1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 330 int flags); 331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 332 size_t size, int flags); 333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 334 struct page *page, int offset, size_t *size); 335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 336 size_t size, int flags); 337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 355 static inline void tcp_dec_quickack_mode(struct sock *sk, 356 const unsigned int pkts) 357 { 358 struct inet_connection_sock *icsk = inet_csk(sk); 359 360 if (icsk->icsk_ack.quick) { 361 if (pkts >= icsk->icsk_ack.quick) { 362 icsk->icsk_ack.quick = 0; 363 /* Leaving quickack mode we deflate ATO. */ 364 icsk->icsk_ack.ato = TCP_ATO_MIN; 365 } else 366 icsk->icsk_ack.quick -= pkts; 367 } 368 } 369 370 #define TCP_ECN_OK 1 371 #define TCP_ECN_QUEUE_CWR 2 372 #define TCP_ECN_DEMAND_CWR 4 373 #define TCP_ECN_SEEN 8 374 375 enum tcp_tw_status { 376 TCP_TW_SUCCESS = 0, 377 TCP_TW_RST = 1, 378 TCP_TW_ACK = 2, 379 TCP_TW_SYN = 3 380 }; 381 382 383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 384 struct sk_buff *skb, 385 const struct tcphdr *th); 386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 387 struct request_sock *req, bool fastopen, 388 bool *lost_race); 389 int tcp_child_process(struct sock *parent, struct sock *child, 390 struct sk_buff *skb); 391 void tcp_enter_loss(struct sock *sk); 392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 393 void tcp_clear_retrans(struct tcp_sock *tp); 394 void tcp_update_metrics(struct sock *sk); 395 void tcp_init_metrics(struct sock *sk); 396 void tcp_metrics_init(void); 397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 398 void __tcp_close(struct sock *sk, long timeout); 399 void tcp_close(struct sock *sk, long timeout); 400 void tcp_init_sock(struct sock *sk); 401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 402 __poll_t tcp_poll(struct file *file, struct socket *sock, 403 struct poll_table_struct *wait); 404 int tcp_getsockopt(struct sock *sk, int level, int optname, 405 char __user *optval, int __user *optlen); 406 bool tcp_bpf_bypass_getsockopt(int level, int optname); 407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 408 unsigned int optlen); 409 void tcp_set_keepalive(struct sock *sk, int val); 410 void tcp_syn_ack_timeout(const struct request_sock *req); 411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 412 int flags, int *addr_len); 413 int tcp_set_rcvlowat(struct sock *sk, int val); 414 int tcp_set_window_clamp(struct sock *sk, int val); 415 void tcp_update_recv_tstamps(struct sk_buff *skb, 416 struct scm_timestamping_internal *tss); 417 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 418 struct scm_timestamping_internal *tss); 419 void tcp_data_ready(struct sock *sk); 420 #ifdef CONFIG_MMU 421 int tcp_mmap(struct file *file, struct socket *sock, 422 struct vm_area_struct *vma); 423 #endif 424 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 425 struct tcp_options_received *opt_rx, 426 int estab, struct tcp_fastopen_cookie *foc); 427 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 428 429 /* 430 * BPF SKB-less helpers 431 */ 432 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 433 struct tcphdr *th, u32 *cookie); 434 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 435 struct tcphdr *th, u32 *cookie); 436 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 437 const struct tcp_request_sock_ops *af_ops, 438 struct sock *sk, struct tcphdr *th); 439 /* 440 * TCP v4 functions exported for the inet6 API 441 */ 442 443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 444 void tcp_v4_mtu_reduced(struct sock *sk); 445 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 446 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 447 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 448 struct sock *tcp_create_openreq_child(const struct sock *sk, 449 struct request_sock *req, 450 struct sk_buff *skb); 451 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 452 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 453 struct request_sock *req, 454 struct dst_entry *dst, 455 struct request_sock *req_unhash, 456 bool *own_req); 457 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 458 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 459 int tcp_connect(struct sock *sk); 460 enum tcp_synack_type { 461 TCP_SYNACK_NORMAL, 462 TCP_SYNACK_FASTOPEN, 463 TCP_SYNACK_COOKIE, 464 }; 465 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 466 struct request_sock *req, 467 struct tcp_fastopen_cookie *foc, 468 enum tcp_synack_type synack_type, 469 struct sk_buff *syn_skb); 470 int tcp_disconnect(struct sock *sk, int flags); 471 472 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 473 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 474 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 475 476 /* From syncookies.c */ 477 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 478 struct request_sock *req, 479 struct dst_entry *dst, u32 tsoff); 480 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 481 u32 cookie); 482 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 483 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 484 struct sock *sk, struct sk_buff *skb); 485 #ifdef CONFIG_SYN_COOKIES 486 487 /* Syncookies use a monotonic timer which increments every 60 seconds. 488 * This counter is used both as a hash input and partially encoded into 489 * the cookie value. A cookie is only validated further if the delta 490 * between the current counter value and the encoded one is less than this, 491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 492 * the counter advances immediately after a cookie is generated). 493 */ 494 #define MAX_SYNCOOKIE_AGE 2 495 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 496 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 497 498 /* syncookies: remember time of last synqueue overflow 499 * But do not dirty this field too often (once per second is enough) 500 * It is racy as we do not hold a lock, but race is very minor. 501 */ 502 static inline void tcp_synq_overflow(const struct sock *sk) 503 { 504 unsigned int last_overflow; 505 unsigned int now = jiffies; 506 507 if (sk->sk_reuseport) { 508 struct sock_reuseport *reuse; 509 510 reuse = rcu_dereference(sk->sk_reuseport_cb); 511 if (likely(reuse)) { 512 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 513 if (!time_between32(now, last_overflow, 514 last_overflow + HZ)) 515 WRITE_ONCE(reuse->synq_overflow_ts, now); 516 return; 517 } 518 } 519 520 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 521 if (!time_between32(now, last_overflow, last_overflow + HZ)) 522 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 523 } 524 525 /* syncookies: no recent synqueue overflow on this listening socket? */ 526 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 527 { 528 unsigned int last_overflow; 529 unsigned int now = jiffies; 530 531 if (sk->sk_reuseport) { 532 struct sock_reuseport *reuse; 533 534 reuse = rcu_dereference(sk->sk_reuseport_cb); 535 if (likely(reuse)) { 536 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 537 return !time_between32(now, last_overflow - HZ, 538 last_overflow + 539 TCP_SYNCOOKIE_VALID); 540 } 541 } 542 543 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 544 545 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 546 * then we're under synflood. However, we have to use 547 * 'last_overflow - HZ' as lower bound. That's because a concurrent 548 * tcp_synq_overflow() could update .ts_recent_stamp after we read 549 * jiffies but before we store .ts_recent_stamp into last_overflow, 550 * which could lead to rejecting a valid syncookie. 