xref: /openbmc/linux/include/net/tcp.h (revision e5c86679)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 #define TCP_REO_TIMEOUT_MIN	(2000) /* Min RACK reordering timeout in usec */
147 
148 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
149 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
150 #define TCP_KEEPALIVE_INTVL	(75*HZ)
151 
152 #define MAX_TCP_KEEPIDLE	32767
153 #define MAX_TCP_KEEPINTVL	32767
154 #define MAX_TCP_KEEPCNT		127
155 #define MAX_TCP_SYNCNT		127
156 
157 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
158 
159 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
161 					 * after this time. It should be equal
162 					 * (or greater than) TCP_TIMEWAIT_LEN
163 					 * to provide reliability equal to one
164 					 * provided by timewait state.
165 					 */
166 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
167 					 * timestamps. It must be less than
168 					 * minimal timewait lifetime.
169 					 */
170 /*
171  *	TCP option
172  */
173 
174 #define TCPOPT_NOP		1	/* Padding */
175 #define TCPOPT_EOL		0	/* End of options */
176 #define TCPOPT_MSS		2	/* Segment size negotiating */
177 #define TCPOPT_WINDOW		3	/* Window scaling */
178 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
179 #define TCPOPT_SACK             5       /* SACK Block */
180 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
182 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
183 #define TCPOPT_EXP		254	/* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186  */
187 #define TCPOPT_FASTOPEN_MAGIC	0xF989
188 
189 /*
190  *     TCP option lengths
191  */
192 
193 #define TCPOLEN_MSS            4
194 #define TCPOLEN_WINDOW         3
195 #define TCPOLEN_SACK_PERM      2
196 #define TCPOLEN_TIMESTAMP      10
197 #define TCPOLEN_MD5SIG         18
198 #define TCPOLEN_FASTOPEN_BASE  2
199 #define TCPOLEN_EXP_FASTOPEN_BASE  4
200 
201 /* But this is what stacks really send out. */
202 #define TCPOLEN_TSTAMP_ALIGNED		12
203 #define TCPOLEN_WSCALE_ALIGNED		4
204 #define TCPOLEN_SACKPERM_ALIGNED	4
205 #define TCPOLEN_SACK_BASE		2
206 #define TCPOLEN_SACK_BASE_ALIGNED	4
207 #define TCPOLEN_SACK_PERBLOCK		8
208 #define TCPOLEN_MD5SIG_ALIGNED		20
209 #define TCPOLEN_MSS_ALIGNED		4
210 
211 /* Flags in tp->nonagle */
212 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
213 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
214 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
215 
216 /* TCP thin-stream limits */
217 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
218 
219 /* TCP initial congestion window as per rfc6928 */
220 #define TCP_INIT_CWND		10
221 
222 /* Bit Flags for sysctl_tcp_fastopen */
223 #define	TFO_CLIENT_ENABLE	1
224 #define	TFO_SERVER_ENABLE	2
225 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
226 
227 /* Accept SYN data w/o any cookie option */
228 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
229 
230 /* Force enable TFO on all listeners, i.e., not requiring the
231  * TCP_FASTOPEN socket option.
232  */
233 #define	TFO_SERVER_WO_SOCKOPT1	0x400
234 
235 
236 /* sysctl variables for tcp */
237 extern int sysctl_tcp_timestamps;
238 extern int sysctl_tcp_window_scaling;
239 extern int sysctl_tcp_sack;
240 extern int sysctl_tcp_fastopen;
241 extern int sysctl_tcp_retrans_collapse;
242 extern int sysctl_tcp_stdurg;
243 extern int sysctl_tcp_rfc1337;
244 extern int sysctl_tcp_abort_on_overflow;
245 extern int sysctl_tcp_max_orphans;
246 extern int sysctl_tcp_fack;
247 extern int sysctl_tcp_reordering;
248 extern int sysctl_tcp_max_reordering;
249 extern int sysctl_tcp_dsack;
250 extern long sysctl_tcp_mem[3];
251 extern int sysctl_tcp_wmem[3];
252 extern int sysctl_tcp_rmem[3];
253 extern int sysctl_tcp_app_win;
254 extern int sysctl_tcp_adv_win_scale;
255 extern int sysctl_tcp_frto;
256 extern int sysctl_tcp_low_latency;
257 extern int sysctl_tcp_nometrics_save;
258 extern int sysctl_tcp_moderate_rcvbuf;
259 extern int sysctl_tcp_tso_win_divisor;
260 extern int sysctl_tcp_workaround_signed_windows;
261 extern int sysctl_tcp_slow_start_after_idle;
262 extern int sysctl_tcp_thin_linear_timeouts;
263 extern int sysctl_tcp_thin_dupack;
264 extern int sysctl_tcp_early_retrans;
265 extern int sysctl_tcp_recovery;
266 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
267 
268 extern int sysctl_tcp_limit_output_bytes;
269 extern int sysctl_tcp_challenge_ack_limit;
270 extern int sysctl_tcp_min_tso_segs;
271 extern int sysctl_tcp_min_rtt_wlen;
272 extern int sysctl_tcp_autocorking;
273 extern int sysctl_tcp_invalid_ratelimit;
274 extern int sysctl_tcp_pacing_ss_ratio;
275 extern int sysctl_tcp_pacing_ca_ratio;
276 
277 extern atomic_long_t tcp_memory_allocated;
278 extern struct percpu_counter tcp_sockets_allocated;
279 extern int tcp_memory_pressure;
280 
281 /* optimized version of sk_under_memory_pressure() for TCP sockets */
282 static inline bool tcp_under_memory_pressure(const struct sock *sk)
283 {
284 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
285 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
286 		return true;
287 
288 	return tcp_memory_pressure;
289 }
290 /*
291  * The next routines deal with comparing 32 bit unsigned ints
292  * and worry about wraparound (automatic with unsigned arithmetic).
