xref: /openbmc/linux/include/net/tcp.h (revision e40573a4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
353 				     bool force_schedule);
354 
355 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
356 static inline void tcp_dec_quickack_mode(struct sock *sk,
357 					 const unsigned int pkts)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int tcp_getsockopt(struct sock *sk, int level, int optname,
406 		   char __user *optval, int __user *optlen);
407 bool tcp_bpf_bypass_getsockopt(int level, int optname);
408 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
409 		   unsigned int optlen);
410 void tcp_set_keepalive(struct sock *sk, int val);
411 void tcp_syn_ack_timeout(const struct request_sock *req);
412 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
413 		int flags, int *addr_len);
414 int tcp_set_rcvlowat(struct sock *sk, int val);
415 int tcp_set_window_clamp(struct sock *sk, int val);
416 void tcp_update_recv_tstamps(struct sk_buff *skb,
417 			     struct scm_timestamping_internal *tss);
418 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
419 			struct scm_timestamping_internal *tss);
420 void tcp_data_ready(struct sock *sk);
421 #ifdef CONFIG_MMU
422 int tcp_mmap(struct file *file, struct socket *sock,
423 	     struct vm_area_struct *vma);
424 #endif
425 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
426 		       struct tcp_options_received *opt_rx,
427 		       int estab, struct tcp_fastopen_cookie *foc);
428 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
429 
430 /*
431  *	BPF SKB-less helpers
432  */
433 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
438 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
439 			  const struct tcp_request_sock_ops *af_ops,
440 			  struct sock *sk, struct tcphdr *th);
441 /*
442  *	TCP v4 functions exported for the inet6 API
443  */
444 
445 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
446 void tcp_v4_mtu_reduced(struct sock *sk);
447 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
448 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(const struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
454 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
455 				  struct request_sock *req,
456 				  struct dst_entry *dst,
457 				  struct request_sock *req_unhash,
458 				  bool *own_req);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 enum tcp_synack_type {
463 	TCP_SYNACK_NORMAL,
464 	TCP_SYNACK_FASTOPEN,
465 	TCP_SYNACK_COOKIE,
466 };
467 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
468 				struct request_sock *req,
469 				struct tcp_fastopen_cookie *foc,
470 				enum tcp_synack_type synack_type,
471 				struct sk_buff *syn_skb);
472 int tcp_disconnect(struct sock *sk, int flags);
473 
474 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477 
478 /* From syncookies.c */
479 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 				 struct request_sock *req,
481 				 struct dst_entry *dst, u32 tsoff);
482 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 		      u32 cookie);
484 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
486 					    const struct tcp_request_sock_ops *af_ops,
487 					    struct sock *sk, struct sk_buff *skb);
488 #ifdef CONFIG_SYN_COOKIES
489 
490 /* Syncookies use a monotonic timer which increments every 60 seconds.
491  * This counter is used both as a hash input and partially encoded into
492  * the cookie value.  A cookie is only validated further if the delta
493  * between the current counter value and the encoded one is less than this,
494  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
495  * the counter advances immediately after a cookie is generated).
496  */
497 #define MAX_SYNCOOKIE_AGE	2
498 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
499 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
500 
501 /* syncookies: remember time of last synqueue overflow
502  * But do not dirty this field too often (once per second is enough)
503  * It is racy as we do not hold a lock, but race is very minor.
504  */
505 static inline void tcp_synq_overflow(const struct sock *sk)
506 {
507 	unsigned int last_overflow;
508 	unsigned int now = jiffies;
509 
510 	if (sk->sk_reuseport) {
511 		struct sock_reuseport *reuse;
512 
513 		reuse = rcu_dereference(sk->sk_reuseport_cb);
514 		if (likely(reuse)) {
515 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
516 			if (!time_between32(now, last_overflow,
517 					    last_overflow + HZ))
518 				WRITE_ONCE(reuse->synq_overflow_ts, now);
519 			return;
520 		}
521 	}
522 
523 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
524 	if (!time_between32(now, last_overflow, last_overflow + HZ))
525 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
526 }
527 
528 /* syncookies: no recent synqueue overflow on this listening socket? */
529 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
530 {
531 	unsigned int last_overflow;
532 	unsigned int now = jiffies;
533 
534 	if (sk->sk_reuseport) {
535 		struct sock_reuseport *reuse;
536 
537 		reuse = rcu_dereference(sk->sk_reuseport_cb);
538 		if (likely(reuse)) {
539 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 			return !time_between32(now, last_overflow - HZ,
541 					       last_overflow +
542 					       TCP_SYNCOOKIE_VALID);
543 		}
544 	}
545 
546 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
547 
548 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
549 	 * then we're under synflood. However, we have to use
550 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
551 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
552 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
553 	 * which could lead to rejecting a valid syncookie.
554 	 */
555 	return !time_between32(now, last_overflow - HZ,
556 			       last_overflow + TCP_SYNCOOKIE_VALID);
557 }
558 
559 static inline u32 tcp_cookie_time(void)
560 {
561 	u64 val = get_jiffies_64();
562 
563 	do_div(val, TCP_SYNCOOKIE_PERIOD);
564 	return val;
565 }
566 
567 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
568 			      u16 *mssp);
569 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
570 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
571 bool cookie_timestamp_decode(const struct net *net,
572 			     struct tcp_options_received *opt);
573 bool cookie_ecn_ok(const struct tcp_options_received *opt,
574 		   const struct net *net, const struct dst_entry *dst);
575 
576 /* From net/ipv6/syncookies.c */
577 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
578 		      u32 cookie);
579 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
580 
581 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
582 			      const struct tcphdr *th, u16 *mssp);
583 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
584 #endif
585 /* tcp_output.c */
586 
587 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
588 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
589 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
590 			       int nonagle);
591 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
592 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 void tcp_retransmit_timer(struct sock *sk);
594 void tcp_xmit_retransmit_queue(struct sock *);
595 void tcp_simple_retransmit(struct sock *);
596 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
597 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
598 enum tcp_queue {
599 	TCP_FRAG_IN_WRITE_QUEUE,
600 	TCP_FRAG_IN_RTX_QUEUE,
601 };
602 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
603 		 struct sk_buff *skb, u32 len,
604 		 unsigned int mss_now, gfp_t gfp);
605 
606 void tcp_send_probe0(struct sock *);
607 void tcp_send_partial(struct sock *);
608 int tcp_write_wakeup(struct sock *, int mib);
609 void tcp_send_fin(struct sock *sk);
610 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
611 int tcp_send_synack(struct sock *);
612 void tcp_push_one(struct sock *, unsigned int mss_now);
613 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
614 void tcp_send_ack(struct sock *sk);
615 void tcp_send_delayed_ack(struct sock *sk);
616 void tcp_send_loss_probe(struct sock *sk);
617 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
618 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
619 			     const struct sk_buff *next_skb);
620 
621 /* tcp_input.c */
622 void tcp_rearm_rto(struct sock *sk);
623 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
624 void tcp_reset(struct sock *sk, struct sk_buff *skb);
625 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
626 void tcp_fin(struct sock *sk);
627 void tcp_check_space(struct sock *sk);
628 
629 /* tcp_timer.c */
630 void tcp_init_xmit_timers(struct sock *);
631 static inline void tcp_clear_xmit_timers(struct sock *sk)
632 {
633 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
634 		__sock_put(sk);
635 
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
637 		__sock_put(sk);
638 
639 	inet_csk_clear_xmit_timers(sk);
640 }
641 
642 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
643 unsigned int tcp_current_mss(struct sock *sk);
644 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
645 
646 /* Bound MSS / TSO packet size with the half of the window */
647 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
648 {
649 	int cutoff;
650 
651 	/* When peer uses tiny windows, there is no use in packetizing
652 	 * to sub-MSS pieces for the sake of SWS or making sure there
653 	 * are enough packets in the pipe for fast recovery.
