xref: /openbmc/linux/include/net/tcp.h (revision f1770e3c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 void tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen,
380 			   bool *lost_race);
381 int tcp_child_process(struct sock *parent, struct sock *child,
382 		      struct sk_buff *skb);
383 void tcp_enter_loss(struct sock *sk);
384 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385 void tcp_clear_retrans(struct tcp_sock *tp);
386 void tcp_update_metrics(struct sock *sk);
387 void tcp_init_metrics(struct sock *sk);
388 void tcp_metrics_init(void);
389 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 __poll_t tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 int tcp_set_rcvlowat(struct sock *sk, int val);
408 void tcp_data_ready(struct sock *sk);
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412 		       struct tcp_options_received *opt_rx,
413 		       int estab, struct tcp_fastopen_cookie *foc);
414 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
421 void tcp_v4_mtu_reduced(struct sock *sk);
422 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
423 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
424 struct sock *tcp_create_openreq_child(const struct sock *sk,
425 				      struct request_sock *req,
426 				      struct sk_buff *skb);
427 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
428 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
429 				  struct request_sock *req,
430 				  struct dst_entry *dst,
431 				  struct request_sock *req_unhash,
432 				  bool *own_req);
433 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
434 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
435 int tcp_connect(struct sock *sk);
436 enum tcp_synack_type {
437 	TCP_SYNACK_NORMAL,
438 	TCP_SYNACK_FASTOPEN,
439 	TCP_SYNACK_COOKIE,
440 };
441 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
442 				struct request_sock *req,
443 				struct tcp_fastopen_cookie *foc,
444 				enum tcp_synack_type synack_type);
445 int tcp_disconnect(struct sock *sk, int flags);
446 
447 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
448 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
449 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
450 
451 /* From syncookies.c */
452 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
453 				 struct request_sock *req,
454 				 struct dst_entry *dst, u32 tsoff);
455 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
456 		      u32 cookie);
457 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
458 #ifdef CONFIG_SYN_COOKIES
459 
460 /* Syncookies use a monotonic timer which increments every 60 seconds.
461  * This counter is used both as a hash input and partially encoded into
462  * the cookie value.  A cookie is only validated further if the delta
463  * between the current counter value and the encoded one is less than this,
464  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
465  * the counter advances immediately after a cookie is generated).
466  */
467 #define MAX_SYNCOOKIE_AGE	2
468 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
469 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
470 
471 /* syncookies: remember time of last synqueue overflow
472  * But do not dirty this field too often (once per second is enough)
473  * It is racy as we do not hold a lock, but race is very minor.
474  */
475 static inline void tcp_synq_overflow(const struct sock *sk)
476 {
477 	unsigned int last_overflow;
478 	unsigned int now = jiffies;
479 
480 	if (sk->sk_reuseport) {
481 		struct sock_reuseport *reuse;
482 
483 		reuse = rcu_dereference(sk->sk_reuseport_cb);
484 		if (likely(reuse)) {
485 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
486 			if (time_after32(now, last_overflow + HZ))
487 				WRITE_ONCE(reuse->synq_overflow_ts, now);
488 			return;
489 		}
490 	}
491 
492 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
493 	if (time_after32(now, last_overflow + HZ))
494 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
495 }
496 
497 /* syncookies: no recent synqueue overflow on this listening socket? */
498 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			return time_after32(now, last_overflow +
510 					    TCP_SYNCOOKIE_VALID);
511 		}
512 	}
513 
514 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
515 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
516 }
517 
518 static inline u32 tcp_cookie_time(void)
519 {
520 	u64 val = get_jiffies_64();
521 
522 	do_div(val, TCP_SYNCOOKIE_PERIOD);
523 	return val;
524 }
525 
526 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
527 			      u16 *mssp);
528 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
529 u64 cookie_init_timestamp(struct request_sock *req);
530 bool cookie_timestamp_decode(const struct net *net,
531 			     struct tcp_options_received *opt);
532 bool cookie_ecn_ok(const struct tcp_options_received *opt,
533 		   const struct net *net, const struct dst_entry *dst);
534 
535 /* From net/ipv6/syncookies.c */
536 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
537 		      u32 cookie);
538 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
539 
540 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
541 			      const struct tcphdr *th, u16 *mssp);
542 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
543 #endif
544 /* tcp_output.c */
545 
546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
547 			       int nonagle);
548 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 void tcp_retransmit_timer(struct sock *sk);
551 void tcp_xmit_retransmit_queue(struct sock *);
552 void tcp_simple_retransmit(struct sock *);
553 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
554 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
555 enum tcp_queue {
556 	TCP_FRAG_IN_WRITE_QUEUE,
557 	TCP_FRAG_IN_RTX_QUEUE,
558 };
559 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
560 		 struct sk_buff *skb, u32 len,
561 		 unsigned int mss_now, gfp_t gfp);
562 
563 void tcp_send_probe0(struct sock *);
564 void tcp_send_partial(struct sock *);
565 int tcp_write_wakeup(struct sock *, int mib);
566 void tcp_send_fin(struct sock *sk);
567 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
568 int tcp_send_synack(struct sock *);
569 void tcp_push_one(struct sock *, unsigned int mss_now);
570 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
571 void tcp_send_ack(struct sock *sk);
572 void tcp_send_delayed_ack(struct sock *sk);
573 void tcp_send_loss_probe(struct sock *sk);
574 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
575 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
576 			     const struct sk_buff *next_skb);
577 
578 /* tcp_input.c */
579 void tcp_rearm_rto(struct sock *sk);
580 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
581 void tcp_reset(struct sock *sk);
582 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
583 void tcp_fin(struct sock *sk);
584 
585 /* tcp_timer.c */
586 void tcp_init_xmit_timers(struct sock *);
587 static inline void tcp_clear_xmit_timers(struct sock *sk)
588 {
589 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
590 		__sock_put(sk);
591 
592 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
593 		__sock_put(sk);
594 
595 	inet_csk_clear_xmit_timers(sk);
596 }
597 
598 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599 unsigned int tcp_current_mss(struct sock *sk);
600 
601 /* Bound MSS / TSO packet size with the half of the window */
602 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603 {
604 	int cutoff;
605 
606 	/* When peer uses tiny windows, there is no use in packetizing
607 	 * to sub-MSS pieces for the sake of SWS or making sure there
608 	 * are enough packets in the pipe for fast recovery.
609 	 *
610 	 * On the other hand, for extremely large MSS devices, handling
611 	 * smaller than MSS windows in this way does make sense.