293  */
294 
295 static inline bool before(__u32 seq1, __u32 seq2)
296 {
297         return (__s32)(seq1-seq2) < 0;
298 }
299 #define after(seq2, seq1) 	before(seq1, seq2)
300 
301 /* is s2<=s1<=s3 ? */
302 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
303 {
304 	return seq3 - seq2 >= seq1 - seq2;
305 }
306 
307 static inline bool tcp_out_of_memory(struct sock *sk)
308 {
309 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
310 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
311 		return true;
312 	return false;
313 }
314 
315 void sk_forced_mem_schedule(struct sock *sk, int size);
316 
317 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
318 {
319 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
320 	int orphans = percpu_counter_read_positive(ocp);
321 
322 	if (orphans << shift > sysctl_tcp_max_orphans) {
323 		orphans = percpu_counter_sum_positive(ocp);
324 		if (orphans << shift > sysctl_tcp_max_orphans)
325 			return true;
326 	}
327 	return false;
328 }
329 
330 bool tcp_check_oom(struct sock *sk, int shift);
331 
332 
333 extern struct proto tcp_prot;
334 
335 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
336 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
338 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
339 
340 void tcp_tasklet_init(void);
341 
342 void tcp_v4_err(struct sk_buff *skb, u32);
343 
344 void tcp_shutdown(struct sock *sk, int how);
345 
346 void tcp_v4_early_demux(struct sk_buff *skb);
347 int tcp_v4_rcv(struct sk_buff *skb);
348 
349 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
350 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
351 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
352 		 int flags);
353 void tcp_release_cb(struct sock *sk);
354 void tcp_wfree(struct sk_buff *skb);
355 void tcp_write_timer_handler(struct sock *sk);
356 void tcp_delack_timer_handler(struct sock *sk);
357 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
358 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
359 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
360 			 const struct tcphdr *th, unsigned int len);
361 void tcp_rcv_space_adjust(struct sock *sk);
362 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 void tcp_twsk_destructor(struct sock *sk);
364 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 			struct pipe_inode_info *pipe, size_t len,
366 			unsigned int flags);
367 
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 					 const unsigned int pkts)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		if (pkts >= icsk->icsk_ack.quick) {
375 			icsk->icsk_ack.quick = 0;
376 			/* Leaving quickack mode we deflate ATO. */
377 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
378 		} else
379 			icsk->icsk_ack.quick -= pkts;
380 	}
381 }
382 
383 #define	TCP_ECN_OK		1
384 #define	TCP_ECN_QUEUE_CWR	2
385 #define	TCP_ECN_DEMAND_CWR	4
386 #define	TCP_ECN_SEEN		8
387 
388 enum tcp_tw_status {
389 	TCP_TW_SUCCESS = 0,
390 	TCP_TW_RST = 1,
391 	TCP_TW_ACK = 2,
392 	TCP_TW_SYN = 3
393 };
394 
395 
396 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 					      struct sk_buff *skb,
398 					      const struct tcphdr *th);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 			   struct request_sock *req, bool fastopen);
401 int tcp_child_process(struct sock *parent, struct sock *child,
402 		      struct sk_buff *skb);
403 void tcp_enter_loss(struct sock *sk);
404 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
405 void tcp_clear_retrans(struct tcp_sock *tp);
406 void tcp_update_metrics(struct sock *sk);
407 void tcp_init_metrics(struct sock *sk);
408 void tcp_metrics_init(void);
409 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
410 			bool paws_check, bool timestamps);
411 bool tcp_remember_stamp(struct sock *sk);
412 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
413 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
414 void tcp_disable_fack(struct tcp_sock *tp);
415 void tcp_close(struct sock *sk, long timeout);
416 void tcp_init_sock(struct sock *sk);
417 unsigned int tcp_poll(struct file *file, struct socket *sock,
418 		      struct poll_table_struct *wait);
419 int tcp_getsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, int __user *optlen);
421 int tcp_setsockopt(struct sock *sk, int level, int optname,
422 		   char __user *optval, unsigned int optlen);
423 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
424 			  char __user *optval, int __user *optlen);
425 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
426 			  char __user *optval, unsigned int optlen);
427 void tcp_set_keepalive(struct sock *sk, int val);
428 void tcp_syn_ack_timeout(const struct request_sock *req);
429 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
430 		int flags, int *addr_len);
431 void tcp_parse_options(const struct sk_buff *skb,
432 		       struct tcp_options_received *opt_rx,
433 		       int estab, struct tcp_fastopen_cookie *foc);
434 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
435 
436 /*
437  *	TCP v4 functions exported for the inet6 API
438  */
439 
440 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
441 void tcp_v4_mtu_reduced(struct sock *sk);
442 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct dst_entry *dst,
451 				  struct request_sock *req_unhash,
452 				  bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 	TCP_SYNACK_NORMAL,
458 	TCP_SYNACK_FASTOPEN,
459 	TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc,
464 				enum tcp_synack_type synack_type);
465 int tcp_disconnect(struct sock *sk, int flags);
466 
467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
470 
471 /* From syncookies.c */
472 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
473 				 struct request_sock *req,
474 				 struct dst_entry *dst);
475 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
476 		      u32 cookie);
477 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
478 #ifdef CONFIG_SYN_COOKIES
479 
480 /* Syncookies use a monotonic timer which increments every 60 seconds.
481  * This counter is used both as a hash input and partially encoded into
482  * the cookie value.  A cookie is only validated further if the delta
483  * between the current counter value and the encoded one is less than this,
484  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
485  * the counter advances immediately after a cookie is generated).
486  */
487 #define MAX_SYNCOOKIE_AGE	2
488 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
489 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
490 
491 /* syncookies: remember time of last synqueue overflow
492  * But do not dirty this field too often (once per second is enough)
493  * It is racy as we do not hold a lock, but race is very minor.
494  */
495 static inline void tcp_synq_overflow(const struct sock *sk)
496 {
497 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
498 	unsigned long now = jiffies;
499 
500 	if (time_after(now, last_overflow + HZ))
501 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
502 }
503 
504 /* syncookies: no recent synqueue overflow on this listening socket? */
505 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
506 {
507 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
508 
509 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
510 }
511 
512 static inline u32 tcp_cookie_time(void)
513 {
514 	u64 val = get_jiffies_64();
515 
516 	do_div(val, TCP_SYNCOOKIE_PERIOD);
517 	return val;
518 }
519 
520 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
521 			      u16 *mssp);
522 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
523 __u32 cookie_init_timestamp(struct request_sock *req);
524 bool cookie_timestamp_decode(struct tcp_options_received *opt);
525 bool cookie_ecn_ok(const struct tcp_options_received *opt,
526 		   const struct net *net, const struct dst_entry *dst);
527 
528 /* From net/ipv6/syncookies.c */
529 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
530 		      u32 cookie);
531 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
532 
533 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
534 			      const struct tcphdr *th, u16 *mssp);
535 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
536 #endif
537 /* tcp_output.c */
538 
539 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
540 		     int min_tso_segs);
541 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
542 			       int nonagle);
543 bool tcp_may_send_now(struct sock *sk);
544 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
545 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
546 void tcp_retransmit_timer(struct sock *sk);
547 void tcp_xmit_retransmit_queue(struct sock *);
548 void tcp_simple_retransmit(struct sock *);
549 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
550 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
551 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
552 
553 void tcp_send_probe0(struct sock *);
554 void tcp_send_partial(struct sock *);
555 int tcp_write_wakeup(struct sock *, int mib);
556 void tcp_send_fin(struct sock *sk);
557 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
558 int tcp_send_synack(struct sock *);
559 void tcp_push_one(struct sock *, unsigned int mss_now);
560 void tcp_send_ack(struct sock *sk);
561 void tcp_send_delayed_ack(struct sock *sk);
562 void tcp_send_loss_probe(struct sock *sk);
563 bool tcp_schedule_loss_probe(struct sock *sk);
564 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
565 			     const struct sk_buff *next_skb);
566 
567 /* tcp_input.c */
568 void tcp_rearm_rto(struct sock *sk);
569 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
570 void tcp_reset(struct sock *sk);
571 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
572 void tcp_fin(struct sock *sk);
573 
574 /* tcp_timer.c */
575 void tcp_init_xmit_timers(struct sock *);
576 static inline void tcp_clear_xmit_timers(struct sock *sk)
577 {
578 	inet_csk_clear_xmit_timers(sk);
579 }
580 
581 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
582 unsigned int tcp_current_mss(struct sock *sk);
583 
584 /* Bound MSS / TSO packet size with the half of the window */
585 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
586 {
587 	int cutoff;
588 
589 	/* When peer uses tiny windows, there is no use in packetizing
590 	 * to sub-MSS pieces for the sake of SWS or making sure there
591 	 * are enough packets in the pipe for fast recovery.