654 	 *
655 	 * On the other hand, for extremely large MSS devices, handling
656 	 * smaller than MSS windows in this way does make sense.
657 	 */
658 	if (tp->max_window > TCP_MSS_DEFAULT)
659 		cutoff = (tp->max_window >> 1);
660 	else
661 		cutoff = tp->max_window;
662 
663 	if (cutoff && pktsize > cutoff)
664 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
665 	else
666 		return pktsize;
667 }
668 
669 /* tcp.c */
670 void tcp_get_info(struct sock *, struct tcp_info *);
671 
672 /* Read 'sendfile()'-style from a TCP socket */
673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
674 		  sk_read_actor_t recv_actor);
675 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
676 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
677 void tcp_read_done(struct sock *sk, size_t len);
678 
679 void tcp_initialize_rcv_mss(struct sock *sk);
680 
681 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
682 int tcp_mss_to_mtu(struct sock *sk, int mss);
683 void tcp_mtup_init(struct sock *sk);
684 
685 static inline void tcp_bound_rto(const struct sock *sk)
686 {
687 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
688 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
689 }
690 
691 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
692 {
693 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
694 }
695 
696 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
697 {
698 	/* mptcp hooks are only on the slow path */
699 	if (sk_is_mptcp((struct sock *)tp))
700 		return;
701 
702 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
703 			       ntohl(TCP_FLAG_ACK) |
704 			       snd_wnd);
705 }
706 
707 static inline void tcp_fast_path_on(struct tcp_sock *tp)
708 {
709 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
710 }
711 
712 static inline void tcp_fast_path_check(struct sock *sk)
713 {
714 	struct tcp_sock *tp = tcp_sk(sk);
715 
716 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
717 	    tp->rcv_wnd &&
718 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
719 	    !tp->urg_data)
720 		tcp_fast_path_on(tp);
721 }
722 
723 /* Compute the actual rto_min value */
724 static inline u32 tcp_rto_min(struct sock *sk)
725 {
726 	const struct dst_entry *dst = __sk_dst_get(sk);
727 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
728 
729 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
730 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
731 	return rto_min;
732 }
733 
734 static inline u32 tcp_rto_min_us(struct sock *sk)
735 {
736 	return jiffies_to_usecs(tcp_rto_min(sk));
737 }
738 
739 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
740 {
741 	return dst_metric_locked(dst, RTAX_CC_ALGO);
742 }
743 
744 /* Minimum RTT in usec. ~0 means not available. */
745 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
746 {
747 	return minmax_get(&tp->rtt_min);
748 }
749 
750 /* Compute the actual receive window we are currently advertising.
751  * Rcv_nxt can be after the window if our peer push more data
752  * than the offered window.
753  */
754 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
755 {
756 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
757 
758 	if (win < 0)
759 		win = 0;
760 	return (u32) win;
761 }
762 
763 /* Choose a new window, without checks for shrinking, and without
764  * scaling applied to the result.  The caller does these things
765  * if necessary.  This is a "raw" window selection.
766  */
767 u32 __tcp_select_window(struct sock *sk);
768 
769 void tcp_send_window_probe(struct sock *sk);
770 
771 /* TCP uses 32bit jiffies to save some space.
772  * Note that this is different from tcp_time_stamp, which
773  * historically has been the same until linux-4.13.
774  */
775 #define tcp_jiffies32 ((u32)jiffies)
776 
777 /*
778  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
779  * It is no longer tied to jiffies, but to 1 ms clock.
780  * Note: double check if you want to use tcp_jiffies32 instead of this.
781  */
782 #define TCP_TS_HZ	1000
783 
784 static inline u64 tcp_clock_ns(void)
785 {
786 	return ktime_get_ns();
787 }
788 
789 static inline u64 tcp_clock_us(void)
790 {
791 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
792 }
793 
794 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
795 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
796 {
797 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
798 }
799 
800 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
801 static inline u32 tcp_ns_to_ts(u64 ns)
802 {
803 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
804 }
805 
806 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
807 static inline u32 tcp_time_stamp_raw(void)
808 {
809 	return tcp_ns_to_ts(tcp_clock_ns());
810 }
811 
812 void tcp_mstamp_refresh(struct tcp_sock *tp);
813 
814 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
815 {
816 	return max_t(s64, t1 - t0, 0);
817 }
818 
819 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
820 {
821 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
822 }
823 
824 /* provide the departure time in us unit */
825 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
826 {
827 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
828 }
829 
830 
831 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
832 
833 #define TCPHDR_FIN 0x01
834 #define TCPHDR_SYN 0x02
835 #define TCPHDR_RST 0x04
836 #define TCPHDR_PSH 0x08
837 #define TCPHDR_ACK 0x10
838 #define TCPHDR_URG 0x20
839 #define TCPHDR_ECE 0x40
840 #define TCPHDR_CWR 0x80
841 
842 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
843 
844 /* This is what the send packet queuing engine uses to pass
845  * TCP per-packet control information to the transmission code.
846  * We also store the host-order sequence numbers in here too.
847  * This is 44 bytes if IPV6 is enabled.