551 */ 552 return !time_between32(now, last_overflow - HZ, 553 last_overflow + TCP_SYNCOOKIE_VALID); 554 } 555 556 static inline u32 tcp_cookie_time(void) 557 { 558 u64 val = get_jiffies_64(); 559 560 do_div(val, TCP_SYNCOOKIE_PERIOD); 561 return val; 562 } 563 564 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 565 u16 *mssp); 566 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 567 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 568 bool cookie_timestamp_decode(const struct net *net, 569 struct tcp_options_received *opt); 570 bool cookie_ecn_ok(const struct tcp_options_received *opt, 571 const struct net *net, const struct dst_entry *dst); 572 573 /* From net/ipv6/syncookies.c */ 574 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 575 u32 cookie); 576 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 577 578 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 579 const struct tcphdr *th, u16 *mssp); 580 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 581 #endif 582 /* tcp_output.c */ 583 584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 585 int nonagle); 586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 588 void tcp_retransmit_timer(struct sock *sk); 589 void tcp_xmit_retransmit_queue(struct sock *); 590 void tcp_simple_retransmit(struct sock *); 591 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 592 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 593 enum tcp_queue { 594 TCP_FRAG_IN_WRITE_QUEUE, 595 TCP_FRAG_IN_RTX_QUEUE, 596 }; 597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 598 struct sk_buff *skb, u32 len, 599 unsigned int mss_now, gfp_t gfp); 600 601 void tcp_send_probe0(struct sock *); 602 void tcp_send_partial(struct sock *); 603 int tcp_write_wakeup(struct sock *, int mib); 604 void tcp_send_fin(struct sock *sk); 605 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 606 int tcp_send_synack(struct sock *); 607 void tcp_push_one(struct sock *, unsigned int mss_now); 608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 609 void tcp_send_ack(struct sock *sk); 610 void tcp_send_delayed_ack(struct sock *sk); 611 void tcp_send_loss_probe(struct sock *sk); 612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 613 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 614 const struct sk_buff *next_skb); 615 616 /* tcp_input.c */ 617 void tcp_rearm_rto(struct sock *sk); 618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 619 void tcp_reset(struct sock *sk, struct sk_buff *skb); 620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 621 void tcp_fin(struct sock *sk); 622 623 /* tcp_timer.c */ 624 void tcp_init_xmit_timers(struct sock *); 625 static inline void tcp_clear_xmit_timers(struct sock *sk) 626 { 627 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 628 __sock_put(sk); 629 630 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 631 __sock_put(sk); 632 633 inet_csk_clear_xmit_timers(sk); 634 } 635 636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 637 unsigned int tcp_current_mss(struct sock *sk); 638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 639 640 /* Bound MSS / TSO packet size with the half of the window */ 641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 642 { 643 int cutoff; 644 645 /* When peer uses tiny windows, there is no use in packetizing 646 * to sub-MSS pieces for the sake of SWS or making sure there 647 * are enough packets in the pipe for fast recovery. 648 * 649 * On the other hand, for extremely large MSS devices, handling 650 * smaller than MSS windows in this way does make sense. 651 */ 652 if (tp->max_window > TCP_MSS_DEFAULT) 653 cutoff = (tp->max_window >> 1); 654 else 655 cutoff = tp->max_window; 656 657 if (cutoff && pktsize > cutoff) 658 return max_t(int, cutoff, 68U - tp->tcp_header_len); 659 else 660 return pktsize; 661 } 662 663 /* tcp.c */ 664 void tcp_get_info(struct sock *, struct tcp_info *); 665 666 /* Read 'sendfile()'-style from a TCP socket */ 667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 668 sk_read_actor_t recv_actor); 669 670 void tcp_initialize_rcv_mss(struct sock *sk); 671 672 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 673 int tcp_mss_to_mtu(struct sock *sk, int mss); 674 void tcp_mtup_init(struct sock *sk); 675 676 static inline void tcp_bound_rto(const struct sock *sk) 677 { 678 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 679 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 680 } 681 682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 683 { 684 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 685 } 686 687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 688 { 689 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 690 ntohl(TCP_FLAG_ACK) | 691 snd_wnd); 692 } 693 694 static inline void tcp_fast_path_on(struct tcp_sock *tp) 695 { 696 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 697 } 698 699 static inline void tcp_fast_path_check(struct sock *sk) 700 { 701 struct tcp_sock *tp = tcp_sk(sk); 702 703 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 704 tp->rcv_wnd && 705 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 706 !tp->urg_data) 707 tcp_fast_path_on(tp); 708 } 709 710 /* Compute the actual rto_min value */ 711 static inline u32 tcp_rto_min(struct sock *sk) 712 { 713 const struct dst_entry *dst = __sk_dst_get(sk); 714 u32 rto_min = inet_csk(sk)->icsk_rto_min; 715 716 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 717 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 718 return rto_min; 719 } 720 721 static inline u32 tcp_rto_min_us(struct sock *sk) 722 { 723 return jiffies_to_usecs(tcp_rto_min(sk)); 724 } 725 726 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 727 { 728 return dst_metric_locked(dst, RTAX_CC_ALGO); 729 } 730 731 /* Minimum RTT in usec. ~0 means not available. */ 732 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 733 { 734 return minmax_get(&tp->rtt_min); 735 } 736 737 /* Compute the actual receive window we are currently advertising. 738 * Rcv_nxt can be after the window if our peer push more data 739 * than the offered window. 740 */ 741 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 742 { 743 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 744 745 if (win < 0) 746 win = 0; 747 return (u32) win; 748 } 749 750 /* Choose a new window, without checks for shrinking, and without 751 * scaling applied to the result. The caller does these things 752 * if necessary. This is a "raw" window selection. 753 */ 754 u32 __tcp_select_window(struct sock *sk); 755 756 void tcp_send_window_probe(struct sock *sk); 757 758 /* TCP uses 32bit jiffies to save some space. 759 * Note that this is different from tcp_time_stamp, which 760 * historically has been the same until linux-4.13. 761 */ 762 #define tcp_jiffies32 ((u32)jiffies) 763 764 /* 765 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 766 * It is no longer tied to jiffies, but to 1 ms clock. 767 * Note: double check if you want to use tcp_jiffies32 instead of this. 768 */ 769 #define TCP_TS_HZ 1000 770 771 static inline u64 tcp_clock_ns(void) 772 { 773 return ktime_get_ns(); 774 } 775 776 static inline u64 tcp_clock_us(void) 777 { 778 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 779 } 780 781 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 782 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 783 { 784 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 785 } 786 787 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 788 static inline u32 tcp_ns_to_ts(u64 ns) 789 { 790 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 791 } 792 793 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 794 static inline u32 tcp_time_stamp_raw(void) 795 { 796 return tcp_ns_to_ts(tcp_clock_ns()); 797 } 798 799 void tcp_mstamp_refresh(struct tcp_sock *tp); 800 801 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 802 { 803 return max_t(s64, t1 - t0, 0); 804 } 805 806 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 807 { 808 return tcp_ns_to_ts(skb->skb_mstamp_ns); 809 } 810 811 /* provide the departure time in us unit */ 812 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 813 { 814 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 815 } 816 817 818 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 819 820 #define TCPHDR_FIN 0x01 821 #define TCPHDR_SYN 0x02 822 #define TCPHDR_RST 0x04 823 #define TCPHDR_PSH 0x08 824 #define TCPHDR_ACK 0x10 825 #define TCPHDR_URG 0x20 826 #define TCPHDR_ECE 0x40 827 #define TCPHDR_CWR 0x80 828 829 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 830 831 /* This is what the send packet queuing engine uses to pass 832 * TCP per-packet control information to the transmission code. 833 * We also store the host-order sequence numbers in here too. 834 * This is 44 bytes if IPV6 is enabled. 