612 	 */
613 	if (tp->max_window > TCP_MSS_DEFAULT)
614 		cutoff = (tp->max_window >> 1);
615 	else
616 		cutoff = tp->max_window;
617 
618 	if (cutoff && pktsize > cutoff)
619 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 	else
621 		return pktsize;
622 }
623 
624 /* tcp.c */
625 void tcp_get_info(struct sock *, struct tcp_info *);
626 
627 /* Read 'sendfile()'-style from a TCP socket */
628 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 		  sk_read_actor_t recv_actor);
630 
631 void tcp_initialize_rcv_mss(struct sock *sk);
632 
633 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634 int tcp_mss_to_mtu(struct sock *sk, int mss);
635 void tcp_mtup_init(struct sock *sk);
636 void tcp_init_buffer_space(struct sock *sk);
637 
638 static inline void tcp_bound_rto(const struct sock *sk)
639 {
640 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642 }
643 
644 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645 {
646 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647 }
648 
649 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650 {
651 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 			       ntohl(TCP_FLAG_ACK) |
653 			       snd_wnd);
654 }
655 
656 static inline void tcp_fast_path_on(struct tcp_sock *tp)
657 {
658 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659 }
660 
661 static inline void tcp_fast_path_check(struct sock *sk)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 
665 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 	    tp->rcv_wnd &&
667 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 	    !tp->urg_data)
669 		tcp_fast_path_on(tp);
670 }
671 
672 /* Compute the actual rto_min value */
673 static inline u32 tcp_rto_min(struct sock *sk)
674 {
675 	const struct dst_entry *dst = __sk_dst_get(sk);
676 	u32 rto_min = TCP_RTO_MIN;
677 
678 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 	return rto_min;
681 }
682 
683 static inline u32 tcp_rto_min_us(struct sock *sk)
684 {
685 	return jiffies_to_usecs(tcp_rto_min(sk));
686 }
687 
688 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689 {
690 	return dst_metric_locked(dst, RTAX_CC_ALGO);
691 }
692 
693 /* Minimum RTT in usec. ~0 means not available. */
694 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695 {
696 	return minmax_get(&tp->rtt_min);
697 }
698 
699 /* Compute the actual receive window we are currently advertising.
700  * Rcv_nxt can be after the window if our peer push more data
701  * than the offered window.
702  */
703 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704 {
705 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706 
707 	if (win < 0)
708 		win = 0;
709 	return (u32) win;
710 }
711 
712 /* Choose a new window, without checks for shrinking, and without
713  * scaling applied to the result.  The caller does these things
714  * if necessary.  This is a "raw" window selection.
715  */
716 u32 __tcp_select_window(struct sock *sk);
717 
718 void tcp_send_window_probe(struct sock *sk);
719 
720 /* TCP uses 32bit jiffies to save some space.
721  * Note that this is different from tcp_time_stamp, which
722  * historically has been the same until linux-4.13.
723  */
724 #define tcp_jiffies32 ((u32)jiffies)
725 
726 /*
727  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728  * It is no longer tied to jiffies, but to 1 ms clock.
729  * Note: double check if you want to use tcp_jiffies32 instead of this.
730  */
731 #define TCP_TS_HZ	1000
732 
733 static inline u64 tcp_clock_ns(void)
734 {
735 	return ktime_get_ns();
736 }
737 
738 static inline u64 tcp_clock_us(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741 }
742 
743 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
744 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745 {
746 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
750 static inline u32 tcp_time_stamp_raw(void)
751 {
752 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753 }
754 
755 void tcp_mstamp_refresh(struct tcp_sock *tp);
756 
757 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
758 {
759 	return max_t(s64, t1 - t0, 0);
760 }
761 
762 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
763 {
764 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
765 }
766 
767 /* provide the departure time in us unit */
768 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
769 {
770 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
771 }
772 
773 
774 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
775 
776 #define TCPHDR_FIN 0x01
777 #define TCPHDR_SYN 0x02
778 #define TCPHDR_RST 0x04
779 #define TCPHDR_PSH 0x08
780 #define TCPHDR_ACK 0x10
781 #define TCPHDR_URG 0x20
782 #define TCPHDR_ECE 0x40
783 #define TCPHDR_CWR 0x80
784 
785 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
786 
787 /* This is what the send packet queuing engine uses to pass
788  * TCP per-packet control information to the transmission code.
789  * We also store the host-order sequence numbers in here too.
790  * This is 44 bytes if IPV6 is enabled.
791  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
792  */
793 struct tcp_skb_cb {
794 	__u32		seq;		/* Starting sequence number	*/
795 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
796 	union {
797 		/* Note : tcp_tw_isn is used in input path only
798 		 *	  (isn chosen by tcp_timewait_state_process())
799 		 *
800 		 * 	  tcp_gso_segs/size are used in write queue only,
801 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
802 		 */
803 		__u32		tcp_tw_isn;
804 		struct {
805 			u16	tcp_gso_segs;
806 			u16	tcp_gso_size;
807 		};
808 	};
809 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
810 
811 	__u8		sacked;		/* State flags for SACK.	*/
812 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
813 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
814 #define TCPCB_LOST		0x04	/* SKB is lost			*/
815 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
816 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
817 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
818 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
819 				TCPCB_REPAIRED)
820 
821 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
822 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
823 			eor:1,		/* Is skb MSG_EOR marked? */
824 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
825 			unused:5;
826 	__u32		ack_seq;	/* Sequence number ACK'd	*/
827 	union {
828 		struct {
829 			/* There is space for up to 24 bytes */
830 			__u32 in_flight:30,/* Bytes in flight at transmit */
831 			      is_app_limited:1, /* cwnd not fully used? */
832 			      unused:1;
833 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
834 			__u32 delivered;
835 			/* start of send pipeline phase */
836 			u64 first_tx_mstamp;
837 			/* when we reached the "delivered" count */
838 			u64 delivered_mstamp;
839 		} tx;   /* only used for outgoing skbs */
840 		union {
841 			struct inet_skb_parm	h4;
842 #if IS_ENABLED(CONFIG_IPV6)
843 			struct inet6_skb_parm	h6;
844 #endif
845 		} header;	/* For incoming skbs */
846 		struct {
847 			__u32 flags;
848 			struct sock *sk_redir;
849 			void *data_end;
850 		} bpf;
851 	};
852 };
853 
854 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
855 
856 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
857 {
858 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
859 }
860 
861 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
862 {
863 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
864 }
865 
866 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
867 {
868 	return TCP_SKB_CB(skb)->bpf.sk_redir;
869 }
870 
871 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
872 {
873 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
874 }
875 
876 #if IS_ENABLED(CONFIG_IPV6)
877 /* This is the variant of inet6_iif() that must be used by TCP,
878  * as TCP moves IP6CB into a different location in skb->cb[]
879  */
880 static inline int tcp_v6_iif(const struct sk_buff *skb)
881 {
882 	return TCP_SKB_CB(skb)->header.h6.iif;
883 }
884 
885 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
886 {
887 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
888 
889 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
890 }
891 
892 /* TCP_SKB_CB reference means this can not be used from early demux */
893 static inline int tcp_v6_sdif(const struct sk_buff *skb)
894 {
895 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
896 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
897 		return TCP_SKB_CB(skb)->header.h6.iif;
898 #endif
899 	return 0;
900 }
901 #endif
902 
903 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
904 {
905 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
906 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
907 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
908 		return true;
909 #endif
910 	return false;
911 }
912 
913 /* TCP_SKB_CB reference means this can not be used from early demux */
914 static inline int tcp_v4_sdif(struct sk_buff *skb)
915 {
916 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
917 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
918 		return TCP_SKB_CB(skb)->header.h4.iif;
919 #endif
920 	return 0;
921 }
922 
923 /* Due to TSO, an SKB can be composed of multiple actual
924  * packets.  To keep these tracked properly, we use this.