848  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
849  */
850 struct tcp_skb_cb {
851 	__u32		seq;		/* Starting sequence number	*/
852 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
853 	union {
854 		/* Note : tcp_tw_isn is used in input path only
855 		 *	  (isn chosen by tcp_timewait_state_process())
856 		 *
857 		 * 	  tcp_gso_segs/size are used in write queue only,
858 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
859 		 */
860 		__u32		tcp_tw_isn;
861 		struct {
862 			u16	tcp_gso_segs;
863 			u16	tcp_gso_size;
864 		};
865 	};
866 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
867 
868 	__u8		sacked;		/* State flags for SACK.	*/
869 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
870 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
871 #define TCPCB_LOST		0x04	/* SKB is lost			*/
872 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
873 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
874 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
875 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
876 				TCPCB_REPAIRED)
877 
878 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
879 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
880 			eor:1,		/* Is skb MSG_EOR marked? */
881 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
882 			unused:5;
883 	__u32		ack_seq;	/* Sequence number ACK'd	*/
884 	union {
885 		struct {
886 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
887 			/* There is space for up to 24 bytes */
888 			__u32 is_app_limited:1, /* cwnd not fully used? */
889 			      delivered_ce:20,
890 			      unused:11;
891 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
892 			__u32 delivered;
893 			/* start of send pipeline phase */
894 			u64 first_tx_mstamp;
895 			/* when we reached the "delivered" count */
896 			u64 delivered_mstamp;
897 		} tx;   /* only used for outgoing skbs */
898 		union {
899 			struct inet_skb_parm	h4;
900 #if IS_ENABLED(CONFIG_IPV6)
901 			struct inet6_skb_parm	h6;
902 #endif
903 		} header;	/* For incoming skbs */
904 	};
905 };
906 
907 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
908 
909 extern const struct inet_connection_sock_af_ops ipv4_specific;
910 
911 #if IS_ENABLED(CONFIG_IPV6)
912 /* This is the variant of inet6_iif() that must be used by TCP,
913  * as TCP moves IP6CB into a different location in skb->cb[]
914  */
915 static inline int tcp_v6_iif(const struct sk_buff *skb)
916 {
917 	return TCP_SKB_CB(skb)->header.h6.iif;
918 }
919 
920 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
921 {
922 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
923 
924 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v6_sdif(const struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
932 		return TCP_SKB_CB(skb)->header.h6.iif;
933 #endif
934 	return 0;
935 }
936 
937 extern const struct inet_connection_sock_af_ops ipv6_specific;
938 
939 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
940 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
941 void tcp_v6_early_demux(struct sk_buff *skb);
942 
943 #endif
944 
945 /* TCP_SKB_CB reference means this can not be used from early demux */
946 static inline int tcp_v4_sdif(struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
950 		return TCP_SKB_CB(skb)->header.h4.iif;
951 #endif
952 	return 0;
953 }
954 
955 /* Due to TSO, an SKB can be composed of multiple actual
956  * packets.  To keep these tracked properly, we use this.
957  */
958 static inline int tcp_skb_pcount(const struct sk_buff *skb)
959 {
960 	return TCP_SKB_CB(skb)->tcp_gso_segs;
961 }
962 
963 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
964 {
965 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
966 }
967 
968 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
971 }
972 
973 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
974 static inline int tcp_skb_mss(const struct sk_buff *skb)
975 {
976 	return TCP_SKB_CB(skb)->tcp_gso_size;
977 }
978 
979 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
980 {
981 	return likely(!TCP_SKB_CB(skb)->eor);
982 }
983 
984 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
985 					const struct sk_buff *from)
986 {
987 	return likely(tcp_skb_can_collapse_to(to) &&
988 		      mptcp_skb_can_collapse(to, from) &&
989 		      skb_pure_zcopy_same(to, from));
990 }
991 
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
995 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
996 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
997 	CA_EVENT_LOSS,		/* loss timeout */
998 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
999 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1000 };
1001 
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1005 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1006 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1007 };
1008 
1009 /*
1010  * Interface for adding new TCP congestion control handlers
1011  */
1012 #define TCP_CA_NAME_MAX	16
1013 #define TCP_CA_MAX	128
1014 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1015 
1016 #define TCP_CA_UNSPEC	0
1017 
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN	0x2
1022 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023 
1024 union tcp_cc_info;
1025 
1026 struct ack_sample {
1027 	u32 pkts_acked;
1028 	s32 rtt_us;
1029 	u32 in_flight;
1030 };
1031 
1032 /* A rate sample measures the number of (original/retransmitted) data
1033  * packets delivered "delivered" over an interval of time "interval_us".
1034  * The tcp_rate.c code fills in the rate sample, and congestion
1035  * control modules that define a cong_control function to run at the end
1036  * of ACK processing can optionally chose to consult this sample when
1037  * setting cwnd and pacing rate.
1038  * A sample is invalid if "delivered" or "interval_us" is negative.
1039  */
1040 struct rate_sample {
1041 	u64  prior_mstamp; /* starting timestamp for interval */
1042 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1043 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1044 	s32  delivered;		/* number of packets delivered over interval */
1045 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1046 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1047 	u32 snd_interval_us;	/* snd interval for delivered packets */
1048 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1049 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1050 	int  losses;		/* number of packets marked lost upon ACK */
1051 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1052 	u32  prior_in_flight;	/* in flight before this ACK */
1053 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1054 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1055 	bool is_retrans;	/* is sample from retransmission? */
1056 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1057 };
1058 
1059 struct tcp_congestion_ops {
1060 /* fast path fields are put first to fill one cache line */
1061 
1062 	/* return slow start threshold (required) */
1063 	u32 (*ssthresh)(struct sock *sk);
1064 
1065 	/* do new cwnd calculation (required) */
1066 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1067 
1068 	/* call before changing ca_state (optional) */
1069 	void (*set_state)(struct sock *sk, u8 new_state);
1070 
1071 	/* call when cwnd event occurs (optional) */
1072 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073 
1074 	/* call when ack arrives (optional) */
1075 	void (*in_ack_event)(struct sock *sk, u32 flags);
1076 
1077 	/* hook for packet ack accounting (optional) */
1078 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079 
1080 	/* override sysctl_tcp_min_tso_segs */
1081 	u32 (*min_tso_segs)(struct sock *sk);
1082 
1083 	/* call when packets are delivered to update cwnd and pacing rate,
1084 	 * after all the ca_state processing. (optional)
1085 	 */
1086 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087 
1088 
1089 	/* new value of cwnd after loss (required) */
1090 	u32  (*undo_cwnd)(struct sock *sk);
1091 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1092 	u32 (*sndbuf_expand)(struct sock *sk);
1093 
1094 /* control/slow paths put last */
1095 	/* get info for inet_diag (optional) */
1096 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1097 			   union tcp_cc_info *info);
1098 
1099 	char 			name[TCP_CA_NAME_MAX];
1100 	struct module		*owner;
1101 	struct list_head	list;
1102 	u32			key;
1103 	u32			flags;
1104 
1105 	/* initialize private data (optional) */
1106 	void (*init)(struct sock *sk);
1107 	/* cleanup private data  (optional) */
1108 	void (*release)(struct sock *sk);
1109 } ____cacheline_aligned_in_smp;
1110 
1111 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1112 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1113 
1114 void tcp_assign_congestion_control(struct sock *sk);
1115 void tcp_init_congestion_control(struct sock *sk);
1116 void tcp_cleanup_congestion_control(struct sock *sk);
1117 int tcp_set_default_congestion_control(struct net *net, const char *name);
1118 void tcp_get_default_congestion_control(struct net *net, char *name);
1119 void tcp_get_available_congestion_control(char *buf, size_t len);
1120 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1121 int tcp_set_allowed_congestion_control(char *allowed);
1122 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1123 			       bool cap_net_admin);
1124 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1125 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1126 
1127 u32 tcp_reno_ssthresh(struct sock *sk);
1128 u32 tcp_reno_undo_cwnd(struct sock *sk);
1129 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1130 extern struct tcp_congestion_ops tcp_reno;
1131 
1132 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1133 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1134 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1135 #ifdef CONFIG_INET
1136 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1137 #else
1138 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1139 {
1140 	return NULL;
1141 }
1142 #endif
1143 
1144 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1145 {
1146 	const struct inet_connection_sock *icsk = inet_csk(sk);
1147 
1148 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1149 }
1150 
1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_cong.c */
1160 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1161 
1162 /* From tcp_rate.c */
1163 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1164 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1165 			    struct rate_sample *rs);
1166 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1167 		  bool is_sack_reneg, struct rate_sample *rs);
1168 void tcp_rate_check_app_limited(struct sock *sk);
1169 
1170 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1171 {
1172 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1173 }
1174 
1175 /* These functions determine how the current flow behaves in respect of SACK
1176  * handling. SACK is negotiated with the peer, and therefore it can vary
1177  * between different flows.