835 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 836 */ 837 struct tcp_skb_cb { 838 __u32 seq; /* Starting sequence number */ 839 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 840 union { 841 /* Note : tcp_tw_isn is used in input path only 842 * (isn chosen by tcp_timewait_state_process()) 843 * 844 * tcp_gso_segs/size are used in write queue only, 845 * cf tcp_skb_pcount()/tcp_skb_mss() 846 */ 847 __u32 tcp_tw_isn; 848 struct { 849 u16 tcp_gso_segs; 850 u16 tcp_gso_size; 851 }; 852 }; 853 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 854 855 __u8 sacked; /* State flags for SACK. */ 856 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 857 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 858 #define TCPCB_LOST 0x04 /* SKB is lost */ 859 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 860 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 861 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 862 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 863 TCPCB_REPAIRED) 864 865 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 866 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 867 eor:1, /* Is skb MSG_EOR marked? */ 868 has_rxtstamp:1, /* SKB has a RX timestamp */ 869 unused:5; 870 __u32 ack_seq; /* Sequence number ACK'd */ 871 union { 872 struct { 873 /* There is space for up to 24 bytes */ 874 __u32 in_flight:30,/* Bytes in flight at transmit */ 875 is_app_limited:1, /* cwnd not fully used? */ 876 unused:1; 877 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 878 __u32 delivered; 879 /* start of send pipeline phase */ 880 u64 first_tx_mstamp; 881 /* when we reached the "delivered" count */ 882 u64 delivered_mstamp; 883 } tx; /* only used for outgoing skbs */ 884 union { 885 struct inet_skb_parm h4; 886 #if IS_ENABLED(CONFIG_IPV6) 887 struct inet6_skb_parm h6; 888 #endif 889 } header; /* For incoming skbs */ 890 }; 891 }; 892 893 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 894 895 extern const struct inet_connection_sock_af_ops ipv4_specific; 896 897 #if IS_ENABLED(CONFIG_IPV6) 898 /* This is the variant of inet6_iif() that must be used by TCP, 899 * as TCP moves IP6CB into a different location in skb->cb[] 900 */ 901 static inline int tcp_v6_iif(const struct sk_buff *skb) 902 { 903 return TCP_SKB_CB(skb)->header.h6.iif; 904 } 905 906 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 907 { 908 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 909 910 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 911 } 912 913 /* TCP_SKB_CB reference means this can not be used from early demux */ 914 static inline int tcp_v6_sdif(const struct sk_buff *skb) 915 { 916 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 917 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 918 return TCP_SKB_CB(skb)->header.h6.iif; 919 #endif 920 return 0; 921 } 922 923 extern const struct inet_connection_sock_af_ops ipv6_specific; 924 925 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 926 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 927 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 928 929 #endif 930 931 /* TCP_SKB_CB reference means this can not be used from early demux */ 932 static inline int tcp_v4_sdif(struct sk_buff *skb) 933 { 934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 935 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 936 return TCP_SKB_CB(skb)->header.h4.iif; 937 #endif 938 return 0; 939 } 940 941 /* Due to TSO, an SKB can be composed of multiple actual 942 * packets. To keep these tracked properly, we use this. 943 */ 944 static inline int tcp_skb_pcount(const struct sk_buff *skb) 945 { 946 return TCP_SKB_CB(skb)->tcp_gso_segs; 947 } 948 949 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 950 { 951 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 952 } 953 954 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 955 { 956 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 957 } 958 959 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 960 static inline int tcp_skb_mss(const struct sk_buff *skb) 961 { 962 return TCP_SKB_CB(skb)->tcp_gso_size; 963 } 964 965 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 966 { 967 return likely(!TCP_SKB_CB(skb)->eor); 968 } 969 970 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 971 const struct sk_buff *from) 972 { 973 return likely(tcp_skb_can_collapse_to(to) && 974 mptcp_skb_can_collapse(to, from)); 975 } 976 977 /* Events passed to congestion control interface */ 978 enum tcp_ca_event { 979 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 980 CA_EVENT_CWND_RESTART, /* congestion window restart */ 981 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 982 CA_EVENT_LOSS, /* loss timeout */ 983 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 984 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 985 }; 986 987 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 988 enum tcp_ca_ack_event_flags { 989 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 990 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 991 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 992 }; 993 994 /* 995 * Interface for adding new TCP congestion control handlers 996 */ 997 #define TCP_CA_NAME_MAX 16 998 #define TCP_CA_MAX 128 999 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1000 1001 #define TCP_CA_UNSPEC 0 1002 1003 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1004 #define TCP_CONG_NON_RESTRICTED 0x1 1005 /* Requires ECN/ECT set on all packets */ 1006 #define TCP_CONG_NEEDS_ECN 0x2 1007 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1008 1009 union tcp_cc_info; 1010 1011 struct ack_sample { 1012 u32 pkts_acked; 1013 s32 rtt_us; 1014 u32 in_flight; 1015 }; 1016 1017 /* A rate sample measures the number of (original/retransmitted) data 1018 * packets delivered "delivered" over an interval of time "interval_us". 1019 * The tcp_rate.c code fills in the rate sample, and congestion 1020 * control modules that define a cong_control function to run at the end 1021 * of ACK processing can optionally chose to consult this sample when 1022 * setting cwnd and pacing rate. 1023 * A sample is invalid if "delivered" or "interval_us" is negative. 1024 */ 1025 struct rate_sample { 1026 u64 prior_mstamp; /* starting timestamp for interval */ 1027 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1028 s32 delivered; /* number of packets delivered over interval */ 1029 long interval_us; /* time for tp->delivered to incr "delivered" */ 1030 u32 snd_interval_us; /* snd interval for delivered packets */ 1031 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1032 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1033 int losses; /* number of packets marked lost upon ACK */ 1034 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1035 u32 prior_in_flight; /* in flight before this ACK */ 1036 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1037 bool is_retrans; /* is sample from retransmission? */ 1038 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1039 }; 1040 1041 struct tcp_congestion_ops { 1042 /* fast path fields are put first to fill one cache line */ 1043 1044 /* return slow start threshold (required) */ 1045 u32 (*ssthresh)(struct sock *sk); 1046 1047 /* do new cwnd calculation (required) */ 1048 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1049 1050 /* call before changing ca_state (optional) */ 1051 void (*set_state)(struct sock *sk, u8 new_state); 1052 1053 /* call when cwnd event occurs (optional) */ 1054 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1055 1056 /* call when ack arrives (optional) */ 1057 void (*in_ack_event)(struct sock *sk, u32 flags); 1058 1059 /* hook for packet ack accounting (optional) */ 1060 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1061 1062 /* override sysctl_tcp_min_tso_segs */ 1063 u32 (*min_tso_segs)(struct sock *sk); 1064 1065 /* call when packets are delivered