925  */
926 static inline int tcp_skb_pcount(const struct sk_buff *skb)
927 {
928 	return TCP_SKB_CB(skb)->tcp_gso_segs;
929 }
930 
931 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
932 {
933 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
934 }
935 
936 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
937 {
938 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
939 }
940 
941 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
942 static inline int tcp_skb_mss(const struct sk_buff *skb)
943 {
944 	return TCP_SKB_CB(skb)->tcp_gso_size;
945 }
946 
947 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
948 {
949 	return likely(!TCP_SKB_CB(skb)->eor);
950 }
951 
952 /* Events passed to congestion control interface */
953 enum tcp_ca_event {
954 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
955 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
956 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
957 	CA_EVENT_LOSS,		/* loss timeout */
958 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
959 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
960 };
961 
962 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
963 enum tcp_ca_ack_event_flags {
964 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
965 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
966 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
967 };
968 
969 /*
970  * Interface for adding new TCP congestion control handlers
971  */
972 #define TCP_CA_NAME_MAX	16
973 #define TCP_CA_MAX	128
974 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
975 
976 #define TCP_CA_UNSPEC	0
977 
978 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
979 #define TCP_CONG_NON_RESTRICTED 0x1
980 /* Requires ECN/ECT set on all packets */
981 #define TCP_CONG_NEEDS_ECN	0x2
982 
983 union tcp_cc_info;
984 
985 struct ack_sample {
986 	u32 pkts_acked;
987 	s32 rtt_us;
988 	u32 in_flight;
989 };
990 
991 /* A rate sample measures the number of (original/retransmitted) data
992  * packets delivered "delivered" over an interval of time "interval_us".
993  * The tcp_rate.c code fills in the rate sample, and congestion
994  * control modules that define a cong_control function to run at the end
995  * of ACK processing can optionally chose to consult this sample when
996  * setting cwnd and pacing rate.
997  * A sample is invalid if "delivered" or "interval_us" is negative.
998  */
999 struct rate_sample {
1000 	u64  prior_mstamp; /* starting timestamp for interval */
1001 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1002 	s32  delivered;		/* number of packets delivered over interval */
1003 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1004 	u32 snd_interval_us;	/* snd interval for delivered packets */
1005 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1006 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1007 	int  losses;		/* number of packets marked lost upon ACK */
1008 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1009 	u32  prior_in_flight;	/* in flight before this ACK */
1010 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1011 	bool is_retrans;	/* is sample from retransmission? */
1012 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1013 };
1014 
1015 struct tcp_congestion_ops {
1016 	struct list_head	list;
1017 	u32 key;
1018 	u32 flags;
1019 
1020 	/* initialize private data (optional) */
1021 	void (*init)(struct sock *sk);
1022 	/* cleanup private data  (optional) */
1023 	void (*release)(struct sock *sk);
1024 
1025 	/* return slow start threshold (required) */
1026 	u32 (*ssthresh)(struct sock *sk);
1027 	/* do new cwnd calculation (required) */
1028 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1029 	/* call before changing ca_state (optional) */
1030 	void (*set_state)(struct sock *sk, u8 new_state);
1031 	/* call when cwnd event occurs (optional) */
1032 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1033 	/* call when ack arrives (optional) */
1034 	void (*in_ack_event)(struct sock *sk, u32 flags);
1035 	/* new value of cwnd after loss (required) */
1036 	u32  (*undo_cwnd)(struct sock *sk);
1037 	/* hook for packet ack accounting (optional) */
1038 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1039 	/* override sysctl_tcp_min_tso_segs */
1040 	u32 (*min_tso_segs)(struct sock *sk);
1041 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1042 	u32 (*sndbuf_expand)(struct sock *sk);
1043 	/* call when packets are delivered to update cwnd and pacing rate,
1044 	 * after all the ca_state processing. (optional)
1045 	 */
1046 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1047 	/* get info for inet_diag (optional) */
1048 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1049 			   union tcp_cc_info *info);
1050 
1051 	char 		name[TCP_CA_NAME_MAX];
1052 	struct module 	*owner;
1053 };
1054 
1055 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1056 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1057 
1058 void tcp_assign_congestion_control(struct sock *sk);
1059 void tcp_init_congestion_control(struct sock *sk);
1060 void tcp_cleanup_congestion_control(struct sock *sk);
1061 int tcp_set_default_congestion_control(struct net *net, const char *name);
1062 void tcp_get_default_congestion_control(struct net *net, char *name);
1063 void tcp_get_available_congestion_control(char *buf, size_t len);
1064 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1065 int tcp_set_allowed_congestion_control(char *allowed);
1066 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1067 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1068 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1069 
1070 u32 tcp_reno_ssthresh(struct sock *sk);
1071 u32 tcp_reno_undo_cwnd(struct sock *sk);
1072 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1073 extern struct tcp_congestion_ops tcp_reno;
1074 
1075 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1076 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1077 #ifdef CONFIG_INET
1078 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1079 #else
1080 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1081 {
1082 	return NULL;
1083 }
1084 #endif
1085 
1086 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1087 {
1088 	const struct inet_connection_sock *icsk = inet_csk(sk);
1089 
1090 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1091 }
1092 
1093 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1094 {
1095 	struct inet_connection_sock *icsk = inet_csk(sk);
1096 
1097 	if (icsk->icsk_ca_ops->set_state)
1098 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1099 	icsk->icsk_ca_state = ca_state;
1100 }
1101 
1102 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1103 {
1104 	const struct inet_connection_sock *icsk = inet_csk(sk);
1105 
1106 	if (icsk->icsk_ca_ops->cwnd_event)
1107 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1108 }
1109 
1110 /* From tcp_rate.c */
1111 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1112 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1113 			    struct rate_sample *rs);
1114 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1115 		  bool is_sack_reneg, struct rate_sample *rs);
1116 void tcp_rate_check_app_limited(struct sock *sk);
1117 
1118 /* These functions determine how the current flow behaves in respect of SACK
1119  * handling. SACK is negotiated with the peer, and therefore it can vary
1120  * between different flows.