592 	 *
593 	 * On the other hand, for extremely large MSS devices, handling
594 	 * smaller than MSS windows in this way does make sense.
595 	 */
596 	if (tp->max_window > TCP_MSS_DEFAULT)
597 		cutoff = (tp->max_window >> 1);
598 	else
599 		cutoff = tp->max_window;
600 
601 	if (cutoff && pktsize > cutoff)
602 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
603 	else
604 		return pktsize;
605 }
606 
607 /* tcp.c */
608 void tcp_get_info(struct sock *, struct tcp_info *);
609 
610 /* Read 'sendfile()'-style from a TCP socket */
611 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
612 		  sk_read_actor_t recv_actor);
613 
614 void tcp_initialize_rcv_mss(struct sock *sk);
615 
616 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
617 int tcp_mss_to_mtu(struct sock *sk, int mss);
618 void tcp_mtup_init(struct sock *sk);
619 void tcp_init_buffer_space(struct sock *sk);
620 
621 static inline void tcp_bound_rto(const struct sock *sk)
622 {
623 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
624 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
625 }
626 
627 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
628 {
629 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
630 }
631 
632 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
633 {
634 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
635 			       ntohl(TCP_FLAG_ACK) |
636 			       snd_wnd);
637 }
638 
639 static inline void tcp_fast_path_on(struct tcp_sock *tp)
640 {
641 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
642 }
643 
644 static inline void tcp_fast_path_check(struct sock *sk)
645 {
646 	struct tcp_sock *tp = tcp_sk(sk);
647 
648 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
649 	    tp->rcv_wnd &&
650 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
651 	    !tp->urg_data)
652 		tcp_fast_path_on(tp);
653 }
654 
655 /* Compute the actual rto_min value */
656 static inline u32 tcp_rto_min(struct sock *sk)
657 {
658 	const struct dst_entry *dst = __sk_dst_get(sk);
659 	u32 rto_min = TCP_RTO_MIN;
660 
661 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
662 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
663 	return rto_min;
664 }
665 
666 static inline u32 tcp_rto_min_us(struct sock *sk)
667 {
668 	return jiffies_to_usecs(tcp_rto_min(sk));
669 }
670 
671 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
672 {
673 	return dst_metric_locked(dst, RTAX_CC_ALGO);
674 }
675 
676 /* Minimum RTT in usec. ~0 means not available. */
677 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
678 {
679 	return minmax_get(&tp->rtt_min);
680 }
681 
682 /* Compute the actual receive window we are currently advertising.
683  * Rcv_nxt can be after the window if our peer push more data
684  * than the offered window.
685  */
686 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
687 {
688 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
689 
690 	if (win < 0)
691 		win = 0;
692 	return (u32) win;
693 }
694 
695 /* Choose a new window, without checks for shrinking, and without
696  * scaling applied to the result.  The caller does these things
697  * if necessary.  This is a "raw" window selection.
698  */
699 u32 __tcp_select_window(struct sock *sk);
700 
701 void tcp_send_window_probe(struct sock *sk);
702 
703 /* TCP timestamps are only 32-bits, this causes a slight
704  * complication on 64-bit systems since we store a snapshot
705  * of jiffies in the buffer control blocks below.  We decided
706  * to use only the low 32-bits of jiffies and hide the ugly
707  * casts with the following macro.
708  */
709 #define tcp_time_stamp		((__u32)(jiffies))
710 
711 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
712 {
713 	return skb->skb_mstamp.stamp_jiffies;
714 }
715 
716 
717 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
718 
719 #define TCPHDR_FIN 0x01
720 #define TCPHDR_SYN 0x02
721 #define TCPHDR_RST 0x04
722 #define TCPHDR_PSH 0x08
723 #define TCPHDR_ACK 0x10
724 #define TCPHDR_URG 0x20
725 #define TCPHDR_ECE 0x40
726 #define TCPHDR_CWR 0x80
727 
728 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
729 
730 /* This is what the send packet queuing engine uses to pass
731  * TCP per-packet control information to the transmission code.
732  * We also store the host-order sequence numbers in here too.
733  * This is 44 bytes if IPV6 is enabled.
734  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
735  */
736 struct tcp_skb_cb {
737 	__u32		seq;		/* Starting sequence number	*/
738 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
739 	union {
740 		/* Note : tcp_tw_isn is used in input path only
741 		 *	  (isn chosen by tcp_timewait_state_process())
742 		 *
743 		 * 	  tcp_gso_segs/size are used in write queue only,
744 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
745 		 */
746 		__u32		tcp_tw_isn;
747 		struct {
748 			u16	tcp_gso_segs;
749 			u16	tcp_gso_size;
750 		};
751 	};
752 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
753 
754 	__u8		sacked;		/* State flags for SACK/FACK.	*/
755 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
756 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
757 #define TCPCB_LOST		0x04	/* SKB is lost			*/
758 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
759 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
760 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
761 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
762 				TCPCB_REPAIRED)
763 
764 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
765 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
766 			eor:1,		/* Is skb MSG_EOR marked? */
767 			unused:6;
768 	__u32		ack_seq;	/* Sequence number ACK'd	*/
769 	union {
770 		struct {
771 			/* There is space for up to 24 bytes */
772 			__u32 in_flight:30,/* Bytes in flight at transmit */
773 			      is_app_limited:1, /* cwnd not fully used? */
774 			      unused:1;
775 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
776 			__u32 delivered;
777 			/* start of send pipeline phase */
778 			struct skb_mstamp first_tx_mstamp;
779 			/* when we reached the "delivered" count */
780 			struct skb_mstamp delivered_mstamp;
781 		} tx;   /* only used for outgoing skbs */
782 		union {
783 			struct inet_skb_parm	h4;
784 #if IS_ENABLED(CONFIG_IPV6)
785 			struct inet6_skb_parm	h6;
786 #endif
787 		} header;	/* For incoming skbs */
788 	};
789 };
790 
791 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
792 
793 
794 #if IS_ENABLED(CONFIG_IPV6)
795 /* This is the variant of inet6_iif() that must be used by TCP,
796  * as TCP moves IP6CB into a different location in skb->cb[]
797  */
798 static inline int tcp_v6_iif(const struct sk_buff *skb)
799 {
800 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
801 
802 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
803 }
804 #endif
805 
806 /* TCP_SKB_CB reference means this can not be used from early demux */
807 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
808 {
809 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
810 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
811 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
812 		return true;
813 #endif
814 	return false;
815 }
816 
817 /* Due to TSO, an SKB can be composed of multiple actual
818  * packets.  To keep these tracked properly, we use this.