to update cwnd and pacing rate, 1066 * after all the ca_state processing. (optional) 1067 */ 1068 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1069 1070 1071 /* new value of cwnd after loss (required) */ 1072 u32 (*undo_cwnd)(struct sock *sk); 1073 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1074 u32 (*sndbuf_expand)(struct sock *sk); 1075 1076 /* control/slow paths put last */ 1077 /* get info for inet_diag (optional) */ 1078 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1079 union tcp_cc_info *info); 1080 1081 char name[TCP_CA_NAME_MAX]; 1082 struct module *owner; 1083 struct list_head list; 1084 u32 key; 1085 u32 flags; 1086 1087 /* initialize private data (optional) */ 1088 void (*init)(struct sock *sk); 1089 /* cleanup private data (optional) */ 1090 void (*release)(struct sock *sk); 1091 } ____cacheline_aligned_in_smp; 1092 1093 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1094 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1095 1096 void tcp_assign_congestion_control(struct sock *sk); 1097 void tcp_init_congestion_control(struct sock *sk); 1098 void tcp_cleanup_congestion_control(struct sock *sk); 1099 int tcp_set_default_congestion_control(struct net *net, const char *name); 1100 void tcp_get_default_congestion_control(struct net *net, char *name); 1101 void tcp_get_available_congestion_control(char *buf, size_t len); 1102 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1103 int tcp_set_allowed_congestion_control(char *allowed); 1104 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1105 bool cap_net_admin); 1106 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1107 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1108 1109 u32 tcp_reno_ssthresh(struct sock *sk); 1110 u32 tcp_reno_undo_cwnd(struct sock *sk); 1111 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1112 extern struct tcp_congestion_ops tcp_reno; 1113 1114 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1115 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1116 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1117 #ifdef CONFIG_INET 1118 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1119 #else 1120 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1121 { 1122 return NULL; 1123 } 1124 #endif 1125 1126 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1127 { 1128 const struct inet_connection_sock *icsk = inet_csk(sk); 1129 1130 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1131 } 1132 1133 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1134 { 1135 struct inet_connection_sock *icsk = inet_csk(sk); 1136 1137 if (icsk->icsk_ca_ops->set_state) 1138 icsk->icsk_ca_ops->set_state(sk, ca_state); 1139 icsk->icsk_ca_state = ca_state; 1140 } 1141 1142 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1143 { 1144 const struct inet_connection_sock *icsk = inet_csk(sk); 1145 1146 if (icsk->icsk_ca_ops->cwnd_event) 1147 icsk->icsk_ca_ops->cwnd_event(sk, event); 1148 } 1149 1150 /* From tcp_rate.c */ 1151 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1152 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1153 struct rate_sample *rs); 1154 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1155 bool is_sack_reneg, struct rate_sample *rs); 1156 void tcp_rate_check_app_limited(struct sock *sk); 1157 1158 /* These functions determine how the current flow behaves in respect of SACK 1159 * handling. SACK is negotiated with the peer, and therefore it can vary 1160 * between different flows. 1161 * 1162 * tcp_is_sack - SACK enabled 1163 * tcp_is_reno - No SACK 1164 */ 1165 static inline int tcp_is_sack(const struct tcp_sock *tp) 1166 { 1167 return likely(tp->rx_opt.sack_ok); 1168 } 1169 1170 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1171 { 1172 return !tcp_is_sack(tp); 1173 } 1174 1175 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1176 { 1177 return tp->sacked_out + tp->lost_out; 1178 } 1179 1180 /* This determines how many packets are "in the network" to the best 1181 * of our knowledge. In many cases it is conservative, but where 1182 * detailed information is available from the receiver (via SACK 1183 * blocks etc.) we can make more aggressive calculations. 1184 * 1185 * Use this for decisions involving congestion control, use just 1186 * tp->packets_out to determine if the send queue is empty or not. 1187 * 1188 * Read this equation as: 1189 * 1190 * "Packets sent once on transmission queue" MINUS 1191 * "Packets left network, but not honestly ACKed yet" PLUS 1192 * "Packets fast retransmitted" 1193 */ 1194 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1195 { 1196 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1197 } 1198 1199 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1200 1201 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1202 { 1203 return tp->snd_cwnd < tp->snd_ssthresh; 1204 } 1205 1206 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1207 { 1208 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1209 } 1210 1211 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1212 { 1213 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1214 (1 << inet_csk(sk)->icsk_ca_state); 1215 } 1216 1217 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1218 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1219 * ssthresh. 1220 */ 1221 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1222 { 1223 const struct tcp_sock *tp = tcp_sk(sk); 1224 1225 if (tcp_in_cwnd_reduction(sk)) 1226 return tp->snd_ssthresh; 1227 else 1228 return max(tp->snd_ssthresh, 1229 ((tp->snd_cwnd >> 1) + 1230 (tp->snd_cwnd >> 2))); 1231 } 1232 1233 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1234 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1235 1236 void tcp_enter_cwr(struct sock *sk); 1237 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1238 1239 /* The maximum number of MSS of available cwnd for which TSO defers 1240 * sending if not using sysctl_tcp_tso_win_divisor. 1241 */ 1242 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1243 { 1244 return 3; 1245 } 1246 1247 /* Returns end sequence number of the receiver's advertised window */ 1248 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1249 { 1250 return tp->snd_una + tp->snd_wnd; 1251 } 1252 1253 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1254 * flexible approach. The RFC suggests cwnd should not be raised unless 1255 * it was fully used previously. And that's exactly what we do in 1256 * congestion avoidance mode. But in slow start we allow cwnd to grow 1257 * as long as the application has used half the cwnd. 1258 * Example : 1259 * cwnd is 10 (IW10), but application sends 9 frames. 1260 * We allow cwnd to reach 18 when all frames are ACKed. 1261 * This check is safe because it's as aggressive as slow start which already 1262 * risks 100% overshoot. The advantage is that we discourage application to 1263 * either send more filler packets or data to artificially blow up the cwnd 1264 * usage, and allow application-limited process to probe bw more aggressively. 1265 */ 1266 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1267 { 1268 const struct tcp_sock *tp = tcp_sk(sk); 1269 1270 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1271 if (tcp_in_slow_start(tp)) 1272 return tp->snd_cwnd < 2 * tp->max_packets_out; 1273 1274 return tp->is_cwnd_limited; 1275 } 1276 1277 /* BBR congestion control needs pacing. 1278 * Same remark for SO_MAX_PACING_RATE. 1279 * sch_fq packet scheduler is efficiently handling pacing, 1280 * but is not always installed/used. 1281 * Return true if TCP stack should pace packets itself. 1282 */ 1283 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1284 { 1285 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1286 } 1287 1288 /* Estimates in how many jiffies next packet for this flow can be sent. 1289 * Scheduling a retransmit timer too early would be silly. 