);
561 	return val;
562 }
563 
564 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
565 			      u16 *mssp);
566 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
567 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
568 bool cookie_timestamp_decode(const struct net *net,
569 			     struct tcp_options_received *opt);
570 bool cookie_ecn_ok(const struct tcp_options_received *opt,
571 		   const struct net *net, const struct dst_entry *dst);
572 
573 /* From net/ipv6/syncookies.c */
574 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
575 		      u32 cookie);
576 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
577 
578 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
579 			      const struct tcphdr *th, u16 *mssp);
580 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
581 #endif
582 /* tcp_output.c */
583 
584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
585 			       int nonagle);
586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 void tcp_retransmit_timer(struct sock *sk);
589 void tcp_xmit_retransmit_queue(struct sock *);
590 void tcp_simple_retransmit(struct sock *);
591 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
592 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
593 enum tcp_queue {
594 	TCP_FRAG_IN_WRITE_QUEUE,
595 	TCP_FRAG_IN_RTX_QUEUE,
596 };
597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
598 		 struct sk_buff *skb, u32 len,
599 		 unsigned int mss_now, gfp_t gfp);
600 
601 void tcp_send_probe0(struct sock *);
602 void tcp_send_partial(struct sock *);
603 int tcp_write_wakeup(struct sock *, int mib);
604 void tcp_send_fin(struct sock *sk);
605 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
606 int tcp_send_synack(struct sock *);
607 void tcp_push_one(struct sock *, unsigned int mss_now);
608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
609 void tcp_send_ack(struct sock *sk);
610 void tcp_send_delayed_ack(struct sock *sk);
611 void tcp_send_loss_probe(struct sock *sk);
612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
613 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
614 			     const struct sk_buff *next_skb);
615 
616 /* tcp_input.c */
617 void tcp_rearm_rto(struct sock *sk);
618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
619 void tcp_reset(struct sock *sk, struct sk_buff *skb);
620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
621 void tcp_fin(struct sock *sk);
622 
623 /* tcp_timer.c */
624 void tcp_init_xmit_timers(struct sock *);
625 static inline void tcp_clear_xmit_timers(struct sock *sk)
626 {
627 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 		__sock_put(sk);
629 
630 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 		__sock_put(sk);
632 
633 	inet_csk_clear_xmit_timers(sk);
634 }
635 
636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
637 unsigned int tcp_current_mss(struct sock *sk);
638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
639 
640 /* Bound MSS / TSO packet size with the half of the window */
641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
642 {
643 	int cutoff;
644 
645 	/* When peer uses tiny windows, there is no use in packetizing
646 	 * to sub-MSS pieces for the sake of SWS or making sure there
647 	 * are enough packets in the pipe for fast recovery.
648 	 *
649 	 * On the other hand, for extremely large MSS devices, handling
650 	 * smaller than MSS windows in this way does make sense.
651 	 */
652 	if (tp->max_window > TCP_MSS_DEFAULT)
653 		cutoff = (tp->max_window >> 1);
654 	else
655 		cutoff = tp->max_window;
656 
657 	if (cutoff && pktsize > cutoff)
658 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
659 	else
660 		return pktsize;
661 }
662 
663 /* tcp.c */
664 void tcp_get_info(struct sock *, struct tcp_info *);
665 
666 /* Read 'sendfile()'-style from a TCP socket */
667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
668 		  sk_read_actor_t recv_actor);
669 
670 void tcp_initialize_rcv_mss(struct sock *sk);
671 
672 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
673 int tcp_mss_to_mtu(struct sock *sk, int mss);
674 void tcp_mtup_init(struct sock *sk);
675 
676 static inline void tcp_bound_rto(const struct sock *sk)
677 {
678 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
679 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680 }
681 
682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
683 {
684 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685 }
686 
687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
688 {
689 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
690 			       ntohl(TCP_FLAG_ACK) |
691 			       snd_wnd);
692 }
693 
694 static inline void tcp_fast_path_on(struct tcp_sock *tp)
695 {
696 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
697 }
698 
699 static inline void tcp_fast_path_check(struct sock *sk)
700 {
701 	struct tcp_sock *tp = tcp_sk(sk);
702 
703 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
704 	    tp->rcv_wnd &&
705 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
706 	    !tp->urg_data)
707 		tcp_fast_path_on(tp);
708 }
709 
710 /* Compute the actual rto_min value */
711 static inline u32 tcp_rto_min(struct sock *sk)
712 {
713 	const struct dst_entry *dst = __sk_dst_get(sk);
714 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
715 
716 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
717 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
718 	return rto_min;
719 }
720 
721 static inline u32 tcp_rto_min_us(struct sock *sk)
722 {
723 	return jiffies_to_usecs(tcp_rto_min(sk));
724 }
725 
726 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
727 {
728 	return dst_metric_locked(dst, RTAX_CC_ALGO);
729 }
730 
731 /* Minimum RTT in usec. ~0 means not available. */
732 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
733 {
734 	return minmax_get(&tp->rtt_min);
735 }
736 
737 /* Compute the actual receive window we are currently advertising.
738  * Rcv_nxt can be after the window if our peer push more data
739  * than the offered window.
740  */
741 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
742 {
743 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
744 
745 	if (win < 0)
746 		win = 0;
747 	return (u32) win;
748 }
749 
750 /* Choose a new window, without checks for shrinking, and without
751  * scaling applied to the result.  The caller does these things
752  * if necessary.  This is a "raw" window selection.
753  */
754 u32 __tcp_select_window(struct sock *sk);
755 
756 void tcp_send_window_probe(struct sock *sk);
757 
758 /* TCP uses 32bit jiffies to save some space.
759  * Note that this is different from tcp_time_stamp, which
760  * historically has been the same until linux-4.13.
761  */
762 #define tcp_jiffies32 ((u32)jiffies)
763 
764 /*
765  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
766  * It is no longer tied to jiffies, but to 1 ms clock.
767  * Note: double check if you want to use tcp_jiffies32 instead of this.