819  */
820 static inline int tcp_skb_pcount(const struct sk_buff *skb)
821 {
822 	return TCP_SKB_CB(skb)->tcp_gso_segs;
823 }
824 
825 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
826 {
827 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
828 }
829 
830 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
831 {
832 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
833 }
834 
835 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
836 static inline int tcp_skb_mss(const struct sk_buff *skb)
837 {
838 	return TCP_SKB_CB(skb)->tcp_gso_size;
839 }
840 
841 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
842 {
843 	return likely(!TCP_SKB_CB(skb)->eor);
844 }
845 
846 /* Events passed to congestion control interface */
847 enum tcp_ca_event {
848 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
849 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
850 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
851 	CA_EVENT_LOSS,		/* loss timeout */
852 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
853 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
854 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
855 	CA_EVENT_NON_DELAYED_ACK,
856 };
857 
858 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
859 enum tcp_ca_ack_event_flags {
860 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
861 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
862 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
863 };
864 
865 /*
866  * Interface for adding new TCP congestion control handlers
867  */
868 #define TCP_CA_NAME_MAX	16
869 #define TCP_CA_MAX	128
870 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
871 
872 #define TCP_CA_UNSPEC	0
873 
874 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
875 #define TCP_CONG_NON_RESTRICTED 0x1
876 /* Requires ECN/ECT set on all packets */
877 #define TCP_CONG_NEEDS_ECN	0x2
878 
879 union tcp_cc_info;
880 
881 struct ack_sample {
882 	u32 pkts_acked;
883 	s32 rtt_us;
884 	u32 in_flight;
885 };
886 
887 /* A rate sample measures the number of (original/retransmitted) data
888  * packets delivered "delivered" over an interval of time "interval_us".
889  * The tcp_rate.c code fills in the rate sample, and congestion
890  * control modules that define a cong_control function to run at the end
891  * of ACK processing can optionally chose to consult this sample when
892  * setting cwnd and pacing rate.
893  * A sample is invalid if "delivered" or "interval_us" is negative.
894  */
895 struct rate_sample {
896 	struct	skb_mstamp prior_mstamp; /* starting timestamp for interval */
897 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
898 	s32  delivered;		/* number of packets delivered over interval */
899 	long interval_us;	/* time for tp->delivered to incr "delivered" */
900 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
901 	int  losses;		/* number of packets marked lost upon ACK */
902 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
903 	u32  prior_in_flight;	/* in flight before this ACK */
904 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
905 	bool is_retrans;	/* is sample from retransmission? */
906 };
907 
908 struct tcp_congestion_ops {
909 	struct list_head	list;
910 	u32 key;
911 	u32 flags;
912 
913 	/* initialize private data (optional) */
914 	void (*init)(struct sock *sk);
915 	/* cleanup private data  (optional) */
916 	void (*release)(struct sock *sk);
917 
918 	/* return slow start threshold (required) */
919 	u32 (*ssthresh)(struct sock *sk);
920 	/* do new cwnd calculation (required) */
921 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
922 	/* call before changing ca_state (optional) */
923 	void (*set_state)(struct sock *sk, u8 new_state);
924 	/* call when cwnd event occurs (optional) */
925 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
926 	/* call when ack arrives (optional) */
927 	void (*in_ack_event)(struct sock *sk, u32 flags);
928 	/* new value of cwnd after loss (optional) */
929 	u32  (*undo_cwnd)(struct sock *sk);
930 	/* hook for packet ack accounting (optional) */
931 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
932 	/* suggest number of segments for each skb to transmit (optional) */
933 	u32 (*tso_segs_goal)(struct sock *sk);
934 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
935 	u32 (*sndbuf_expand)(struct sock *sk);
936 	/* call when packets are delivered to update cwnd and pacing rate,
937 	 * after all the ca_state processing. (optional)
938 	 */
939 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
940 	/* get info for inet_diag (optional) */
941 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
942 			   union tcp_cc_info *info);
943 
944 	char 		name[TCP_CA_NAME_MAX];
945 	struct module 	*owner;
946 };
947 
948 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
949 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
950 
951 void tcp_assign_congestion_control(struct sock *sk);
952 void tcp_init_congestion_control(struct sock *sk);
953 void tcp_cleanup_congestion_control(struct sock *sk);
954 int tcp_set_default_congestion_control(const char *name);
955 void tcp_get_default_congestion_control(char *name);
956 void tcp_get_available_congestion_control(char *buf, size_t len);
957 void tcp_get_allowed_congestion_control(char *buf, size_t len);
958 int tcp_set_allowed_congestion_control(char *allowed);
959 int tcp_set_congestion_control(struct sock *sk, const char *name);
960 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
961 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
962 
963 u32 tcp_reno_ssthresh(struct sock *sk);
964 u32 tcp_reno_undo_cwnd(struct sock *sk);
965 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
966 extern struct tcp_congestion_ops tcp_reno;
967 
968 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
969 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
970 #ifdef CONFIG_INET
971 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
972 #else
973 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
974 {
975 	return NULL;
976 }
977 #endif
978 
979 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
980 {
981 	const struct inet_connection_sock *icsk = inet_csk(sk);
982 
983 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
984 }
985 
986 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
987 {
988 	struct inet_connection_sock *icsk = inet_csk(sk);
989 
990 	if (icsk->icsk_ca_ops->set_state)
991 		icsk->icsk_ca_ops->set_state(sk, ca_state);
992 	icsk->icsk_ca_state = ca_state;
993 }
994 
995 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
996 {
997 	const struct inet_connection_sock *icsk = inet_csk(sk);
998 
999 	if (icsk->icsk_ca_ops->cwnd_event)
1000 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1001 }
1002 
1003 /* From tcp_rate.c */
1004 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1005 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1006 			    struct rate_sample *rs);
1007 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1008 		  struct skb_mstamp *now, struct rate_sample *rs);
1009 void tcp_rate_check_app_limited(struct sock *sk);
1010 
1011 /* These functions determine how the current flow behaves in respect of SACK
1012  * handling. SACK is negotiated with the peer, and therefore it can vary
1013  * between different flows.