1178  *
1179  * tcp_is_sack - SACK enabled
1180  * tcp_is_reno - No SACK
1181  */
1182 static inline int tcp_is_sack(const struct tcp_sock *tp)
1183 {
1184 	return likely(tp->rx_opt.sack_ok);
1185 }
1186 
1187 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1188 {
1189 	return !tcp_is_sack(tp);
1190 }
1191 
1192 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1193 {
1194 	return tp->sacked_out + tp->lost_out;
1195 }
1196 
1197 /* This determines how many packets are "in the network" to the best
1198  * of our knowledge.  In many cases it is conservative, but where
1199  * detailed information is available from the receiver (via SACK
1200  * blocks etc.) we can make more aggressive calculations.
1201  *
1202  * Use this for decisions involving congestion control, use just
1203  * tp->packets_out to determine if the send queue is empty or not.
1204  *
1205  * Read this equation as:
1206  *
1207  *	"Packets sent once on transmission queue" MINUS
1208  *	"Packets left network, but not honestly ACKed yet" PLUS
1209  *	"Packets fast retransmitted"
1210  */
1211 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1212 {
1213 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1214 }
1215 
1216 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1217 
1218 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1219 {
1220 	return tp->snd_cwnd;
1221 }
1222 
1223 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1224 {
1225 	WARN_ON_ONCE((int)val <= 0);
1226 	tp->snd_cwnd = val;
1227 }
1228 
1229 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1230 {
1231 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1232 }
1233 
1234 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1235 {
1236 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1237 }
1238 
1239 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1240 {
1241 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1242 	       (1 << inet_csk(sk)->icsk_ca_state);
1243 }
1244 
1245 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1246  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1247  * ssthresh.
1248  */
1249 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1250 {
1251 	const struct tcp_sock *tp = tcp_sk(sk);
1252 
1253 	if (tcp_in_cwnd_reduction(sk))
1254 		return tp->snd_ssthresh;
1255 	else
1256 		return max(tp->snd_ssthresh,
1257 			   ((tcp_snd_cwnd(tp) >> 1) +
1258 			    (tcp_snd_cwnd(tp) >> 2)));
1259 }
1260 
1261 /* Use define here intentionally to get WARN_ON location shown at the caller */
1262 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1263 
1264 void tcp_enter_cwr(struct sock *sk);
1265 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1266 
1267 /* The maximum number of MSS of available cwnd for which TSO defers
1268  * sending if not using sysctl_tcp_tso_win_divisor.
1269  */
1270 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1271 {
1272 	return 3;
1273 }
1274 
1275 /* Returns end sequence number of the receiver's advertised window */
1276 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1277 {
1278 	return tp->snd_una + tp->snd_wnd;
1279 }
1280 
1281 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1282  * flexible approach. The RFC suggests cwnd should not be raised unless
1283  * it was fully used previously. And that's exactly what we do in
1284  * congestion avoidance mode. But in slow start we allow cwnd to grow
1285  * as long as the application has used half the cwnd.
1286  * Example :
1287  *    cwnd is 10 (IW10), but application sends 9 frames.
1288  *    We allow cwnd to reach 18 when all frames are ACKed.
1289  * This check is safe because it's as aggressive as slow start which already
1290  * risks 100% overshoot. The advantage is that we discourage application to
1291  * either send more filler packets or data to artificially blow up the cwnd
1292  * usage, and allow application-limited process to probe bw more aggressively.
1293  */
1294 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1295 {
1296 	const struct tcp_sock *tp = tcp_sk(sk);
1297 
1298 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1299 	if (tcp_in_slow_start(tp))
1300 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1301 
1302 	return tp->is_cwnd_limited;
1303 }
1304 
1305 /* BBR congestion control needs pacing.
1306  * Same remark for SO_MAX_PACING_RATE.
1307  * sch_fq packet scheduler is efficiently handling pacing,
1308  * but is not always installed/used.
1309  * Return true if TCP stack should pace packets itself.
1310  */
1311 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1312 {
1313 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1314 }
1315 
1316 /* Estimates in how many jiffies next packet for this flow can be sent.
1317  * Scheduling a retransmit timer too early would be silly.
1318  */
1319 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1320 {
1321 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1322 
1323 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1324 }
1325 
1326 static inline void tcp_reset_xmit_timer(struct sock *sk,
1327 					const int what,
1328 					unsigned long when,
1329 					const unsigned long max_when)
1330 {
1331 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1332 				  max_when);
1333 }
1334 
1335 /* Something is really bad, we could not queue an additional packet,
1336  * because qdisc is full or receiver sent a 0 window, or we are paced.
1337  * We do not want to add fuel to the fire, or abort too early,
1338  * so make sure the timer we arm now is at least 200ms in the future,
1339  * regardless of current icsk_rto value (as it could be ~2ms)
1340  */
1341 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1342 {
1343 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1344 }
1345 
1346 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1347 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1348 					    unsigned long max_when)
1349 {
1350 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1351 			   inet_csk(sk)->icsk_backoff);
1352 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1353 
1354 	return (unsigned long)min_t(u64, when, max_when);
1355 }
1356 
1357 static inline void tcp_check_probe_timer(struct sock *sk)
1358 {
1359 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1360 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1361 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1362 }
1363 
1364 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1365 {
1366 	tp->snd_wl1 = seq;
1367 }
1368 
1369 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1370 {
1371 	tp->snd_wl1 = seq;
1372 }
1373 
1374 /*
1375  * Calculate(/check) TCP checksum
1376  */
1377 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1378 				   __be32 daddr, __wsum base)
1379 {
1380 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1381 }
1382 
1383 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1384 {
1385 	return !skb_csum_unnecessary(skb) &&
1386 		__skb_checksum_complete(skb);
1387 }
1388 
1389 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1390 		     enum skb_drop_reason *reason);
1391 
1392 
1393 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1394 void tcp_set_state(struct sock *sk, int state);
1395 void tcp_done(struct sock *sk);
1396 int tcp_abort(struct sock *sk, int err);
1397 
1398 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1399 {
1400 	rx_opt->dsack = 0;
1401 	rx_opt->num_sacks = 0;
1402 }
1403 
1404 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1405 
1406 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1407 {
1408 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 	s32 delta;
1411 
1412 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1413 	    tp->packets_out || ca_ops->cong_control)
1414 		return;
1415 	delta = tcp_jiffies32 - tp->lsndtime;
1416 	if (delta > inet_csk(sk)->icsk_rto)
1417 		tcp_cwnd_restart(sk, delta);
1418 }
1419 
1420 /* Determine a window scaling and initial window to offer. */
1421 void tcp_select_initial_window(const struct sock *sk, int __space,
1422 			       __u32 mss, __u32 *rcv_wnd,
1423 			       __u32 *window_clamp, int wscale_ok,
1424 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1425 
1426 static inline int tcp_win_from_space(const struct sock *sk, int space)
1427 {
1428 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1429 
1430 	return tcp_adv_win_scale <= 0 ?