1121  *
1122  * tcp_is_sack - SACK enabled
1123  * tcp_is_reno - No SACK
1124  */
1125 static inline int tcp_is_sack(const struct tcp_sock *tp)
1126 {
1127 	return tp->rx_opt.sack_ok;
1128 }
1129 
1130 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1131 {
1132 	return !tcp_is_sack(tp);
1133 }
1134 
1135 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1136 {
1137 	return tp->sacked_out + tp->lost_out;
1138 }
1139 
1140 /* This determines how many packets are "in the network" to the best
1141  * of our knowledge.  In many cases it is conservative, but where
1142  * detailed information is available from the receiver (via SACK
1143  * blocks etc.) we can make more aggressive calculations.
1144  *
1145  * Use this for decisions involving congestion control, use just
1146  * tp->packets_out to determine if the send queue is empty or not.
1147  *
1148  * Read this equation as:
1149  *
1150  *	"Packets sent once on transmission queue" MINUS
1151  *	"Packets left network, but not honestly ACKed yet" PLUS
1152  *	"Packets fast retransmitted"
1153  */
1154 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1155 {
1156 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1157 }
1158 
1159 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1160 
1161 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1162 {
1163 	return tp->snd_cwnd < tp->snd_ssthresh;
1164 }
1165 
1166 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1167 {
1168 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1169 }
1170 
1171 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1172 {
1173 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1174 	       (1 << inet_csk(sk)->icsk_ca_state);
1175 }
1176 
1177 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1178  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1179  * ssthresh.
1180  */
1181 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1182 {
1183 	const struct tcp_sock *tp = tcp_sk(sk);
1184 
1185 	if (tcp_in_cwnd_reduction(sk))
1186 		return tp->snd_ssthresh;
1187 	else
1188 		return max(tp->snd_ssthresh,
1189 			   ((tp->snd_cwnd >> 1) +
1190 			    (tp->snd_cwnd >> 2)));
1191 }
1192 
1193 /* Use define here intentionally to get WARN_ON location shown at the caller */
1194 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1195 
1196 void tcp_enter_cwr(struct sock *sk);
1197 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1198 
1199 /* The maximum number of MSS of available cwnd for which TSO defers
1200  * sending if not using sysctl_tcp_tso_win_divisor.
1201  */
1202 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1203 {
1204 	return 3;
1205 }
1206 
1207 /* Returns end sequence number of the receiver's advertised window */
1208 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_una + tp->snd_wnd;
1211 }
1212 
1213 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1214  * flexible approach. The RFC suggests cwnd should not be raised unless
1215  * it was fully used previously. And that's exactly what we do in
1216  * congestion avoidance mode. But in slow start we allow cwnd to grow
1217  * as long as the application has used half the cwnd.
1218  * Example :
1219  *    cwnd is 10 (IW10), but application sends 9 frames.
1220  *    We allow cwnd to reach 18 when all frames are ACKed.
1221  * This check is safe because it's as aggressive as slow start which already
1222  * risks 100% overshoot. The advantage is that we discourage application to
1223  * either send more filler packets or data to artificially blow up the cwnd
1224  * usage, and allow application-limited process to probe bw more aggressively.
1225  */
1226 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1227 {
1228 	const struct tcp_sock *tp = tcp_sk(sk);
1229 
1230 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1231 	if (tcp_in_slow_start(tp))
1232 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1233 
1234 	return tp->is_cwnd_limited;
1235 }
1236 
1237 /* BBR congestion control needs pacing.
1238  * Same remark for SO_MAX_PACING_RATE.
1239  * sch_fq packet scheduler is efficiently handling pacing,
1240  * but is not always installed/used.
1241  * Return true if TCP stack should pace packets itself.
1242  */
1243 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1244 {
1245 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1246 }
1247 
1248 /* Return in jiffies the delay before one skb is sent.
1249  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1250  */
1251 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1252 					     const struct sk_buff *skb)
1253 {
1254 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1255 
1256 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1257 
1258 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1259 }
1260 
1261 static inline void tcp_reset_xmit_timer(struct sock *sk,
1262 					const int what,
1263 					unsigned long when,
1264 					const unsigned long max_when,
1265 					const struct sk_buff *skb)
1266 {
1267 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1268 				  max_when);
1269 }
1270 
1271 /* Something is really bad, we could not queue an additional packet,
1272  * because qdisc is full or receiver sent a 0 window, or we are paced.