1014  *
1015  * tcp_is_sack - SACK enabled
1016  * tcp_is_reno - No SACK
1017  * tcp_is_fack - FACK enabled, implies SACK enabled
1018  */
1019 static inline int tcp_is_sack(const struct tcp_sock *tp)
1020 {
1021 	return tp->rx_opt.sack_ok;
1022 }
1023 
1024 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1025 {
1026 	return !tcp_is_sack(tp);
1027 }
1028 
1029 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1030 {
1031 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1032 }
1033 
1034 static inline void tcp_enable_fack(struct tcp_sock *tp)
1035 {
1036 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1037 }
1038 
1039 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1040 {
1041 	return tp->sacked_out + tp->lost_out;
1042 }
1043 
1044 /* This determines how many packets are "in the network" to the best
1045  * of our knowledge.  In many cases it is conservative, but where
1046  * detailed information is available from the receiver (via SACK
1047  * blocks etc.) we can make more aggressive calculations.
1048  *
1049  * Use this for decisions involving congestion control, use just
1050  * tp->packets_out to determine if the send queue is empty or not.
1051  *
1052  * Read this equation as:
1053  *
1054  *	"Packets sent once on transmission queue" MINUS
1055  *	"Packets left network, but not honestly ACKed yet" PLUS
1056  *	"Packets fast retransmitted"
1057  */
1058 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1059 {
1060 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1061 }
1062 
1063 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1064 
1065 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1066 {
1067 	return tp->snd_cwnd < tp->snd_ssthresh;
1068 }
1069 
1070 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1071 {
1072 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1073 }
1074 
1075 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1076 {
1077 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1078 	       (1 << inet_csk(sk)->icsk_ca_state);
1079 }
1080 
1081 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1082  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1083  * ssthresh.
1084  */
1085 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1086 {
1087 	const struct tcp_sock *tp = tcp_sk(sk);
1088 
1089 	if (tcp_in_cwnd_reduction(sk))
1090 		return tp->snd_ssthresh;
1091 	else
1092 		return max(tp->snd_ssthresh,
1093 			   ((tp->snd_cwnd >> 1) +
1094 			    (tp->snd_cwnd >> 2)));
1095 }
1096 
1097 /* Use define here intentionally to get WARN_ON location shown at the caller */
1098 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1099 
1100 void tcp_enter_cwr(struct sock *sk);
1101 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1102 
1103 /* The maximum number of MSS of available cwnd for which TSO defers
1104  * sending if not using sysctl_tcp_tso_win_divisor.
1105  */
1106 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1107 {
1108 	return 3;
1109 }
1110 
1111 /* Returns end sequence number of the receiver's advertised window */
1112 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1113 {
1114 	return tp->snd_una + tp->snd_wnd;
1115 }
1116 
1117 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1118  * flexible approach. The RFC suggests cwnd should not be raised unless
1119  * it was fully used previously. And that's exactly what we do in
1120  * congestion avoidance mode. But in slow start we allow cwnd to grow
1121  * as long as the application has used half the cwnd.
1122  * Example :
1123  *    cwnd is 10 (IW10), but application sends 9 frames.
1124  *    We allow cwnd to reach 18 when all frames are ACKed.
1125  * This check is safe because it's as aggressive as slow start which already
1126  * risks 100% overshoot. The advantage is that we discourage application to
1127  * either send more filler packets or data to artificially blow up the cwnd
1128  * usage, and allow application-limited process to probe bw more aggressively.
1129  */
1130 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1131 {
1132 	const struct tcp_sock *tp = tcp_sk(sk);
1133 
1134 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1135 	if (tcp_in_slow_start(tp))
1136 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1137 
1138 	return tp->is_cwnd_limited;
1139 }
1140 
1141 /* Something is really bad, we could not queue an additional packet,
1142  * because qdisc is full or receiver sent a 0 window.
1143  * We do not want to add fuel to the fire, or abort too early,
1144  * so make sure the timer we arm now is at least 200ms in the future,
1145  * regardless of current icsk_rto value (as it could be ~2ms)
1146  */
1147 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1148 {
1149 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1150 }
1151 
1152 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1153 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1154 					    unsigned long max_when)
1155 {
1156 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1157 
1158 	return (unsigned long)min_t(u64, when, max_when);
1159 }
1160 
1161 static inline void tcp_check_probe_timer(struct sock *sk)
1162 {
1163 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1164 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1165 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1166 }
1167 
1168 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1169 {
1170 	tp->snd_wl1 = seq;
1171 }
1172 
1173 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1174 {
1175 	tp->snd_wl1 = seq;
1176 }
1177 
1178 /*
1179  * Calculate(/check) TCP checksum
1180  */
1181 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1182 				   __be32 daddr, __wsum base)
1183 {
1184 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1185 }
1186 
1187 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1188 {
1189 	return __skb_checksum_complete(skb);
1190 }
1191 
1192 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1193 {
1194 	return !skb_csum_unnecessary(skb) &&
1195 		__tcp_checksum_complete(skb);
1196 }
1197 
1198 /* Prequeue for VJ style copy to user, combined with checksumming. */
1199 
1200 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1201 {
1202 	tp->ucopy.task = NULL;
1203 	tp->ucopy.len = 0;
1204 	tp->ucopy.memory = 0;
1205 	skb_queue_head_init(&tp->ucopy.prequeue);
1206 }
1207 
1208 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1209 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1210 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1211 
1212 #undef STATE_TRACE
1213 
1214 #ifdef STATE_TRACE
1215 static const char *statename[]={
1216 	"Unused","Established","Syn Sent","Syn Recv",
1217 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1218 	"Close Wait","Last ACK","Listen","Closing"
1219 };
1220 #endif
1221 void tcp_set_state(struct sock *sk, int state);
1222 
1223 void tcp_done(struct sock *sk);
1224 
1225 int tcp_abort(struct sock *sk, int err);
1226 
1227 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1228 {
1229 	rx_opt->dsack = 0;
1230 	rx_opt->num_sacks = 0;
1231 }
1232 
1233 u32 tcp_default_init_rwnd(u32 mss);
1234 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1235 
1236 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1237 {
1238 	struct tcp_sock *tp = tcp_sk(sk);
1239 	s32 delta;
1240 
1241 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1242 		return;
1243 	delta = tcp_time_stamp - tp->lsndtime;
1244 	if (delta > inet_csk(sk)->icsk_rto)
1245 		tcp_cwnd_restart(sk, delta);
1246 }
1247 
1248 /* Determine a window scaling and initial window to offer. */
1249 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1250 			       __u32 *window_clamp, int wscale_ok,
1251 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1252 
1253 static inline int tcp_win_from_space(int space)
1254 {
1255 	return sysctl_tcp_adv_win_scale<=0 ?