1431 		(space>>(-tcp_adv_win_scale)) :
1432 		space - (space>>tcp_adv_win_scale);
1433 }
1434 
1435 /* Note: caller must be prepared to deal with negative returns */
1436 static inline int tcp_space(const struct sock *sk)
1437 {
1438 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1439 				  READ_ONCE(sk->sk_backlog.len) -
1440 				  atomic_read(&sk->sk_rmem_alloc));
1441 }
1442 
1443 static inline int tcp_full_space(const struct sock *sk)
1444 {
1445 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1446 }
1447 
1448 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1449 {
1450 	int unused_mem = sk_unused_reserved_mem(sk);
1451 	struct tcp_sock *tp = tcp_sk(sk);
1452 
1453 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1454 	if (unused_mem)
1455 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1456 					 tcp_win_from_space(sk, unused_mem));
1457 }
1458 
1459 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1460 
1461 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1462  * If 87.5 % (7/8) of the space has been consumed, we want to override
1463  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1464  * len/truesize ratio.
1465  */
1466 static inline bool tcp_rmem_pressure(const struct sock *sk)
1467 {
1468 	int rcvbuf, threshold;
1469 
1470 	if (tcp_under_memory_pressure(sk))
1471 		return true;
1472 
1473 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1474 	threshold = rcvbuf - (rcvbuf >> 3);
1475 
1476 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1477 }
1478 
1479 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1480 {
1481 	const struct tcp_sock *tp = tcp_sk(sk);
1482 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1483 
1484 	if (avail <= 0)
1485 		return false;
1486 
1487 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1488 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1489 }
1490 
1491 extern void tcp_openreq_init_rwin(struct request_sock *req,
1492 				  const struct sock *sk_listener,
1493 				  const struct dst_entry *dst);
1494 
1495 void tcp_enter_memory_pressure(struct sock *sk);
1496 void tcp_leave_memory_pressure(struct sock *sk);
1497 
1498 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1499 {
1500 	struct net *net = sock_net((struct sock *)tp);
1501 
1502 	return tp->keepalive_intvl ? :
1503 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1504 }
1505 
1506 static inline int keepalive_time_when(const struct tcp_sock *tp)
1507 {
1508 	struct net *net = sock_net((struct sock *)tp);
1509 
1510 	return tp->keepalive_time ? :
1511 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1512 }
1513 
1514 static inline int keepalive_probes(const struct tcp_sock *tp)
1515 {
1516 	struct net *net = sock_net((struct sock *)tp);
1517 
1518 	return tp->keepalive_probes ? :
1519 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1520 }
1521 
1522 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1523 {
1524 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1525 
1526 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1527 			  tcp_jiffies32 - tp->rcv_tstamp);
1528 }
1529 
1530 static inline int tcp_fin_time(const struct sock *sk)
1531 {
1532 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1533 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1534 	const int rto = inet_csk(sk)->icsk_rto;
1535 
1536 	if (fin_timeout < (rto << 2) - (rto >> 1))
1537 		fin_timeout = (rto << 2) - (rto >> 1);
1538 
1539 	return fin_timeout;
1540 }
1541 
1542 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1543 				  int paws_win)
1544 {
1545 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1546 		return true;
1547 	if (unlikely(!time_before32(ktime_get_seconds(),
1548 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1549 		return true;
1550 	/*
1551 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1552 	 * then following tcp messages have valid values. Ignore 0 value,
1553 	 * or else 'negative' tsval might forbid us to accept their packets.
1554 	 */
1555 	if (!rx_opt->ts_recent)
1556 		return true;
1557 	return false;
1558 }
1559 
1560 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1561 				   int rst)
1562 {
1563 	if (tcp_paws_check(rx_opt, 0))
1564 		return false;
1565 
1566 	/* RST segments are not recommended to carry timestamp,
1567 	   and, if they do, it is recommended to ignore PAWS because
1568 	   "their cleanup function should take precedence over timestamps."
1569 	   Certainly, it is mistake. It is necessary to understand the reasons
1570 	   of this constraint to relax it: if peer reboots, clock may go
1571 	   out-of-sync and half-open connections will not be reset.
1572 	   Actually, the problem would be not existing if all
1573 	   the implementations followed draft about maintaining clock
1574 	   via reboots. Linux-2.2 DOES NOT!
1575 
1576 	   However, we can relax time bounds for RST segments to MSL.
1577 	 */
1578 	if (rst && !time_before32(ktime_get_seconds(),
1579 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1580 		return false;
1581 	return true;
1582 }
1583 
1584 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1585 			  int mib_idx, u32 *last_oow_ack_time);
1586 
1587 static inline void tcp_mib_init(struct net *net)
1588 {
1589 	/* See RFC 2012 */
1590 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1591 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1592 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1593 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1594 }
1595 
1596 /* from STCP */
1597 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1598 {
1599 	tp->lost_skb_hint = NULL;
1600 }
1601 
1602 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1603 {
1604 	tcp_clear_retrans_hints_partial(tp);
1605 	tp->retransmit_skb_hint = NULL;
1606 }
1607 
1608 union tcp_md5_addr {
1609 	struct in_addr  a4;
1610 #if IS_ENABLED(CONFIG_IPV6)
1611 	struct in6_addr	a6;
1612 #endif
1613 };
1614 
1615 /* - key database */
1616 struct tcp_md5sig_key {
1617 	struct hlist_node	node;
1618 	u8			keylen;
1619 	u8			family; /* AF_INET or AF_INET6 */
1620 	u8			prefixlen;
1621 	u8			flags;
1622 	union tcp_md5_addr	addr;
1623 	int			l3index; /* set if key added with L3 scope */
1624 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1625 	struct rcu_head		rcu;
1626 };
1627 
1628 /* - sock block */
1629 struct tcp_md5sig_info {
1630 	struct hlist_head	head;
1631 	struct rcu_head		rcu;
1632 };
1633 
1634 /* - pseudo header */
1635 struct tcp4_pseudohdr {
1636 	__be32		saddr;
1637 	__be32		daddr;
1638 	__u8		pad;
1639 	__u8		protocol;
1640 	__be16		len;
1641 };
1642 
1643 struct tcp6_pseudohdr {
1644 	struct in6_addr	saddr;
1645 	struct in6_addr daddr;
1646 	__be32		len;
1647 	__be32		protocol;	/* including padding */
1648 };
1649 
1650 union tcp_md5sum_block {
1651 	struct tcp4_pseudohdr ip4;
1652 #if IS_ENABLED(CONFIG_IPV6)
1653 	struct tcp6_pseudohdr ip6;
1654 #endif
1655 };
1656 
1657 /* - pool: digest algorithm, hash description and scratch buffer */
1658 struct tcp_md5sig_pool {
1659 	struct ahash_request	*md5_req;
1660 	void			*scratch;
1661 };
1662 
1663 /* - functions */
1664 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1665 			const struct sock *sk, const struct sk_buff *skb);
1666 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1667 		   int family, u8 prefixlen, int l3index, u8 flags,
1668 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1669 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1670 		   int family, u8 prefixlen, int l3index, u8 flags);
1671 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1672 					 const struct sock *addr_sk);
1673 
1674 #ifdef CONFIG_TCP_MD5SIG
1675 #include <linux/jump_label.h>
1676 extern struct static_key_false tcp_md5_needed;
1677 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1678 					   const union tcp_md5_addr *addr,
1679 					   int family);
1680 static inline struct tcp_md5sig_key *
1681 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1682 		  const union tcp_md5_addr *addr, int family)
1683 {
1684 	if (!static_branch_unlikely(&tcp_md5_needed))
1685 		return NULL;