1273  * We do not want to add fuel to the fire, or abort too early,
1274  * so make sure the timer we arm now is at least 200ms in the future,
1275  * regardless of current icsk_rto value (as it could be ~2ms)
1276  */
1277 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1278 {
1279 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1280 }
1281 
1282 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1283 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1284 					    unsigned long max_when)
1285 {
1286 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1287 
1288 	return (unsigned long)min_t(u64, when, max_when);
1289 }
1290 
1291 static inline void tcp_check_probe_timer(struct sock *sk)
1292 {
1293 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1294 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1295 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1296 				     NULL);
1297 }
1298 
1299 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1300 {
1301 	tp->snd_wl1 = seq;
1302 }
1303 
1304 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1305 {
1306 	tp->snd_wl1 = seq;
1307 }
1308 
1309 /*
1310  * Calculate(/check) TCP checksum
1311  */
1312 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1313 				   __be32 daddr, __wsum base)
1314 {
1315 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1316 }
1317 
1318 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1319 {
1320 	return __skb_checksum_complete(skb);
1321 }
1322 
1323 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1324 {
1325 	return !skb_csum_unnecessary(skb) &&
1326 		__tcp_checksum_complete(skb);
1327 }
1328 
1329 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1330 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1331 
1332 #undef STATE_TRACE
1333 
1334 #ifdef STATE_TRACE
1335 static const char *statename[]={
1336 	"Unused","Established","Syn Sent","Syn Recv",
1337 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1338 	"Close Wait","Last ACK","Listen","Closing"
1339 };
1340 #endif
1341 void tcp_set_state(struct sock *sk, int state);
1342 
1343 void tcp_done(struct sock *sk);
1344 
1345 int tcp_abort(struct sock *sk, int err);
1346 
1347 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1348 {
1349 	rx_opt->dsack = 0;
1350 	rx_opt->num_sacks = 0;
1351 }
1352 
1353 u32 tcp_default_init_rwnd(u32 mss);
1354 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1355 
1356 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1357 {
1358 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1359 	struct tcp_sock *tp = tcp_sk(sk);
1360 	s32 delta;
1361 
1362 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1363 	    ca_ops->cong_control)
1364 		return;
1365 	delta = tcp_jiffies32 - tp->lsndtime;
1366 	if (delta > inet_csk(sk)->icsk_rto)
1367 		tcp_cwnd_restart(sk, delta);
1368 }
1369 
1370 /* Determine a window scaling and initial window to offer. */
1371 void tcp_select_initial_window(const struct sock *sk, int __space,
1372 			       __u32 mss, __u32 *rcv_wnd,
1373 			       __u32 *window_clamp, int wscale_ok,
1374 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1375 
1376 static inline int tcp_win_from_space(const struct sock *sk, int space)
1377 {
1378 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1379 
1380 	return tcp_adv_win_scale <= 0 ?
1381 		(space>>(-tcp_adv_win_scale)) :
1382 		space - (space>>tcp_adv_win_scale);
1383 }
1384 
1385 /* Note: caller must be prepared to deal with negative returns */
1386 static inline int tcp_space(const struct sock *sk)
1387 {
1388 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1389 				  atomic_read(&sk->sk_rmem_alloc));
1390 }
1391 
1392 static inline int tcp_full_space(const struct sock *sk)
1393 {
1394 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1395 }
1396 
1397 extern void tcp_openreq_init_rwin(struct request_sock *req,
1398 				  const struct sock *sk_listener,
1399 				  const struct dst_entry *dst);
1400 
1401 void tcp_enter_memory_pressure(struct sock *sk);
1402 void tcp_leave_memory_pressure(struct sock *sk);
1403 
1404 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1405 {
1406 	struct net *net = sock_net((struct sock *)tp);
1407 
1408 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1409 }
1410 
1411 static inline int keepalive_time_when(const struct tcp_sock *tp)
1412 {
1413 	struct net *net = sock_net((struct sock *)tp);
1414 
1415 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1416 }
1417 
1418 static inline int keepalive_probes(const struct tcp_sock *tp)
1419 {
1420 	struct net *net = sock_net((struct sock *)tp);
1421 
1422 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1423 }
1424 
1425 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1426 {
1427 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1428 
1429 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1430 			  tcp_jiffies32 - tp->rcv_tstamp);
1431 }
1432 
1433 static inline int tcp_fin_time(const struct sock *sk)
1434 {
1435 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1436 	const int rto = inet_csk(sk)->icsk_rto;
1437 
1438 	if (fin_timeout < (rto << 2) - (rto >> 1))
1439 		fin_timeout = (rto << 2) - (rto >> 1);
1440 
1441 	return fin_timeout;
1442 }
1443 
1444 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1445 				  int paws_win)
1446 {
1447 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1448 		return true;
1449 	if (unlikely(!time_before32(ktime_get_seconds(),
1450 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1451 		return true;
1452 	/*
1453 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1454 	 * then following tcp messages have valid values. Ignore 0 value,
1455 	 * or else 'negative' tsval might forbid us to accept their packets.
1456 	 */
1457 	if (!rx_opt->ts_recent)
1458 		return true;
1459 	return false;
1460 }
1461 
1462 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1463 				   int rst)
1464 {
1465 	if (tcp_paws_check(rx_opt, 0))
1466 		return false;
1467 
1468 	/* RST segments are not recommended to carry timestamp,
1469 	   and, if they do, it is recommended to ignore PAWS because
1470 	   "their cleanup function should take precedence over timestamps."
1471 	   Certainly, it is mistake. It is necessary to understand the reasons
1472 	   of this constraint to relax it: if peer reboots, clock may go
1473 	   out-of-sync and half-open connections will not be reset.
1474 	   Actually, the problem would be not existing if all
1475 	   the implementations followed draft about maintaining clock
1476 	   via reboots. Linux-2.2 DOES NOT!