1256 		(space>>(-sysctl_tcp_adv_win_scale)) :
1257 		space - (space>>sysctl_tcp_adv_win_scale);
1258 }
1259 
1260 /* Note: caller must be prepared to deal with negative returns */
1261 static inline int tcp_space(const struct sock *sk)
1262 {
1263 	return tcp_win_from_space(sk->sk_rcvbuf -
1264 				  atomic_read(&sk->sk_rmem_alloc));
1265 }
1266 
1267 static inline int tcp_full_space(const struct sock *sk)
1268 {
1269 	return tcp_win_from_space(sk->sk_rcvbuf);
1270 }
1271 
1272 extern void tcp_openreq_init_rwin(struct request_sock *req,
1273 				  const struct sock *sk_listener,
1274 				  const struct dst_entry *dst);
1275 
1276 void tcp_enter_memory_pressure(struct sock *sk);
1277 
1278 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1279 {
1280 	struct net *net = sock_net((struct sock *)tp);
1281 
1282 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1283 }
1284 
1285 static inline int keepalive_time_when(const struct tcp_sock *tp)
1286 {
1287 	struct net *net = sock_net((struct sock *)tp);
1288 
1289 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1290 }
1291 
1292 static inline int keepalive_probes(const struct tcp_sock *tp)
1293 {
1294 	struct net *net = sock_net((struct sock *)tp);
1295 
1296 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1297 }
1298 
1299 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1300 {
1301 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1302 
1303 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1304 			  tcp_time_stamp - tp->rcv_tstamp);
1305 }
1306 
1307 static inline int tcp_fin_time(const struct sock *sk)
1308 {
1309 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1310 	const int rto = inet_csk(sk)->icsk_rto;
1311 
1312 	if (fin_timeout < (rto << 2) - (rto >> 1))
1313 		fin_timeout = (rto << 2) - (rto >> 1);
1314 
1315 	return fin_timeout;
1316 }
1317 
1318 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1319 				  int paws_win)
1320 {
1321 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1322 		return true;
1323 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1324 		return true;
1325 	/*
1326 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1327 	 * then following tcp messages have valid values. Ignore 0 value,
1328 	 * or else 'negative' tsval might forbid us to accept their packets.
1329 	 */
1330 	if (!rx_opt->ts_recent)
1331 		return true;
1332 	return false;
1333 }
1334 
1335 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1336 				   int rst)
1337 {
1338 	if (tcp_paws_check(rx_opt, 0))
1339 		return false;
1340 
1341 	/* RST segments are not recommended to carry timestamp,
1342 	   and, if they do, it is recommended to ignore PAWS because
1343 	   "their cleanup function should take precedence over timestamps."
1344 	   Certainly, it is mistake. It is necessary to understand the reasons
1345 	   of this constraint to relax it: if peer reboots, clock may go
1346 	   out-of-sync and half-open connections will not be reset.
1347 	   Actually, the problem would be not existing if all
1348 	   the implementations followed draft about maintaining clock
1349 	   via reboots. Linux-2.2 DOES NOT!
1350 
1351 	   However, we can relax time bounds for RST segments to MSL.
1352 	 */
1353 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1354 		return false;
1355 	return true;
1356 }
1357 
1358 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1359 			  int mib_idx, u32 *last_oow_ack_time);
1360 
1361 static inline void tcp_mib_init(struct net *net)
1362 {
1363 	/* See RFC 2012 */
1364 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1365 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1366 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1367 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1368 }
1369 
1370 /* from STCP */
1371 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1372 {
1373 	tp->lost_skb_hint = NULL;
1374 }
1375 
1376 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1377 {
1378 	tcp_clear_retrans_hints_partial(tp);
1379 	tp->retransmit_skb_hint = NULL;
1380 }
1381 
1382 union tcp_md5_addr {
1383 	struct in_addr  a4;
1384 #if IS_ENABLED(CONFIG_IPV6)
1385 	struct in6_addr	a6;
1386 #endif
1387 };
1388 
1389 /* - key database */
1390 struct tcp_md5sig_key {
1391 	struct hlist_node	node;
1392 	u8			keylen;
1393 	u8			family; /* AF_INET or AF_INET6 */
1394 	union tcp_md5_addr	addr;
1395 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1396 	struct rcu_head		rcu;
1397 };
1398 
1399 /* - sock block */
1400 struct tcp_md5sig_info {
1401 	struct hlist_head	head;
1402 	struct rcu_head		rcu;
1403 };
1404 
1405 /* - pseudo header */
1406 struct tcp4_pseudohdr {
1407 	__be32		saddr;
1408 	__be32		daddr;
1409 	__u8		pad;
1410 	__u8		protocol;
1411 	__be16		len;
1412 };
1413 
1414 struct tcp6_pseudohdr {
1415 	struct in6_addr	saddr;
1416 	struct in6_addr daddr;
1417 	__be32		len;
1418 	__be32		protocol;	/* including padding */
1419 };
1420 
1421 union tcp_md5sum_block {
1422 	struct tcp4_pseudohdr ip4;
1423 #if IS_ENABLED(CONFIG_IPV6)
1424 	struct tcp6_pseudohdr ip6;
1425 #endif
1426 };
1427 
1428 /* - pool: digest algorithm, hash description and scratch buffer */
1429 struct tcp_md5sig_pool {
1430 	struct ahash_request	*md5_req;
1431 	void			*scratch;
1432 };
1433 
1434 /* - functions */
1435 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1436 			const struct sock *sk, const struct sk_buff *skb);
1437 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1438 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1439 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1440 		   int family);
1441 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1442 					 const struct sock *addr_sk);
1443 
1444 #ifdef CONFIG_TCP_MD5SIG
1445 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1446 					 const union tcp_md5_addr *addr,
1447 					 int family);
1448 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1449 #else
1450 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1451 					 const union tcp_md5_addr *addr,
1452 					 int family)
1453 {
1454 	return NULL;
1455 }
1456 #define tcp_twsk_md5_key(twsk)	NULL
1457 #endif
1458 
1459 bool tcp_alloc_md5sig_pool(void);
1460 
1461 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1462 static inline void tcp_put_md5sig_pool(void)
1463 {
1464 	local_bh_enable();
1465 }
1466 
1467 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1468 			  unsigned int header_len);
1469 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1470 		     const struct tcp_md5sig_key *key);
1471 
1472 /* From tcp_fastopen.c */
1473 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1474 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1475 			    unsigned long *last_syn_loss);
1476 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1477 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1478 			    u16 try_exp);
1479 struct tcp_fastopen_request {
1480 	/* Fast Open cookie. Size 0 means a cookie request */
1481 	struct tcp_fastopen_cookie	cookie;
1482 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1483 	size_t				size;
1484 	int				copied;	/* queued in tcp_connect() */
1485 };
1486 void tcp_free_fastopen_req(struct tcp_sock *tp);
1487 
1488 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1489 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1490 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1491 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1492 			      struct request_sock *req,
1493 			      struct tcp_fastopen_cookie *foc,
1494 			      struct dst_entry *dst);
1495 void tcp_fastopen_init_key_once(bool publish);
1496 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1497 			     struct tcp_fastopen_cookie *cookie);
1498 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1499 #define TCP_FASTOPEN_KEY_LENGTH 16
1500 
1501 /* Fastopen key context */
1502 struct tcp_fastopen_context {
1503 	struct crypto_cipher	*tfm;
1504 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1505 	struct rcu_head		rcu;
1506 };
1507 
1508 /* Latencies incurred by various limits for a sender. They are
1509  * chronograph-like stats that are mutually exclusive.