1686 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1687 }
1688 
1689 enum skb_drop_reason
1690 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1691 		     const void *saddr, const void *daddr,
1692 		     int family, int dif, int sdif);
1693 
1694 
1695 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1696 #else
1697 static inline struct tcp_md5sig_key *
1698 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1699 		  const union tcp_md5_addr *addr, int family)
1700 {
1701 	return NULL;
1702 }
1703 
1704 static inline enum skb_drop_reason
1705 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1706 		     const void *saddr, const void *daddr,
1707 		     int family, int dif, int sdif)
1708 {
1709 	return SKB_NOT_DROPPED_YET;
1710 }
1711 #define tcp_twsk_md5_key(twsk)	NULL
1712 #endif
1713 
1714 bool tcp_alloc_md5sig_pool(void);
1715 
1716 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1717 static inline void tcp_put_md5sig_pool(void)
1718 {
1719 	local_bh_enable();
1720 }
1721 
1722 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1723 			  unsigned int header_len);
1724 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1725 		     const struct tcp_md5sig_key *key);
1726 
1727 /* From tcp_fastopen.c */
1728 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1729 			    struct tcp_fastopen_cookie *cookie);
1730 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1731 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1732 			    u16 try_exp);
1733 struct tcp_fastopen_request {
1734 	/* Fast Open cookie. Size 0 means a cookie request */
1735 	struct tcp_fastopen_cookie	cookie;
1736 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1737 	size_t				size;
1738 	int				copied;	/* queued in tcp_connect() */
1739 	struct ubuf_info		*uarg;
1740 };
1741 void tcp_free_fastopen_req(struct tcp_sock *tp);
1742 void tcp_fastopen_destroy_cipher(struct sock *sk);
1743 void tcp_fastopen_ctx_destroy(struct net *net);
1744 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1745 			      void *primary_key, void *backup_key);
1746 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1747 			    u64 *key);
1748 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1749 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1750 			      struct request_sock *req,
1751 			      struct tcp_fastopen_cookie *foc,
1752 			      const struct dst_entry *dst);
1753 void tcp_fastopen_init_key_once(struct net *net);
1754 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1755 			     struct tcp_fastopen_cookie *cookie);
1756 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1757 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1758 #define TCP_FASTOPEN_KEY_MAX 2
1759 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1760 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1761 
1762 /* Fastopen key context */
1763 struct tcp_fastopen_context {
1764 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1765 	int		num;
1766 	struct rcu_head	rcu;
1767 };
1768 
1769 void tcp_fastopen_active_disable(struct sock *sk);
1770 bool tcp_fastopen_active_should_disable(struct sock *sk);
1771 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1772 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1773 
1774 /* Caller needs to wrap with rcu_read_(un)lock() */
1775 static inline
1776 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1777 {
1778 	struct tcp_fastopen_context *ctx;
1779 
1780 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1781 	if (!ctx)
1782 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1783 	return ctx;
1784 }
1785 
1786 static inline
1787 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1788 			       const struct tcp_fastopen_cookie *orig)
1789 {
1790 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1791 	    orig->len == foc->len &&
1792 	    !memcmp(orig->val, foc->val, foc->len))
1793 		return true;
1794 	return false;
1795 }
1796 
1797 static inline
1798 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1799 {
1800 	return ctx->num;
1801 }
1802 
1803 /* Latencies incurred by various limits for a sender. They are
1804  * chronograph-like stats that are mutually exclusive.
1805  */
1806 enum tcp_chrono {
1807 	TCP_CHRONO_UNSPEC,
1808 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1809 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1810 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1811 	__TCP_CHRONO_MAX,
1812 };
1813 
1814 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1815 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1816 
1817 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1818  * the same memory storage than skb->destructor/_skb_refdst
1819  */
1820 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1821 {
1822 	skb->destructor = NULL;
1823 	skb->_skb_refdst = 0UL;
1824 }
1825 
1826 #define tcp_skb_tsorted_save(skb) {		\
1827 	unsigned long _save = skb->_skb_refdst;	\
1828 	skb->_skb_refdst = 0UL;
1829 
1830 #define tcp_skb_tsorted_restore(skb)		\
1831 	skb->_skb_refdst = _save;		\
1832 }
1833 
1834 void tcp_write_queue_purge(struct sock *sk);
1835 
1836 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1837 {
1838 	return skb_rb_first(&sk->tcp_rtx_queue);
1839 }
1840 
1841 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1842 {
1843 	return skb_rb_last(&sk->tcp_rtx_queue);
1844 }
1845 
1846 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1847 {
1848 	return skb_peek_tail(&sk->sk_write_queue);
1849 }
1850 
1851 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1852 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1853 
1854 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1855 {
1856 	return skb_peek(&sk->sk_write_queue);
1857 }
1858 
1859 static inline bool tcp_skb_is_last(const struct sock *sk,
1860 				   const struct sk_buff *skb)
1861 {
1862 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1863 }
1864 
1865 /**
1866  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1867  * @sk: socket
1868  *
1869  * Since the write queue can have a temporary empty skb in it,
1870  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1871  */
1872 static inline bool tcp_write_queue_empty(const struct sock *sk)
1873 {
1874 	const struct tcp_sock *tp = tcp_sk(sk);
1875 
1876 	return tp->write_seq == tp->snd_nxt;
1877 }
1878 
1879 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1880 {
1881 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1882 }
1883 
1884 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1885 {
1886 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1887 }
1888 
1889 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1890 {
1891 	__skb_queue_tail(&sk->sk_write_queue, skb);
1892 
1893 	/* Queue it, remembering where we must start sending. */
1894 	if (sk->sk_write_queue.next == skb)
1895 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1896 }
1897 
1898 /* Insert new before skb on the write queue of sk.  */
1899 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1900 						  struct sk_buff *skb,
1901 						  struct sock *sk)
1902 {
1903 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1904 }
1905 
1906 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1907 {
1908 	tcp_skb_tsorted_anchor_cleanup(skb);
1909 	__skb_unlink(skb, &sk->sk_write_queue);
1910 }
1911 
1912 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1913 
1914 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1915 {
1916 	tcp_skb_tsorted_anchor_cleanup(skb);
1917 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1918 }
1919 
1920 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1921 {
1922 	list_del(&skb->tcp_tsorted_anchor);
1923 	tcp_rtx_queue_unlink(skb, sk);
1924 	tcp_wmem_free_skb(sk, skb);
1925 }
1926 
1927 static inline void tcp_push_pending_frames(struct sock *sk)
1928 {
1929 	if (tcp_send_head(sk)) {
1930 		struct tcp_sock *tp = tcp_sk(sk);
1931 
1932 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1933 	}
1934 }
1935 
1936 /* Start sequence of the skb just after the highest skb with SACKed
1937  * bit, valid only if sacked_out > 0 or when the caller has ensured
1938  * validity by itself.