1477 
1478 	   However, we can relax time bounds for RST segments to MSL.
1479 	 */
1480 	if (rst && !time_before32(ktime_get_seconds(),
1481 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1482 		return false;
1483 	return true;
1484 }
1485 
1486 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1487 			  int mib_idx, u32 *last_oow_ack_time);
1488 
1489 static inline void tcp_mib_init(struct net *net)
1490 {
1491 	/* See RFC 2012 */
1492 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1493 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1494 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1495 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1496 }
1497 
1498 /* from STCP */
1499 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1500 {
1501 	tp->lost_skb_hint = NULL;
1502 }
1503 
1504 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1505 {
1506 	tcp_clear_retrans_hints_partial(tp);
1507 	tp->retransmit_skb_hint = NULL;
1508 }
1509 
1510 union tcp_md5_addr {
1511 	struct in_addr  a4;
1512 #if IS_ENABLED(CONFIG_IPV6)
1513 	struct in6_addr	a6;
1514 #endif
1515 };
1516 
1517 /* - key database */
1518 struct tcp_md5sig_key {
1519 	struct hlist_node	node;
1520 	u8			keylen;
1521 	u8			family; /* AF_INET or AF_INET6 */
1522 	union tcp_md5_addr	addr;
1523 	u8			prefixlen;
1524 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1525 	struct rcu_head		rcu;
1526 };
1527 
1528 /* - sock block */
1529 struct tcp_md5sig_info {
1530 	struct hlist_head	head;
1531 	struct rcu_head		rcu;
1532 };
1533 
1534 /* - pseudo header */
1535 struct tcp4_pseudohdr {
1536 	__be32		saddr;
1537 	__be32		daddr;
1538 	__u8		pad;
1539 	__u8		protocol;
1540 	__be16		len;
1541 };
1542 
1543 struct tcp6_pseudohdr {
1544 	struct in6_addr	saddr;
1545 	struct in6_addr daddr;
1546 	__be32		len;
1547 	__be32		protocol;	/* including padding */
1548 };
1549 
1550 union tcp_md5sum_block {
1551 	struct tcp4_pseudohdr ip4;
1552 #if IS_ENABLED(CONFIG_IPV6)
1553 	struct tcp6_pseudohdr ip6;
1554 #endif
1555 };
1556 
1557 /* - pool: digest algorithm, hash description and scratch buffer */
1558 struct tcp_md5sig_pool {
1559 	struct ahash_request	*md5_req;
1560 	void			*scratch;
1561 };
1562 
1563 /* - functions */
1564 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1565 			const struct sock *sk, const struct sk_buff *skb);
1566 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1567 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1568 		   gfp_t gfp);
1569 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1570 		   int family, u8 prefixlen);
1571 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1572 					 const struct sock *addr_sk);
1573 
1574 #ifdef CONFIG_TCP_MD5SIG
1575 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1576 					 const union tcp_md5_addr *addr,
1577 					 int family);
1578 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1579 #else
1580 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1581 					 const union tcp_md5_addr *addr,
1582 					 int family)
1583 {
1584 	return NULL;
1585 }
1586 #define tcp_twsk_md5_key(twsk)	NULL
1587 #endif
1588 
1589 bool tcp_alloc_md5sig_pool(void);
1590 
1591 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1592 static inline void tcp_put_md5sig_pool(void)
1593 {
1594 	local_bh_enable();
1595 }
1596 
1597 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1598 			  unsigned int header_len);
1599 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1600 		     const struct tcp_md5sig_key *key);
1601 
1602 /* From tcp_fastopen.c */
1603 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1604 			    struct tcp_fastopen_cookie *cookie);
1605 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1606 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1607 			    u16 try_exp);
1608 struct tcp_fastopen_request {
1609 	/* Fast Open cookie. Size 0 means a cookie request */
1610 	struct tcp_fastopen_cookie	cookie;
1611 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1612 	size_t				size;
1613 	int				copied;	/* queued in tcp_connect() */
1614 };
1615 void tcp_free_fastopen_req(struct tcp_sock *tp);
1616 void tcp_fastopen_destroy_cipher(struct sock *sk);
1617 void tcp_fastopen_ctx_destroy(struct net *net);
1618 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1619 			      void *key, unsigned int len);
1620 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1621 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1622 			      struct request_sock *req,
1623 			      struct tcp_fastopen_cookie *foc,
1624 			      const struct dst_entry *dst);
1625 void tcp_fastopen_init_key_once(struct net *net);
1626 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1627 			     struct tcp_fastopen_cookie *cookie);
1628 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1629 #define TCP_FASTOPEN_KEY_LENGTH 16
1630 
1631 /* Fastopen key context */
1632 struct tcp_fastopen_context {
1633 	struct crypto_cipher	*tfm;
1634 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1635 	struct rcu_head		rcu;
1636 };
1637 
1638 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1639 void tcp_fastopen_active_disable(struct sock *sk);
1640 bool tcp_fastopen_active_should_disable(struct sock *sk);
1641 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1642 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1643 
1644 /* Latencies incurred by various limits for a sender. They are
1645  * chronograph-like stats that are mutually exclusive.
1646  */
1647 enum tcp_chrono {
1648 	TCP_CHRONO_UNSPEC,
1649 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1650 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1651 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1652 	__TCP_CHRONO_MAX,
1653 };
1654 
1655 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1656 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1657 
1658 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1659  * the same memory storage than skb->destructor/_skb_refdst
1660  */
1661 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1662 {
1663 	skb->destructor = NULL;
1664 	skb->_skb_refdst = 0UL;
1665 }
1666 
1667 #define tcp_skb_tsorted_save(skb) {		\
1668 	unsigned long _save = skb->_skb_refdst;	\
1669 	skb->_skb_refdst = 0UL;
1670 
1671 #define tcp_skb_tsorted_restore(skb)		\
1672 	skb->_skb_refdst = _save;		\
1673 }
1674 
1675 void tcp_write_queue_purge(struct sock *sk);
1676 
1677 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1678 {
1679 	return skb_rb_first(&sk->tcp_rtx_queue);
1680 }
1681 
1682 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1683 {
1684 	return skb_peek(&sk->sk_write_queue);
1685 }
1686 
1687 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1688 {
1689 	return skb_peek_tail(&sk->sk_write_queue);
1690 }
1691 
1692 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1693 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1694 
1695 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1696 {
1697 	return skb_peek(&sk->sk_write_queue);
1698 }
1699 
1700 static inline bool tcp_skb_is_last(const struct sock *sk,
1701 				   const struct sk_buff *skb)
1702 {
1703 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1704 }
1705 
1706 static inline bool tcp_write_queue_empty(const struct sock *sk)
1707 {
1708 	return skb_queue_empty(&sk->sk_write_queue);
1709 }
1710 
1711 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1712 {
1713 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1714 }
1715 
1716 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1717 {
1718 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1719 }
1720 
1721 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1722 {
1723 	if (tcp_write_queue_empty(sk))
1724 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1725 }
1726 
1727 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1728 {
1729 	__skb_queue_tail(&sk->sk_write_queue, skb);
1730 }
1731 
1732 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1733 {
1734 	__tcp_add_write_queue_tail(sk, skb);
1735 
1736 	/* Queue it, remembering where we must start sending. */
1737 	if (sk->sk_write_queue.next == skb)
1738 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1739 }
1740 
1741 /* Insert new before skb on the write queue of sk.  */
1742 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1743 						  struct sk_buff *skb,
1744 						  struct sock *sk)
1745 {
1746 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1747 }
1748 
1749 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1750 {
1751 	tcp_skb_tsorted_anchor_cleanup(skb);
1752 	__skb_unlink(skb, &sk->sk_write_queue);
1753 }
1754 
1755 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1756 
1757 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1758 {
1759 	tcp_skb_tsorted_anchor_cleanup(skb);
1760 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1761 }
1762 
1763 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1764 {
1765 	list_del(&skb->tcp_tsorted_anchor);
1766 	tcp_rtx_queue_unlink(skb, sk);
1767 	sk_wmem_free_skb(sk, skb);
1768 }
1769 
1770 static inline void tcp_push_pending_frames(struct sock *sk)
1771 {
1772 	if (tcp_send_head(sk)) {
1773 		struct tcp_sock *tp = tcp_sk(sk);
1774 
1775 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1776 	}
1777 }
1778 
1779 /* Start sequence of the skb just after the highest skb with SACKed
1780  * bit, valid only if sacked_out > 0 or when the caller has ensured
1781  * validity by itself.