768  */
769 #define TCP_TS_HZ	1000
770 
771 static inline u64 tcp_clock_ns(void)
772 {
773 	return ktime_get_ns();
774 }
775 
776 static inline u64 tcp_clock_us(void)
777 {
778 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
779 }
780 
781 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
782 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
783 {
784 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
785 }
786 
787 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
788 static inline u32 tcp_ns_to_ts(u64 ns)
789 {
790 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
791 }
792 
793 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
794 static inline u32 tcp_time_stamp_raw(void)
795 {
796 	return tcp_ns_to_ts(tcp_clock_ns());
797 }
798 
799 void tcp_mstamp_refresh(struct tcp_sock *tp);
800 
801 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
802 {
803 	return max_t(s64, t1 - t0, 0);
804 }
805 
806 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
807 {
808 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
809 }
810 
811 /* provide the departure time in us unit */
812 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
813 {
814 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
815 }
816 
817 
818 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
819 
820 #define TCPHDR_FIN 0x01
821 #define TCPHDR_SYN 0x02
822 #define TCPHDR_RST 0x04
823 #define TCPHDR_PSH 0x08
824 #define TCPHDR_ACK 0x10
825 #define TCPHDR_URG 0x20
826 #define TCPHDR_ECE 0x40
827 #define TCPHDR_CWR 0x80
828 
829 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
830 
831 /* This is what the send packet queuing engine uses to pass
832  * TCP per-packet control information to the transmission code.
833  * We also store the host-order sequence numbers in here too.
834  * This is 44 bytes if IPV6 is enabled.
835  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
836  */
837 struct tcp_skb_cb {
838 	__u32		seq;		/* Starting sequence number	*/
839 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
840 	union {
841 		/* Note : tcp_tw_isn is used in input path only
842 		 *	  (isn chosen by tcp_timewait_state_process())
843 		 *
844 		 * 	  tcp_gso_segs/size are used in write queue only,
845 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
846 		 */
847 		__u32		tcp_tw_isn;
848 		struct {
849 			u16	tcp_gso_segs;
850 			u16	tcp_gso_size;
851 		};
852 	};
853 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
854 
855 	__u8		sacked;		/* State flags for SACK.	*/
856 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
857 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
858 #define TCPCB_LOST		0x04	/* SKB is lost			*/
859 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
860 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
861 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
862 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
863 				TCPCB_REPAIRED)
864 
865 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
866 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
867 			eor:1,		/* Is skb MSG_EOR marked? */
868 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
869 			unused:5;
870 	__u32		ack_seq;	/* Sequence number ACK'd	*/
871 	union {
872 		struct {
873 			/* There is space for up to 24 bytes */
874 			__u32 in_flight:30,/* Bytes in flight at transmit */
875 			      is_app_limited:1, /* cwnd not fully used? */
876 			      unused:1;
877 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
878 			__u32 delivered;
879 			/* start of send pipeline phase */
880 			u64 first_tx_mstamp;
881 			/* when we reached the "delivered" count */
882 			u64 delivered_mstamp;
883 		} tx;   /* only used for outgoing skbs */
884 		union {
885 			struct inet_skb_parm	h4;
886 #if IS_ENABLED(CONFIG_IPV6)
887 			struct inet6_skb_parm	h6;
888 #endif
889 		} header;	/* For incoming skbs */
890 	};
891 };
892 
893 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
894 
895 extern const struct inet_connection_sock_af_ops ipv4_specific;
896 
897 #if IS_ENABLED(CONFIG_IPV6)
898 /* This is the variant of inet6_iif() that must be used by TCP,
899  * as TCP moves IP6CB into a different location in skb->cb[]
900  */
901 static inline int tcp_v6_iif(const struct sk_buff *skb)
902 {
903 	return TCP_SKB_CB(skb)->header.h6.iif;
904 }
905 
906 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
907 {
908 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
909 
910 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
911 }
912 
913 /* TCP_SKB_CB reference means this can not be used from early demux */
914 static inline int tcp_v6_sdif(const struct sk_buff *skb)
915 {
916 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
917 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
918 		return TCP_SKB_CB(skb)->header.h6.iif;
919 #endif
920 	return 0;
921 }
922 
923 extern const struct inet_connection_sock_af_ops ipv6_specific;
924 
925 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
926 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
927 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
928 
929 #endif
930 
931 /* TCP_SKB_CB reference means this can not be used from early demux */
932 static inline int tcp_v4_sdif(struct sk_buff *skb)
933 {
934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
935 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
936 		return TCP_SKB_CB(skb)->header.h4.iif;
937 #endif
938 	return 0;
939 }
940 
941 /* Due to TSO, an SKB can be composed of multiple actual
942  * packets.  To keep these tracked properly, we use this.
943  */
944 static inline int tcp_skb_pcount(const struct sk_buff *skb)
945 {
946 	return TCP_SKB_CB(skb)->tcp_gso_segs;
947 }
948 
949 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
950 {
951 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
952 }
953 
954 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
955 {
956 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
957 }
958 
959 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
960 static inline int tcp_skb_mss(const struct sk_buff *skb)
961 {
962 	return TCP_SKB_CB(skb)->tcp_gso_size;
963 }
964 
965 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
966 {
967 	return likely(!TCP_SKB_CB(skb)->eor);
968 }
969 
970 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
971 					const struct sk_buff *from)
972 {
973 	return likely(tcp_skb_can_collapse_to(to) &&
974 		      mptcp_skb_can_collapse(to, from));
975 }
976 
977 /* Events passed to congestion control interface */
978 enum tcp_ca_event {
979 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
980 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
981 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
982 	CA_EVENT_LOSS,		/* loss timeout */
983 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
984 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
985 };
986 
987 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
988 enum tcp_ca_ack_event_flags {
989 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
990 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
991 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
992 };
993 
994 /*
995  * Interface for adding new TCP congestion control handlers
996  */
997 #define TCP_CA_NAME_MAX	16
998 #define TCP_CA_MAX	128
999 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1000 
1001 #define TCP_CA_UNSPEC	0
1002 
1003 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1004 #define TCP_CONG_NON_RESTRICTED 0x1
1005 /* Requires ECN/ECT set on all packets */
1006 #define TCP_CONG_NEEDS_ECN	0x2
1007 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1008 
1009 union tcp_cc_info;
1010 
1011 struct ack_sample {
1012 	u32 pkts_acked;
1013 	s32 rtt_us;
1014 	u32 in_flight;
1015 };
1016 
1017 /* A rate sample measures the number of (original/retransmitted) data
1018  * packets delivered "delivered" over an interval of time "interval_us".
1019  * The tcp_rate.c code fills in the rate sample, and congestion
1020  * control modules that define a cong_control function to run at the end
1021  * of ACK processing can optionally chose to consult this sample when
1022  * setting cwnd and pacing rate.
1023  * A sample is invalid if "delivered" or "interval_us" is negative.