1939  */
1940 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1941 {
1942 	if (!tp->sacked_out)
1943 		return tp->snd_una;
1944 
1945 	if (tp->highest_sack == NULL)
1946 		return tp->snd_nxt;
1947 
1948 	return TCP_SKB_CB(tp->highest_sack)->seq;
1949 }
1950 
1951 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1952 {
1953 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1954 }
1955 
1956 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1957 {
1958 	return tcp_sk(sk)->highest_sack;
1959 }
1960 
1961 static inline void tcp_highest_sack_reset(struct sock *sk)
1962 {
1963 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1964 }
1965 
1966 /* Called when old skb is about to be deleted and replaced by new skb */
1967 static inline void tcp_highest_sack_replace(struct sock *sk,
1968 					    struct sk_buff *old,
1969 					    struct sk_buff *new)
1970 {
1971 	if (old == tcp_highest_sack(sk))
1972 		tcp_sk(sk)->highest_sack = new;
1973 }
1974 
1975 /* This helper checks if socket has IP_TRANSPARENT set */
1976 static inline bool inet_sk_transparent(const struct sock *sk)
1977 {
1978 	switch (sk->sk_state) {
1979 	case TCP_TIME_WAIT:
1980 		return inet_twsk(sk)->tw_transparent;
1981 	case TCP_NEW_SYN_RECV:
1982 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1983 	}
1984 	return inet_sk(sk)->transparent;
1985 }
1986 
1987 /* Determines whether this is a thin stream (which may suffer from
1988  * increased latency). Used to trigger latency-reducing mechanisms.
1989  */
1990 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1991 {
1992 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1993 }
1994 
1995 /* /proc */
1996 enum tcp_seq_states {
1997 	TCP_SEQ_STATE_LISTENING,
1998 	TCP_SEQ_STATE_ESTABLISHED,
1999 };
2000 
2001 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2002 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2003 void tcp_seq_stop(struct seq_file *seq, void *v);
2004 
2005 struct tcp_seq_afinfo {
2006 	sa_family_t			family;
2007 };
2008 
2009 struct tcp_iter_state {
2010 	struct seq_net_private	p;
2011 	enum tcp_seq_states	state;
2012 	struct sock		*syn_wait_sk;
2013 	int			bucket, offset, sbucket, num;
2014 	loff_t			last_pos;
2015 };
2016 
2017 extern struct request_sock_ops tcp_request_sock_ops;
2018 extern struct request_sock_ops tcp6_request_sock_ops;
2019 
2020 void tcp_v4_destroy_sock(struct sock *sk);
2021 
2022 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2023 				netdev_features_t features);
2024 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2025 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2026 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2027 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2028 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2029 int tcp_gro_complete(struct sk_buff *skb);
2030 
2031 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2032 
2033 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2034 {
2035 	struct net *net = sock_net((struct sock *)tp);
2036 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2037 }
2038 
2039 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2040 
2041 #ifdef CONFIG_PROC_FS
2042 int tcp4_proc_init(void);
2043 void tcp4_proc_exit(void);
2044 #endif
2045 
2046 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2047 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2048 		     const struct tcp_request_sock_ops *af_ops,
2049 		     struct sock *sk, struct sk_buff *skb);
2050 
2051 /* TCP af-specific functions */
2052 struct tcp_sock_af_ops {
2053 #ifdef CONFIG_TCP_MD5SIG
2054 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2055 						const struct sock *addr_sk);
2056 	int		(*calc_md5_hash)(char *location,
2057 					 const struct tcp_md5sig_key *md5,
2058 					 const struct sock *sk,
2059 					 const struct sk_buff *skb);
2060 	int		(*md5_parse)(struct sock *sk,
2061 				     int optname,
2062 				     sockptr_t optval,
2063 				     int optlen);
2064 #endif
2065 };
2066 
2067 struct tcp_request_sock_ops {
2068 	u16 mss_clamp;
2069 #ifdef CONFIG_TCP_MD5SIG
2070 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2071 						 const struct sock *addr_sk);
2072 	int		(*calc_md5_hash) (char *location,
2073 					  const struct tcp_md5sig_key *md5,
2074 					  const struct sock *sk,
2075 					  const struct sk_buff *skb);
2076 #endif
2077 #ifdef CONFIG_SYN_COOKIES
2078 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2079 				 __u16 *mss);
2080 #endif
2081 	struct dst_entry *(*route_req)(const struct sock *sk,
2082 				       struct sk_buff *skb,
2083 				       struct flowi *fl,
2084 				       struct request_sock *req);
2085 	u32 (*init_seq)(const struct sk_buff *skb);
2086 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2087 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2088 			   struct flowi *fl, struct request_sock *req,
2089 			   struct tcp_fastopen_cookie *foc,
2090 			   enum tcp_synack_type synack_type,
2091 			   struct sk_buff *syn_skb);
2092 };
2093 
2094 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2095 #if IS_ENABLED(CONFIG_IPV6)
2096 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2097 #endif
2098 
2099 #ifdef CONFIG_SYN_COOKIES
2100 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2101 					 const struct sock *sk, struct sk_buff *skb,
2102 					 __u16 *mss)
2103 {
2104 	tcp_synq_overflow(sk);
2105 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2106 	return ops->cookie_init_seq(skb, mss);
2107 }
2108 #else
2109 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2110 					 const struct sock *sk, struct sk_buff *skb,
2111 					 __u16 *mss)
2112 {
2113 	return 0;
2114 }
2115 #endif
2116 
2117 int tcpv4_offload_init(void);
2118 
2119 void tcp_v4_init(void);
2120 void tcp_init(void);
2121 
2122 /* tcp_recovery.c */
2123 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2124 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2125 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2126 				u32 reo_wnd);
2127 extern bool tcp_rack_mark_lost(struct sock *sk);
2128 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2129 			     u64 xmit_time);
2130 extern void tcp_rack_reo_timeout(struct sock *sk);
2131 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2132 
2133 /* At how many usecs into the future should the RTO fire? */
2134 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2135 {
2136 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2137 	u32 rto = inet_csk(sk)->icsk_rto;
2138 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2139 
2140 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2141 }
2142 
2143 /*
2144  * Save and compile IPv4 options, return a pointer to it
2145  */
2146 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2147 							 struct sk_buff *skb)
2148 {
2149 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2150 	struct ip_options_rcu *dopt = NULL;
2151 
2152 	if (opt->optlen) {
2153 		int opt_size = sizeof(*dopt) + opt->optlen;
2154 
2155 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2156 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2157 			kfree(dopt);
2158 			dopt = NULL;
2159 		}
2160 	}
2161 	return dopt;
2162 }
2163 
2164 /* locally generated TCP pure ACKs have skb->truesize == 2
2165  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2166  * This is much faster than dissecting the packet to find out.