1510  */
1511 enum tcp_chrono {
1512 	TCP_CHRONO_UNSPEC,
1513 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1514 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1515 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1516 	__TCP_CHRONO_MAX,
1517 };
1518 
1519 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1520 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1521 
1522 /* write queue abstraction */
1523 static inline void tcp_write_queue_purge(struct sock *sk)
1524 {
1525 	struct sk_buff *skb;
1526 
1527 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1528 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1529 		sk_wmem_free_skb(sk, skb);
1530 	sk_mem_reclaim(sk);
1531 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1532 }
1533 
1534 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1535 {
1536 	return skb_peek(&sk->sk_write_queue);
1537 }
1538 
1539 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1540 {
1541 	return skb_peek_tail(&sk->sk_write_queue);
1542 }
1543 
1544 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1545 						   const struct sk_buff *skb)
1546 {
1547 	return skb_queue_next(&sk->sk_write_queue, skb);
1548 }
1549 
1550 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1551 						   const struct sk_buff *skb)
1552 {
1553 	return skb_queue_prev(&sk->sk_write_queue, skb);
1554 }
1555 
1556 #define tcp_for_write_queue(skb, sk)					\
1557 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1558 
1559 #define tcp_for_write_queue_from(skb, sk)				\
1560 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1561 
1562 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1563 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1564 
1565 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1566 {
1567 	return sk->sk_send_head;
1568 }
1569 
1570 static inline bool tcp_skb_is_last(const struct sock *sk,
1571 				   const struct sk_buff *skb)
1572 {
1573 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1574 }
1575 
1576 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1577 {
1578 	if (tcp_skb_is_last(sk, skb))
1579 		sk->sk_send_head = NULL;
1580 	else
1581 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1582 }
1583 
1584 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1585 {
1586 	if (sk->sk_send_head == skb_unlinked) {
1587 		sk->sk_send_head = NULL;
1588 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1589 	}
1590 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1591 		tcp_sk(sk)->highest_sack = NULL;
1592 }
1593 
1594 static inline void tcp_init_send_head(struct sock *sk)
1595 {
1596 	sk->sk_send_head = NULL;
1597 }
1598 
1599 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1600 {
1601 	__skb_queue_tail(&sk->sk_write_queue, skb);
1602 }
1603 
1604 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1605 {
1606 	__tcp_add_write_queue_tail(sk, skb);
1607 
1608 	/* Queue it, remembering where we must start sending. */
1609 	if (sk->sk_send_head == NULL) {
1610 		sk->sk_send_head = skb;
1611 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1612 
1613 		if (tcp_sk(sk)->highest_sack == NULL)
1614 			tcp_sk(sk)->highest_sack = skb;
1615 	}
1616 }
1617 
1618 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1619 {
1620 	__skb_queue_head(&sk->sk_write_queue, skb);
1621 }
1622 
1623 /* Insert buff after skb on the write queue of sk.  */
1624 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1625 						struct sk_buff *buff,
1626 						struct sock *sk)
1627 {
1628 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1629 }
1630 
1631 /* Insert new before skb on the write queue of sk.  */
1632 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1633 						  struct sk_buff *skb,
1634 						  struct sock *sk)
1635 {
1636 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1637 
1638 	if (sk->sk_send_head == skb)
1639 		sk->sk_send_head = new;
1640 }
1641 
1642 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1643 {
1644 	__skb_unlink(skb, &sk->sk_write_queue);
1645 }
1646 
1647 static inline bool tcp_write_queue_empty(struct sock *sk)
1648 {
1649 	return skb_queue_empty(&sk->sk_write_queue);
1650 }
1651 
1652 static inline void tcp_push_pending_frames(struct sock *sk)
1653 {
1654 	if (tcp_send_head(sk)) {
1655 		struct tcp_sock *tp = tcp_sk(sk);
1656 
1657 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1658 	}
1659 }
1660 
1661 /* Start sequence of the skb just after the highest skb with SACKed
1662  * bit, valid only if sacked_out > 0 or when the caller has ensured
1663  * validity by itself.
1664  */
1665 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1666 {
1667 	if (!tp->sacked_out)
1668 		return tp->snd_una;
1669 
1670 	if (tp->highest_sack == NULL)
1671 		return tp->snd_nxt;
1672 
1673 	return TCP_SKB_CB(tp->highest_sack)->seq;
1674 }
1675 
1676 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1677 {
1678 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1679 						tcp_write_queue_next(sk, skb);
1680 }
1681 
1682 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1683 {
1684 	return tcp_sk(sk)->highest_sack;
1685 }
1686 
1687 static inline void tcp_highest_sack_reset(struct sock *sk)
1688 {
1689 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1690 }
1691 
1692 /* Called when old skb is about to be deleted (to be combined with new skb) */
1693 static inline void tcp_highest_sack_combine(struct sock *sk,
1694 					    struct sk_buff *old,
1695 					    struct sk_buff *new)
1696 {
1697 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1698 		tcp_sk(sk)->highest_sack = new;
1699 }
1700 
1701 /* This helper checks if socket has IP_TRANSPARENT set */
1702 static inline bool inet_sk_transparent(const struct sock *sk)
1703 {
1704 	switch (sk->sk_state) {
1705 	case TCP_TIME_WAIT:
1706 		return inet_twsk(sk)->tw_transparent;
1707 	case TCP_NEW_SYN_RECV:
1708 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1709 	}
1710 	return inet_sk(sk)->transparent;
1711 }
1712 
1713 /* Determines whether this is a thin stream (which may suffer from
1714  * increased latency). Used to trigger latency-reducing mechanisms.