1024  */
1025 struct rate_sample {
1026 	u64  prior_mstamp; /* starting timestamp for interval */
1027 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1028 	s32  delivered;		/* number of packets delivered over interval */
1029 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1030 	u32 snd_interval_us;	/* snd interval for delivered packets */
1031 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1032 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1033 	int  losses;		/* number of packets marked lost upon ACK */
1034 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1035 	u32  prior_in_flight;	/* in flight before this ACK */
1036 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1037 	bool is_retrans;	/* is sample from retransmission? */
1038 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1039 };
1040 
1041 struct tcp_congestion_ops {
1042 /* fast path fields are put first to fill one cache line */
1043 
1044 	/* return slow start threshold (required) */
1045 	u32 (*ssthresh)(struct sock *sk);
1046 
1047 	/* do new cwnd calculation (required) */
1048 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1049 
1050 	/* call before changing ca_state (optional) */
1051 	void (*set_state)(struct sock *sk, u8 new_state);
1052 
1053 	/* call when cwnd event occurs (optional) */
1054 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1055 
1056 	/* call when ack arrives (optional) */
1057 	void (*in_ack_event)(struct sock *sk, u32 flags);
1058 
1059 	/* hook for packet ack accounting (optional) */
1060 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1061 
1062 	/* override sysctl_tcp_min_tso_segs */
1063 	u32 (*min_tso_segs)(struct sock *sk);
1064 
1065 	/* call when packets are delivered to update cwnd and pacing rate,
1066 	 * after all the ca_state processing. (optional)
1067 	 */
1068 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1069 
1070 
1071 	/* new value of cwnd after loss (required) */
1072 	u32  (*undo_cwnd)(struct sock *sk);
1073 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1074 	u32 (*sndbuf_expand)(struct sock *sk);
1075 
1076 /* control/slow paths put last */
1077 	/* get info for inet_diag (optional) */
1078 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1079 			   union tcp_cc_info *info);
1080 
1081 	char 			name[TCP_CA_NAME_MAX];
1082 	struct module		*owner;
1083 	struct list_head	list;
1084 	u32			key;
1085 	u32			flags;
1086 
1087 	/* initialize private data (optional) */
1088 	void (*init)(struct sock *sk);
1089 	/* cleanup private data  (optional) */
1090 	void (*release)(struct sock *sk);
1091 } ____cacheline_aligned_in_smp;
1092 
1093 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1094 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1095 
1096 void tcp_assign_congestion_control(struct sock *sk);
1097 void tcp_init_congestion_control(struct sock *sk);
1098 void tcp_cleanup_congestion_control(struct sock *sk);
1099 int tcp_set_default_congestion_control(struct net *net, const char *name);
1100 void tcp_get_default_congestion_control(struct net *net, char *name);
1101 void tcp_get_available_congestion_control(char *buf, size_t len);
1102 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1103 int tcp_set_allowed_congestion_control(char *allowed);
1104 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1105 			       bool cap_net_admin);
1106 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1107 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1108 
1109 u32 tcp_reno_ssthresh(struct sock *sk);
1110 u32 tcp_reno_undo_cwnd(struct sock *sk);
1111 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1112 extern struct tcp_congestion_ops tcp_reno;
1113 
1114 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1115 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1116 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1117 #ifdef CONFIG_INET
1118 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1119 #else
1120 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1121 {
1122 	return NULL;
1123 }
1124 #endif
1125 
1126 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1127 {
1128 	const struct inet_connection_sock *icsk = inet_csk(sk);
1129 
1130 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1131 }
1132 
1133 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1134 {
1135 	struct inet_connection_sock *icsk = inet_csk(sk);
1136 
1137 	if (icsk->icsk_ca_ops->set_state)
1138 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1139 	icsk->icsk_ca_state = ca_state;
1140 }
1141 
1142 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1143 {
1144 	const struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	if (icsk->icsk_ca_ops->cwnd_event)
1147 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1148 }
1149 
1150 /* From tcp_rate.c */
1151 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1152 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1153 			    struct rate_sample *rs);
1154 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1155 		  bool is_sack_reneg, struct rate_sample *rs);
1156 void tcp_rate_check_app_limited(struct sock *sk);
1157 
1158 /* These functions determine how the current flow behaves in respect of SACK
1159  * handling. SACK is negotiated with the peer, and therefore it can vary
1160  * between different flows.
1161  *
1162  * tcp_is_sack - SACK enabled
1163  * tcp_is_reno - No SACK
1164  */
1165 static inline int tcp_is_sack(const struct tcp_sock *tp)
1166 {
1167 	return likely(tp->rx_opt.sack_ok);
1168 }
1169 
1170 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1171 {
1172 	return !tcp_is_sack(tp);
1173 }
1174 
1175 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1176 {
1177 	return tp->sacked_out + tp->lost_out;
1178 }
1179 
1180 /* This determines how many packets are "in the network" to the best
1181  * of our knowledge.  In many cases it is conservative, but where
1182  * detailed information is available from the receiver (via SACK
1183  * blocks etc.) we can make more aggressive calculations.
1184  *
1185  * Use this for decisions involving congestion control, use just
1186  * tp->packets_out to determine if the send queue is empty or not.
1187  *
1188  * Read this equation as:
1189  *
1190  *	"Packets sent once on transmission queue" MINUS
1191  *	"Packets left network, but not honestly ACKed yet" PLUS
1192  *	"Packets fast retransmitted"
1193  */
1194 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1195 {
1196 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1197 }
1198 
1199 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1200 
1201 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1202 {
1203 	return tp->snd_cwnd < tp->snd_ssthresh;
1204 }
1205 
1206 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1207 {
1208 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1209 }
1210 
1211 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1212 {
1213 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1214 	       (1 << inet_csk(sk)->icsk_ca_state);
1215 }
1216 
1217 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1218  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1219  * ssthresh.
1220  */
1221 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1222 {
1223 	const struct tcp_sock *tp = tcp_sk(sk);
1224 
1225 	if (tcp_in_cwnd_reduction(sk))
1226 		return tp->snd_ssthresh;
1227 	else
1228 		return max(tp->snd_ssthresh,
1229 			   ((tp->snd_cwnd >> 1) +
1230 			    (tp->snd_cwnd >> 2)));
1231 }
1232 
1233 /* Use define here intentionally to get WARN_ON location shown at the caller */
1234 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1235 
1236 void tcp_enter_cwr(struct sock *sk);
1237 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1238 
1239 /* The maximum number of MSS of available cwnd for which TSO defers
1240  * sending if not using sysctl_tcp_tso_win_divisor.