2167  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2168  */
2169 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2170 {
2171 	return skb->truesize == 2;
2172 }
2173 
2174 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2175 {
2176 	skb->truesize = 2;
2177 }
2178 
2179 static inline int tcp_inq(struct sock *sk)
2180 {
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	int answ;
2183 
2184 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2185 		answ = 0;
2186 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2187 		   !tp->urg_data ||
2188 		   before(tp->urg_seq, tp->copied_seq) ||
2189 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2190 
2191 		answ = tp->rcv_nxt - tp->copied_seq;
2192 
2193 		/* Subtract 1, if FIN was received */
2194 		if (answ && sock_flag(sk, SOCK_DONE))
2195 			answ--;
2196 	} else {
2197 		answ = tp->urg_seq - tp->copied_seq;
2198 	}
2199 
2200 	return answ;
2201 }
2202 
2203 int tcp_peek_len(struct socket *sock);
2204 
2205 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2206 {
2207 	u16 segs_in;
2208 
2209 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2210 
2211 	/* We update these fields while other threads might
2212 	 * read them from tcp_get_info()
2213 	 */
2214 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2215 	if (skb->len > tcp_hdrlen(skb))
2216 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2217 }
2218 
2219 /*
2220  * TCP listen path runs lockless.
2221  * We forced "struct sock" to be const qualified to make sure
2222  * we don't modify one of its field by mistake.
2223  * Here, we increment sk_drops which is an atomic_t, so we can safely
2224  * make sock writable again.
2225  */
2226 static inline void tcp_listendrop(const struct sock *sk)
2227 {
2228 	atomic_inc(&((struct sock *)sk)->sk_drops);
2229 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2230 }
2231 
2232 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2233 
2234 /*
2235  * Interface for adding Upper Level Protocols over TCP
2236  */
2237 
2238 #define TCP_ULP_NAME_MAX	16
2239 #define TCP_ULP_MAX		128
2240 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2241 
2242 struct tcp_ulp_ops {
2243 	struct list_head	list;
2244 
2245 	/* initialize ulp */
2246 	int (*init)(struct sock *sk);
2247 	/* update ulp */
2248 	void (*update)(struct sock *sk, struct proto *p,
2249 		       void (*write_space)(struct sock *sk));
2250 	/* cleanup ulp */
2251 	void (*release)(struct sock *sk);
2252 	/* diagnostic */
2253 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2254 	size_t (*get_info_size)(const struct sock *sk);
2255 	/* clone ulp */
2256 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2257 		      const gfp_t priority);
2258 
2259 	char		name[TCP_ULP_NAME_MAX];
2260 	struct module	*owner;
2261 };
2262 int tcp_register_ulp(struct tcp_ulp_ops *type);
2263 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2264 int tcp_set_ulp(struct sock *sk, const char *name);
2265 void tcp_get_available_ulp(char *buf, size_t len);
2266 void tcp_cleanup_ulp(struct sock *sk);
2267 void tcp_update_ulp(struct sock *sk, struct proto *p,
2268 		    void (*write_space)(struct sock *sk));
2269 
2270 #define MODULE_ALIAS_TCP_ULP(name)				\
2271 	__MODULE_INFO(alias, alias_userspace, name);		\
2272 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2273 
2274 #ifdef CONFIG_NET_SOCK_MSG
2275 struct sk_msg;
2276 struct sk_psock;
2277 
2278 #ifdef CONFIG_BPF_SYSCALL
2279 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2280 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2281 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2282 #endif /* CONFIG_BPF_SYSCALL */
2283 
2284 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2285 			  int flags);
2286 #endif /* CONFIG_NET_SOCK_MSG */
2287 
2288 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2289 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2290 {
2291 }
2292 #endif
2293 
2294 #ifdef CONFIG_CGROUP_BPF
2295 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2296 				      struct sk_buff *skb,
2297 				      unsigned int end_offset)
2298 {
2299 	skops->skb = skb;
2300 	skops->skb_data_end = skb->data + end_offset;
2301 }
2302 #else
2303 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2304 				      struct sk_buff *skb,
2305 				      unsigned int end_offset)
2306 {
2307 }
2308 #endif
2309 
2310 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2311  * is < 0, then the BPF op failed (for example if the loaded BPF
2312  * program does not support the chosen operation or there is no BPF
2313  * program loaded).
2314  */
2315 #ifdef CONFIG_BPF
2316 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2317 {
2318 	struct bpf_sock_ops_kern sock_ops;
2319 	int ret;
2320 
2321 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2322 	if (sk_fullsock(sk)) {
2323 		sock_ops.is_fullsock = 1;
2324 		sock_owned_by_me(sk);
2325 	}
2326 
2327 	sock_ops.sk = sk;
2328 	sock_ops.op = op;
2329 	if (nargs > 0)
2330 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2331 
2332 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2333 	if (ret == 0)
2334 		ret = sock_ops.reply;
2335 	else
2336 		ret = -1;
2337 	return ret;
2338 }
2339 
2340 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2341 {
2342 	u32 args[2] = {arg1, arg2};
2343 
2344 	return tcp_call_bpf(sk, op, 2, args);
2345 }
2346 
2347 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2348 				    u32 arg3)
2349 {
2350 	u32 args[3] = {arg1, arg2, arg3};
2351 
2352 	return tcp_call_bpf(sk, op, 3, args);
2353 }
2354 
2355 #else
2356 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2357 {
2358 	return -EPERM;
2359 }
2360 
2361 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2362 {
2363 	return -EPERM;
2364 }
2365 
2366 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2367 				    u32 arg3)
2368 {
2369 	return -EPERM;
2370 }
2371 
2372 #endif
2373 
2374 static inline u32 tcp_timeout_init(struct sock *sk)
2375 {
2376 	int timeout;
2377 
2378 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2379 
2380 	if (timeout <= 0)
2381 		timeout = TCP_TIMEOUT_INIT;
2382 	return min_t(int, timeout, TCP_RTO_MAX);
2383 }
2384 
2385 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2386 {
2387 	int rwnd;
2388 
2389 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2390 
2391 	if (rwnd < 0)
2392 		rwnd = 0;
2393 	return rwnd;
2394 }
2395 
2396 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2397 {
2398 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2399 }
2400 
2401 static inline void tcp_bpf_rtt(struct sock *sk)
2402 {
2403 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2404 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2405 }
2406 
2407 #if IS_ENABLED(CONFIG_SMC)
2408 extern struct static_key_false tcp_have_smc;
2409 #endif
2410 
2411 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2412 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2413 			     void (*cad)(struct sock *sk, u32 ack_seq));
2414 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2415 void clean_acked_data_flush(void);
2416 #endif
2417 
2418 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2419 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2420 				    const struct tcp_sock *tp)
2421 {
2422 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2423 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2424 }
2425 
2426 /* Compute Earliest Departure Time for some control packets
2427  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2428  */
2429 static inline u64 tcp_transmit_time(const struct sock *sk)
2430 {
2431 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2432 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2433 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2434 
2435 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2436 	}
2437 	return 0;
2438 }
2439 
2440 #endif	/* _TCP_H */
2441