1715  */
1716 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1717 {
1718 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1719 }
1720 
1721 /* /proc */
1722 enum tcp_seq_states {
1723 	TCP_SEQ_STATE_LISTENING,
1724 	TCP_SEQ_STATE_ESTABLISHED,
1725 };
1726 
1727 int tcp_seq_open(struct inode *inode, struct file *file);
1728 
1729 struct tcp_seq_afinfo {
1730 	char				*name;
1731 	sa_family_t			family;
1732 	const struct file_operations	*seq_fops;
1733 	struct seq_operations		seq_ops;
1734 };
1735 
1736 struct tcp_iter_state {
1737 	struct seq_net_private	p;
1738 	sa_family_t		family;
1739 	enum tcp_seq_states	state;
1740 	struct sock		*syn_wait_sk;
1741 	int			bucket, offset, sbucket, num;
1742 	loff_t			last_pos;
1743 };
1744 
1745 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1746 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1747 
1748 extern struct request_sock_ops tcp_request_sock_ops;
1749 extern struct request_sock_ops tcp6_request_sock_ops;
1750 
1751 void tcp_v4_destroy_sock(struct sock *sk);
1752 
1753 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1754 				netdev_features_t features);
1755 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1756 int tcp_gro_complete(struct sk_buff *skb);
1757 
1758 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1759 
1760 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1761 {
1762 	struct net *net = sock_net((struct sock *)tp);
1763 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1764 }
1765 
1766 static inline bool tcp_stream_memory_free(const struct sock *sk)
1767 {
1768 	const struct tcp_sock *tp = tcp_sk(sk);
1769 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1770 
1771 	return notsent_bytes < tcp_notsent_lowat(tp);
1772 }
1773 
1774 #ifdef CONFIG_PROC_FS
1775 int tcp4_proc_init(void);
1776 void tcp4_proc_exit(void);
1777 #endif
1778 
1779 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1780 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1781 		     const struct tcp_request_sock_ops *af_ops,
1782 		     struct sock *sk, struct sk_buff *skb);
1783 
1784 /* TCP af-specific functions */
1785 struct tcp_sock_af_ops {
1786 #ifdef CONFIG_TCP_MD5SIG
1787 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1788 						const struct sock *addr_sk);
1789 	int		(*calc_md5_hash)(char *location,
1790 					 const struct tcp_md5sig_key *md5,
1791 					 const struct sock *sk,
1792 					 const struct sk_buff *skb);
1793 	int		(*md5_parse)(struct sock *sk,
1794 				     char __user *optval,
1795 				     int optlen);
1796 #endif
1797 };
1798 
1799 struct tcp_request_sock_ops {
1800 	u16 mss_clamp;
1801 #ifdef CONFIG_TCP_MD5SIG
1802 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1803 						 const struct sock *addr_sk);
1804 	int		(*calc_md5_hash) (char *location,
1805 					  const struct tcp_md5sig_key *md5,
1806 					  const struct sock *sk,
1807 					  const struct sk_buff *skb);
1808 #endif
1809 	void (*init_req)(struct request_sock *req,
1810 			 const struct sock *sk_listener,
1811 			 struct sk_buff *skb);
1812 #ifdef CONFIG_SYN_COOKIES
1813 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1814 				 __u16 *mss);
1815 #endif
1816 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1817 				       const struct request_sock *req,
1818 				       bool *strict);
1819 	__u32 (*init_seq)(const struct sk_buff *skb, u32 *tsoff);
1820 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1821 			   struct flowi *fl, struct request_sock *req,
1822 			   struct tcp_fastopen_cookie *foc,
1823 			   enum tcp_synack_type synack_type);
1824 };
1825 
1826 #ifdef CONFIG_SYN_COOKIES
1827 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1828 					 const struct sock *sk, struct sk_buff *skb,
1829 					 __u16 *mss)
1830 {
1831 	tcp_synq_overflow(sk);
1832 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1833 	return ops->cookie_init_seq(skb, mss);
1834 }
1835 #else
1836 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1837 					 const struct sock *sk, struct sk_buff *skb,
1838 					 __u16 *mss)
1839 {
1840 	return 0;
1841 }
1842 #endif
1843 
1844 int tcpv4_offload_init(void);
1845 
1846 void tcp_v4_init(void);
1847 void tcp_init(void);
1848 
1849 /* tcp_recovery.c */
1850 extern void tcp_rack_mark_lost(struct sock *sk, const struct skb_mstamp *now);
1851 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1852 			     const struct skb_mstamp *xmit_time,
1853 			     const struct skb_mstamp *ack_time);
1854 extern void tcp_rack_reo_timeout(struct sock *sk);
1855 
1856 /*
1857  * Save and compile IPv4 options, return a pointer to it
1858  */
1859 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1860 {
1861 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1862 	struct ip_options_rcu *dopt = NULL;
1863 
1864 	if (opt->optlen) {
1865 		int opt_size = sizeof(*dopt) + opt->optlen;
1866 
1867 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1868 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1869 			kfree(dopt);
1870 			dopt = NULL;
1871 		}
1872 	}
1873 	return dopt;
1874 }
1875 
1876 /* locally generated TCP pure ACKs have skb->truesize == 2
1877  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1878  * This is much faster than dissecting the packet to find out.
1879  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1880  */
1881 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1882 {
1883 	return skb->truesize == 2;
1884 }
1885 
1886 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1887 {
1888 	skb->truesize = 2;
1889 }
1890 
1891 static inline int tcp_inq(struct sock *sk)
1892 {
1893 	struct tcp_sock *tp = tcp_sk(sk);
1894 	int answ;
1895 
1896 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1897 		answ = 0;
1898 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1899 		   !tp->urg_data ||
1900 		   before(tp->urg_seq, tp->copied_seq) ||
1901 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1902 
1903 		answ = tp->rcv_nxt - tp->copied_seq;
1904 
1905 		/* Subtract 1, if FIN was received */
1906 		if (answ && sock_flag(sk, SOCK_DONE))
1907 			answ--;
1908 	} else {
1909 		answ = tp->urg_seq - tp->copied_seq;
1910 	}
1911 
1912 	return answ;
1913 }
1914 
1915 int tcp_peek_len(struct socket *sock);
1916 
1917 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1918 {
1919 	u16 segs_in;
1920 
1921 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1922 	tp->segs_in += segs_in;
1923 	if (skb->len > tcp_hdrlen(skb))
1924 		tp->data_segs_in += segs_in;
1925 }
1926 
1927 /*
1928  * TCP listen path runs lockless.
1929  * We forced "struct sock" to be const qualified to make sure
1930  * we don't modify one of its field by mistake.
1931  * Here, we increment sk_drops which is an atomic_t, so we can safely
1932  * make sock writable again.
1933  */
1934 static inline void tcp_listendrop(const struct sock *sk)
1935 {
1936 	atomic_inc(&((struct sock *)sk)->sk_drops);
1937 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1938 }
1939 
1940 #endif	/* _TCP_H */
1941