1241  */
1242 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1243 {
1244 	return 3;
1245 }
1246 
1247 /* Returns end sequence number of the receiver's advertised window */
1248 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1249 {
1250 	return tp->snd_una + tp->snd_wnd;
1251 }
1252 
1253 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1254  * flexible approach. The RFC suggests cwnd should not be raised unless
1255  * it was fully used previously. And that's exactly what we do in
1256  * congestion avoidance mode. But in slow start we allow cwnd to grow
1257  * as long as the application has used half the cwnd.
1258  * Example :
1259  *    cwnd is 10 (IW10), but application sends 9 frames.
1260  *    We allow cwnd to reach 18 when all frames are ACKed.
1261  * This check is safe because it's as aggressive as slow start which already
1262  * risks 100% overshoot. The advantage is that we discourage application to
1263  * either send more filler packets or data to artificially blow up the cwnd
1264  * usage, and allow application-limited process to probe bw more aggressively.
1265  */
1266 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1267 {
1268 	const struct tcp_sock *tp = tcp_sk(sk);
1269 
1270 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1271 	if (tcp_in_slow_start(tp))
1272 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1273 
1274 	return tp->is_cwnd_limited;
1275 }
1276 
1277 /* BBR congestion control needs pacing.
1278  * Same remark for SO_MAX_PACING_RATE.
1279  * sch_fq packet scheduler is efficiently handling pacing,
1280  * but is not always installed/used.
1281  * Return true if TCP stack should pace packets itself.
1282  */
1283 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1284 {
1285 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1286 }
1287 
1288 /* Estimates in how many jiffies next packet for this flow can be sent.
1289  * Scheduling a retransmit timer too early would be silly.
1290  */
1291 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1292 {
1293 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1294 
1295 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1296 }
1297 
1298 static inline void tcp_reset_xmit_timer(struct sock *sk,
1299 					const int what,
1300 					unsigned long when,
1301 					const unsigned long max_when)
1302 {
1303 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1304 				  max_when);
1305 }
1306 
1307 /* Something is really bad, we could not queue an additional packet,
1308  * because qdisc is full or receiver sent a 0 window, or we are paced.
1309  * We do not want to add fuel to the fire, or abort too early,
1310  * so make sure the timer we arm now is at least 200ms in the future,
1311  * regardless of current icsk_rto value (as it could be ~2ms)
1312  */
1313 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1314 {
1315 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1316 }
1317 
1318 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1319 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1320 					    unsigned long max_when)
1321 {
1322 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1323 			   inet_csk(sk)->icsk_backoff);
1324 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1325 
1326 	return (unsigned long)min_t(u64, when, max_when);
1327 }
1328 
1329 static inline void tcp_check_probe_timer(struct sock *sk)
1330 {
1331 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1332 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1333 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1334 }
1335 
1336 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1337 {
1338 	tp->snd_wl1 = seq;
1339 }
1340 
1341 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 	tp->snd_wl1 = seq;
1344 }
1345 
1346 /*
1347  * Calculate(/check) TCP checksum
1348  */
1349 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1350 				   __be32 daddr, __wsum base)
1351 {
1352 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1353 }
1354 
1355 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1356 {
1357 	return !skb_csum_unnecessary(skb) &&
1358 		__skb_checksum_complete(skb);
1359 }
1360 
1361 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1362 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1363 void tcp_set_state(struct sock *sk, int state);
1364 void tcp_done(struct sock *sk);
1365 int tcp_abort(struct sock *sk, int err);
1366 
1367 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1368 {
1369 	rx_opt->dsack = 0;
1370 	rx_opt->num_sacks = 0;
1371 }
1372 
1373 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1374 
1375 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1376 {
1377 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 	s32 delta;
1380 
1381 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1382 	    ca_ops->cong_control)
1383 		return;
1384 	delta = tcp_jiffies32 - tp->lsndtime;
1385 	if (delta > inet_csk(sk)->icsk_rto)
1386 		tcp_cwnd_restart(sk, delta);
1387 }
1388 
1389 /* Determine a window scaling and initial window to offer. */
1390 void tcp_select_initial_window(const struct sock *sk, int __space,
1391 			       __u32 mss, __u32 *rcv_wnd,
1392 			       __u32 *window_clamp, int wscale_ok,
1393 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1394 
1395 static inline int tcp_win_from_space(const struct sock *sk, int space)
1396 {
1397 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1398 
1399 	return tcp_adv_win_scale <= 0 ?
1400 		(space>>(-tcp_adv_win_scale)) :
1401 		space - (space>>tcp_adv_win_scale);
1402 }
1403 
1404 /* Note: caller must be prepared to deal with negative returns */
1405 static inline int tcp_space(const struct sock *sk)
1406 {
1407 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1408 				  READ_ONCE(sk->sk_backlog.len) -
1409 				  atomic_read(&sk->sk_rmem_alloc));
1410 }
1411 
1412 static inline int tcp_full_space(const struct sock *sk)
1413 {
1414 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1415 }
1416 
1417 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1418 
1419 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1420  * If 87.5 % (7/8) of the space has been consumed, we want to override
1421  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1422  * len/truesize ratio.
1423  */
1424 static inline bool tcp_rmem_pressure(const struct sock *sk)
1425 {
1426 	int rcvbuf, threshold;
1427 
1428 	if (tcp_under_memory_pressure(sk))
1429 		return true;
1430 
1431 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1432 	threshold = rcvbuf - (rcvbuf >> 3);
1433 
1434 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1435 }
1436 
1437 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1438 {
1439 	const struct tcp_sock *tp = tcp_sk(sk);
1440 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1441 
1442 	if (avail <= 0)
1443 		return false;
1444 
1445 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1446 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1447 }
1448 
1449 extern void tcp_openreq_init_rwin(struct request_sock *req,
1450 				  const struct sock *sk_listener,
1451 				  const struct dst_entry *dst);
1452 
1453 void tcp_enter_memory_pressure(struct sock *sk);
1454 void tcp_leave_memory_pressure(struct sock *sk);
1455 
1456 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1457 {
1458 	struct net *net = sock_net((struct sock *)tp);
1459 
1460 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1461 }
1462 
1463 static inline int keepalive_time_when(const struct tcp_sock *tp)
1464 {
1465 	struct net *net = sock_net((struct sock *)tp);
1466 
1467 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1468 }
1469 
1470 static inline int keepalive_probes(const struct tcp_sock *tp)
1471 {
1472 	struct net *net = sock_net((struct sock *)tp);
1473 
1474 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1475 }
1476 
1477 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1478 {
1479 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1480 
1481 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1482 			  tcp_jiffies32 - tp->rcv_tstamp);
1483 }
1484 
1485 static inline int tcp_fin_time(const struct sock *sk)
1486 {
1487 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1488 	const int rto = inet_csk(sk)->icsk_rto;
1489 
1490 	if (fin_timeout < (rto << 2) - (rto >> 1))
1491 		fin_timeout = (rto << 2) - (rto >> 1);
1492 
1493 	return fin_timeout;
1494 }
1495 
1496 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1497 				  int paws_win)
1498 {
1499 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1500 		return true;
1501 	if (unlikely(!time_before32(ktime_get_seconds(),
1502 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1503 		return true;
1504 	/*
1505 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1506 	 * then following tcp messages have valid values. Ignore 0 value,
1507 	 * or else 'negative' tsval might forbid us to accept their packets.