1290 */ 1291 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1292 { 1293 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1294 1295 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1296 } 1297 1298 static inline void tcp_reset_xmit_timer(struct sock *sk, 1299 const int what, 1300 unsigned long when, 1301 const unsigned long max_when) 1302 { 1303 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1304 max_when); 1305 } 1306 1307 /* Something is really bad, we could not queue an additional packet, 1308 * because qdisc is full or receiver sent a 0 window, or we are paced. 1309 * We do not want to add fuel to the fire, or abort too early, 1310 * so make sure the timer we arm now is at least 200ms in the future, 1311 * regardless of current icsk_rto value (as it could be ~2ms) 1312 */ 1313 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1314 { 1315 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1316 } 1317 1318 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1319 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1320 unsigned long max_when) 1321 { 1322 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1323 inet_csk(sk)->icsk_backoff); 1324 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1325 1326 return (unsigned long)min_t(u64, when, max_when); 1327 } 1328 1329 static inline void tcp_check_probe_timer(struct sock *sk) 1330 { 1331 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1332 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1333 tcp_probe0_base(sk), TCP_RTO_MAX); 1334 } 1335 1336 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1337 { 1338 tp->snd_wl1 = seq; 1339 } 1340 1341 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1342 { 1343 tp->snd_wl1 = seq; 1344 } 1345 1346 /* 1347 * Calculate(/check) TCP checksum 1348 */ 1349 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1350 __be32 daddr, __wsum base) 1351 { 1352 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1353 } 1354 1355 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1356 { 1357 return !skb_csum_unnecessary(skb) && 1358 __skb_checksum_complete(skb); 1359 } 1360 1361 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1362 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1363 void tcp_set_state(struct sock *sk, int state); 1364 void tcp_done(struct sock *sk); 1365 int tcp_abort(struct sock *sk, int err); 1366 1367 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1368 { 1369 rx_opt->dsack = 0; 1370 rx_opt->num_sacks = 0; 1371 } 1372 1373 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1374 1375 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1376 { 1377 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 s32 delta; 1380 1381 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1382 ca_ops->cong_control) 1383 return; 1384 delta = tcp_jiffies32 - tp->lsndtime; 1385 if (delta > inet_csk(sk)->icsk_rto) 1386 tcp_cwnd_restart(sk, delta); 1387 } 1388 1389 /* Determine a window scaling and initial window to offer. */ 1390 void tcp_select_initial_window(const struct sock *sk, int __space, 1391 __u32 mss, __u32 *rcv_wnd, 1392 __u32 *window_clamp, int wscale_ok, 1393 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1394 1395 static inline int tcp_win_from_space(const struct sock *sk, int space) 1396 { 1397 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1398 1399 return tcp_adv_win_scale <= 0 ? 1400 (space>>(-tcp_adv_win_scale)) : 1401 space - (space>>tcp_adv_win_scale); 1402 } 1403 1404 /* Note: caller must be prepared to deal with negative returns */ 1405 static inline int tcp_space(const struct sock *sk) 1406 { 1407 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1408 READ_ONCE(sk->sk_backlog.len) - 1409 atomic_read(&sk->sk_rmem_alloc)); 1410 } 1411 1412 static inline int tcp_full_space(const struct sock *sk) 1413 { 1414 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1415 } 1416 1417 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1418 1419 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1420 * If 87.5 % (7/8) of the space has been consumed, we want to override 1421 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1422 * len/truesize ratio. 1423 */ 1424 static inline bool tcp_rmem_pressure(const struct sock *sk) 1425 { 1426 int rcvbuf, threshold; 1427 1428 if (tcp_under_memory_pressure(sk)) 1429 return true; 1430 1431 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1432 threshold = rcvbuf - (rcvbuf >> 3); 1433 1434 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1435 } 1436 1437 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1438 { 1439 const struct tcp_sock *tp = tcp_sk(sk); 1440 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1441 1442 if (avail <= 0) 1443 return false; 1444 1445 return (avail >= target) || tcp_rmem_pressure(sk) || 1446 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1447 } 1448 1449 extern void tcp_openreq_init_rwin(struct request_sock *req, 1450 const struct sock *sk_listener, 1451 const struct dst_entry *dst); 1452 1453 void tcp_enter_memory_pressure(struct sock *sk); 1454 void tcp_leave_memory_pressure(struct sock *sk); 1455 1456 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1457 { 1458 struct net *net = sock_net((struct sock *)tp); 1459 1460 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1461 } 1462 1463 static inline int keepalive_time_when(const struct tcp_sock *tp) 1464 { 1465 struct net *net = sock_net((struct sock *)tp); 1466 1467 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1468 } 1469 1470 static inline int keepalive_probes(const struct tcp_sock *tp) 1471 { 1472 struct net *net = sock_net((struct sock *)tp); 1473 1474 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1475 } 1476 1477 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1478 { 1479 const struct inet_connection_sock *icsk = &tp->inet_conn; 1480 1481 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1482 tcp_jiffies32 - tp->rcv_tstamp); 1483 } 1484 1485 static inline int tcp_fin_time(const struct sock *sk) 1486 { 1487 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1488 const int rto = inet_csk(sk)->icsk_rto; 1489 1490 if (fin_timeout < (rto << 2) - (rto >> 1)) 1491 fin_timeout = (rto << 2) - (rto >> 1); 1492 1493 return fin_timeout; 1494 } 1495 1496 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1497 int paws_win) 1498 { 1499 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1500 return true; 1501 if (unlikely(!time_before32(ktime_get_seconds(), 1502 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1503 return true; 1504 /* 1505 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1506 * then following tcp messages have valid values. Ignore 0 value, 1507 * or else 'negative' tsval might forbid us to accept their packets. 1508 */ 1509 if (!rx_opt->ts_recent) 1510 return true; 1511 return false; 1512 } 1513 1514 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1515 int rst) 1516 { 1517 if (tcp_paws_check(rx_opt, 0)) 1518 return false; 1519 1520 /* RST segments are not recommended to carry timestamp, 1521 and, if they do, it is recommended to ignore PAWS because 1522 "their cleanup function should take precedence over timestamps." 1523 Certainly, it is mistake. It is necessary to understand the reasons 1524 of this constraint to relax it: if peer reboots, clock may go 1525 out-of-sync and half-open connections will not be reset. 