1782  */
1783 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1784 {
1785 	if (!tp->sacked_out)
1786 		return tp->snd_una;
1787 
1788 	if (tp->highest_sack == NULL)
1789 		return tp->snd_nxt;
1790 
1791 	return TCP_SKB_CB(tp->highest_sack)->seq;
1792 }
1793 
1794 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1795 {
1796 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1797 }
1798 
1799 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1800 {
1801 	return tcp_sk(sk)->highest_sack;
1802 }
1803 
1804 static inline void tcp_highest_sack_reset(struct sock *sk)
1805 {
1806 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1807 }
1808 
1809 /* Called when old skb is about to be deleted and replaced by new skb */
1810 static inline void tcp_highest_sack_replace(struct sock *sk,
1811 					    struct sk_buff *old,
1812 					    struct sk_buff *new)
1813 {
1814 	if (old == tcp_highest_sack(sk))
1815 		tcp_sk(sk)->highest_sack = new;
1816 }
1817 
1818 /* This helper checks if socket has IP_TRANSPARENT set */
1819 static inline bool inet_sk_transparent(const struct sock *sk)
1820 {
1821 	switch (sk->sk_state) {
1822 	case TCP_TIME_WAIT:
1823 		return inet_twsk(sk)->tw_transparent;
1824 	case TCP_NEW_SYN_RECV:
1825 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1826 	}
1827 	return inet_sk(sk)->transparent;
1828 }
1829 
1830 /* Determines whether this is a thin stream (which may suffer from
1831  * increased latency). Used to trigger latency-reducing mechanisms.
1832  */
1833 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1834 {
1835 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1836 }
1837 
1838 /* /proc */
1839 enum tcp_seq_states {
1840 	TCP_SEQ_STATE_LISTENING,
1841 	TCP_SEQ_STATE_ESTABLISHED,
1842 };
1843 
1844 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1845 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1846 void tcp_seq_stop(struct seq_file *seq, void *v);
1847 
1848 struct tcp_seq_afinfo {
1849 	sa_family_t			family;
1850 };
1851 
1852 struct tcp_iter_state {
1853 	struct seq_net_private	p;
1854 	enum tcp_seq_states	state;
1855 	struct sock		*syn_wait_sk;
1856 	int			bucket, offset, sbucket, num;
1857 	loff_t			last_pos;
1858 };
1859 
1860 extern struct request_sock_ops tcp_request_sock_ops;
1861 extern struct request_sock_ops tcp6_request_sock_ops;
1862 
1863 void tcp_v4_destroy_sock(struct sock *sk);
1864 
1865 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1866 				netdev_features_t features);
1867 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1868 int tcp_gro_complete(struct sk_buff *skb);
1869 
1870 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1871 
1872 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1873 {
1874 	struct net *net = sock_net((struct sock *)tp);
1875 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1876 }
1877 
1878 static inline bool tcp_stream_memory_free(const struct sock *sk)
1879 {
1880 	const struct tcp_sock *tp = tcp_sk(sk);
1881 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1882 
1883 	return notsent_bytes < tcp_notsent_lowat(tp);
1884 }
1885 
1886 #ifdef CONFIG_PROC_FS
1887 int tcp4_proc_init(void);
1888 void tcp4_proc_exit(void);
1889 #endif
1890 
1891 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1892 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1893 		     const struct tcp_request_sock_ops *af_ops,
1894 		     struct sock *sk, struct sk_buff *skb);
1895 
1896 /* TCP af-specific functions */
1897 struct tcp_sock_af_ops {
1898 #ifdef CONFIG_TCP_MD5SIG
1899 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1900 						const struct sock *addr_sk);
1901 	int		(*calc_md5_hash)(char *location,
1902 					 const struct tcp_md5sig_key *md5,
1903 					 const struct sock *sk,
1904 					 const struct sk_buff *skb);
1905 	int		(*md5_parse)(struct sock *sk,
1906 				     int optname,
1907 				     char __user *optval,
1908 				     int optlen);
1909 #endif
1910 };
1911 
1912 struct tcp_request_sock_ops {
1913 	u16 mss_clamp;
1914 #ifdef CONFIG_TCP_MD5SIG
1915 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1916 						 const struct sock *addr_sk);
1917 	int		(*calc_md5_hash) (char *location,
1918 					  const struct tcp_md5sig_key *md5,
1919 					  const struct sock *sk,
1920 					  const struct sk_buff *skb);
1921 #endif
1922 	void (*init_req)(struct request_sock *req,
1923 			 const struct sock *sk_listener,
1924 			 struct sk_buff *skb);
1925 #ifdef CONFIG_SYN_COOKIES
1926 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1927 				 __u16 *mss);
1928 #endif
1929 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1930 				       const struct request_sock *req);
1931 	u32 (*init_seq)(const struct sk_buff *skb);
1932 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1933 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1934 			   struct flowi *fl, struct request_sock *req,
1935 			   struct tcp_fastopen_cookie *foc,
1936 			   enum tcp_synack_type synack_type);
1937 };
1938 
1939 #ifdef CONFIG_SYN_COOKIES
1940 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1941 					 const struct sock *sk, struct sk_buff *skb,
1942 					 __u16 *mss)
1943 {
1944 	tcp_synq_overflow(sk);
1945 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1946 	return ops->cookie_init_seq(skb, mss);
1947 }
1948 #else
1949 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1950 					 const struct sock *sk, struct sk_buff *skb,
1951 					 __u16 *mss)
1952 {
1953 	return 0;
1954 }
1955 #endif
1956 
1957 int tcpv4_offload_init(void);
1958 
1959 void tcp_v4_init(void);
1960 void tcp_init(void);
1961 
1962 /* tcp_recovery.c */
1963 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1964 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1965 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1966 				u32 reo_wnd);
1967 extern void tcp_rack_mark_lost(struct sock *sk);
1968 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1969 			     u64 xmit_time);
1970 extern void tcp_rack_reo_timeout(struct sock *sk);
1971 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1972 
1973 /* At how many usecs into the future should the RTO fire? */
1974 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1975 {
1976 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1977 	u32 rto = inet_csk(sk)->icsk_rto;
1978 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1979 
1980 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1981 }
1982 
1983 /*
1984  * Save and compile IPv4 options, return a pointer to it
1985  */
1986 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1987 							 struct sk_buff *skb)
1988 {
1989 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1990 	struct ip_options_rcu *dopt = NULL;
1991 
1992 	if (opt->optlen) {
1993 		int opt_size = sizeof(*dopt) + opt->optlen;
1994 
1995 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1996 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1997 			kfree(dopt);
1998 			dopt = NULL;
1999 		}
2000 	}
2001 	return dopt;
2002 }
2003 
2004 /* locally generated TCP pure ACKs have skb->truesize == 2
2005  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2006  * This is much faster than dissecting the packet to find out.