1508 	 */
1509 	if (!rx_opt->ts_recent)
1510 		return true;
1511 	return false;
1512 }
1513 
1514 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1515 				   int rst)
1516 {
1517 	if (tcp_paws_check(rx_opt, 0))
1518 		return false;
1519 
1520 	/* RST segments are not recommended to carry timestamp,
1521 	   and, if they do, it is recommended to ignore PAWS because
1522 	   "their cleanup function should take precedence over timestamps."
1523 	   Certainly, it is mistake. It is necessary to understand the reasons
1524 	   of this constraint to relax it: if peer reboots, clock may go
1525 	   out-of-sync and half-open connections will not be reset.
1526 	   Actually, the problem would be not existing if all
1527 	   the implementations followed draft about maintaining clock
1528 	   via reboots. Linux-2.2 DOES NOT!
1529 
1530 	   However, we can relax time bounds for RST segments to MSL.
1531 	 */
1532 	if (rst && !time_before32(ktime_get_seconds(),
1533 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1534 		return false;
1535 	return true;
1536 }
1537 
1538 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1539 			  int mib_idx, u32 *last_oow_ack_time);
1540 
1541 static inline void tcp_mib_init(struct net *net)
1542 {
1543 	/* See RFC 2012 */
1544 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1545 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1546 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1547 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1548 }
1549 
1550 /* from STCP */
1551 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1552 {
1553 	tp->lost_skb_hint = NULL;
1554 }
1555 
1556 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1557 {
1558 	tcp_clear_retrans_hints_partial(tp);
1559 	tp->retransmit_skb_hint = NULL;
1560 }
1561 
1562 union tcp_md5_addr {
1563 	struct in_addr  a4;
1564 #if IS_ENABLED(CONFIG_IPV6)
1565 	struct in6_addr	a6;
1566 #endif
1567 };
1568 
1569 /* - key database */
1570 struct tcp_md5sig_key {
1571 	struct hlist_node	node;
1572 	u8			keylen;
1573 	u8			family; /* AF_INET or AF_INET6 */
1574 	u8			prefixlen;
1575 	union tcp_md5_addr	addr;
1576 	int			l3index; /* set if key added with L3 scope */
1577 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1578 	struct rcu_head		rcu;
1579 };
1580 
1581 /* - sock block */
1582 struct tcp_md5sig_info {
1583 	struct hlist_head	head;
1584 	struct rcu_head		rcu;
1585 };
1586 
1587 /* - pseudo header */
1588 struct tcp4_pseudohdr {
1589 	__be32		saddr;
1590 	__be32		daddr;
1591 	__u8		pad;
1592 	__u8		protocol;
1593 	__be16		len;
1594 };
1595 
1596 struct tcp6_pseudohdr {
1597 	struct in6_addr	saddr;
1598 	struct in6_addr daddr;
1599 	__be32		len;
1600 	__be32		protocol;	/* including padding */
1601 };
1602 
1603 union tcp_md5sum_block {
1604 	struct tcp4_pseudohdr ip4;
1605 #if IS_ENABLED(CONFIG_IPV6)
1606 	struct tcp6_pseudohdr ip6;
1607 #endif
1608 };
1609 
1610 /* - pool: digest algorithm, hash description and scratch buffer */
1611 struct tcp_md5sig_pool {
1612 	struct ahash_request	*md5_req;
1613 	void			*scratch;
1614 };
1615 
1616 /* - functions */
1617 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1618 			const struct sock *sk, const struct sk_buff *skb);
1619 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1620 		   int family, u8 prefixlen, int l3index,
1621 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1622 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1623 		   int family, u8 prefixlen, int l3index);
1624 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1625 					 const struct sock *addr_sk);
1626 
1627 #ifdef CONFIG_TCP_MD5SIG
1628 #include <linux/jump_label.h>
1629 extern struct static_key_false tcp_md5_needed;
1630 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1631 					   const union tcp_md5_addr *addr,
1632 					   int family);
1633 static inline struct tcp_md5sig_key *
1634 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1635 		  const union tcp_md5_addr *addr, int family)
1636 {
1637 	if (!static_branch_unlikely(&tcp_md5_needed))
1638 		return NULL;
1639 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1640 }
1641 
1642 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1643 #else
1644 static inline struct tcp_md5sig_key *
1645 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1646 		  const union tcp_md5_addr *addr, int family)
1647 {
1648 	return NULL;
1649 }
1650 #define tcp_twsk_md5_key(twsk)	NULL
1651 #endif
1652 
1653 bool tcp_alloc_md5sig_pool(void);
1654 
1655 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1656 static inline void tcp_put_md5sig_pool(void)
1657 {
1658 	local_bh_enable();
1659 }
1660 
1661 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1662 			  unsigned int header_len);
1663 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1664 		     const struct tcp_md5sig_key *key);
1665 
1666 /* From tcp_fastopen.c */
1667 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1668 			    struct tcp_fastopen_cookie *cookie);
1669 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1670 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1671 			    u16 try_exp);
1672 struct tcp_fastopen_request {
1673 	/* Fast Open cookie. Size 0 means a cookie request */
1674 	struct tcp_fastopen_cookie	cookie;
1675 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1676 	size_t				size;
1677 	int				copied;	/* queued in tcp_connect() */
1678 	struct ubuf_info		*uarg;
1679 };
1680 void tcp_free_fastopen_req(struct tcp_sock *tp);
1681 void tcp_fastopen_destroy_cipher(struct sock *sk);
1682 void tcp_fastopen_ctx_destroy(struct net *net);
1683 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1684 			      void *primary_key, void *backup_key);
1685 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1686 			    u64 *key);
1687 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1688 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1689 			      struct request_sock *req,
1690 			      struct tcp_fastopen_cookie *foc,
1691 			      const struct dst_entry *dst);
1692 void tcp_fastopen_init_key_once(struct net *net);
1693 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1694 			     struct tcp_fastopen_cookie *cookie);
1695 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1696 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1697 #define TCP_FASTOPEN_KEY_MAX 2
1698 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1699 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1700 
1701 /* Fastopen key context */
1702 struct tcp_fastopen_context {
1703 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1704 	int		num;
1705 	struct rcu_head	rcu;
1706 };
1707 
1708 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1709 void tcp_fastopen_active_disable(struct sock *sk);
1710 bool tcp_fastopen_active_should_disable(struct sock *sk);
1711 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1712 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1713 
1714 /* Caller needs to wrap with rcu_read_(un)lock() */
1715 static inline
1716 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1717 {
1718 	struct tcp_fastopen_context *ctx;
1719 
1720 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1721 	if (!ctx)
1722 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1723 	return ctx;
1724 }
1725 
1726 static inline
1727 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1728 			       const struct tcp_fastopen_cookie *orig)
1729 {
1730 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1731 	    orig->len == foc->len &&
1732 	    !memcmp(orig->val, foc->val, foc->len))
1733 		return true;
1734 	return false;
1735 }
1736 
1737 static inline
1738 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1739 {
1740 	return ctx->num;
1741 }
1742 
1743 /* Latencies incurred by various limits for a sender. They are
1744  * chronograph-like stats that are mutually exclusive.