1526 Actually, the problem would be not existing if all 1527 the implementations followed draft about maintaining clock 1528 via reboots. Linux-2.2 DOES NOT! 1529 1530 However, we can relax time bounds for RST segments to MSL. 1531 */ 1532 if (rst && !time_before32(ktime_get_seconds(), 1533 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1534 return false; 1535 return true; 1536 } 1537 1538 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1539 int mib_idx, u32 *last_oow_ack_time); 1540 1541 static inline void tcp_mib_init(struct net *net) 1542 { 1543 /* See RFC 2012 */ 1544 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1545 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1546 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1547 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1548 } 1549 1550 /* from STCP */ 1551 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1552 { 1553 tp->lost_skb_hint = NULL; 1554 } 1555 1556 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1557 { 1558 tcp_clear_retrans_hints_partial(tp); 1559 tp->retransmit_skb_hint = NULL; 1560 } 1561 1562 union tcp_md5_addr { 1563 struct in_addr a4; 1564 #if IS_ENABLED(CONFIG_IPV6) 1565 struct in6_addr a6; 1566 #endif 1567 }; 1568 1569 /* - key database */ 1570 struct tcp_md5sig_key { 1571 struct hlist_node node; 1572 u8 keylen; 1573 u8 family; /* AF_INET or AF_INET6 */ 1574 u8 prefixlen; 1575 union tcp_md5_addr addr; 1576 int l3index; /* set if key added with L3 scope */ 1577 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1578 struct rcu_head rcu; 1579 }; 1580 1581 /* - sock block */ 1582 struct tcp_md5sig_info { 1583 struct hlist_head head; 1584 struct rcu_head rcu; 1585 }; 1586 1587 /* - pseudo header */ 1588 struct tcp4_pseudohdr { 1589 __be32 saddr; 1590 __be32 daddr; 1591 __u8 pad; 1592 __u8 protocol; 1593 __be16 len; 1594 }; 1595 1596 struct tcp6_pseudohdr { 1597 struct in6_addr saddr; 1598 struct in6_addr daddr; 1599 __be32 len; 1600 __be32 protocol; /* including padding */ 1601 }; 1602 1603 union tcp_md5sum_block { 1604 struct tcp4_pseudohdr ip4; 1605 #if IS_ENABLED(CONFIG_IPV6) 1606 struct tcp6_pseudohdr ip6; 1607 #endif 1608 }; 1609 1610 /* - pool: digest algorithm, hash description and scratch buffer */ 1611 struct tcp_md5sig_pool { 1612 struct ahash_request *md5_req; 1613 void *scratch; 1614 }; 1615 1616 /* - functions */ 1617 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1618 const struct sock *sk, const struct sk_buff *skb); 1619 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1620 int family, u8 prefixlen, int l3index, 1621 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1622 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1623 int family, u8 prefixlen, int l3index); 1624 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1625 const struct sock *addr_sk); 1626 1627 #ifdef CONFIG_TCP_MD5SIG 1628 #include <linux/jump_label.h> 1629 extern struct static_key_false tcp_md5_needed; 1630 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1631 const union tcp_md5_addr *addr, 1632 int family); 1633 static inline struct tcp_md5sig_key * 1634 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1635 const union tcp_md5_addr *addr, int family) 1636 { 1637 if (!static_branch_unlikely(&tcp_md5_needed)) 1638 return NULL; 1639 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1640 } 1641 1642 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1643 #else 1644 static inline struct tcp_md5sig_key * 1645 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1646 const union tcp_md5_addr *addr, int family) 1647 { 1648 return NULL; 1649 } 1650 #define tcp_twsk_md5_key(twsk) NULL 1651 #endif 1652 1653 bool tcp_alloc_md5sig_pool(void); 1654 1655 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1656 static inline void tcp_put_md5sig_pool(void) 1657 { 1658 local_bh_enable(); 1659 } 1660 1661 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1662 unsigned int header_len); 1663 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1664 const struct tcp_md5sig_key *key); 1665 1666 /* From tcp_fastopen.c */ 1667 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1668 struct tcp_fastopen_cookie *cookie); 1669 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1670 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1671 u16 try_exp); 1672 struct tcp_fastopen_request { 1673 /* Fast Open cookie. Size 0 means a cookie request */ 1674 struct tcp_fastopen_cookie cookie; 1675 struct msghdr *data; /* data in MSG_FASTOPEN */ 1676 size_t size; 1677 int copied; /* queued in tcp_connect() */ 1678 struct ubuf_info *uarg; 1679 }; 1680 void tcp_free_fastopen_req(struct tcp_sock *tp); 1681 void tcp_fastopen_destroy_cipher(struct sock *sk); 1682 void tcp_fastopen_ctx_destroy(struct net *net); 1683 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1684 void *primary_key, void *backup_key); 1685 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1686 u64 *key); 1687 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1688 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1689 struct request_sock *req, 1690 struct tcp_fastopen_cookie *foc, 1691 const struct dst_entry *dst); 1692 void tcp_fastopen_init_key_once(struct net *net); 1693 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1694 struct tcp_fastopen_cookie *cookie); 1695 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1696 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1697 #define TCP_FASTOPEN_KEY_MAX 2 1698 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1699 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1700 1701 /* Fastopen key context */ 1702 struct tcp_fastopen_context { 1703 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1704 int num; 1705 struct rcu_head rcu; 1706 }; 1707 1708 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; 1709 void tcp_fastopen_active_disable(struct sock *sk); 1710 bool tcp_fastopen_active_should_disable(struct sock *sk); 1711 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1712 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1713 1714 /* Caller needs to wrap with rcu_read_(un)lock() */ 1715 static inline 1716 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1717 { 1718 struct tcp_fastopen_context *ctx; 1719 1720 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1721 if (!ctx) 1722 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1723 return ctx; 1724 } 1725 1726 static inline 1727 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1728 const struct tcp_fastopen_cookie *orig) 1729 { 1730 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1731 orig->len == foc->len && 1732 !memcmp(orig->val, foc->val, foc->len)) 1733 return true; 1734 return false; 1735 } 1736 1737 static inline 1738 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1739 { 1740 return ctx->num; 1741 } 1742 1743 /* Latencies incurred by various limits for a sender. They are 1744 * chronograph-like stats that are mutually exclusive. 1745 */ 1746 enum tcp_chrono { 1747 TCP_CHRONO_UNSPEC, 1748 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1749 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1750 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1751 __TCP_CHRONO_MAX, 1752 }; 1753 1754 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1755 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1756 1757 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1758 * the same memory storage than skb->destructor/_skb_refdst 1759 */ 1760 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1761 { 1762 skb->destructor = NULL; 1763 skb->_skb_refdst = 0UL; 1764 } 1765 1766 #define tcp_skb_tsorted_save(skb) { \ 1767 unsigned long _save = skb->_skb_refdst; \ 1768 skb->_skb_refdst = 0UL; 1769 1770 #define tcp_skb_tsorted_restore(skb) \ 1771 skb->_skb_refdst = _save; \ 1772 } 1773 1774 void tcp_write_queue_purge(struct sock *sk); 1775 1776 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1777 { 1778 return skb_rb_first(&sk->tcp_rtx_queue); 1779 } 1780 1781 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1782 { 1783 return skb_rb_last(&sk->tcp_rtx_queue); 1784 } 1785 1786 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1787 { 1788 return skb_peek(&sk->sk_write_queue); 1789 } 1790 1791 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1792 { 1793 return skb_peek_tail(&sk->sk_write_queue); 1794 } 1795 1796 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1797 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1798 1799 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1800 { 1801 return skb_peek(&sk->sk_write_queue); 1802 } 1803 1804 static inline bool tcp_skb_is_last(const struct sock *sk, 1805 const struct sk_buff *skb) 1806 { 1807 return skb_queue_is_last(&sk->sk_write_queue, skb); 1808 } 1809 1810 /** 1811 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1812 * @sk: socket 1813 * 1814 * Since the write queue can have a temporary empty skb in it, 1815 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1816 */ 1817 static inline bool tcp_write_queue_empty(const struct sock *sk) 1818 { 1819 const struct tcp_sock *tp = tcp_sk(sk); 1820 1821 return tp->write_seq == tp->snd_nxt; 1822 } 1823 1824 