2007  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2008  */
2009 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2010 {
2011 	return skb->truesize == 2;
2012 }
2013 
2014 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2015 {
2016 	skb->truesize = 2;
2017 }
2018 
2019 static inline int tcp_inq(struct sock *sk)
2020 {
2021 	struct tcp_sock *tp = tcp_sk(sk);
2022 	int answ;
2023 
2024 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2025 		answ = 0;
2026 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2027 		   !tp->urg_data ||
2028 		   before(tp->urg_seq, tp->copied_seq) ||
2029 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2030 
2031 		answ = tp->rcv_nxt - tp->copied_seq;
2032 
2033 		/* Subtract 1, if FIN was received */
2034 		if (answ && sock_flag(sk, SOCK_DONE))
2035 			answ--;
2036 	} else {
2037 		answ = tp->urg_seq - tp->copied_seq;
2038 	}
2039 
2040 	return answ;
2041 }
2042 
2043 int tcp_peek_len(struct socket *sock);
2044 
2045 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2046 {
2047 	u16 segs_in;
2048 
2049 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2050 	tp->segs_in += segs_in;
2051 	if (skb->len > tcp_hdrlen(skb))
2052 		tp->data_segs_in += segs_in;
2053 }
2054 
2055 /*
2056  * TCP listen path runs lockless.
2057  * We forced "struct sock" to be const qualified to make sure
2058  * we don't modify one of its field by mistake.
2059  * Here, we increment sk_drops which is an atomic_t, so we can safely
2060  * make sock writable again.
2061  */
2062 static inline void tcp_listendrop(const struct sock *sk)
2063 {
2064 	atomic_inc(&((struct sock *)sk)->sk_drops);
2065 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2066 }
2067 
2068 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2069 
2070 /*
2071  * Interface for adding Upper Level Protocols over TCP
2072  */
2073 
2074 #define TCP_ULP_NAME_MAX	16
2075 #define TCP_ULP_MAX		128
2076 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2077 
2078 struct tcp_ulp_ops {
2079 	struct list_head	list;
2080 
2081 	/* initialize ulp */
2082 	int (*init)(struct sock *sk);
2083 	/* cleanup ulp */
2084 	void (*release)(struct sock *sk);
2085 
2086 	char		name[TCP_ULP_NAME_MAX];
2087 	struct module	*owner;
2088 };
2089 int tcp_register_ulp(struct tcp_ulp_ops *type);
2090 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2091 int tcp_set_ulp(struct sock *sk, const char *name);
2092 void tcp_get_available_ulp(char *buf, size_t len);
2093 void tcp_cleanup_ulp(struct sock *sk);
2094 
2095 #define MODULE_ALIAS_TCP_ULP(name)				\
2096 	__MODULE_INFO(alias, alias_userspace, name);		\
2097 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2098 
2099 struct sk_msg;
2100 struct sk_psock;
2101 
2102 int tcp_bpf_init(struct sock *sk);
2103 void tcp_bpf_reinit(struct sock *sk);
2104 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2105 			  int flags);
2106 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2107 		    int nonblock, int flags, int *addr_len);
2108 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2109 		      struct msghdr *msg, int len, int flags);
2110 
2111 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2112  * is < 0, then the BPF op failed (for example if the loaded BPF
2113  * program does not support the chosen operation or there is no BPF
2114  * program loaded).
2115  */
2116 #ifdef CONFIG_BPF
2117 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2118 {
2119 	struct bpf_sock_ops_kern sock_ops;
2120 	int ret;
2121 
2122 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2123 	if (sk_fullsock(sk)) {
2124 		sock_ops.is_fullsock = 1;
2125 		sock_owned_by_me(sk);
2126 	}
2127 
2128 	sock_ops.sk = sk;
2129 	sock_ops.op = op;
2130 	if (nargs > 0)
2131 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2132 
2133 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2134 	if (ret == 0)
2135 		ret = sock_ops.reply;
2136 	else
2137 		ret = -1;
2138 	return ret;
2139 }
2140 
2141 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2142 {
2143 	u32 args[2] = {arg1, arg2};
2144 
2145 	return tcp_call_bpf(sk, op, 2, args);
2146 }
2147 
2148 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2149 				    u32 arg3)
2150 {
2151 	u32 args[3] = {arg1, arg2, arg3};
2152 
2153 	return tcp_call_bpf(sk, op, 3, args);
2154 }
2155 
2156 #else
2157 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2158 {
2159 	return -EPERM;
2160 }
2161 
2162 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2163 {
2164 	return -EPERM;
2165 }
2166 
2167 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2168 				    u32 arg3)
2169 {
2170 	return -EPERM;
2171 }
2172 
2173 #endif
2174 
2175 static inline u32 tcp_timeout_init(struct sock *sk)
2176 {
2177 	int timeout;
2178 
2179 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2180 
2181 	if (timeout <= 0)
2182 		timeout = TCP_TIMEOUT_INIT;
2183 	return timeout;
2184 }
2185 
2186 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2187 {
2188 	int rwnd;
2189 
2190 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2191 
2192 	if (rwnd < 0)
2193 		rwnd = 0;
2194 	return rwnd;
2195 }
2196 
2197 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2198 {
2199 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2200 }
2201 
2202 #if IS_ENABLED(CONFIG_SMC)
2203 extern struct static_key_false tcp_have_smc;
2204 #endif
2205 
2206 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2207 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2208 			     void (*cad)(struct sock *sk, u32 ack_seq));
2209 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2210 
2211 #endif
2212 
2213 #endif	/* _TCP_H */
2214