1745  */
1746 enum tcp_chrono {
1747 	TCP_CHRONO_UNSPEC,
1748 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1749 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1750 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1751 	__TCP_CHRONO_MAX,
1752 };
1753 
1754 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1755 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1756 
1757 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1758  * the same memory storage than skb->destructor/_skb_refdst
1759  */
1760 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1761 {
1762 	skb->destructor = NULL;
1763 	skb->_skb_refdst = 0UL;
1764 }
1765 
1766 #define tcp_skb_tsorted_save(skb) {		\
1767 	unsigned long _save = skb->_skb_refdst;	\
1768 	skb->_skb_refdst = 0UL;
1769 
1770 #define tcp_skb_tsorted_restore(skb)		\
1771 	skb->_skb_refdst = _save;		\
1772 }
1773 
1774 void tcp_write_queue_purge(struct sock *sk);
1775 
1776 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1777 {
1778 	return skb_rb_first(&sk->tcp_rtx_queue);
1779 }
1780 
1781 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1782 {
1783 	return skb_rb_last(&sk->tcp_rtx_queue);
1784 }
1785 
1786 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1787 {
1788 	return skb_peek(&sk->sk_write_queue);
1789 }
1790 
1791 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1792 {
1793 	return skb_peek_tail(&sk->sk_write_queue);
1794 }
1795 
1796 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1797 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1798 
1799 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1800 {
1801 	return skb_peek(&sk->sk_write_queue);
1802 }
1803 
1804 static inline bool tcp_skb_is_last(const struct sock *sk,
1805 				   const struct sk_buff *skb)
1806 {
1807 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1808 }
1809 
1810 /**
1811  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1812  * @sk: socket
1813  *
1814  * Since the write queue can have a temporary empty skb in it,
1815  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1816  */
1817 static inline bool tcp_write_queue_empty(const struct sock *sk)
1818 {
1819 	const struct tcp_sock *tp = tcp_sk(sk);
1820 
1821 	return tp->write_seq == tp->snd_nxt;
1822 }
1823 
1824 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1825 {
1826 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1827 }
1828 
1829 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1830 {
1831 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1832 }
1833 
1834 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1835 {
1836 	__skb_queue_tail(&sk->sk_write_queue, skb);
1837 
1838 	/* Queue it, remembering where we must start sending. */
1839 	if (sk->sk_write_queue.next == skb)
1840 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1841 }
1842 
1843 /* Insert new before skb on the write queue of sk.  */
1844 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1845 						  struct sk_buff *skb,
1846 						  struct sock *sk)
1847 {
1848 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1849 }
1850 
1851 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1852 {
1853 	tcp_skb_tsorted_anchor_cleanup(skb);
1854 	__skb_unlink(skb, &sk->sk_write_queue);
1855 }
1856 
1857 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1858 
1859 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1860 {
1861 	tcp_skb_tsorted_anchor_cleanup(skb);
1862 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1863 }
1864 
1865 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1866 {
1867 	list_del(&skb->tcp_tsorted_anchor);
1868 	tcp_rtx_queue_unlink(skb, sk);
1869 	sk_wmem_free_skb(sk, skb);
1870 }
1871 
1872 static inline void tcp_push_pending_frames(struct sock *sk)
1873 {
1874 	if (tcp_send_head(sk)) {
1875 		struct tcp_sock *tp = tcp_sk(sk);
1876 
1877 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1878 	}
1879 }
1880 
1881 /* Start sequence of the skb just after the highest skb with SACKed
1882  * bit, valid only if sacked_out > 0 or when the caller has ensured
1883  * validity by itself.
1884  */
1885 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1886 {
1887 	if (!tp->sacked_out)
1888 		return tp->snd_una;
1889 
1890 	if (tp->highest_sack == NULL)
1891 		return tp->snd_nxt;
1892 
1893 	return TCP_SKB_CB(tp->highest_sack)->seq;
1894 }
1895 
1896 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1897 {
1898 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1899 }
1900 
1901 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1902 {
1903 	return tcp_sk(sk)->highest_sack;
1904 }
1905 
1906 static inline void tcp_highest_sack_reset(struct sock *sk)
1907 {
1908 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1909 }
1910 
1911 /* Called when old skb is about to be deleted and replaced by new skb */
1912 static inline void tcp_highest_sack_replace(struct sock *sk,
1913 					    struct sk_buff *old,
1914 					    struct sk_buff *new)
1915 {
1916 	if (old == tcp_highest_sack(sk))
1917 		tcp_sk(sk)->highest_sack = new;
1918 }
1919 
1920 /* This helper checks if socket has IP_TRANSPARENT set */
1921 static inline bool inet_sk_transparent(const struct sock *sk)
1922 {
1923 	switch (sk->sk_state) {
1924 	case TCP_TIME_WAIT:
1925 		return inet_twsk(sk)->tw_transparent;
1926 	case TCP_NEW_SYN_RECV:
1927 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1928 	}
1929 	return inet_sk(sk)->transparent;
1930 }
1931 
1932 /* Determines whether this is a thin stream (which may suffer from
1933  * increased latency). Used to trigger latency-reducing mechanisms.