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1825 { 1826 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1827 } 1828 1829 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1830 { 1831 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1832 } 1833 1834 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1835 { 1836 __skb_queue_tail(&sk->sk_write_queue, skb); 1837 1838 /* Queue it, remembering where we must start sending. */ 1839 if (sk->sk_write_queue.next == skb) 1840 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1841 } 1842 1843 /* Insert new before skb on the write queue of sk. */ 1844 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1845 struct sk_buff *skb, 1846 struct sock *sk) 1847 { 1848 __skb_queue_before(&sk->sk_write_queue, skb, new); 1849 } 1850 1851 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1852 { 1853 tcp_skb_tsorted_anchor_cleanup(skb); 1854 __skb_unlink(skb, &sk->sk_write_queue); 1855 } 1856 1857 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1858 1859 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1860 { 1861 tcp_skb_tsorted_anchor_cleanup(skb); 1862 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1863 } 1864 1865 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1866 { 1867 list_del(&skb->tcp_tsorted_anchor); 1868 tcp_rtx_queue_unlink(skb, sk); 1869 sk_wmem_free_skb(sk, skb); 1870 } 1871 1872 static inline void tcp_push_pending_frames(struct sock *sk) 1873 { 1874 if (tcp_send_head(sk)) { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 1877 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1878 } 1879 } 1880 1881 /* Start sequence of the skb just after the highest skb with SACKed 1882 * bit, valid only if sacked_out > 0 or when the caller has ensured 1883 * validity by itself. 1884 */ 1885 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1886 { 1887 if (!tp->sacked_out) 1888 return tp->snd_una; 1889 1890 if (tp->highest_sack == NULL) 1891 return tp->snd_nxt; 1892 1893 return TCP_SKB_CB(tp->highest_sack)->seq; 1894 } 1895 1896 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1897 { 1898 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1899 } 1900 1901 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1902 { 1903 return tcp_sk(sk)->highest_sack; 1904 } 1905 1906 static inline void tcp_highest_sack_reset(struct sock *sk) 1907 { 1908 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1909 } 1910 1911 /* Called when old skb is about to be deleted and replaced by new skb */ 1912 static inline void tcp_highest_sack_replace(struct sock *sk, 1913 struct sk_buff *old, 1914 struct sk_buff *new) 1915 { 1916 if (old == tcp_highest_sack(sk)) 1917 tcp_sk(sk)->highest_sack = new; 1918 } 1919 1920 /* This helper checks if socket has IP_TRANSPARENT set */ 1921 static inline bool inet_sk_transparent(const struct sock *sk) 1922 { 1923 switch (sk->sk_state) { 1924 case TCP_TIME_WAIT: 1925 return inet_twsk(sk)->tw_transparent; 1926 case TCP_NEW_SYN_RECV: 1927 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1928 } 1929 return inet_sk(sk)->transparent; 1930 } 1931 1932 /* Determines whether this is a thin stream (which may suffer from 1933 * increased latency). Used to trigger latency-reducing mechanisms. 1934 */ 1935 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1936 { 1937 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1938 } 1939 1940 /* /proc */ 1941 enum tcp_seq_states { 1942 TCP_SEQ_STATE_LISTENING, 1943 TCP_SEQ_STATE_ESTABLISHED, 1944 }; 1945 1946 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1947 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1948 void tcp_seq_stop(struct seq_file *seq, void *v); 1949 1950 struct tcp_seq_afinfo { 1951 sa_family_t family; 1952 }; 1953 1954 struct tcp_iter_state { 1955 struct seq_net_private p; 1956 enum tcp_seq_states state; 1957 struct sock *syn_wait_sk; 1958 struct tcp_seq_afinfo *bpf_seq_afinfo; 1959 int bucket, offset, sbucket, num; 1960 loff_t last_pos; 1961 }; 1962 1963 extern struct request_sock_ops tcp_request_sock_ops; 1964 extern struct request_sock_ops tcp6_request_sock_ops; 1965 1966 void tcp_v4_destroy_sock(struct sock *sk); 1967 1968 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1969 netdev_features_t features); 1970 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1971 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 1972 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 1973 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 1974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 1975 int tcp_gro_complete(struct sk_buff *skb); 1976 1977 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1978 1979 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1980 { 1981 struct net *net = sock_net((struct sock *)tp); 1982 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1983 } 1984 1985 bool tcp_stream_memory_free(const struct sock *sk, int wake); 1986 1987 #ifdef CONFIG_PROC_FS 1988 int tcp4_proc_init(void); 1989 void tcp4_proc_exit(void); 1990 #endif 1991 1992 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 1993 int tcp_conn_request(struct request_sock_ops *rsk_ops, 1994 const struct tcp_request_sock_ops *af_ops, 1995 struct sock *sk, struct sk_buff *skb); 1996 1997 /* TCP af-specific functions */ 1998 struct tcp_sock_af_ops { 1999 #ifdef CONFIG_TCP_MD5SIG 2000 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2001 const struct sock *addr_sk); 2002 int (*calc_md5_hash)(char *location, 2003 const struct tcp_md5sig_key *md5, 2004 const struct sock *sk, 2005 const struct sk_buff *skb); 2006 int (*md5_parse)(struct sock *sk, 2007 int optname, 2008 sockptr_t optval, 2009 int optlen); 2010 #endif 2011 }; 2012 2013 struct tcp_request_sock_ops { 2014 u16 mss_clamp; 2015 #ifdef CONFIG_TCP_MD5SIG 2016 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2017 const struct sock *addr_sk); 2018 int (*calc_md5_hash) (char *location, 2019 const struct tcp_md5sig_key *md5, 2020 const struct sock *sk, 2021 const struct sk_buff *skb); 2022 #endif 2023 #ifdef CONFIG_SYN_COOKIES 2024 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2025 __u16 *mss); 2026 #endif 2027 struct dst_entry *(*route_req)(const struct sock *sk, 2028 struct sk_buff *skb, 2029 struct flowi *fl, 2030 struct request_sock *req); 2031 u32 (*init_seq)(const struct sk_buff *skb); 2032 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2033 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2034 struct flowi *fl, struct request_sock *req, 2035 struct tcp_fastopen_cookie *foc, 2036 enum tcp_synack_type synack_type, 2037 struct sk_buff *syn_skb); 2038 }; 2039 2040 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2041 #if IS_ENABLED(CONFIG_IPV6) 2042 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2043 #endif 2044 2045 #ifdef CONFIG_SYN_COOKIES 2046 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2047 const struct sock *sk, struct sk_buff *skb, 2048 __u16 *mss) 2049 { 2050 tcp_synq_overflow(sk); 2051 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2052 return ops->cookie_init_seq(skb, mss); 2053 } 2054 #else 2055 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2056 const struct sock *sk, struct sk_buff *skb, 2057 __u16 *mss) 2058 { 2059 return 0; 2060 } 2061 #endif 2062 2063 int tcpv4_offload_init(void); 2064 2065 void tcp_v4_init(void); 2066 void tcp_init(void); 2067 2068 /* tcp_recovery.c */ 2069 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2070 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2071 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2072 u32 reo_wnd); 2073 extern bool tcp_rack_mark_lost(struct sock *sk); 2074 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2075 u64 xmit_time); 2076 extern void tcp_rack_reo_timeout(struct sock *sk); 2077 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2078 2079 /* At how many usecs into the future should the RTO fire? */ 2080 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2081 { 2082 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2083 u32 rto = inet_csk(sk)->icsk_rto; 2084 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2085 2086 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2087 } 2088 2089 /* 