1934  */
1935 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1936 {
1937 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1938 }
1939 
1940 /* /proc */
1941 enum tcp_seq_states {
1942 	TCP_SEQ_STATE_LISTENING,
1943 	TCP_SEQ_STATE_ESTABLISHED,
1944 };
1945 
1946 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1947 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1948 void tcp_seq_stop(struct seq_file *seq, void *v);
1949 
1950 struct tcp_seq_afinfo {
1951 	sa_family_t			family;
1952 };
1953 
1954 struct tcp_iter_state {
1955 	struct seq_net_private	p;
1956 	enum tcp_seq_states	state;
1957 	struct sock		*syn_wait_sk;
1958 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1959 	int			bucket, offset, sbucket, num;
1960 	loff_t			last_pos;
1961 };
1962 
1963 extern struct request_sock_ops tcp_request_sock_ops;
1964 extern struct request_sock_ops tcp6_request_sock_ops;
1965 
1966 void tcp_v4_destroy_sock(struct sock *sk);
1967 
1968 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1969 				netdev_features_t features);
1970 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1971 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1972 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1973 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1975 int tcp_gro_complete(struct sk_buff *skb);
1976 
1977 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1978 
1979 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1980 {
1981 	struct net *net = sock_net((struct sock *)tp);
1982 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1983 }
1984 
1985 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1986 
1987 #ifdef CONFIG_PROC_FS
1988 int tcp4_proc_init(void);
1989 void tcp4_proc_exit(void);
1990 #endif
1991 
1992 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1993 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1994 		     const struct tcp_request_sock_ops *af_ops,
1995 		     struct sock *sk, struct sk_buff *skb);
1996 
1997 /* TCP af-specific functions */
1998 struct tcp_sock_af_ops {
1999 #ifdef CONFIG_TCP_MD5SIG
2000 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2001 						const struct sock *addr_sk);
2002 	int		(*calc_md5_hash)(char *location,
2003 					 const struct tcp_md5sig_key *md5,
2004 					 const struct sock *sk,
2005 					 const struct sk_buff *skb);
2006 	int		(*md5_parse)(struct sock *sk,
2007 				     int optname,
2008 				     sockptr_t optval,
2009 				     int optlen);
2010 #endif
2011 };
2012 
2013 struct tcp_request_sock_ops {
2014 	u16 mss_clamp;
2015 #ifdef CONFIG_TCP_MD5SIG
2016 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2017 						 const struct sock *addr_sk);
2018 	int		(*calc_md5_hash) (char *location,
2019 					  const struct tcp_md5sig_key *md5,
2020 					  const struct sock *sk,
2021 					  const struct sk_buff *skb);
2022 #endif
2023 #ifdef CONFIG_SYN_COOKIES
2024 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2025 				 __u16 *mss);
2026 #endif
2027 	struct dst_entry *(*route_req)(const struct sock *sk,
2028 				       struct sk_buff *skb,
2029 				       struct flowi *fl,
2030 				       struct request_sock *req);
2031 	u32 (*init_seq)(const struct sk_buff *skb);
2032 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2033 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2034 			   struct flowi *fl, struct request_sock *req,
2035 			   struct tcp_fastopen_cookie *foc,
2036 			   enum tcp_synack_type synack_type,
2037 			   struct sk_buff *syn_skb);
2038 };
2039 
2040 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2041 #if IS_ENABLED(CONFIG_IPV6)
2042 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2043 #endif
2044 
2045 #ifdef CONFIG_SYN_COOKIES
2046 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2047 					 const struct sock *sk, struct sk_buff *skb,
2048 					 __u16 *mss)
2049 {
2050 	tcp_synq_overflow(sk);
2051 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2052 	return ops->cookie_init_seq(skb, mss);
2053 }
2054 #else
2055 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2056 					 const struct sock *sk, struct sk_buff *skb,
2057 					 __u16 *mss)
2058 {
2059 	return 0;
2060 }
2061 #endif
2062 
2063 int tcpv4_offload_init(void);
2064 
2065 void tcp_v4_init(void);
2066 void tcp_init(void);
2067 
2068 /* tcp_recovery.c */
2069 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2070 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2071 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2072 				u32 reo_wnd);
2073 extern bool tcp_rack_mark_lost(struct sock *sk);
2074 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2075 			     u64 xmit_time);
2076 extern void tcp_rack_reo_timeout(struct sock *sk);
2077 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2078 
2079 /* At how many usecs into the future should the RTO fire? */
2080 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2081 {
2082 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2083 	u32 rto = inet_csk(sk)->icsk_rto;
2084 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2085 
2086 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2087 }
2088 
2089 /*
2090  * Save and compile IPv4 options, return a pointer to it
2091  */
2092 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2093 							 struct sk_buff *skb)
2094 {
2095 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2096 	struct ip_options_rcu *dopt = NULL;
2097 
2098 	if (opt->optlen) {
2099 		int opt_size = sizeof(*dopt) + opt->optlen;
2100 
2101 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2102 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2103 			kfree(dopt);
2104 			dopt = NULL;
2105 		}
2106 	}
2107 	return dopt;
2108 }
2109 
2110 /* locally generated TCP pure ACKs have skb->truesize == 2
2111  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2112  * This is much faster than dissecting the packet to find out.
2113  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2114  */
2115 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2116 {
2117 	return skb->truesize == 2;
2118 }
2119 
2120 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2121 {
2122 	skb->truesize = 2;
2123 }
2124 
2125 static inline int tcp_inq(struct sock *sk)
2126 {
2127 	struct tcp_sock *tp = tcp_sk(sk);
2128 	int answ;
2129 
2130 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2131 		answ = 0;
2132 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2133 		   !tp->urg_data ||
2134 		   before(tp->urg_seq, tp->copied_seq) ||
2135 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2136 
2137 		answ = tp->rcv_nxt - tp->copied_seq;
2138 
2139 		/* Subtract 1, if FIN was received */
2140 		if (answ && sock_flag(sk, SOCK_DONE))
2141 			answ--;
2142 	} else {
2143 		answ = tp->urg_seq - tp->copied_seq;
2144 	}
2145 
2146 	return answ;
2147 }
2148 
2149 int tcp_peek_len(struct socket *sock);
2150 
2151 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2152 {
2153 	u16 segs_in;
2154 
2155 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2156 	tp->segs_in += segs_in;
2157 	if (skb->len > tcp_hdrlen(skb))
2158 		tp->data_segs_in += segs_in;
2159 }
2160 
2161 /*
2162  * TCP listen path runs lockless.
2163  * We forced "struct sock" to be const qualified to make sure
2164  * we don't modify one of its field by mistake.
2165  * Here, we increment sk_drops which is an atomic_t, so we can safely
2166  * make sock writable again.
2167  */
2168 static inline void tcp_listendrop(const struct sock *sk)
2169 {
2170 	atomic_inc(&((struct sock *)sk)->sk_drops);
2171 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2172 }
2173 
2174 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2175 
2176 /*
2177  * Interface for adding Upper Level Protocols over TCP
2178  */
2179 
2180 #define TCP_ULP_NAME_MAX	16
2181 #define TCP_ULP_MAX		128
2182 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2183 
2184 struct tcp_ulp_ops {
2185 	struct list_head	list;
2186 
2187 	/* initialize ulp */
2188 	int (*init)(struct sock *sk);
2189 	/* update ulp */
2190 	void (*update)(struct sock *sk, struct proto *p,
2191 		       void (*write_space)(struct sock *sk));
2192 	/* cleanup ulp */
2193 	void (*release)(struct sock *sk);
2194 	/* diagnostic */
2195 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2196 	size_t (*get_info_size)(const struct sock *sk);
2197 	/* clone ulp */
2198 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2199 		      const gfp_t priority);
2200 
2201 	char		name[TCP_ULP_NAME_MAX];
2202 	struct module	*owner;
2203 };
2204 int tcp_register_ulp(struct tcp_ulp_ops *type);
2205 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2206 int tcp_set_ulp(struct sock *sk, const char *name);
2207 void tcp_get_available_ulp(char *buf, size_t len);
2208 void tcp_cleanup_ulp(struct sock *sk);
2209 void tcp_update_ulp(struct sock *sk, struct proto *p,
2210 		    void (*write_space)(struct sock *sk));
2211 
2212 #define MODULE_ALIAS_TCP_ULP(name)				\
2213 	__MODULE_INFO(alias, alias_userspace, name);		\
2214 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2215 
2216 #ifdef CONFIG_NET_SOCK_MSG
2217 struct sk_msg;
2218 struct sk_psock;
2219 
2220 #ifdef CONFIG_BPF_SYSCALL
2221 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2222 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2223 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2224 #endif /* CONFIG_BPF_SYSCALL */
2225 
2226 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2227 			  int flags);
2228 #endif /* CONFIG_NET_SOCK_MSG */
2229 
2230 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2231 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2232 {
2233 }
2234 #endif
2235 
2236 #ifdef CONFIG_CGROUP_BPF
2237 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2238 				      struct sk_buff *skb,
2239 				      unsigned int end_offset)
2240 {
2241 	skops->skb = skb;
2242 	skops->skb_data_end = skb->data + end_offset;
2243 }
2244 #else
2245 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2246 				      struct sk_buff *skb,
2247 				      unsigned int end_offset)
2248 {
2249 }
2250 #endif
2251 
2252 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2253  * is < 0, then the BPF op failed (for example if the loaded BPF
2254  * program does not support the chosen operation or there is no BPF
2255  * program loaded).
2256  */
2257 #ifdef CONFIG_BPF
2258 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2259 {
2260 	struct bpf_sock_ops_kern sock_ops;
2261 	int ret;
2262 
2263 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2264 	if (sk_fullsock(sk)) {
2265 		sock_ops.is_fullsock = 1;
2266 		sock_owned_by_me(sk);
2267 	}
2268 
2269 	sock_ops.sk = sk;
2270 	sock_ops.op = op;
2271 	if (nargs > 0)
2272 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2273 
2274 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2275 	if (ret == 0)
2276 		ret = sock_ops.reply;
2277 	else
2278 		ret = -1;
2279 	return ret;
2280 }
2281 
2282 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2283 {
2284 	u32 args[2] = {arg1, arg2};
2285 
2286 	return tcp_call_bpf(sk, op, 2, args);
2287 }
2288 
2289 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2290 				    u32 arg3)
2291 {
2292 	u32 args[3] = {arg1, arg2, arg3};
2293 
2294 	return tcp_call_bpf(sk, op, 3, args);
2295 }
2296 
2297 #else
2298 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2299 {
2300 	return -EPERM;
2301 }
2302 
2303 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2304 {
2305 	return -EPERM;
2306 }
2307 
2308 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2309 				    u32 arg3)
2310 {
2311 	return -EPERM;
2312 }
2313 
2314 #endif
2315 
2316 static inline u32 tcp_timeout_init(struct sock *sk)
2317 {
2318 	int timeout;
2319 
2320 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2321 
2322 	if (timeout <= 0)
2323 		timeout = TCP_TIMEOUT_INIT;
2324 	return timeout;
2325 }
2326 
2327 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2328 {
2329 	int rwnd;
2330 
2331 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2332 
2333 	if (rwnd < 0)
2334 		rwnd = 0;
2335 	return rwnd;
2336 }
2337 
2338 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2339 {
2340 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2341 }
2342 
2343 static inline void tcp_bpf_rtt(struct sock *sk)
2344 {
2345 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2346 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2347 }
2348 
2349 #if IS_ENABLED(CONFIG_SMC)
2350 extern struct static_key_false tcp_have_smc;
2351 #endif
2352 
2353 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2354 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2355 			     void (*cad)(struct sock *sk, u32 ack_seq));
2356 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2357 void clean_acked_data_flush(void);
2358 #endif
2359 
2360 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2361 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2362 				    const struct tcp_sock *tp)
2363 {
2364 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2365 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2366 }
2367 
2368 /* Compute Earliest Departure Time for some control packets
2369  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2370  */
2371 static inline u64 tcp_transmit_time(const struct sock *sk)
2372 {
2373 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2374 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2375 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2376 
2377 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2378 	}
2379 	return 0;
2380 }
2381 
2382 #endif	/* _TCP_H */
2383