2090 * Save and compile IPv4 options, return a pointer to it 2091 */ 2092 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2093 struct sk_buff *skb) 2094 { 2095 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2096 struct ip_options_rcu *dopt = NULL; 2097 2098 if (opt->optlen) { 2099 int opt_size = sizeof(*dopt) + opt->optlen; 2100 2101 dopt = kmalloc(opt_size, GFP_ATOMIC); 2102 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2103 kfree(dopt); 2104 dopt = NULL; 2105 } 2106 } 2107 return dopt; 2108 } 2109 2110 /* locally generated TCP pure ACKs have skb->truesize == 2 2111 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2112 * This is much faster than dissecting the packet to find out. 2113 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2114 */ 2115 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2116 { 2117 return skb->truesize == 2; 2118 } 2119 2120 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2121 { 2122 skb->truesize = 2; 2123 } 2124 2125 static inline int tcp_inq(struct sock *sk) 2126 { 2127 struct tcp_sock *tp = tcp_sk(sk); 2128 int answ; 2129 2130 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2131 answ = 0; 2132 } else if (sock_flag(sk, SOCK_URGINLINE) || 2133 !tp->urg_data || 2134 before(tp->urg_seq, tp->copied_seq) || 2135 !before(tp->urg_seq, tp->rcv_nxt)) { 2136 2137 answ = tp->rcv_nxt - tp->copied_seq; 2138 2139 /* Subtract 1, if FIN was received */ 2140 if (answ && sock_flag(sk, SOCK_DONE)) 2141 answ--; 2142 } else { 2143 answ = tp->urg_seq - tp->copied_seq; 2144 } 2145 2146 return answ; 2147 } 2148 2149 int tcp_peek_len(struct socket *sock); 2150 2151 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2152 { 2153 u16 segs_in; 2154 2155 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2156 tp->segs_in += segs_in; 2157 if (skb->len > tcp_hdrlen(skb)) 2158 tp->data_segs_in += segs_in; 2159 } 2160 2161 /* 2162 * TCP listen path runs lockless. 2163 * We forced "struct sock" to be const qualified to make sure 2164 * we don't modify one of its field by mistake. 2165 * Here, we increment sk_drops which is an atomic_t, so we can safely 2166 * make sock writable again. 2167 */ 2168 static inline void tcp_listendrop(const struct sock *sk) 2169 { 2170 atomic_inc(&((struct sock *)sk)->sk_drops); 2171 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2172 } 2173 2174 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2175 2176 /* 2177 * Interface for adding Upper Level Protocols over TCP 2178 */ 2179 2180 #define TCP_ULP_NAME_MAX 16 2181 #define TCP_ULP_MAX 128 2182 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2183 2184 struct tcp_ulp_ops { 2185 struct list_head list; 2186 2187 /* initialize ulp */ 2188 int (*init)(struct sock *sk); 2189 /* update ulp */ 2190 void (*update)(struct sock *sk, struct proto *p, 2191 void (*write_space)(struct sock *sk)); 2192 /* cleanup ulp */ 2193 void (*release)(struct sock *sk); 2194 /* diagnostic */ 2195 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2196 size_t (*get_info_size)(const struct sock *sk); 2197 /* clone ulp */ 2198 void (*clone)(const struct request_sock *req, struct sock *newsk, 2199 const gfp_t priority); 2200 2201 char name[TCP_ULP_NAME_MAX]; 2202 struct module *owner; 2203 }; 2204 int tcp_register_ulp(struct tcp_ulp_ops *type); 2205 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2206 int tcp_set_ulp(struct sock *sk, const char *name); 2207 void tcp_get_available_ulp(char *buf, size_t len); 2208 void tcp_cleanup_ulp(struct sock *sk); 2209 void tcp_update_ulp(struct sock *sk, struct proto *p, 2210 void (*write_space)(struct sock *sk)); 2211 2212 #define MODULE_ALIAS_TCP_ULP(name) \ 2213 __MODULE_INFO(alias, alias_userspace, name); \ 2214 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2215 2216 #ifdef CONFIG_NET_SOCK_MSG 2217 struct sk_msg; 2218 struct sk_psock; 2219 2220 #ifdef CONFIG_BPF_SYSCALL 2221 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2222 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2223 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2224 #endif /* CONFIG_BPF_SYSCALL */ 2225 2226 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2227 int flags); 2228 #endif /* CONFIG_NET_SOCK_MSG */ 2229 2230 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2231 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2232 { 2233 } 2234 #endif 2235 2236 #ifdef CONFIG_CGROUP_BPF 2237 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2238 struct sk_buff *skb, 2239 unsigned int end_offset) 2240 { 2241 skops->skb = skb; 2242 skops->skb_data_end = skb->data + end_offset; 2243 } 2244 #else 2245 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2246 struct sk_buff *skb, 2247 unsigned int end_offset) 2248 { 2249 } 2250 #endif 2251 2252 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2253 * is < 0, then the BPF op failed (for example if the loaded BPF 2254 * program does not support the chosen operation or there is no BPF 2255 * program loaded). 2256 */ 2257 #ifdef CONFIG_BPF 2258 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2259 { 2260 struct bpf_sock_ops_kern sock_ops; 2261 int ret; 2262 2263 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2264 if (sk_fullsock(sk)) { 2265 sock_ops.is_fullsock = 1; 2266 sock_owned_by_me(sk); 2267 } 2268 2269 sock_ops.sk = sk; 2270 sock_ops.op = op; 2271 if (nargs > 0) 2272 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2273 2274 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2275 if (ret == 0) 2276 ret = sock_ops.reply; 2277 else 2278 ret = -1; 2279 return ret; 2280 } 2281 2282 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2283 { 2284 u32 args[2] = {arg1, arg2}; 2285 2286 return tcp_call_bpf(sk, op, 2, args); 2287 } 2288 2289 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2290 u32 arg3) 2291 { 2292 u32 args[3] = {arg1, arg2, arg3}; 2293 2294 return tcp_call_bpf(sk, op, 3, args); 2295 } 2296 2297 #else 2298 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2299 { 2300 return -EPERM; 2301 } 2302 2303 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2304 { 2305 return -EPERM; 2306 } 2307 2308 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2309 u32 arg3) 2310 { 2311 return -EPERM; 2312 } 2313 2314 #endif 2315 2316 static inline u32 tcp_timeout_init(struct sock *sk) 2317 { 2318 int timeout; 2319 2320 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2321 2322 if (timeout <= 0) 2323 timeout = TCP_TIMEOUT_INIT; 2324 return timeout; 2325 } 2326 2327 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2328 { 2329 int rwnd; 2330 2331 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2332 2333 if (rwnd < 0) 2334 rwnd = 0; 2335 return rwnd; 2336 } 2337 2338 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2339 { 2340 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2341 } 2342 2343 static inline void tcp_bpf_rtt(struct sock *sk) 2344 { 2345 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2346 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2347 } 2348 2349 #if IS_ENABLED(CONFIG_SMC) 2350 extern struct static_key_false tcp_have_smc; 2351 #endif 2352 2353 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2354 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2355 void (*cad)(struct sock *sk, u32 ack_seq)); 2356 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2357 void clean_acked_data_flush(void); 2358 #endif 2359 2360 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2361 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2362 const struct tcp_sock *tp) 2363 { 2364 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2365 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2366 } 2367 2368 /* Compute Earliest Departure Time for some control packets 2369 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2370 */ 2371 static inline u64 tcp_transmit_time(const struct sock *sk) 2372 { 2373 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2374 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2375 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2376 2377 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2378 } 2379 return 0; 2380 } 2381 2382 #endif /* _TCP_H */ 2383